
Advanced .NET Remoting

INGO RAMMER

252FM.qxp 3/11/02 2:52 PM Page i

Advanced .NET Remoting
Copyright ©2002 by Ingo Rammer

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN (pbk): 1-59059-025-2
Printed and bound in the United States of America 12345678910
Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.
Technical Reviewer: Kent Sharkey
Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, Karen
Watterson, John Zukowski
Managing Editor: Grace Wong
Project Manager: Alexa Stuart
Copy Editor: Ami Knox
Production Editor: Julianna Scott Fein
Compositor and Illustrator: Impressions Book and Journal Services, Inc.
Indexer: Valerie Haynes Perry
Cover Designer: Tom Debolski
Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.
In the United States, phone 1-800-SPRINGER, Email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, Email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710.
Email info@apress.com, or visit http://www.apress.com.
The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.
The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

252FM.qxp 3/11/02 2:52 PM Page ii

CHAPTER 1

Introduction
to Remoting

THIS CHAPTER GIVES YOU a short introduction to the world of distributed application
development and its respective technologies. Here you get a chance to examine
some scenarios in which .NET Remoting can be employed and learn some histor-
ical background on the progress and development of various remoting
frameworks during the last ten years.

What Is Remoting?

Remoting is the process of programs or components interacting across certain
boundaries. These contexts will normally resemble either different processes or
machines.1 In the .NET Framework, this technology provides the foundation for
distributed applications—it simply replaces DCOM.

Remoting implementations generally distinguish between remote objects and
mobile objects. The former provides the ability to execute methods on remote
servers, passing parameters and receiving return values. The remote object will
always “stay” at the server, and only a reference to it will be passed around
among other machines.

When mobile objects pass a context boundary, they are serialized (mar-
shaled) into a general representation—either a binary or a human readable
format like XML—and then deserialized in the other context involved in the pro-
cess. Server and client both hold copies of the same object. Methods executed on
those copies of the object will always be carried out in the local context, and no
message will travel back to the machine from which the object originated. In fact,
after serialization and deserialization, the copied objects are indistinguishable
from regular local objects, and there is also no distinction between a server
object and a client object.

1

1 .NET extends this concept to include the ability to define additional contexts within one
running application. Object accesses crossing these boundaries will pass the .NET
Remoting Framework as well.

252ch01.qxp 3/11/02 2:52 PM Page 1

Scenarios for .NET Remoting

At the beginning of the client/server era, remoting was mostly used for accessing
a server’s resources. Every database or file server is an implementation of some
technique that allows code to be executed remotely. Programming these older
frameworks was so difficult a task that few products except for these server-side
core services implemented remoting.

Nowadays the building of distributed applications has gotten a lot easier so
that it’s quite feasible to distribute business applications among various machines
to improve performance, scalability, and maintainability.

Centralized Business Logic

One of the key scenarios for implementing remoting is the concentration of busi-
ness logic on one or more central servers. This considerably simplifies the
maintainability and operability of large-scale applications. Changes in business
logic do not entail your having to roll out an application to your organization’s
10,000 worldwide users—you just have to update one single server.

When this centralized business logic is shared among different applications,
this labor-saving effect multiplies considerably; instead of patching several appli-
cations, you just have to change the server’s implementation.

Physical Separation of Layers

The security of a company’s vital databases represents a common concern in
this time of Web-enabled businesses. The general recommendation is against
directly connecting from the Web server to the database because this setup
would allow attackers easy access to critical data after they have seized control
of the Web server.

Instead of this direct connection, an intermediate application server is intro-
duced. This server is placed in a so-called demilitarized zone (DMZ), located
between two firewalls. Firewall #1 only allows connections from the Web server
to the app server, and Firewall #2 only allows connections from the app server to
the databases.

Because the application server doesn’t allow the execution of arbitrary SQL
statements, yet provides object-oriented or function-based access to business
logic, a security compromise of the Web server (which can only talk to the app
server) is noncritical to a company’s operations.

2

Chapter 1

252ch01.qxp 3/11/02 2:52 PM Page 2

Accessing Other Platforms

In today’s mid- to large-scale enterprises, you will normally encounter a hetero-
geneous combination of different platforms, frameworks, and programming
languages. It is not uncommon to find that a bunch of tools have been imple-
mented: Active Server Pages (ASP), Java Server Pages (JSP), PHP, or ColdFusion
for Web applications, Visual Basic or Java for in-house applications, C++ for
server-side batch jobs, scripting languages for customizing CRM systems,
and so on.

Integrating these systems can be a daunting task for system architects.
Remoting architectures like CORBA, SOAP, and .NET Remoting are an absolute
necessity in large-scale enterprise application integration. (CORBA and SOAP are
introduced and compared later in this chapter.)

Third-Party Access

Opening systems to third parties in a business-to-business environment is quite
common nowadays. This process started with hard-to-implement EDI docu-
ments, transferred via proprietary networks, and is recently opening up for
smaller companies due to the possibility of using SOAP, which is fairly easier
to implement.

Order-entry applications, which allow your business partners to directly
place orders from one ERP system to the other, constitute one example of an
application utilizing this kind of remoting. More sophisticated applications are
starting to be developed—address verification, customer creditworthiness rat-
ings, and online price-comparison systems are just the beginning.

Evolution of Remoting

The scenarios presented thus far have only been possible due to the constant
evolution of remoting frameworks. The implementation of large-scale business
applications in a distributed manner has only been practicable after the techni-
cal problems have been taken care of by the frameworks. CORBA, COM+, and EJB
started this process several years ago, and .NET Remoting simplifies this process
even more.

To underscore how far remoting has evolved from its cumbersome
beginnings, the following sections give you a brief history of the various
remoting frameworks.

