
CHAPTER 1

The Starting Point

In This Chapter:

■ Finding the right starting point

■ Contrasting the application-centric and architecture-centric views

■ Practicalities and pitfalls of high reuse

■ Patterns to enable reuse

■ The metamorphic superpattern

■ Using semantics to activate knowledge

The first and most critical decision we (or an enterprise) will make is in defining
and embracing a starting point for our approach to product development. At the
software project level, when organizing the user’s requests, examining the avail-
able technology and converging on an approach, at some point the leader(s) must
commit and begin the effort.

Many of us have broken open the technology boxes, jotted down a short list of
user requests and burst the features from our desktops. If we did a great job, the
user wanted even more. If we did an inadequate job, the user wanted rework to
get their original requests fulfilled. Either way, we found ourselves sitting before
the computer, thinking about a rework or rewrite, and consequently considering a
new starting point.

The real question is: Where do we start? What is the true starting point, to
eliminate or minimize the need for wholesale rewrite? Starting off on a determin-
istic, application-centric path makes us feel like we are in control. This might be
the case until the user expands or changes the feature requirements and unravels
our carefully crafted architecture.
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Knowing Your Product—Software Defined

Our most appropriate starting point involves defining our understanding of “soft-
ware.” Everyone has a presupposition of what software is and what’s required to
develop it, and it’s highly likely that we have different perspectives. Consider the
following definitions:

• Software is simply textual script used to define structure and behavior to a
computing machine. It is beholden to a published language definition
(such as Visual Basic, C++, Perl, etc.) and requires interpretation within its
language domain.

• Program is the compiled form of software. A language compiler will inter-
pret the software, build machine-ready instructions, bundle it together 
with any required components, and write the results to a disk drive as an
execution-ready program file. Just-in-Time (JIT) compilers may write
directly to CPU memory and execute.

• Application, for the majority of developers, refers to a customized program.
Software embedded in the program addresses specific user-defined entities
and behaviors.

For most software developers, the preceding definition of program encom-
passes a very broad domain. In typical developer’s terms, application means “how
we apply the software,” or the physical code inside the program. They are one and
the same. If the application is a custom program, then the database requirements,
third-party components, and other supporting programs are part of a solution. A
custom program pulls together and integrates other programs or components,
rarely stands alone, and is highly and often directly dependent on deep details in
other parts of the solution. A single change in a database definition, or a web
page, or even an upgrade to an operating system parameter can initiate rebuild of
the custom programs on the desktop or elsewhere.

Ideally, we want to service user requests without changing software or
rebuilding the program. This is only possible if we redefine application to refer to
user-required features, not program code. This definition serves to separate
programs physically and logically from applications.

Chapter 1
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We’ll want a program to address architecture and technical capabilities, while
an application will address user-requested features. Our goal is to use the program
as a multiple-application highway, but this requires us to place the entire realm of
technology within the program on a leash. The next section explains how to
embark on this journey.

Overcoming the Application-Centric View

The application-centric view is what most of us understand and practice. It is
requirements driven, meaning that nothing goes into the software that is not specif-
ically requested by an end user. Anything else inside the software is viewed as
necessary for support, administration or debugging, but not “part of the program”
as defined by the end user. Therefore, these components could be expendable at a
moment’s notice. What I’ll loosely call the Common Development Product depicted
in Figure 1-1 is the natural outcome of the application-centric view.

Figure 1-1. The Common Development Product weaves the application into the
program so the two are hopelessly entangled.

The Common Development Model shown in Figure 1-2 is the standard
methodology to deliver application-centric products. It includes deriving busi-
ness justifications, specification and formulation of feature descriptions, followed
by hard-coded feature representations and structures to deliver the requested
behavior. As such, software is the universal constant in feature construction and
deployment. Any flaw in a design requires software change and product rebuild.
Any flaw or change in requirements is even more dramatic, often initiating
redesign. To accommodate change, the end result is always a program rebuild 
and redelivery.
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Figure 1-2. The Common Development Model for delivering application-centric
programs is great for solution deployment but flawed for software development.

Software developers at every level of expertise invoke and embrace the appli-
cation-centric view. It’s where we are most comfortable and sometimes most
productive. However, application programs require constant care and feeding,
and the more clever we get within this model, the more likely we will stay hooked
into the application well into its maintenance cycle. The model is ideal for
building applications, but not software. It is a highly flawed software development
model and suffers from the following problems:

• Inability to deliver the smallest feature without a program rebuild.

• Necessity to maintain separate versions of similar software, one for quick
maintenance of the deployed product, and one for ongoing enhancement.

• The laws of chaos impose a cruel reality: that an innocuous, irrelevant
change in an obscure corner of the program will often have highly visible,
even shocking affects on critical behaviors. We must regression-test every-
thing prior to delivery.

• There is little opportunity for quick turnaround; the time-to-market for
fixes, enhancements, and upgrades is methodology driven (e.g. analysis,
design, implementation, etc.) and has fixed timeframes.

