3. Learning laws for linear-in-the-parameters
networks

“Discovery consists of seeing what everybody has seen, — and thinking what
nobody has thought.” — Albert Szenti- Gyorgyi

3.1 Introduction to learning

Despite the fact that artificial neural networks (ANNs) have been proposed
primarily as nonlinear learning systems, considerable insight into the be-
haviour of these networks can be gained from linear modelling techniques,
for which the literature is vast (see for example [8, 137, 181}), and signifi-
cantly the resultant theory is directly applicable to a powerful and special
class of ANNS, i.e. linear-in-the-parameters networks, which forms the basis
of this book. An obvious reason to use ANNSs is their ability to approximate
arbitrarily well any continuous nonlinear function, with the specific network
architecture and parameter/weight adjustment algorithm determining how
well learning is achieved. Of particular interest in adaptive control and es-
timation is the ability of algorithms to model, track and control on-line.
However, it is infeasible to assume that the input signals excite the whole of
the state space (a prerequisite of identification theory), and so it is necessary
to consider the effects of a reduced input signal on overall functional approx-
imation for various network architectures and associated learning laws. Here
learning must be local, in that adjustable network weights or parameters
should only affect the network’s output locally. In ANNs, the vast majority
of supervised learning rules are based on the assumption that the nonlin-
ear network can be locally linearised, so that it is natural to develop on-line
learning algorithms with provable learning network stability and convergence
conditions, and to choose ANNs which have linear-in-the-parameters with
local behavioural characteristics. In particular, nonlinear networks, such as
the cerebellum model articulation controller (CMAC), radial basis function
(RBF), B-splines (see [32]), Bézier-Bernstein polynomial (see Section 7.4)
networks, all have an output layer of linear parameters, with basis functions
having local compact support. These so-called linear-in-the-parameters net-
works generally have large memory requirements for generating the optimal

54 3. Learning laws for linear-in-the-parameters networks

network parameter or weight vector from batch data, where direct optimisa-
tion methods, generally based on matrix inversion with a computational cost
of O(p®) (p represents network size), can be used. However, as the system
equations for these networks are generally sparse and singular, then numer-
ically stable matrix inversion techniques that exploit these characteristics
should be utilised. Alternatively, iterative techniques that avoid matrix in-
version to calculate the optimal weight vector can be derived (see Section 3.3,
and for a detailed discussion of learning for linear-in-the-parameters networks
see Brown and Harris [32]).

In order that an adaptive network can track an unknown nonlinear time-
varying system, it must be able to reorganise itself in real-time via on-line
instantaneous learning or training that uses an instantaneous estimate of the
current network performance prior to weight updating. This is a significantly
different problem to recursive or iterative weight updating from batch data,
where iteration is used for computational ease (e.g. to avoid matrix inver-
sion), since in instantaneous learning only the estimate of the instantaneous
performance value, gradient, etc. are available, which may well be signifi-
cantly different from the true value. In this case, a variety of instantaneous
least mean squares (LMS) learning rules have been developed for use with
on-line modelling and control (see Section 3.4), in which the instantaneous
error is used to approximate the total cost function, such as MSE, leading to
convergence problem. The problem of using instantaneous gradient estimates
introduces an additional noise term into the learning process, causing weight
convergence to a domain or region around the optimal weight vection (see
Section 3.4.3).

As linear-in-the-parameters networks are used throughout this book, then
gradient descent rules are highly appropriate. Also since all linear-in-the-
parameters networks map the input regressor vectors to a higher dimensional
sparse space, prior to the output weight layer, then instantaneous learning
laws can exploit this sparse structure with its inherent localised response, as
only weights that contribute locally to the output are updated. Learning is
local as dissimilar inputs are mapped to different weight sets, ensuring that
instantaneous learning is highly appropriate for weight training for linear-in-
the-parameters networks.

Throughout this chapter, various learning laws are developed, which have
a common structure, such that the new weight value is the past value plus an
output error multiplied by the transformed input regressor vector. Generally
performance is based on the network’s MSE, as it leads to simple, analytically
tractable laws, which give acceptable models, and when subject to additive
Gaussian noise it is also the maximum likelihood estimate.

The instantaneous learning laws developed in this chapter can also be
considered as line search optimisation techniques [70], since they produce
a search direction or path, along which the weights or parameters are up-
dated, and then compute a step size which ensures stable learning, albeit

3.2 Error or performance surfaces 55

with limited training data. Throughout this book we utilise instantaneous
normalised least squares learning (Section 3.4.2) due to independence of the
learning rate, 6, or the basis functions and its inherent stable learning prop-
erties compared with other learning laws. The following sections develop the
interrelationships between error performance surfaces and various parametric
learning laws.