3

Introduction to Remoting

252ch01.qxp 3/11/02 2:52 PM Page 3

DCE/RPC

Distributed Computing Environment (DCE), designed by the Open Software
Foundation (OSF) during the early 1990s, was created to provide a collection
of tools and services that would allow easier development and administration of
distributed applications. The DCE framework provides several base services such
as Remote Procedure Calls (DCE/RPC), Security Services, Time Services,
and so on.

Implementing DCE is quite a daunting task; the interfaces have to be speci-
fied in Interface Definition Language (IDL) and compiled to C headers, client
proxies, and server stubs by an IDL compiler. When implementing the server, one
has to link the binary with DCE/Threads, which are available for C/C++. The use
of programming languages other than these is somewhat restricted due to the
dependence on the underlying services, like DCE/Threads, with the result that
one has to live with single-threaded servers when refraining from using C/C++.

DCE/RPC nevertheless is the foundation for many current higher-level pro-
tocols including DCOM and COM+. Several application-level protocols such as
MS SQL Server, Exchange Server, Server Message Block (SMB), which is used for
file and printer sharing, and Network File System (NFS) are also based
on DCE/RPC.

CORBA

Designed by the Object Management Group (OMG), an international consortium
of about 800 companies, CORBA’s aim is to be the middleware of choice for het-
erogeneous systems. OMG’s CORBA, which stands for Common Object Request
Broker Architecture, is only a collection of standards; the implementation of
object request brokers (ORBs) is done by various third parties. Because parts
of the standard are optional and the vendors of ORBs are allowed to include addi-
tional features that are not in the specifications, the world has ended up with
some incompatible request brokers. As a result, an application developed to
make use of one vendor’s features could not easily be ported to another ORB.
When you buy a CORBA-based program or component, you just can’t be sure if it
will integrate with your CORBA applications, which probably were developed for
a different request broker.

Aside from this potential problem, CORBA also has quite a steep learning
curve. The standard reads like a complete wish list of everything that’s possible
with remoted components—sometimes it simply is too much for the “standard
business.” You’ll probably end up reading documents for days or weeks before
your first request is ever sent to a server object.

4

Chapter 1

252ch01.qxp 3/11/02 2:52 PM Page 4

Nevertheless, when you have managed to implement your first CORBA appli-
cation, you’ll be able to integrate a lot of programming languages and platforms.
There are even layers for COM or EJB integration, and apart from SOAP, CORBA is
the only true multiplatform, multiprogramming language environment for dis-
tributed applications.

DCOM

Distributed Component Object Model (DCOM) is an “extension” that fits in the
Component Object Model (COM) architecture, which is a binary interoperability
standard that allows for component-oriented application development. You’ll
usually come in contact with COM when using ActiveX controls or ActiveX DLLs.

DCOM allows the distribution of those components among different com-
puters. Scalability, manageability, and its use in WANs pose several issues that
need to be addressed. DCOM uses a pinging process to manage the object’s
lifetimes; all clients that use a certain object will send messages after certain
intervals. When a a server receives these messages it knows that the client is still
alive; otherwise it will destroy the object.

Additionally, reliance on the binary DCE/RPC protocol poses the need for
direct TCP connections between the client and its server. Use of HTTP proxies is
not possible. DCOM is available for Microsoft Windows and for some UNIX
dialects (ported by the German Software AG).

MTS/COM+

COM+, formerly Microsoft Transaction Server (MTS), was Microsoft’s first serious
attempt to reach into the enterprise application domain. It not only serves as
a remoting platform, but also provides transaction, security, scalability, and
deployment services. COM+ components can even be used via Microsoft
Message Queue Server to provide asynchronous execution of methods.

Despite its advantages, COM+ does not yet support the automatic mar-
shalling of objects to pass them by value between applications; instead you have
to pass your data structures using ADO recordsets or other means of seriali-
zation. Other disadvantages that keep people from using COM+ are the
somewhat difficult configuration and deployment, which complicates its use for
real-world applications.

5

Introduction to Remoting

252ch01.qxp 3/11/02 2:52 PM Page 5

Java RMI

Traditional Java Remote Method Invocation (Java RMI) uses a manual proxy/stub
compilation cycle. In contrast to DCE/RPC and DCOM, the interfaces are not
written in an abstract IDL but in Java. This is possible due to Java being the only
language for which the implementation of RMI is possible.

This limitation locked RMI out of the game of enterprise application inte-
gration. Even though all relevant platforms support a Java Virtual Machine,
integration with legacy applications is not easily done.

Java EJB

Enterprise Java Beans (EJB) was Sun’s answer to Microsoft’s COM+. Unlike
CORBA, which is only a standard, EJB comes with a reference implementation.
This allows developers to check if their products run in any standard-complying
EJB container. EJB has been widely accepted by the industry, and there are sev-
eral container implementations ranging from free open source to commercial
implementations by well-known middleware vendors.

One problem with EJB is that even though a reference implementation exists,
most vendors add features to their application servers. When a developer writes
a component that uses one of those features, the application will not run on
another vendor’s EJB container.

Former versions of EJB have been limited to the Java platform because of
their internal reliance on RMI. The current version allows the use of IIOP, which is
the same transfer protocol CORBA uses, and third parties already provide com-
mercial COM/EJB bridges.

Web Services/SOAP/XML-RPC

Web Services provided the first easy to understand and implement solution to
true cross-platform and cross-language interoperability. Web Services technically
are stateless calls to remote components via HTTP POST with a payload encoded
in some XML format.

Two different XML encodings are currently in major use: XML-RPC and
SOAP. XML-RPC can be described as a poor man’s SOAP. It defines a very
lightweight protocol with a specification size of about five printed pages.
Implementations are already available for a lot of programming environments,
ranging from AppleScript to C/C++, COM, Java, Perl, PHP, Python, Tcl, and
Zope—and of course there’s also an implementation for .NET.