• Inability to share large portions of software “as is” across multiple 
projects/applications.

• We keep large portions of application functionality in our heads. It changes
too often to successfully document it.

• Rapid application delivery is almost mythological. The faster we go, it
seems, the more bugs we introduce.
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The list could go on for many pages, but these practical issues often trans-
form software development into arduous tedium. The primary reason we cannot
gain the traction we need to eliminate the repeating problems in software devel-
opment is because, in the application-centric approach, we cannot get true
control over reusability. If we can reuse prior work, the story goes, we can solve
hard problems once and reuse their solutions forever.

Desperately Seeking Reusability

After completing one or more projects, we earnestly scour our recent efforts for
reusable code. If object-oriented software is about anything, it’s about solving a
problem once and reusing it. Reusability is the practice of leveraging prior work
for future success. We don’t want to cut and paste software code (snippets or large
blocks) from one project to the next, but use the same software, with no changes,
for multiple projects. Thus, a bug fix or functional enhancement in a master code
archive can automatically propagate to all projects.

The (Im)practicality of High Reuse

High reuse can be an elusive animal. We can often pull snippets or ideas from
prior efforts, but rarely migrate whole classes or even subsystems without signifi-
cant rework. Thus, we mostly experience reuse only within the context of our own
applications or their spinoffs.

Here’s the real dilemma: every software company boasts reuse as a differen-
tiator for faster time to market, and every customer wants and expects it.
However, while customers are happy (even demanding) to use work from our
prior customers, they don’t want their stuff reused for our future customers.

Software development efforts are very expensive, and no customer will let us
give away their hard-won secrets for free. This creates a significant ethical
dilemma, where we can’t tell customers we’ll start from scratch or we’ll likely not
get the contract. But if we use their business logic on the next round, probably with
a competitor, we open ourselves up to ethical questions, perhaps even litigation.

Successful reuse requires a way to build software that leverages vast amounts
of prior work without reusing application logic. In the application-centric model,
this is impossible.

Many of us sincerely believe that high reuse is attainable, and some of us look
for it under every rock, almost like hidden treasure. Amazingly, high reuse is right
in front of us, if we don’t look in the application-centric model as our initial
starting point.

The Starting Point
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Harsh Realities of Application-Centric Reuse

Many development teams take a quick assessment of the language, third-party
widgets, and interfaces and then take off in a sprint for the finish line. We create
hard-wired, application-specific modules with no deliberate plan for reuse.
Looking back, we realize our mistake and rightly conclude that we picked the
wrong starting point. We reset, believing that an application-centric methodology
is needed, such as the one shown in Figure 1-2. More discipline creates a better
outcome, right?

NOTE End users believe that undisciplined developers create havoc, but
the native development environment breeds mavericks. Methodology
and lockstep adherence may give users comfort, but it’s an illusion.

Methodologies abound, where companies codify their development practices
into handy acronyms to help developers understand one thing: methodology is
policy. Industry phenomena such as eXtreme Programming (XP) work to further
gel a team into lockstep procedural compliance. Online collaboration in the form
of Peer-To-Peer (P2P), Groove, and so on helps a team maintain consistency.
However, if the team does not approach the problem from the correct starting
point, the wheels still spin without traction.

Methodology Mania

Many companies expend enormous effort codifying and cataloguing their soft-
ware and technology construction/deployment cycles, primarily to reduce the
risk of project failure or stagnation. The objective is to congeal the human expe-
riences of many project successes and failures so new projects can race toward
success without fear of repeating the mistakes of the past.

Such companies expect every technologist to understand fully the methodology
and the risks of deviating from it. Common prototypes include the basic stages
of requirements gathering, design, development, deployment, and maintenance.

As for execution, two primary models exist: the Waterfall, where each stage of
development must close before the next one commences, and the Iterative,
where each stage can swing backwards into a prior stage. Waterfall methods
have fallen out of favor as being unrealistic. Iterative methods require more
architectural structure to avoid unraveling the software and the project effort.

Chapter 1
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NOTE Perot Systems Corporation has codified their development
methodology into an innovative acronym: Requirements, Analysis,
Design, Development, Implementation, Operation (RADDIO).

If we tap the application-centric view as the only realm of understanding for
project ideas and answers, we’ll always pick another starting point within this
realm. We may try giving more attention to application detail in the beginning of
the project to yield better results at the end of the project. We may standardize our
approach with detailed methodologies, still to no avail. We find ourselves
changing software every time the end user speaks, and only see redesign and
rewrite in our headlights. Our vision is often blurred by fatigue, fire-fighting, and
support and maintenance concerns. We lack the time, funding, and support
(perhaps experience) to think the problem through. We’re simply victims of the
following misconceptions:

Misconception #1: High reuse is generally attainable. 
Reality: In an application-centric model, high reuse is impossible. Try
and try again, only snippets remain.

Misconception #2: Application code should be reusable. All that software
we built for Client XYZ and we can’t use it somewhere else? 
Reality: Application-centric code is never reusable. And, even if we could
reuse it technically, would we risk the ethical questions?