3.2 Error or performance surfaces

A network’s output error e, (t) = y(t) — g(t) is available in supervised learn-
ing as an instantaneous measure of the current model’s performance, and as
such is useful for feedback via some learning law derived from a performance
function for weight or parameter updating. Learning laws are derived so as
to modify the estimate of w, such that as the amount of data increases, an
optimal parameter vector (weight) is derived by globally minimising some
prespecified cost function Vy(w) over all available training data Dy, as
W = argminy [Vy(W,Dy)] , where Viy(w, Dy) can be defined as various
cost functions, such as

Eley(?)]]
Vn(w,Dn) =1 Elej(t)] (3.1)

maxy |ey (t)].

Only when a weight vector exactly models a desired function, are the solutions
to the various cost functions in (3.1) the same, since each places a different
emphasis upon the instantaneous error. The choice of the cost function influ-
ences the type of learning law, its computational complexity, its convergence
properties, as well as the resultant final model. For general classes of compu-
tational models with multiple adaptive layers of adjustable weights, such as
multilayer perceptrons (MLPs), the error function and the consequent cost
function will be a highly nonlinear function of the weights, for which many
local minima exist, satisfying VVy(w, Dy) = 0, where VVy(w, Dy) is the
gradient of Viy(w, Dy).

Here it is not in general possible to find closed form analytical solutions
for w. This problem also applies to linear-in-the-parameters networks, such
as RBF's, various neurofuzzy networks, CMAC, etc. in which the basis func-
tions positions, orders, dilation parameters, etc. are simultaneously adjusted
with the parameters w. In this chapter we assume that these model struc-
tural properties are fixed or determined off-line by some model construction
algorithms (see Chapter 5). In this case, the network’s MSE (see (2.6)) pro-
duces a (hyper)quadratic surface in p-dimensional weight space with a unique
global minimum W (see Figure 3.1 for the 2-D weight space case).

Substituting the following model (2.16)

9(t) = 9T (x(t))w (3.2)

56 3. Learning laws for linear-in-the-parameters networks

Fig.T3.1. Error surface in a 2-D weight space. The optimal weight occurs at w =
2,3]

into the quadratic cost function

N
1 A \12
Vv(w,Dn) = & ;[y(t) - 9(8))"%, (3.3)
gives
yly
Vi (w, Dn) = == + wlRw — 2mTw, (3.4)

where R is a p X p semi-positive definite, symmetric autocorrelation matrix
of the basis functions defined by

R = B (" (5] = ATA

= %[w(X(l))---¢(X(N))][w(X(l))--w(X(N))]T (3.5)

A L] T %] - f D0 (0)
B TN IR Y TS st A s
LS @] 5 S e 0)] - S 20

and m = & ATy is a cross-correlation vector.

3.2 Error or performance surfaces 57

When R is nonsingular, the optimal weight vector W is given by differen-
tiating (3.4) with respect to w and setting it to zero, resulting in the set of
(so-called normal) linear equations:

RWw =m, (3.6)
whose solution is given by the pseudo-inverse as
w=R ATy = (ATA) ATy, (3.7)

For this least squares (also maximum likelihood if the additive noise process
e(t) in (2.4) is a Gaussian process) solution is unique if rank(A) = p, other-
wise it is under-determined with an infinity of solutions. In this situation it is
desirable to find the minimum norm solution (min |w||2), since such weight
values mean that the network should generalise sensibly across its input space
(see Section 2.4). For many problems the solution matrix A is sparse, whilst
R is not, and hence algorithms that do not explicitly form R can often prove
computationally efficient [32].

Fortunately the networks discussed in this book, e.g. B-spline neurofuzzy
systems, are naturally sparse due to their inherent structure and this sparsity
is preserved in R. Irrespective of what method is used in solving (3.7) the
ability to find a solution is dependent upon the condition number, C(R), of
the matrix R:

C(R) = max Tonzero \; (3.8)

min nonzero \;’

where A; are the eigenvalues of R. If the condition number is large (e.g.
10%), then the problem is ill-conditioned, whilst if it is close to unity, it is
well conditioned (see [32] for detailed discussion on conditioning of neural
networks).