SOAP, or Simple Object Access Protocol, defines a much richer set of services;
the specification covers not only remote procedure calls, but also the Web

6

Chapter 1

252ch01.qxp 3/11/02 2:52 PM Page 6

Services Description Language (WSDL) and Universal Description, Discovery, and
Integration (UDDI). WSDL is SOAP’s interface definition language, and UDDI
serves as a directory service for the discovery of Web Services. Those additional
protocols and specifications are also based on XML, which allows all SOAP fea-
tures to be implemented on a lot of platforms.

The specifications and white papers for SOAP, WSDL, UDDI, and corre-
sponding technologies cover several hundred pages, and you can safely assume
that this document will grow further when topics like routing and transactions
are addressed. Fortunately for .NET developers, the .NET platform takes care of
all issues regarding SOAP.

.NET Remoting

At first look, .NET Remoting is to Web Services what ASP has been to CGI pro-
gramming. It takes care of a lot of issues for you: contrary to Web Services, for
example, .NET Remoting enables you to work with stateful objects. This single
fact allows it to be the base of tomorrow’s distributed applications.

In addition to the management of stateful objects, .NET Remoting gives you
a flexible and extensible framework that allows for different transfer mechanisms
(HTTP and TCP are supported by default), encodings (SOAP and binary come
with the framework), and security settings (IIS Security and SSL come out of
the box).

With these options, and the possibility of extending all of them or providing
completely new implementations, .NET Remoting is well suited to today’s dis-
tributed applications. You can choose between HTTP/SOAP for the Internet or
TCP/binary for LAN applications by literally changing a single line in a config-
uration file.

Interface description does not have to be manually coded in any way, even
though it’s supported if you like to design your applications this way. Instead,
metadata can be extracted from running servers, where the WSDL is automati-
cally generated, or from any .NET assembly.

Summary

This chapter provided a short introduction to the world of distributed appli-
cation development and the respective technologies. You now know about the
various scenarios in which .NET Remoting can be applied and understand how it
differs from other distributed application protocols and techniques.

7

Introduction to Remoting

252ch01.qxp 3/11/02 2:52 PM Page 7

Index

393

NUMBERS
2xx-5xx SMTP response code classes,

explanations of, 318

A
abstract base classes

creating in shared assemblies, 78
role in sample multiserver configu-

ration, 70, 72
<activated> property, role in con-

figuration files, 107–108,
110

Activator.GetObject() call
calling for nonwrapped proxy meta-

data, 84–85
examining in MarshalByRefObject in

Singleton mode, 21
using with client in factory design

pattern, 46–47
algorithms for encryption,

producing with key
generators, 269–271

anonymous use, deploying server
applications for, 120–123

APOP command, RFC for, 320
architecture of .NET Remoting,

illustration of, 10
assemblies

displaying strong names
for, 166

types of, 15
assemblyBinding entry in con-

figuration files, resolving
assembly versions with,
173–174

AssemblyVersion attribute, changing for
versioned SAOs, 169

asynchronous calls
example of, 58–60
explanation of, 52
first stage of, 227
role in compression sinks, 254
using, 179–185

asynchronous delegates
advisory about implementation of,

180–181

advisory about using events with,
187, 190

declaring for asynchronous calls,
58–59

example of, 60–61
explanation of, 58
invoking without [OneWay] methods,

197–198
managing with .NET Remoting mes-

sages, 340–341
shipping destination assemblies

to callers for,
191–196

using for asynchronous calls,
179

using with new clients,
61–63

using with SoapSuds-generated
DLLs, 180–181

using with wrapper methods,
184–185

asynchronous IClientChannelSink pro-
cessing, performing,
224–226

asynchronous IMessageSink
processing, performing,
222–224

asynchronous messaging, performing,
222

asynchronous one-way calls, example
of, 63–67

asynchronous requests, generating,
226–230

asynchronous responses, handling,
230–233

AsyncProcessMessage() function, imple-
menting, 287

AsyncProcessResponse() function
role in creating sinks for clients,

352–354
role in server sinks, 364
sample implementation for server-

side asynchronous
processing, 235

using with compression sinks,
257–258, 264–265

252indx.qxp 3/11/02 4:35 PM Page 393

AsyncResponseHandler class, imple-
menting for client sinks,
354–355

attributes
for <channels> tag in configuration

files, 101
for <lifetime> tag in configuration

files, 99
for HTTP channels, 101

authenticated use, deploying for, 125–133
authentication entries, checking for

URLs of current messages,
302–305

authentication methods, configuring for
anonymous-use deployments,
120–121

B
base objects, role in .NET Remoting, 12
Base64, RFC for, 321
BaseRemoteObject, role in sample mul-

tiserver configuration, 73
Basic Authentication scheme

advisory about, 125
enabling, 132
explanation of, 131

BeginInvoke() method, using with dele-
gates, 179

binary encoding via HTTP, using with
configuration files, 105

BinaryFormatter, introduction to, 211
BinaryServerFormatterSink, explanation

of, 219
bindTo attribute, role in HTTP channels

for configuration files, 102
BroadcastEventWrapper, using with

shared assemblies, 192–193
BroadcastMessage() method,invoking

for refactored event handling,
194–195

business logic
checking constraints for, 391
documenting at metadata level, 378
rejecting constraints for, 390

business rules for servers, implementing
for MarshalByRefObject in
Singleton mode, 23–24

byte arrays, encoding with Base 64, 321
ByValue objects

explanation of, 14
using, 27–28

C
C# code

generating with SoapSuds, 94
for versioning client-activated

objects, 172–173

calls, intercepting with
ContextAttributes, 379

CAOs (client-activated objects)
enabling for server-side channels, 360
explanation of, 38
implementing different lifetimes for,