Misconception #3: We can cut and paste software “as is” from project A to
project B and keep up with changes in both places. 
Reality: Don’t kid yourself.

Misconception #4: Leaders, users, clients, and decision-makers share
your enthusiasm about reuse. 
Reality: They might share the enthusiasm, but doubt its reality so cannot
actively fund it or support it.

Misconception #5: We can find answers for reusability questions within
the application-centric model. 
Reality: The only answer is that we’re looking in the wrong place!

Application-centric development is a dream world, and envelops us like a
security blanket, creating the illusion that nothing else exists. If we remain a pris-
oner to the computer’s rules, protocols, and mathematical constants, and assume
that our chosen software language is enough, we’ll never achieve high reuse.

The Starting Point
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We must overcome these artificial constraints with higher abstractions under
our control. If we use software to enable the abstractions, we will forever separate
our software from the maelstrom of user requirements, and every line of code we
write will be automatically reusable. Read on to discover how to achieve this goal.

Revealing the Illusion of 
Rapid Application Development

The terms rapid and application cannot coexist in the application-centric delivery
context. Once we deliver an application, we’ll have significant procedural walls
before us, including regression testing and quality assurance, all of which can sink
the redelivery into a quagmire. These processes protect us from disrupting the
end user with a faulty delivery, but impede us from doing anything “rapid” in their
eyes.

The application-centric model is tempting because we can use it to produce
80 percent of application functionality in 20 percent of the project cycle time (see
Figure 1-3). This effect leads end users to expect quick delivery of the remainder.
Unfortunately, we spend the remaining 80 percent of the cycle time on testing and
integrating against problems created from moving too quickly. While this model
apparently delivers faster, it’s really just an illusion.

Rapid Application Development

Developers want ways to burst features from their desktops. All the user cares
about is turnaround time—how long between the posting of a request and the
arrival of the feature on their desktops?

The difference in these two concepts creates a disparity, sometimes animosity, in
the expectations of the two groups. Developers might receive the request and
turn it around rapidly, but the quality-assurance cycle protracts the actual
delivery timeline. Of course, we could forego the quality assurance process alto-
gether, and risk destabilizing the user with a buggy release (a.k.a. the “Kiss of
Death”).

TIP The concept of Rapid Application Development is inadequate.
We must think in terms of rapid delivery, encompassing the entire
development and delivery lifecycle.

Chapter 1
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Figure 1-3. The application-centric model automatically protracts testing.

A prolonged project cycle soon bores our sharpest developers, and they find a
way to escape, sometimes by leaving the company. Once leading developers leave,
the workload only increases for the remaining team members. They must
complete the construction and testing of the lingering 20 percent of features, and
work slows further.

Many such software projects finish up with less than half of their original core
development staff. People leaving the project vow never to repeat their mistakes.

NOTE Developers don’t like to compromise quality because we take
pride in our work. Because users tend to make us ashamed of brittle
implementations and prolonged project timelines, swift and accurate
delivery is critical, and its absence is sometimes a personal issue.

Because the application-centric model usually focuses on features/function-
ality and not delivery, the team saves the “final” integration and installation for
the end. This too, can be quite painful and has many times been a solution’s
undoing. Teams who can recover from program installation gaffs breathe a sigh of
relief on final delivery.

However, another trap is not considering the product’s overall lifecycle. We
may not realize our final delivery is actually the first production delivery, with
many more to follow. We recoil in horror when we see the end user’s first list of
enhancements, upgrades, or critical fixes. This, too, can be a solution’s undoing.

The application-centric view, and the Common Development Model illus-
trated in Figure 1-2, are fraught with the following major, merciless pitfalls, each
threatening to destabilize the effort:

Pitfall #1: Inability to meet changing user requirements without directly
modifying (and risking the destabilization of) the software program(s)

Pitfall #2: Assuming that the “final” delivery is just that, when it is usually
the first in many redeliveries (starting with the first change request).

Pitfall #3: Wiring user requirements into the software program, only to
rework them when requirements change, morph, or even disappear.

Full Cycle Time

Eighty Percent of
Features

Testing
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Pitfall #4: Taking too long to finish, and risking change in user require-
ments before completing the originally defined functionality (a moving
target).

Pitfall #5: Losing valuable team members because of boredom, increasing
risk, and workload on the remaining team.

Pitfall #6: Encountering an upgrade, enhancement, or (gulp!) misunder-
stood feature that cannot be honored without significant rework, even
redesign.

These pitfalls are visible and highly repeatable in development shops world-
wide. Rather than ignoring them or attempting to eliminate them, let’s embrace
them, account for them, assume they will run alongside us, and never go away,
because they won’t.

The problem is not the developer, the methodology, the inability to 
deal with pitfalls, or even the technology. The problem is systemic; it is the 
application-centric view. The only way to escape this problem is to set aside 
the application-centric view completely, and forsake the common development
model outright. We’ll still use them to deploy features, but not software!
However, we cannot toss them out without replacing them with another 
model—the architecture-centric view.