The minimum MSE, Vi (W) = Vi, occurs when w = w in (3.4). Noting
that R is symmetric, we have)

T
T y'y T
Voin = 22— . 3.9
n NoTmw (3.9)
So defining the current weight error as ey, = W — w, then the cost (3.4)
becomes on simplification via (3.9):

VN (W) = Vinin + €L Rey,, (3.10)

which defines a quadratic function around w = W (as R is positive definite).
When ey, lies in the null space of R or is zero, VN = V,.;n, and as with the
network condition number, C(R), the autocorrelation matrix R is critical in
determining network performance.

Note: Consider the above model is used to determine the nonlinear process
of (2.4), via (2.16), in which the additive noise is uncorrelated with zero
mean and variance o2, the least squares solution is identical to (3.7) and
the estimate W = E(w) (i.e. W is unbiased) and cov(W) = 02(ATA)~! (see

58 3. Learning laws for linear-in-the-parameters networks

[104]), which tends to zero as N — oo if (ATA)~! — 0 (i.e. W is a consistent
estimator).

Now the autocorrelation matrix R can be decomposed into its normal
form

R=UAUT,

where U is the unitary matrix composed of the orthonormal eigenvectors
of R and A = diag{\;}, is the p x p diagonal matrix of the non-negative
eigenvalues of R. Defining the vector

v=UTe,,

then (3.10) can be expressed in terms of the eigenvalues of R as

p
VN (W) = Vi + VI AV = Vipin +)02\ (3.11)
=1
So differentiating (3.11) twice with respect to v; gives
102V (w _
A= 22V W)y,
2 Ov;
That is, the performance function curvature is equivalent to the eigenvalues
of R. The cost function, Vi, defines in the v-space a hyperellipsoid, whose
principal axes are the eigenvectors of R, but since U is a unitary matrix, then
v is a rotated version of ey, in the original weight (w) space. For any A; = 0,
the performance function produces a valley in the rotated v space (with an
infinite number of solutions for W) along its principal axis in the rotated v
performance space (singular).

3.3 Batch learning laws

3.3.1 General learning laws

For some modelling problems a batch of data Dy = {x(¢),y(t)}}\, is avail-
able, and single shot solution for the optimal weight vector W, such as (3.7),
can be utilised. However since the cost or performance function is quadratic
with a global minimum, iterative and recursive based methods can be used to
avoid computational problems associated with large data storage. Typically
they use weight updates of the form:

w(k 4+ 1) = w(k) + 5(k)d(k), (3.12)

where k represents the iteration index, §(k) is the learning rate or step size,
and d(k) a direction or search vector in the p-dimensional weight space. The
various learning laws which have to generate those {d(k),d(k)} ensure that

EV(w(k+1))] = E[V(w(k) + 6(k)d(k))] < E[V(w(K))].

3.3 Batch learning laws 59

Clearly, irrespective of the shape of the performance function V(w), it
can be locally expanded in a Taylor series as a quadratic function for small
steps 0(k):

V(w(k+1)) = V(w(k)) + VIV (w(k)) Aw (k) +
—;-AWT(k)VzV(w(k))Aw(k), (3.13)

where Aw(k) = w(k + 1) — w(k), and V2V (w) = H the Hessian matrix of
V(w), and VTV (w) is the gradient of V(w). Assuming that the inverse of
H exists, then the optimal iteration to this approximated quadratic is the
Newton—-Raphson method (4(k) = 1)

w(k +1) = w(k) — H™'VV(w(k)). (3.14)

If H is positive definite and V(w) is quadratic, then Newton’s method
goes to the optimal weight vector W in one step! (Note: If H is not positive
definite, the Newton direction may point towards a local maximum or saddle
point. H can be made positive definite by adding a positive matrix, say AI,
so that replacing H by H' = H + Al in (3.14), resulting in the Levenberg-
Marquardt algorithm; this is a form of regularisation and ridge regression.)

3.3.2 Gradient descent algorithms

Computing the Hessian matrix is computationally expensive and inappropri-
ate for batch processes, so many practical algorithms just utilise the gradient
VV = 0V/8w, which for the quadratic cost (3.3) is

VV = 0V/0w = 2Rw — 2m = —2Rey,. : (3.15)

Again we note that it depends on the autocorrelation matrix R. Transforming
(3.15) to the eigenspace v via v = U7 ey, we have alternatively

VV, =8V/dv = 2Av.