49–50
and ObjRef object, 204, 206–207
versus SAOs, 206
specifying in server-side configu-

ration files, 107–108
using <client> property with, 109
using with server-side sponsors, 160

chains of providers
creating sinks from, 241
role in client-side sinks, 239

chains of sinks, defining in configu-
ration files, 237–238

channels
examining basic implementation of,

347–348
registering for clients in

MarshalByRefObject in
Singleton mode, 20

returning base URLs for, 359
wrapping, 366–369

<channels> tag, using with configu-
ration files, 100–102

character encoding, essentials of, 321
classes

locating, 137
client-activated objects, versioning,

172–174
client assemblies, explanation of, 15
client channels, implementing, 346–350
client-side keepalive thread, starting, 160
client-side messaging. See also mes-

sages, server-side messaging
examples of, 214–216
versus server-side messaging, 217

client-side PriorityEmitterSink
code, 289–292

client-side sink providers, creating,
258–260

client-side sinks. See also server-side
sinks, sinks

configuring for encryption, 281
creating, 239–243
diagram with compression sink, 250
implementing for compression

sinks, 251–255
versus server-side sinks, 257

client-side sponsors
advisory about, 149, 155
registering to avoid premature termi-

nation of objects, 154–155
using, 150–155, 150–155

394

Index

252indx.qxp 3/11/02 4:35 PM Page 394

client-side synchronous message han-
dling, diagram of, 205

<client> property, role in configuration
files, 108–109

ClientChannelSinkStack
appearance before call to SOAP

formatter, 233
appearance before first sink is

called, 232
contents in asynchronous

requests, 229
clientConnectionLimit attribute

role in HTTP channels for configu-
ration files, 101

using with delegates, 179
ClientContextTerminatorSink, expla-

nation of, 215
ClientProviders and ServerProviders

properties, role in configu-
ration files, 102–106

clients
accessing client-activated objects

with, 41
advisory about distributing SAO

implementations to, 44
advisory when using events with, 187
building for versioned SAOs, 167
calling timed-out CAO with, 50–51
creating for synchronous calls, 55–57
creating providers for, 350–355
creating sinks for, 350–355
developing for versioned SAOs,

170–172
enabling connections to assemblies,

170
example for SingleCall SAO, 32
implementing for asynchronous one-

way calls, 64–67
implementing for

MarshalByRefObject in
Singleton mode, 20–22, 24–25

implementing for nonwrapped proxy
metadata, 84–86

implementing for SoapSuds-
generated metadata, 81–82

implementing with asynchronous
calls, 61–63

pinging server-side sponsors with,
157–158

role in configuration files, 96–98
role in sample multiserver configu-

ration, 70–71
using binary encoding via HTTP

with, 105
using factory design pattern with,

46–47
using wrapper functions with, 184

command-line operations, advisory
about, 40, 163

compressed streams, creating class for,
253–254

compression library, Web site for, 251
compression of request streams, verify-

ing, 263
compression sinks

creating, 250–251
extending, 263–268
implementing client-side sinks for,

251–255
configuration filenames, defaults for, 89
configuration files

benefits of, 87
changing after using SoapSuds -gc

with SAO, 182
defining chain of sinks in, 237–238
effect of typos on, 97
example for lifetime management,

147–148
placing sinks in, 261–262
role of <client> property in, 108–109
role of versioning behavior in,

104–105
using, 88–89, 95–98
using <activated> property with,

107–108, 110
using <channels> tag with, 100–102
using <lifetime> tag with, 99
using <service> property with, 106
using <wellknown> property with,

106–107, 109–110
using binary encoding via HTTP

with, 105
using formatters and providers

with, 103–104
using HTTP channel with, 101–102
using with Windows services, 115

configuration options, standards
for, 99–102

console applications, deploying
servers as, 111

ConstructionCall messages versus
MethodCall, 207

content replies, role in POP3 con-
versions, 320

ContextAttribute, intercepting calls
with, 379

ContextBoundObject class code,
383–384

contexts
creating, 378–387
explanation of, 246

CORBA (Common Object Request
Broker Architecture) remoting
framework, evolution of, 4–5

395

Index

252indx.qxp 3/11/02 4:35 PM Page 395

396

Index

core modules, preparing for transport-
channel examples, 372

CreateMessageSink()
calling on client-side channels, 242
role in implementing client

channels, 349
CreateSink() method, implementing,

258–260
CrossContextChannel, explanation

of, 220
csc.exe command-line compiler, advi-

sory about, 94
custom proxies, using, 308–315
Customer Class, creating for

MarshalByRefObject in
Singleton mode, 16–17

Customer data, validating, 22–25

D
D units for <lifetime> tag attributes,

explanation of, 99, 137
DATA code, role in SMTP, 319
data objects, defining for

MarshalByRefObject in
Singleton mode, 16–17

data serialization, role in .NET
Remoting, 13

DateTime instance variables, benefits of
adding to server-side spon-
sors, 156

DCE/RPC (Distributed Computing
Environment)/Remote
Procedure Calls remoting
framework, evolution of, 4

DCOM (Distributed Component Object
Model) remoting framework,
evolution of, 5

DELE message_number command, role
in POP3, 321

delegates
advisory about implementation of,

180–181
advisory about using events with,

187, 190
declaring for asynchronous calls,

58–59
example of, 60–61
explanation of, 58
invoking without [OneWay] methods,

197–198
managing with .NET Remoting mes-

sages, 340–341
shipping destination assemblies to

callers for, 191–196
using for asynchronous calls, 179
using with new clients, 61–63

using with SoapSuds-generated
DLLs, 180–181

using with wrapper methods,
184–185

DeleteMessage() method, using with
POP3, 330

dictionary keys for sample method call
message, list of, 209

DispatchChannelSink, explanation of,
220

displayName attribute
role in <channels> tag for configu-

ration files, 101
using with <client> property for

configuration files, 109
using with <wellknown> property for

configuration files, 107,
109–110

distributed reference counting, expla-
nation of, 135

.dll extension, advisory regarding
configuration files, 97

DLLs (dynamic link libraries), using with
SAOs, 29

DomainSpecificRemotingData,
using with
ServerContextTerminatorSin,
221

dynamic sinks
functionality of, 215
using, 246–247

E
-ERR messages, using with POP3, 320
e-mail addresses, parsing for incoming

requests, 345
e-mail headers, creating, 322–323
e-mail, types of, 341
ease of implementation, advantage of