Embracing the Architecture-Centric View

The architecture-centric view depicted in Figure 1-4 addresses technical capabili-
ties before application features. These include the following (to name a few):

• Database and network connectivity

• General information management

• Screen rendering and navigation

• Consistent error control and recovery

• Third-party product interfaces

Chapter 1
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Figure 1-4. The architecture-centric model prescribes that the software program 
(the binary executable) is oblivious to the user’s requirements (the application).

However, these are just a fraction of possible capabilities. This view is based
almost solely in technical frameworks and abstractions. Where typical method-
ologies include the user from the very beginning, this approach starts long before
the user enters the picture, building a solid foundation that can withstand the
relentless onslaught of changing user requirements before ever applying them.

This model is a broker, providing connectivity and consistent behavioral
control as a foundation to one or more applications. It separates software devel-
opment from application development. It is the most robust, consistent, scalable,
flexible, repeatable, and redeliverable model.

Apart from supporting the user’s features, what about actually testing and
delivering the product? We’ll need infrastructure capabilities for dynamic debug-
ging and troubleshooting, reliable regression testing, seamless and automatic
feature delivery, and the ability to address enhancements, fixes, and upgrades
without so much as a hiccup. While users want the benefit of infrastructure, they
believe it comes for free (after all, we’re professionals, aren’t we?). We fool
ourselves when we believe the infrastructure really is for free (doesn’t the .NET
Framework cover all that stuff after all?).

This approach requires us to define software in terms of elemental, 
programmable capabilities and features in terms of dynamic collections of 
those capabilities. For example, say a customer tells me they’ll require a desktop
application, integrated to a database server with peer-to-peer communication. 
I know that these requirements are common across a wide majority of desktop
programs. The architecture-centric approach would address these problems once
(as capabilities) and allow all subsequent efforts to leverage them interchange-
ably. Conversely, the application-centric approach would simply wire these
features into the program software wherever they happened to intersect a speci-
fied user requirement and would exclude them if the user never asked. Which
approach will lead to a stronger, more reusable foundation?

The Starting Point

11

Architecture-
centric software
physically sepa-
rates the appli-
cation (user 
features) from
the program
(compiled 
software).

Application

Architecture, Software Program

Development - Feeds Build-TIme Interpreter
(Compiler)

Systems and Components

User-Defined

Binary Executable, Program

Feeds Build-Time Interpreter
(Language Compiler)

System Structural Foundation

Application Development

Software Development

*917_Ch01_CMP_3  2/21/02  1:34 PM  Page 11



NOTE Design and construction should be the hard part; rebuilding 
and redeploying the program should be effortless. Enhancing and
supporting application features should be almost fluid.

The first and most important steps in driving application-centric structures
and behaviors out of the software program include the following:

• Form capabilities using design patterns (discussed next) to radically accel-
erate reuse.

• Strive for metamorphism (discussed shortly) rather than stopping at poly-
morphism. Rather than shooting for rapid application delivery, go for
shockwave application delivery.

• Define a simple, text-based protocol for feeding instructions into the
program, including reserved lexical rules and mnemonics (such as symbols
and keywords). This practice is discussed later in this chapter under “How
Semantics Activate Knowledge.”

• Design and implement the program itself in terms of elemental capabilities,
each with programmable structure and behavior (see Chapters 2 and 3).

• Formulate power tools to establish and enable reusable capabilities,
providing structural and behavioral consistency (see Chapter 4).

• Formulate frameworks around key capability sets, such as database
handling, screen management, or inter-process/inter-application commu-
nication (see Chapters 5, 6, and 7).

• Formulate frameworks to accept external instructions (advanced metadata)
and weave them dynamically into an application “effect” (see Chapter 4).

• Invoke separate development environments, one for the core framework
(software development) and one for advanced metadata (application devel-
opment).

Following these steps ultimately produces highly reusable software programs,
where software code is reusable across disparate, unrelated applications. Doing so
allows us to separate completely the volatile application-centric structures and

Chapter 1
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behaviors into advanced metadata, with the software itself acting as an architecture-
centric metadata broker. This promotes radically accelerated reuse coupled with
rapid application delivery. Our end users will experience whiplash.  Our deliveries
will have a surrealistic fluidity.

To achieve these goals, we must separate the application structure and
behavior from the core software program. Software will be an assembly of
programmable capabilities. The application itself will appear only in metadata
form, driving the software to weave capabilities into a fabric of features.

We tend to hard wire many user requests just to meet delivery deadlines.
When we approach the next problem, the same technical issues rear their heads,
but we have no real foundation for leveraging more than snippets of prior work.
This is because those snippets are so closely bound to a prior custom application.

Therefore, to gain high reuse, we won’t focus on the user’s whims at all. We
focus on harnessing the software language and interfaces to other systems, the
physics as they affect performance and system interaction, the connection proto-
cols, and the mechanics of seamless migration and deployment. We then build
abstractions to expose this power in a controlled, focused form, rather than a raw,
unleashed one.