That is, the gradient, with respect to v;, depends only on the ith eigenvalue
of R.
Substituting (3.15) into (3.12) with d(k) = ——% gives the gradient de-
scent weight updating rule:
w(k + 1) = wik) - 6(k)(Rw(k) — m),

or Aw(k) = §(k)Rew(k), (3.16)
where Aw(k) = w(k+1)—w(k), and w(k+1)—w(k) = ew(k+ 1) —ew(k).
Substituting w from (3.6) into (3.16) gives

ew(k -+ 1) = (1 - 6(k)R)ew (),

or since v = UTey,, in decoupled components,

vilk +1) = (1 — §(k)X\:)vi(k) Vi, (3.17)

60 3. Learning laws for linear-in-the-parameters networks

whose solutions are
vi(k +1) = (1 — 6(k)Xi)*vi(1). (3.18)

Clearly for stable learning, |1 —4d(k)A;| < 1, Vi, or the learning rate (k) must
satisfy
2

)\maa:

0<é(k) < , (3.19)
and the model weight vector w tends to W as k — oo (see (3.18)). For zero
eigenvalues of R, the error along the ith principal axis does not decay, as
there are an infinite number of global minima in the weight space. In this
case the error along the principal axis constrains parameter adjustment to
a unique value which is dependent upon the initial weight values. Note that
replacing § by ' = §/Apmq. enables various gradient based learning algorithms
to be compared as stability is dictated by the condition 0 < § < 2. The rate of
convergence in weight adjustment can be estimated by placing an exponential
envelope on the iteration (3.18) as

v;(1) exp(~§) =v;(1)(1 = & \)*.

From which the effective time constant is
1
In(1 — 86X/ Amaz)

As the largest time constant, 7,42, corresponds to the smallest eigenvalue,
Amin, of R, then

T =

1 1
"In(l = 0Amin/Amaz) In(1 —/C(R))’

For a well conditioned network, C(R) is close to unity and weight convergence
is fast; for an ill-conditioned network (C(R) is large), the performance func-
tion is valley shaped rather than bowl shaped, leading to slow convergence.

Steepest descent is one of the most popular gradient algorithms for para-
metric optimisation; it computes the one-step-ahead optimal step size and
moves parallel to the negative gradient by this amount. It is more complex,
but faster in convergence than the standard gradient algorithm (3.16). The
weight update rule is

Aw(k) = 8(k)d(k),

where d(k) = —18V/dw = —(Rw(k) — m) = —r(k), for r(k) the residual
errors in the estimated cross-correlation vector m. The ideal step size is prob-
lem dependent. A good practical choice is to use a d(k) such that Vy(w(k)) is
minimised, which results in choosing § such that the current search direction
is orthogonal to the previous ones, giving [178]

I OL0)
T (k)Ar(k)’

Tmaz =

(3.20)

(3.21)

3.4 Instantaneous learning laws 61

Note that the steepest descent is the same as the Levenberg-Marquardt (New-
ton’s amended algorithm) for A — oo.

An important aspect of network modelling is the relationship between
the weight error vector ey, on which most learning laws operate, and the
consequent network output prediction error e,. This functional relationship
is given by [32] as

llewl < lleyll

fwl = VO (322)
Hence for a poorly conditioned network, a small measured output error does
not imply a small weight or parametric error. The network’s ability to gen-
eralise locally depends on the weight error, and terminating the learning
prematurely (as e, is small) may mean that some weights are not close to
their optimal values. Condition (3.22) together with (3.20) and (3.7) shows
how important proper selection of the basis functions, their order and po-
sitions, and training data is in determining effective network generalisaion
behaviour.
Notes:

(i) Conditioning of linear-in-the-parameters models depends on the shape
of the basis functions and the distribution of the training data. The degree
of activation and overlap of the basis functions determines the form of the
autocorrelation, e.g. semi-global basis functions such as sigmoidal may lead
to ill-conditioned networks. Generally linear-in-the-parameters networks are
well conditioned as the basis functions are locally unimodal, mutually orthog-
onal (R is sparse), and the basis function power E(1)?) is generally greater
than its interaction with other basis functions as R tends to be diagonally
dominant (see Gersgorin’s theorem). For examples of various neural network
model conditioning see [32].

(ii) Frequently R has at least one zero eigenvalue due to basis functions
having no training data lying in its support. Whilst this may cause prob-
lems in inverting R, it does not affect overall learning behaviour, such as its
learning rate. It only influences which optimal solution (amongst the infinite
number possible) will be found, as gradient based algorithms always find the
minimum norm solution for w if appropriately initiated.