.NET remoting, 9–10
encrypted HTTP traffic, displaying TCP

trace of, 285
encrypted use, deploying for, 133–134
encryption helpers, creating, 272–274
EncryptionClientSink versus

EncryptionServerSink,
274–280

EncryptionClientSinkProvider code,
282–283

EncryptionServerSinkProvider code,
283–285

EndInvoke() method in asynchronous
calls

advisory about, 60, 63
using with delegates, 179

event handling, refactoring, 191–196

252indx.qxp 3/11/02 4:35 PM Page 396

EventInitiator, calling
BroadcastMessage() method
with, 195

events
ensuring optimal performance with,

198
explanation of, 185–187
problems with, 187–191

exception handling, performing during
IClientChannelSink pro-
cessing, 233

.exe extension, advisory regarding
configuration files, 97

expired objects, calling methods for,
150–155

ExtendedMBRObject, role in lifetime
management example,
145–148, 158

extensible architecture of .NET remot-
ing, advantage of, 10–11

F
factory design pattern, using, 42–48
formatters

role in configuration files, 103–104
role in messages, 207
serializing Message objects through,

211–212
Freeze() method, role in

IContextProperty interface,
380

G
GAC (global assembly cache)

contents after installing assemblies
for versioned SAOs, 170

manipulating contents of, 164
role in exposing MarshalByRefObject

in Singleton mode, 17, 19
general assemblies

explanation of, 15
group memberships, verifying for users,

128–130

H
H units for <lifetime> tag attributes,

explanation of, 99, 137
HashTables in SMTPHelper class, types

of, 336–337
HELO localhost code, role in SMTP, 319
HTTP Basic Authentication scheme

advisory about, 125
enabling, 132
explanation of, 131

HTTP channels
attributes for, 101

creating for MarshalByRefObject in
Singleton mode, 18, 20

specifying for port 1234, 102
wrapping channels with, 366

HTTP headers for SOAP remoting call,
example of, 212–213

HTTP requests, compressing, 268
HTTP responses, compressing, 268
HTTP/SOAP connection, example of TCP

trace without using sinks, 262
HttpClientChannel, functionality of, 216
HttpServerChannel

default sink chain for, 244
explanation of, 218

HttpServerTransportSink, explanation
of, 218

I
IChannel and IChannelReceiver code,

role in implementing server
channels, 356–357

IChannel and IChannelSender code,
347–349

IChannel, implementing server methods
and properties for, 359

IChannel with populated sink providers,
example of, 239–240

IChannelSinkBase and
IServerChannelSink code, 361

IClientChannelSink interface for mes-
sage links

advisory about, 307
example of, 210–211
performing exception handling for,

233
role in implementing compression

sinks, 251–253
IContextProperty interface code, imple-

menting, 380–381
IContributeDynamicSink property, dis-

playing, 246
IContributeObjectSink interface code,

380
ICustomerManager

extending for MarshalByRefObject in
Singleton mode, 22–23

implementing for
MarshalByRefObject in
Singleton mode, 17–18

IDE (integrated development environ-
ment), trying to start
Windows services from, 115

IDictionary, role in server-side sinks, 244
IDynamicProperty interface

displaying, 246
registering with current context, 247

397

Index

252indx.qxp 3/11/02 4:35 PM Page 397

398

Index

IIS (Internet Information Server)
deploying server applications with,

117–123
using authentication within, 126–127,

130
ILease interface

adding sponsors with, 150
location of, 136

IMessage, advisory about changing con-
tent in IClientChannelSink,
286

IMessageSink interface
checking parameters with, 387–391
connecting to TransparentProxy, 243
example of, 209–211
role in server-side asynchronous pro-

cessing, 233–235
includeVersions attribute for formatters

and providers in configu-
ration files, using, 104–105

InfinitelyLivingSingleton, calling in life-
time example, 144

InitializeLifetimeService() method, over-
riding, 51–52, 138–139

InitialLeaseTime property, explanation
of, 136

installutil.exe
installing Windows services with, 115
uninstalling Windows services with,

117
interface definitions for .NET Remoting,

explanation of, 10–13
invocation, types of, 52
IPrincipal interface, verifying group

memberships for users with,
128–130

ISerializable interface, examining, 176
IServerChannelSink interface

displaying, 218
role in compression sinks, 255–257
role in server-side asynchronous pro-

cessing, 233–235
ISponsor interface, implementing,

149–150
IV (initialization vectors), using with

symmetric encryption, 272

J
Java EJB (Enterprise Java Beans) remot-

ing framework, evolution of, 6
Java RMI (Remote Method Invocation)

remoting framework, evo-
lution of, 6

K
KeepAlive() method, calling for server-

side sponsors, 161–162

key pairs
advisory about, 163
generating for assemblies, 163

KeyGenerator.exe, role in encrypting
network traffic, 271

L
lastKeepAlive, comparing for server-side

sponsors, 158
lease-based object lifetime service,

explanation of, 48–50, 135. See
also lifetime management

Lease class, location of, 136
lease times

changing defaults for, 137–138
changing on per-class basis, 138–139

LeaseManager
advisory about calling server-side

sponsors from, 156, 158
role in lifetime management,

135–136, 137
leaseManagerPollTime attribute, role in

<lifetime> tag for config-
uration files, 99

leases, understanding, 136
LeaseSink, explanation of, 221
leaseTime attribute, role in <lifetime>

tag for configuration files, 99
lifetime management, 13. See also lease

entries
example of, 48–52, 139–144
extending example of, 145–148
introduction to, 135–136
for Singletons, 33