The primary path toward building such a resilient framework is in under-
standing and embracing software patterns.

Exploring Pattern-Centric Development

Once we master the language environment, productivity increases tenfold.
However, once we master the discovery and implementation of patterns, produc-
tivity increases in leaps and bounds. This is because patterns promote accelerated
reuse, so our productivity is no longer measured by keyboard speed alone.

DEFINITION Accelerated reuse is the ability to reposit and leverage all
prior work as a starting point for our next project, ever-increasing the
repository’s strength and reducing our turnaround time.

The bald eagle’s wings are perfectly suited to provide effortless flight in 
the strongest winds. Eagles have been noted gliding ever higher in the face of
hurricane-force resistance. Could our programs have the aerodynamics of an
eagle’s wings, providing lift and navigation in the strongest maelstrom of 
user-initiated change?

The Starting Point
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DEFINITION A pattern is a theme of consistently repeatable structural,
behavioral, or relational forms. Patterns often tie together capabilities,
and become fabric for building frameworks and components.

While a newer developer is still under the language environment’s harnesses,
and an experienced developer has taken the reins with brute force and high
output, the pattern-centric developer has harnessed both the development
language and the machine as a means to an end. He or she leverages patterns 
first (and deliberately) rather than allowing them to emerge as latent artifacts of
application-specific implementations.

CROSS-REFERENCE Gamma, et al. have built an industry-accepted
lexicon for defining patterns and their rules in Design Patterns.1

Developers with no exposure to these terms or concepts will have 
difficulty pinpointing and addressing patterns in their own code.

Applying patterns, such as wrapping a few components, yields immediate
benefits. Each time we bring an object into the pattern-based fold, we get an
acceleration effect. If we apply patterns universally, we get a shockwave effect, not
unlike an aircraft breaking the sound barrier.

DEFINITION The transition from application-centric, brute-force output
into accelerated reuse is something I loosely term virtual mach. It has a
shockwave acceleration effect on everyone involved.

Objects using both structural and behavioral patterns are able to unleash
framework-based power. For example, one development shop chose to wrap
several critical third-party interfaces with an Adapter pattern (the most common
and pervasive structural pattern in software development). The shop mandated
that all developers must use the adapters to invoke the third-party logic rather 
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than invoking it arbitrarily. This practice immediately stabilized every misbe-
havior in those interfaces. The implementation of the adapter pattern was a step
into the light, not a calculated risk.

CROSS-REFERENCE Chapters 2 and 3 dive deeply into the patterns
required to enable accelerated reuse.

Every program has embedded creational, structural, and behavioral patterns
in some form. Even without direct effort, patterns emerge on their own. Once we
notice these latent patterns, it’s usually too late to exploit them. However, even
when we retrofit structural patterns, we catch wind in our sails, and see patterns
popping up all over the place.

Another benefit emerges—structural patterns automatically enable interop-
erability because we expose their features to other components at a behavioral
pattern level, not a special custom coding level. New and existing components
that were once interoperable only through careful custom coding and painful
integration, now become automatically interoperable because we’ve driven their
integration toward structural similarities.

Any non-patterned structures will remain outside of the behavioral pattern
model, requiring special code and maintenance, but bringing them into the fold
will stabilize their implementation. We learn quickly that transforming an object
into a structural pattern both stabilizes its implementation and enables it to be
used in all behavioral patterns.

This model sets aside standard polymorphism (embracing and enforcing the
uniqueness of every object). Rather, it promotes what I’ll call metamorphism,
which moves all objects toward manifesting their similarities. Polymorphism and
metamorphism are discussed in the next section.

When we experience the power of applying patterns, our skill in bursting high
volumes of software diminishes in value and we place greater emphasis on lever-
aging prior work. Because high output alone is a linear model, it requires lots of
time. However, high reuse is not a linear model. It is a radically accelerated, hyper-
bolic model that pushes our productivity into the stratosphere with little addi-
tional effort.

With stable program-level capabilities in place, we can deploy features with
radical speed. This foundation establishes a repeatable, predictable, and main-
tainable environment for optimizing software. Consider the process depicted in
the sidebar, “Full Circle Emergence.”

The Starting Point
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Full Circle Emergence

When we first produce application software, latent patterns emerge.

When we first acknowledge patterns, understanding emerges.

Upon first exploiting patterns, reusable structure emerges.

Upon first exploiting structural patterns, reusable behavior emerges.

When we combine structural and behavioral patterns, frameworks emerge.

When we combine frameworks, applications emerge.

Note the full circle, beginning with the patterns emerging from the application
and ending with the application emerging from the patterns. In an architecture-
centric model, the application is along for the ride, not embedded in the
compiled software.