3.4 Instantaneous learning laws

3.4.1 Least mean squares learning

For on-line control, conditioning monitoring and tracking problems, and for
the modelling of time varying dynamical processes data is generated in
real time, therefore estimation must be carried out as data is generated.
Also in adaptive control, instantaneous learning algorithms are used where

62 3. Learning laws for linear-in-the-parameters networks

the unknown parameters or weights are recursively estimated using currently
available input-output data. Only the instantaneous estimate of the net-
work performance is available for evaluating the network prior to paramet-
ric update. The instantaneous MSE, 1e2(t) = 1[y(t) — §(t|t — 1)]?, where
(tlt —1) = T (t)w(t — 1), is frequently used as it is both simple and
utilises only the latest available observable data for training. The unbiased
instantaneous estimate of the true gradient at t is

VV = —[y(t) — 9(t)]1(t) = —ey (t)%(t). (3.23)

Updating the weight vector in proportion to this gradient estimate gives the
least mean squares (LMS) algorithm:

Aw(t) = dey(t)Y(t), (3.24)

where § is the learning rate. Here the weights are updated in proportion to the
current error multipled by the size of its contribution to the output via the
transformed input ¥(t). As 9(t) is sparse, only those weights that influence
the output are updated, leading to a simple but highly efficient algorithm.
After updating, the a posteriori network output is

9(8) = »T (Ow(t) = 8@ 1*y() + (1 = 8llp(®)|P)ielt — 1),
where [|9(¢)]|2 = ¥ (¢) - ¥(¢) and the a posteriori output error is
ey(t) = y(t) — 9(t) = (1 = 8[| (t)[*)ey (t]t — 1), (3.25)

where e, (t|t — 1) = y(t) — §(t|t — 1) is a a priori error. For stability in
learning we require that the a posteriori error e,(t) is less than the a prior
error ey(t|t —1). This depends on both the learning rate § and the Euclidean
norm ||4(¢)||? of the transformed input vector (i.e. on the basis function v
and data), since from (3.25) we have

2
ey, (t+ 1) < lleg@)l, if 6 € (0, 7—5). (3.26
e y O er)
Note: If the variance of the input signal is large, then ||1(¢)||? is large, leading
to slow learning, as ¢ is small. Small § also provides insensitivity to model
mismatch and measurement noise.

3.4.2 Normalised least mean squares learning

The dependence of the learning rate § on the norm of the transformed input
¥(t), can be removed by setting

5/
5(t) = ———. 3.27
O~ wor (3:21)
giving the normalised least mean squares (NLMS) weight update law:
o’ t
Aw(t) = Sal¥O 5 o) (3.28)

@1

3.4 Instantaneous learning laws 63

The normalisation term means that information is always stored when §’ = 2
(a posteriori error=0). However, the NLMS law (3.28) no longer minimises
2
the MSE, but rather a normalised version of it, E [%ﬂ But if there exists
a unique weight vector such that e, (t) = 0, V¢ (i.e. no modelling error), or
if ||9(¢)||? is constant, then the LMS and NLMS lead to the same optimal
weight vector, otherwise their minima occur at different points in the weight
space. The rate of convergence of the NLMS algorithm and its condition
depend on the normalised autocorrelation matrix R.
The NLMS learning law (3.28) is a special case (r = 2) of the generalised
NLMS rule [10] that satisfies the following conditions: find a w such that

G(t) = T (®)w(t), |Aw(t)|, is minimised (3.29)
for different values of r, 1 <7 < co. The general solution to (3.29) is

_ sl
A0 =0y @slpel
where s[] is a modified search direction such that

si(¥) = { (il sgn(i) i 1 < g < o0,

0ik if ¢ = o0,

(3.30)

where ;i is the Kronecker delta function, k¥ = argmax; |¢;|, and ¢ is the
value that satisfies (1/r +1/q) = 1.

Special cases of the generalised NLMS law (3.30) include r = 2 (Euclidean
norm, see (3.28)); r = 1 (the max-NLMS rule):

ey(?)
Dy = 5285,
RO
and 7 = oo (the sgn-NLMS rule):

 ey(t)sgnlb(®)
Awi =0l

It is easily seen that the a posteriori error is always zero for these learning
laws (with § = 1), so that the only difference between them is how they
search the weight space. The weight updates in the weight space. for the
three learning rules are shown in Figure 3.2. The max-NLMS always updates
the weight vector parallel to an axis (with largest error), the sgn-NLMS rule
causes the update rule to be set at 45 degrees to an axis, whereas the standard
(r = 2) NLMS rule always projects the weight vector perpendicularly onto
the solution hyperplane (for ¢ = 1).

3.4.3 NLMS weight convergence

Consider now the weight error ey (t) = W — w(t). From (3.30), an iterative
equation in ey (t) follows as:

64 3. Learning laws for linear-in-the-parameters networks

Yo =vlow /N_ .