<lifetime> tag, using with configuration
files, 99

LifetimeService, getting for objects, 150
LIST command, role in POP3, 321
listen attribute, role in HTTP channels

for configuration files, 102
listening clients

broadcasting messages to, 194–195
role in refactored event handling,

193–194
Locals window, locating ObjRef in, 207

M
M units for <lifetime> tag attributes,

explanation of, 99, 137
machineName attribute, role in HTTP

channels for configuration
files, 102

MAIL FROM code, role in SMTP, 319
MarshalByRefObjects

defining data object for (in Singleton
mode), 16–17

defining remote interface for, 15–16

252indx.qxp 3/11/02 4:35 PM Page 398

executing remote method calls on
server side with, 14

exposing in Singleton mode, 15–22
functionality of, 28
implementing server for, 17–19
refactoring event handling with,

191–196
role in basic lifetime example,

139–144
role in multiserver configuration, 68

marshalling objects by value, expla-
nation of, 27

Mercury/31 e-mail server, downloading,
371

Mercury core configuration, changing
to, 372

Message objects, serializing through
formatters, 211–212

message sinks
examining, 209–211
role in .NET Remoting Framework

layers, 103
messages. See also client-side messag-

ing, server-side messaging
contents of, 208–209
creating, 203–204
moving through transport channels,

212–214
understanding role of, 207–209

metadata
advisory regarding configuration

files, 89–95
extracting with SoapSuds

command, 92
metadata-assembly generation, role in

.NET Remoting, 12
metadata level, working at, 377–378
MethodCall messages

versus ConstructionCall, 207
partial definition of, 208–209

methods
calling for expired objects, 150–155
calling on remote objects, 52
executing asynchronously, 179

MMC (Microsoft Management Console)
creating groups and assigning users

with, 129
creating virtual roots with, 119

mobile objects versus remote objects, 1
mode attribute, using with <wellknown>

property, 107
MS units for <lifetime> tag attributes,

explanation of, 99–100, 137
MTS/COM+ (Microsoft Transaction

Server)/Component Object
Model) remoting framework,
evolution of, 5

MulticastDelegate, basing server-side
events on, 194

multiserver configuration
example of, 69–77
fundamentals of, 68

multiserver/multiclient management,
performing with .NET
Remoting, 14

N
name attribute, role in HTTP channels

for configuration files, 101
name parameter

for SMTPClientChannel, 346
for SMTPServerChannel, 356

nested objects, using with ISerializable,
177

.NET console applications, deploying
servers a, 111

.NET Remoting
advantages of, 9–14
binding to custom transfer

protocols, 321
ease of implementation of, 9–10
extensible architecture of, 10–11
five elements of, 201–202
functionality of, 7
handling reply messages with,

341–343
handling responses with, 340
interface definitions for, 11–12
managing object encoding/decoding

with, 13
mapping POP3Msg objects to,

343–344
performing lifetime management

with, 13
performing multiserver/multiclient

management with, 14
role generated metadata assembly

in, 12
role of base objects in, 12
role of message sinks in, 103
role of shared assembly in, 11–12
role of shared interfaces in, 12
scenarios for, 2
serialization of data in, 13

.NET Remoting connections
handling reply messages with,

341–342
handling responses for, 340
making, 336–345
role of asynchronous delegates in,

340–341
network traffic, encrypting, 269
new operator, using with configuration

files, 89

399

Index

252indx.qxp 3/11/02 4:35 PM Page 399

400

Index

nonwrapped proxy metadata, generat-
ing, 84–86

O
+OK messages, using with POP3,

320–321
object encoding/decoding, manage-

ment of, 13
objects

registering as Singletons, 33–34
serializing their state, 27–28
types of, 14

objectUri attribute, using with <well-
known> property, 107

ObjRef object
explanation of, 14
functionality of, 204, 206–207
role in multiserver configuration, 68

one-way asynchronous calls, example
of, 63–67

one-way relaxed versioning schema,
enabling, 175

[OneWay] attribute, removing from
asynchronous one-way calls,
66

[OneWay] events, advisory about,
196–198

ORBs (object request brokers), role in
CORBA, 4

organization names, establishing char-
acter limitations for, 376–377

Organization object, first version of,
375–376

P
PASS password code, role in POP3, 320
playback attacks, explanation of, 131
POP (Post Office Protocol)

encapsulating for channel source,
325–327

RFC for, 318
POP3

checking for new mail with, 331–333
using DeleteMessage() method

with, 330
using Disconnect() method with,

330–331
using GetMessage() method with,

328–330
using MessageCount property with,

328
using SendCommand() method with,

327–328
port 1234, configuring HTTP channel

on, 18, 95, 102, 244
port 1235, opening HTTP channel on,

74–75

port attribute, role in <channels> tag for
configuration files, 101

port numbers
advisory when running two servers

on one machine, 75
specifying for server applications,

100–102
port= attributes, creating in channels of

configuration files, 150–151
priority attribute, role in HTTP channels

for configuration files, 101
ProcessMessage() function

role in creating sinks for clients,
352–353

sample implementation for server-
side asynchronous
processing, 235

using with compression sinks,
257–258, 264–265

properties, setting on per-host basis,
299–301

protocol considerations for transport
channels, 317–323

provider chains
creating sinks from, 241
role in client-side sinks, 239

provider chains, role in client-side sinks,
239

providers
creating for clients, 350–355
creating for encryption, 280–285
role in configuration files, 103–104

proxies
creating, 202–203
customizing, 308–315
role in .NET Remoting architecture,