Using Metamorphism versus Polymorphism

If you’ve been in object-centric programming for any length of time, the term
polymorphism has arisen, probably with subtly different definitions. Since poly-
morphism and inheritance are closely related, I’ll provide a boiled-down working
definition of each:

• Inheritance is the ability of a class to transparently acquire one or more
characteristics of another class (subclass) such that the inheriting class 
can exploit (e.g., reuse) the structure and behavior of the subclass without
re-coding it from scratch. Conversely, the inheriting class can extend the
capabilities of the subclass.

• Polymorphism literally means multiple forms, where “poly” is multiple and
“morph” is form. Polymorphism enables a class, primarily through inheri-
tance, to transparently align its structure and behavior with its various
subclasses. Thus, the class appears to have multiple forms because it can
submit itself to services that were originally designed for the subclasses.
The objective is to enable reuse through designing subclass-level services
and converge them into a larger, polymorphic class.

Discussions on polymorphism follow a common template. Consider the
objects cheese, milk, and soda. We identify each one through properties (weight,
color, volume, taste, and so on) and examine their behaviors within this context.
We can consume any of the three. However, we would measure cheese by weight
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and milk by volume. We would drink the milk or soda, but chew cheese. Milk and
cheese carry all the properties of dairy products, while milk and soda carry all the
properties of liquid refreshment.

These are all healthy and useful examples, but they have one flaw: they are 
all application-centric! Examine practically every use-case analysis book on 
the market, and all of them advocate, and charge us with one directive: Build
application-centric objects into our software programs and allow them to inherit
from each other. Before we’re done, we’ll have things like DairyProduct.cls,
Milk.cls, Cheese.cls, Soda.Cls, Refreshment.cls and might bring them all to a
Picnic.cls!

This practice will embed and directly enforce uniqueness into the software
program. Practically every line of code touching these objects will be intimately
tied to their structure and behavior. When we’re done, we’ll find lots of inheri-
tance, probably stellar and creative polymorphism, and magnificent reuse 
within the application—but not a lot of reuse outside the application. Rather 
than standardize on common patterns, we’ve accommodated and even enforced
application-centric uniqueness.

NOTE A primary objective of pattern-based architectures is to 
thoroughly eliminate dependence upon uniqueness among objects,
allowing them to play in the same behavioral space because of their
sameness.

After diving deeply into patterns, superpatterns emerge. Superpatterns are
assemblies of pattern-based structures and behaviors that define another level of
useful abstraction. One of the more dramatic superpatterns is metamorphism.
Metamorphism is the run-time ability of a programmable object to completely
change its structure and behavior.

For example, a given object may initially instantiate as Milk. It may enhance
its status into a Refreshment, or metamorph into a HotDog, or perhaps a
Hamburger, a Horse, a Screwdriver, or a Mack Truck. In every case of metamor-
phosis, it is still technically the same internal object reference, it’s just been 
reprogrammed—rebooted if you will—with an entirely different identity and
instruction set. And all this happens magically without changing a single line of
program code! Metamorphism is a dramatic, even quantum leap in programmatic
machine control. Its primary fuel is advanced metadata.

The Starting Point
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Metadata

Meta denotes both change and abstraction. We use symbols to abstract ourselves
from expected volatility and software to address rapid and chaotic change.

Sadly, industry and product literature often define metadata solely within the
static realm of data warehousing or information management: “Information
about information.” But this is a limited definition.

Metadata itself is volatile information that exists outside of a program with the
ability to influence the program’s structure and behavior, effectively changing
the way the program operates.

Programs that subscribe to metadata are run-time programmable. But programs
that are dependent on metadata as a sole source of fuel are the most powerful
products in the world. Objects using metadata to dynamically define their
internal structure and behavior are metamorphic.

NOTE Clearly, the volatility of user requirements is the perfect domain
for advanced metadata. If we can meet all user requirements for appli-
cation structure and behavior through metadata, we minimize and
eventually eliminate the need to change and rebuild programs to meet
user requests.

Metadata appears in two forms: structural, to define information and entities
as building blocks; and behavioral, to describe processes that apply to informa-
tion or entities (e.g., instructions). These forms allow metadata to provide high-
octane fuel to a run-time interpreter. A metadata interpreter then interfaces and
organizes structural building blocks and core behaviors into application-level
features, enabling run-time programmability.

Apress Download

If you have not already downloaded this book’s supplemental projects, get a
copy of them from the Apress web site at http://www.apress.com in the Down-
loads section. Unzip the file into the working directory of your choice. For
consistency I will use the relative directory structure in the zip file’s extraction.
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One top-level directory is VBNET, containing the .NET software, 
while another top-level directory is VB6/, containing the Visual Basic 6.0 
versions of everything discussed in the book.

Under the top-level directory set is another directory called vUIMDemo/.
Underneath this directory you’ll find a Visual Basic .NET Solution file called
Proto.sln and a program named vUIMDemo.exe. Follow along in the version you
are comfortable with.

Follow these steps to watch metamorphism in action:

1. Double-click the program file (vUIMDemo.exe) and it will pop up a
screen similar to Figure 1-5.

Figure 1-5. A display from the program file vUIMDemo.exe

2. Double-click the Proto.sln project to bring up Visual Basic, then open up
the ProtoMe form inside it. You’ll see the design-time rendering of the
screen depicted in Figure 1-5.