Solution hyperplane
& e
=2
r=1 wny (foroptimal leaning rate)
w=W v,

Fig. 3.2. Weight updates in the weight space

sT(t)¥(t)
ew(t)=[I —6——F<lew(t—1). 3.31
Denoting the matrix on the right hand side by P(t), then the a posteriori
weight error is

lew(®)llr = [|1P(H)ew(t — 1)» < [[P()]-lew(t = DI (3.32)
when § = 1, P(t) is a projection matrix or operator [61], as:
P(P(ew(t —1))) = P(ew(t — 1)),

whose structure determines the stability and convergence properties of dif-
ferent learning laws.

For the standard NLMS training algorithm, the projection operator is
given by

T
by = 1 HOPQ
(2113
from which it is easy to show that it has (p — 1) unity eigenvalues whose
corresponding eigenvectors are orthogonal to 1(t), and one eigenvalue of (1 —
d) whose corresponding eigenvector is v(t). The magnitudes of the weight
errors from a strictly non-increasing sequence as ||P(t)||2 = 1, and when the
weight error vector has a non-zero component that is parallel to (), ||ew]|2
will decrease.

For the max-NLMS learning algorithm, the corresponding projection ma-
trix is equivalent to an identity matrix except for the kth row which corre-
sponds to the weight that is being updated. In this case the projection matrix
kth row is

[_Jl/fl(t) _s¥e-1(t) Vr+1(t) _51/);»(75)]
Ye(t) 7 Yk(t) Ye() 7T k(t)
Therefore in order that ||P(t)||cc < 1, and that the weight error is a non-

increasing function of ¢, then the absolute sum of elements of the kth row of

,1—-6,-6

3.4 Instantaneous learning laws 65

P must sum to < 1 [112]. Therefore the input training pattern must be input
or diagonally dominant, i.e.

p

@) > > ()],

i=1,i#k

which is independent of the learning rate 6 which must also be such that
§ € [0,1]%. Whilst the input dominance condition is sufficient to guarantee
convergence, but this is not always necessary, as the matrix norm bound is
always a worst case analysis.

For the sgn-NLMS training law, the projection matrix kth row is given
by

L n) | o (Osont®) sp(Osan(iu(t)
vl 77 @l "7 ¥l 7
whose norm is given by [112]
- _)5 l¥ @l _
[P@®)1=1+(p—2)d ol = 1+ (p—2)d. (3.33)

Therefore for any three (or higher) input dimensional network, the sgn-NLMS
algorithm may be unstable for any non-zero value of the learning rate and
any type of (non-zero) input vector. Whether or not the algorithm is unstable
depends on the signs and magnitudes of the components of the current weight
error vector. For input signals that are input dominant, then the sgn-NLMS
algorithm is potentially more unstable as ||1(t)||oo/||%(¢)]1 is closer to unity.
In practice convergence depends on the properties of the transformed
input process ¥(t). For example, if ¥(¢) is not persistently exciting, but say
settles to a constant value or varies slowly, then the standard NLMS
algorithm will not converge to its optimal solution. The max-NLMS and sgn-
NLMS perform even worse, for example, the sgn-NLMS does not converge
in any sense when all the components of % (t) are positive (or negative),
equally the max-NLMS cannot converge when an independent element of
¥(¢) never attains the maximum value. For statistical signals we can consider

convergence in the mean squared sense, i.e. if lim;—, oo E[eX (t)ew(t)] — 0.

From (3.31) for all three learning laws,
T T
T (eut) oLt — [1 PO _ ;s (0
PT()s(t) T ()s(t)
L BsT (s (¢)
+4 lew(t —1).

(W7 (t)s(t))?

Denote v%(t) = El[el (t)ew(t)] as the weight error variance, then from the
above

v2(t) = (1 — 2p7 16 + B62)v2(t — 1), (3.34)

where

66 3. Learning laws for linear-in-the-parameters networks

Bstandard NLMS = P!

_ YT (O)w()
B = Bsgn-NLMS = E[,p (t)sgn(w(t))2]~ (3.35)
. R O O)
ﬁmaz—NLMS =P E[_T-—‘]
Vi (t)
Clearly for convergence in the weight error variance we require that
O<r=Q1-2p"16+p6% <1,
from which the optimal learning rate is
§* = (pB)~* with r* = (1 —-p~16*). (3.36)
Generally

* _ * *
(Sstandard NLMS — 1 2 5sgn—NLMS7 5maz—NLMS7

equally

* * * . -1
Tsgn—NLMS' Tmaz—NLMS = Tstandard NLMS = (1-p77).