202
proxy assemblies, role in versioning

client-activated objects,
172–173

proxy objects
default combination of, 308
role in MarshalByRefObject in

Singleton mode, 20
role in remoting applications, 14

proxyName attribute, role in HTTP
channels for configuration
files, 101

proxyPort attribute, role in HTTP
channels for configuration
files, 101

published objects, example of, 36–37

Q
QUIT command

role in POP3, 321, 330–331
role in SMTP, 319

252indx.qxp 3/11/02 4:35 PM Page 400

R
RCPT TO: <e-mail address> command,

role in SMTP, 319
RealProxy, extending, 309

role in .NET Remoting architecture,
203–204

ref attribute
for formatters and providers in

configuration files, 103
role in <channels> tag for config-

uration files, 101
reference counting, explanation of, 135
RegisterServer() method, role in .NET

Remoting connections, 344
rejectRemoteRequests attribute, role in

HTTP channels for config-
uration files, 102

remote components, hosting with
Windows services, 113–114

remote events, troubleshooting, 195–196
remote interface, defining for

MarshalByRefObject in
Singleton mode, 15–16

remote objects
activation example, 40–41
advisory about, 391
calling methods on, 52
creating with RemotingHelper class,

185–186
instantiating, 186–187
managing with .NET remoting, 11
versus mobile objects, 1

remote SAOs, creating references to, 187
remote sponsors, explanation of, 156
remoteable types, sharing information

about, 78
remoting

evolution of, 3–7
explanation of, 1
five elements of, 201–202
scenarios for implementation of, 2

remoting applications, preparing for
development of, 14–15

remoting behavior, reasons for changing
of, 249

remoting configuration files, structure
of, 99

remoting events
explanation of, 185–187
problems with, 187–191

remoting proxies, customizing, 309–310
Remotingonfiguration.Configure()

method, calling, 88–89
RemotingHelper class, creating remote

objects with, 185–186
RemotingServices.Marshal(), using with

published objects, 36–37

renewOnCallTime
property, explanation of, 136

reply messages, handling with .NET
Remoting Framework, 341

replySink, role in asynchronous
IMessageSink processing, 223

request and response message contents,
dumping with custom prox-
ies, 312–314

request streams, verifying compression
of, 263

responses, handling with .NET
Remoting Framework, 340

RETR message_number command, role
in POP3, 321

RFCs (Requests for Comment), 318
for APOP command, 320
for Base64 character encoding, 321
for SMTP protocol, 318

roles, checking, 128–131
runtime information, passing, 286–299

S
S units for <lifetime> tag attributes,

explanation of, 99, 137
SAOs (server-activated objects)

accessing versions of, 170–172
calling with different delays for

clients, 143–144
versus CAOs, 206
explanation of, 28–30
passing runtime information with,

296–297
presenting with servers, 80–81
registering on clients with <well-

known> property, 109–110
server-side implementation for IIS,

118–119
using asynchronous calls with, 183

SDLChannelSink, explanation of, 219
serializable objects, generating first

version of, 177–178
[Serializable] objects

using in shared assemblies, 90
versioning, 174–179

serialization
benefits to versioning, 178
implementing, 14–15

serializing objects, 27–28
server-activated objects, versioning,

162–164
server applications, deploying, 111
server assemblies, explanation of, 15
server channels, implementing,

355–361
server-side asynchronous processing,

performing, 233–235

401

Index

252indx.qxp 3/11/02 4:35 PM Page 401

server-side HTTP channel’s sink stack,
diagram of, 245

server-side messaging, examples of,
216–218. See also client-side
messaging, messages

server-side objects
designing and developing for IIS,

118–119
using ObjRefs with, 68

server-side PriorityChangerSink code,
293–296

server-side sink chain with compression
sink, diagram of, 250

server-side sink providers, creating,
258–260

server-side sinks. See also client-side
sinks, sinks

creating, 244–245, 361–366
implementing for compression sinks,

255–258
initializing for encryption, 281

server-side sponsors
creating, 160
keeping alive, 156
pinging with clients, 157–158
using, 156–162

server-side transport sinks versus con-
ventional channel sinks, 362

ServerContextTerminatorSink, expla-
nation of, 220–221

server.cs file, generating with SoapSuds,
94, 183

ServerObjectTerminatorSink, expla-
nation of, 221

ServerProviders and ClientProviders
properties, role in config-
uration files, 102–106

servers
advisory when running on same

machine, 75
advisory when using events with, 187
creating for synchronous calls, 53–57
enhancing for versioned SAOs,

168–170
example for SingleCall SAO, 30–33
example with client-activated object,

39–40
implementing for

MarshalByRefObject in
Singleton mode, 17–19, 22–25

implementing for SoapSuds-
generated metadata, 80–81

implementing in sample multiserver
configuration, 73–76

implementing IServerChannelSink
on, 287–288

role in configuration files, 90–91, 95
role in sample multiserver config-

uration, 70
sample factory design pattern imple-

mentation for, 44–46
sample implementation for lifetime

management, 140–142, 145
using binary encoding via HTTP

with, 105–106
ServerStartup class, role in Singleton-

object example, 34, 36
<service> property, role in configuration

files, 106
shared assemblies

advantage of, 11–12
creating abstract base classes in, 78
implementing for sample multiserver

configuration, 72–73
management of, 77–86

shared base classes, functionality of, 78
shared implementations, functionality

of, 78
shared interfaces

for factory design pattern, 44
functionality of, 78
role in .NET Remoting, 12

sign-on process, securing, 131–133
single sign-on, enabling, 132–133
SingleCall SAOs

example of, 30–32
explanation of, 28
role in sample multiserver config-

uration, 74–75
Singleton mode, defining

MarshalByReftObject in, 15–22
Singleton SAOs

example of, 33–36
explanation of, 28
tip about, 35

sink chains
defining in configuration files,

237–238
role in implementing client channels,

349–350
sink providers

behavior after invoking CreateSink()
method, 242–243

creating, 258–260
examining <url> entries with, 305
understanding, 237–238

sinks. See also client-side sinks,
server-side sinks

building for encryption helpers, 272
creating for clients, 350–355
creating for encryption, 274–280
using, 261–263