3. Next, in the ProtoMe screen, delete the Tree View box above the
Cancel/Ok buttons, and click/drag the Cancel button into the center of
the open space, then save it (Ctrl+S).
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4. Go back to the running vUIMDemo and click the LaunchAgain button at
the bottom center of the screen. The vUIMDemo now renders your
version of the screen.

5. Click the caption bar and drag it to the side, revealing both screens. 
The program, vUIMDemo, is still running! The screen changed without
changing the program! We’ll dive deeper into these capabilities in the
Chapter 4 projects, with detailed discussion in Chapter 7.

You can repeat this exercise, adding to, reshaping, and changing the ProtoMe
file. Each time you click Launch again, your work is instantly available. This is
metamorphism at work, and we’ve just scratched the surface.

Pattern-based metamorphic architecture is devoid of any application-level
knowledge. It does not recognize any internal distinction between applications for
marketing, science, accounting, astrophysics, human resource management, and
so on. The architecture simply executes, connects services, obeys external
commands, and the application happens. This is a very different and abstract
approach than the Common Development Product depicted in Figure 1-1, which
embeds the application into software.

If our software is to respond to advanced metadata, manufacturing the appli-
cation “on-the-fly,” we need a means to symbolically bridge the metadata to the
underpinning technology.

Understanding the Language of Symbols

If we start with software code as textual script, we must understand what the
script means. Special symbols understood by a compiler will ultimately bring our
creation to life. It is what the compiler does with the symbols, not what we do with
them, that determines their ultimate usefulness.

To grasp it all, we must commit to thinking in terms of symbolic representa-
tion rather than software code alone. Symbols can bundle and clarify enormous
amounts of “noise” into useful knowledge. We understand symbols both automat-
ically and relationally, but the machine only understands what we tell it. More
importantly, the machine’s symbols must always reduce to some form of 
mathematics.

Patterns in Mathematics

Galileo declared that mathematics is the only universal language, and this is an
absolute in computer science. Math is pervasive in all computer systems and is
the foundation for every activity, instruction, and event inside a programmable
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machine. Software is a mnemonic, or symbolic means to represent the details of
the computer’s math. Software represents instructions to the computer as to what
mathematics to perform and in what sequence. These may be simple additions,
complex multiplication, or just counting bytes as they move from one calculated
memory address to another.

However, human thinking processes use math as a tool, not as a foundation.
Humans have difficulty in programming machines to think because so much of
thought is relational, not mathematical. In fact, mathematicians are persistent in
finding and exploiting patterns in numbers and numeric relationships to better
promote their understanding to peers and students.

A Perfect 10?

Consider that the decimal (base 10) digits zero through nine (0-9), the familiar
mental foundation for all decimal counting operations, is sometimes misused or
misrepresented. A recent visit to a toy store revealed that most electronic
counting games for small children teach them to count from 1 to 10. While this
sounds simplistic, ten is not a digit! Ten is a combination of the digits 1 and 0.

However, a machine structure only understands the 0-9, and the position repre-
sented by 9 is the tenth element in the sequence. We may ignore this and get
bitten when trying to access the element at position 10 of a zero-based array. We
must understand how the machine represents the structure, not how humans
understand it. This is the primary first step in mapping virtual structures into the
human knowledge domain.

We must learn to think on the machine’s terms. Avoiding this issue by twisting
the structural and conceptual representations of objects and underpinning math
will only increase our dependency on the language environment, the machine’s
rules, and the software code. Our goal is to master the machine and the
programming language.

Our mistake is in resting on the software language alone, rather than using it
to define and activate a higher, more dynamic but programmable, symbolic
realm.

Every action, algorithm, and operation within a machine is a sequence of
mathematical operations. If we can bundle sequences of actions at the appro-
priate elemental levels, we can treat these bundles as macro statements. When
statements are strung together, they represent methods. If we can string them
together at run time, we have a fully dynamic method. From this point, we can
construct or reconstruct the method at will, and it becomes metamorphic. When
we label it with a symbol, we can interchange it seamlessly across multiple meta-
morphic objects.

The Starting Point
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Abstracting Knowledge

Albert Einstein proposed that a great chasm exists between the concrete and the
abstract. He defined concrete as objects in the physical world such as wood, rocks,
metal, and so on, and abstract as the understanding of wood, rocks, metal, and so
on. This was Einstein’s contention:

We have a habit of combining certain concepts and conceptual relations
(propositions) so definitely with certain sense experiences that we do not
become conscious of the gulf—logically unbridgeable—which separates the
world of sensory experiences from the world of concepts and propositions.2

Einstein asserted that the human mind creates the necessary bridges auto-
matically, and we are unable to bridge them logically. This assertion has profound
implications, because logical mechanisms are all we have inside the computing
domain.