To evaluate the optimal learning rate and region of convergence for the mod-
ified NLMS algorithms, the probability distribution p(v;) is necessary, so for
example take p(1;) = a~!exp(—|¥;|/a) (a Laplace distribution), it can be
shown [10] that

2 (p+1)

Bsgn-NLMS = ED’ Osgn—NLMS = %

So that the convergence rate for p large for the sgn-NLMS is approximately
twice that of the standard NLMS algorithm.

If the model (3.2), §(t) = ¥T (t)w, is also subject to additive white noise
e(t) with variance o, then the above variance analysis can be repeated to
give [10]

v3(t) = (1= 2p7 10 + B6*)W(t — 1) + 62407, (3.37)

where

Ystandard NLMS = E[(¥T (£)1(t)) 7!
v = { Ysgn-NLms = pE[(WT (t)sgn((t))) 7], (3.38)
Ymax—NLMS = E[wk_l(t)]

so that as t — 0o, we have the weight error variance

v = pag'y((3.39)

2 — Bop)’
So that after an initial transient convergence all three NLMS learning al-
gorithms will converge to a mean weight value of W, but will then ‘jitter’
around the mean value with a variance v2. This region is called a minimal
capture zone [32]. For a specific input distribution, the size of the minimal
capture zone can be minimised by selecting a small value of ¢, but this in
turn decreases the rate of convergence.

3.4 Instantaneous learning laws 67

The above modified NLMS learning algorithms are computationally effi-
cient as they search the weight space in orthogonal directions, however they
introduce serious problems of learning stability and associated rate of conver-
gence. Only the standard NLMS is unconditionally stable, updating weight
vectors parallel to the input vectors.

3.4.4 Recursive least squares estimation

Equation (3.2) can be rewritten for all the data Dy as
y = Aw + e,

where e = y — Aw, whose least mean squared solution is given by (3.7) at
the tth data point as

w(t) = (A{ A) ATy

for Ay = [(x(1)), ..., o(x(E)]T, v+ = [y(1),...,y(t)]T. Rather than solve this
equation as a single shot or batch solution it can be more efficiently solved
iteratively by progressing through the data set Dy sequentially.

Suppose that at iteration t 4 1, the new data is y(t+1) and ¥(x(t+1)) =
¥(t 4+ 1) (where x(t + 1) is the observed regressor vector at ¢t 4+ 1). Hence

w(t+1) = <[¢T(1::.1)]T [wT(?fkl)])*l

[w’-"ﬁl 1)]T [y(tyji 1)] : (3.40)
Define P(t) = (ATA;)~1, then
P(t+1)
a1
- (LZ’T(?; 1)]T [W(‘x 1)]) (3.41)

= [ATA + 9+ 1)y @ +1)]7!

= [P7H(t) + ot + Dy (t+ 1))}

t) = P(e)(t+ D1+ 97+ PP+ 197 (¢ + 1) P(2)
P@)y(t+ D)yT(t + 1)P(t)

19T+)Py + 1)

This iterative equation for P(t) has been derived by the matrix inversion

lemma [87]. Hence the weight update can be rewritten as

w(t +1) = P(t + 1)[ATye + ¥(t + Dy(t + 1)) (3.42)
= P(t+1)[P 1 (t)w(t) +¥(t + 1)y(t +1)]
=w(t)+ P+ Dt + D)yt +1) =Tt + 1)w(t)].

68 3. Learning laws for linear-in-the-parameters networks

That is, the new estimate is the old estimate plus a correction term.
Note: Assuming that e ~ N(0,02I), then it can be easily shown that:

— P(t) is proportional to the estimator covariance matrix cov(w).

— Equations (3.41) and (3.42) form a Kalman filter type estimator [50] (see
also Chapter 8)

— W is an unbiased estimate.

— W is a consistent estimate.

— The above least mean squares estimator is also a maximum likelihood
estimator.

— This recursive algorithm requires no matrix inversion, utilises only the last
iterative values of w(t), P(t), and therefore is computationally efficient.

3.5 Gradient noise and normalised condition numbers

The condition of the autocorrelation matrix R not only determines the rate of
convergence of batch gradient based weight training algorithms, it also influ-
ences the rate of convergence of the instantaneous LMS and NLMS learning
rules as well. As we have seen above a full theoretical comparison of even sim-
ple learning laws such as LMS, NLMS is difficult since they depend strongly
on the particular data input distribution used to train the network, so these
results usually assume that statistically independent inputs are drawn ran-
domly from a Gaussian input distribution with zero-mean.