402

Index

252indx.qxp 3/11/02 4:35 PM Page 402

SinkStack, contents in asynchronous
requests, 228–230

SMTP conversion, example of, 318–319
SMTP sessions, starting, 319
SMTP (Simple Mail Transfer Protocol)

encapsulating for channel source,
323–331

RFC for, 318
SMTPChannel

code for, 366–369
using, 369–371

SMTPClientChannel, parameters
for, 346

SMTPClientTransportSinkProvider code,
350–351

SMTPHelperClass, connecting to .NET
Remoting with, 336–339, 344

SMTPHelper.MessageReceived() static
method, calling, 332–333

smtpServer parameter for
SMTPClientChannel, 346, 356

SMTPServerChannel
parameters for, 356
versus SMTPClientChannel, 356–357

SMTPServerTransportSink, implement-
ing, 362–364

sn.exe, generating key pairs with, 163
SOAP formatter, role in handling asyn-

chronous responses, 233
SOAP (Simple Object Access Protocol)

remoting framework, evo-
lution of, 6–7

SoapClientFormatterSink, explanation
of, 215

SoapFormatter, introduction to, 211
SoapServerFormatterSink, explanation

of, 219
SoapSuds

alternatives for starting of, 83
calling, 79
extracting metadata with, 167
generating nonwrapped proxy source

with, 172–173
generating source code with, 93–95

SoapSuds -gc output for SAO, example
of, 181–183

SoapSuds-generated metadata, exam-
ples of, 79–86

SoapSuds-generated proxies, using dele-
gates with, 180–181

SoapSuds, role in .NET Remoting gener-
ated metadata assembly, 12

SoapSuds.exe, role in SAO example,
38–40

SoapType attribute, removing from
server.cs, 183

source code
generating with SoapSuds, 93–95
simplifying for clients with wrapped

proxies, 81–82
sponsors

role in lifetime management, 49,
135–136

working with, 149
sponsorshipTimeout attribute

explanation of, 136
role in <lifetime> tag for config-

uration files, 99
SSL (Secure Socket Layers) encryption,

advisory about, 134
StackBuilderSink, explanation of, 221
StartListening() method, calling for

server channels, 357–358, 360
STAT command, role in POP3, 321
StopKeepAlive() method, calling for

server-side sponsors, 159
strictBinding attribute for formatters

and providers in config-
uration files, using, 104–105

strong naming
displaying for assemblies, 166
role in versioning, 162–164

suppressChannelData attribute, role in
HTTP channels for config-
uration files, 101

symmetric encryption, example of,
269–274

synchronous calls
example of, 53–57
explanation of, 52
using RealProxy with, 203

synchronous messages, examples of,
214–216

SyncProcessMessage() method, imple-
menting, 286–287

T
TCP channel, role in configuration

files, 102
TCP trace from client/server con-

nection, example without
using sinks, 262

time units for <lifetime> tag attributes,
99

TimeSpans, returning for sponsors,
149–150

transport channels
moving messages through, 212–214
preparing machines for, 371
protocol considerations for, 317–323
role in messages, 207–208

transport sinks, creating, 361–366

403

Index

252indx.qxp 3/11/02 4:35 PM Page 403

try/catch blocks, adding to clients for
asynchronous one-way calls,
65–66

TTL (time-to-live)
changing defaults for, 137–138
role in lease-based object lifetime

service, 135
type attribute

for formatters and providers in
configuration files, 103

role in <channels> tag for config-
uration files, 101

using with <activated> property for
configuration files, 108, 110

using with <wellknown> property,
107

using with <wellknown> property for
configuration files, 109–110

TypeLoadExceptions, generating with
delegates, 180

<Typename> properties in configuration
files for lifetime example, 147

typos, effect on configuration files, 97

U
/u [<assembly>] parameter, role in ver-

sioning, 164
uncompressed streams, creating class

for, 253–254
Unicode, explanation of, 321
url attribute

using with <client> property for
configuration files, 109

using with <wellknown> property for
configuration files, 109–110

UrlAuthenticationSink, using, 306–308
UrlAuthenticator code, storing user-

names and passwords with,
301–305

URLs (uniform resource locators)
parsing, 344
specifying username/password com-

binations for, 307
useDefaultCredentials property,

enabling single sign-on with,
132–133

useIpAddress attribute, role in HTTP
channels for configuration
files, 102

user accounts, defining for transport-
channel examples, 371–372

USER username code, role in POP3, 320

V
versioned SAOs, lifecycles of, 165–172
versioning

ins and outs of, 162
purpose of, 175–176
role in configuration files, 104–105

virtual roots, creating for IIS as container
for server-side objects, 119

W
Web services remoting framework, evo-

lution of, 6–7
Web sites

for compression library, 251
for Mercury/32 e-mail server, 371
for SOAP binding to SMTP, 321
tcpTrace tool, 262

web.config, role in lifecycle of versioned
SAOs, 166

<wellknown> property
role in configuration files, 106–107,

109–110
role in lifecycle of versioned SAOs,

166–167, 170
Windows authentication, enabling,

131–132
Windows services, deploying servers

with, 111–117
wrapped proxies

creating with SoapSuds, 79–84
internals of, 83–84

wrapper methods, using delegates with,
184–185

wrappers, event handling with, 192
?WSDL parameter, advisory when

creating server-side
sinks, 245

X
XML (eXtensible Markup Language),

serializing objects to, 27–28
XML-RPC (eXtensible Markup

Language-Remote Procedure
Calls) remoting framework,
evolution of, 6

404

Index

252indx.qxp 3/11/02 4:35 PM Page 404