The instantaneous LMS (or NLMS) rule typically uses the instantaneous
gradient V, rather than the batch performance gradient V, introducing an
error

n(t) = V(t) — V(2).

This difference in gradients is called gradient noise, so that the instantaneous
gradient (see (3.23)) can be written as

ey(1)P(t) = Eley (1)¥(t)] + n(?).
The gradient noise covariance matrix N(t) = E[n(¢)n”(¢)] is therefore

N(t) = E[(t)ey(t)ey (0} T (1)) — Eley ()9 (t)| Eley (t)9 7 (2))-

This noise covariance expression describes the relative spread of the gradi-
ent noise components and is important for analysing the relative convergence
rates for stochastic inputs for LMS (NLMS) learning laws. However this ex-
pression contains a forth order moment term which is difficult to analyse,
but assuming that 1;’s are stationary, Gaussian distributed, and their zero
mean components are statistically independent over t iterations, then it can
be simplified [4] by using the real Gaussian factoring theorem to

N = RewelR” + R(vmin + €L Rey) + Re2 + Rew(e,97), (3.43)

3.5 Gradient noise and normalised condition numbers 69

where Unmin = miny E(y — §)%. Assuming that ¢ and e, are unbiased then
(3.43) simplifies to

N = Rewel RT 4+ R(vmin + €L Rey,). (3.44)

Clearly the orientation and magnitude of the gradient noise covariance matrix
is a function of the current weight error vector e, the autocorrelation matrix
R, and the minimum MSE v,,;,. Roughly speaking, the gradient noise is
correlated with the steepest principal axis in the weight space accounting for
the jittery learning behaviour of the weight vector when updated using LMS
(NLMS) as illustrated in Figure 3.3 [24].

5

25

Py N NG NG g

> s 0 2.5 5
w(1)

Fig. 3.3. A illustration of the jittery learning behaviour (here the parameter esti-
mate still converges)

Near the optimal weight value W, the weight error vector is ey ~ 0, this
occurs for a well conditioned network, or for very large number of iterations
(i.e. t — 00), in this case the gradient noise covariance is

N = Rvumin. (345)

Therefore whenever there exists a modelling error or there is measurement
noise (02 # 0), LMS (NLMS) rules do not converge to a point but rather
to a domain called the minimal capture zone (see Section 3.4.3 and (3.39)),
whose size is dependent upon the autocorrelation matrix R.

Finally (3.22) relates the observable network output error to the network’s
weight error through the network’s condition number C(R). In general the

70 3. Learning laws for linear-in-the-parameters networks

NLMS algorithm provides faster convergence and better network conditioning
than the conventional LMS learning algorithms as C(Ryys) =~ /C(RrLus)
< C(RLMS) [5]

3.6 Adaptive learning rates

In the above instantaneous LMS, NLMS learning laws, it has been assumed
that the learning rate d is a positive constant number which satisfies inequali-
ties (3.26) to ensure learning stability. Whenever (in all real situations) there
exist modelling mismatch errors, observation noise and gradient noise, then
these algorithms will only converge if the learning rate is scheduled against
iterations to filter out these noise influences as well as minimising minimal
capture domains. There are various methods for achieving this, e.g. assign
an individual learning rate, d;, to each basis function and reduce §; over time
as the belief in a particular weight value increases. This approach was orig-
inated as the Robbins-Munro stochastic approximation algorithm for which
the necessary conditions for convergence on the learning rates, §;, associated
with the ith basis function are:

51(t) >0
E?i1 6;(t) = o0
ey 82(t) < oo

The first condition is to ensure that the weight change direction is towards
the hyperplane solution, the second condition ensures that the algorithm
terminates asymptotically, the third condition implies that §;(¢) — 0 and the
final condition ensures that finite energy is used in achieving learning. One
such condition that satisfies all these conditions is

0
Bi(#) = et
®) (1+t:/62)
where 61,02 > 0 and ¢; is the number of times that the ith basis function has
been updated. The stochastic NLMS learning algorithm is of the form

Awi(t) = 52 o).

(6113
In this chapter we have introduced the basic theory of least squares para-
metric learning laws for both batch and on-line training. Whilst high or-
der learning algorithms are possible they are unnecessary for linear-in-the-
parameters networks. Throughout the remainder of this book we utilise either
the normalised least mean squares algorithm of Section 3.4.2 or recursive least
squares estimators of Section 3.4.4 (or its Kalman filter derivatives).