Einstein asserted that the key is symbolic verbal or written language as a
common frame of reference. While human language effortlessly uses symbolic
labels to represent tangible, concrete items, computer language must use symbols
to represent abstract, virtual items. The difference between the human-under-
stood symbols and their actual electronic representation creates yet another
chasm, the Cyber Gulf (see Figure 1-6).

Figure 1-6. Understanding the Cyber Gulf

The machine has no means whatsoever to represent the physical world; it is
completely and utterly removed from it. Nothing is concrete inside the machine’s
software processing domain. Computer representations of physical objects are
virtual collections of mathematical abstractions, understood by humans only
through similarly abstract symbols. This is a significant limitation for expressing
highly complex human concepts such as humor, love, mercy, justice, and so on.
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Another significant problem is in testing the computer’s representation of
these concepts, because at least two people must agree on the computer’s
conceptual representation. (We can’t imagine two humans agreeing on an ulti-
mate, mathematically accurate definition of a concept such as humor.)  We rarely
think of our work in such abstract terms, because programming is already so diffi-
cult and time-constrained that rising above it into abstract realms requires
unavailable time and extraordinary effort.

NOTE Just as humans automatically use symbolic labels for simplifying
the physical world, we must learn how to instruct a machine to use
symbols rather than hard-coded application instructions, and we must
automatically think of programming in these terms.

The difference in the two approaches is profound. The hard-coded approach
only leads to rework, where the technology has mastered us. The abstract
approach leads to reuse and repeatability, where we master the technology. It is,
in fact, the long-sought path to freedom. Overcoming the technology itself is the
ultimate strategy to escape application-centric gravity.

How does this apply? We must negotiate objects from within virtual space and
find a means to simulate their equivalents in a near-physical electronic forum; for
example, an employee entity is not a physical employee. Bridging two gulfs simul-
taneously requires an enormous amount of thought labor and mental continuity
not required in actual physical construction. While a builder and a homeowner
can point to a house and agree that it’s a house, a developer and an end user can
observe programmatic functionality and completely disagree on the same thing.

Now step back and examine the vast domain under our control, and the many
bridges, highways, and other delivery avenues required to fulfill the user’s
requests. None of it is easy, and it is absolutely imperative that we gain ultimate,
sovereign control of this domain.

Okay, okay, I hear you—enough concept. The reality is that as feature requests
become more sophisticated and complex, with shrunken time-to-market and
rapid change of features over time, we no longer have the luxury of building an
application-centric program. The knowledge domain is already too wide, even for
the simplest technical objective. We must embrace a more productive, reusable,
and resilient deployment model in order to survive and be successful in the
boiling technical marketplace. Only the architecture-centric model, with patterns
of reuse that allow a malleable, metamorphic, and symbolic approach to applica-
tion deployment, will enjoy repeatable success.

The Starting Point
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Dynamic versus Static Representation

Consider a class definition for Rock in application-centric mode. We must care-
fully define the specific interfaces for Weight(), Size(), or Density(). This creates a
“wired” object with specific purpose and limited reuse. However, while we may
believe this static definition provides visibility and control, at run time the
machine understands and represents it mathematically, through complex,
embedded machine logic. It is not wired at all, but already a virtual abstraction
beyond our control.

Now let’s configure a more flexible object, with a properties “collection”
symbolically representing otherwise hard-wired references. We’ll use
Item(“Weight”), Item(“Size”), Item(“Density”). From the machine’s perspective, 
this representation is identical to a carefully crafted static object, with one
primary structural difference affecting reuse: the interface is infinitely extensible
without changing its definition. If the machine cannot discern the difference, why
create hard-coded, artificially propped constructs (static class definitions) to
support something the machine will bypass or even ignore?

This is an important distinction, because of what many developers believe
about how a machine represents objects. We’ll declare a class as a specific, 
application-bound definition and manipulate it as such because it feels like
greater control exists. This is an illusion propped up by the software language.
Business-object or science-object development books and discussions strongly
encourage us to build specific objects such as Employee, Account, Invoice, or
Indicator, Thermometer, and Gauge. Development languages and design tools
directly support these suggestions.

In reality, these objects, their properties and methods are simply collections
of smaller programmable parts and processes. They can be assembled with a
hard-wired coding method, but should be assembled with a dynamic construc-
tion method; the two are functionally equivalent. The dynamic method requires
abstraction, but it is far more resilient, flexible, reusable, and metamorphic than
its hard-wired functional equivalent.

Why should a complex action require a specific software anchor? When we
consider that every method, regardless of complexity, reduces to a series of math-
ematical functions, we simply aren’t far from abstracting them already.

If each metamorphic object is influenced or managed by a run-time inter-
preter for execution of methods, no further reason exists to directly hard-wire a
method into an object. If a “custom method” is simply an assembly of smaller,
reusable processes, every object can dynamically construct methods that are
“apparently custom” but, in fact, never existed before run time.
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Pervasive structural and behavioral metamorphism provides practically limit-
less reusability to a majority of methods and properties for building any applica-
tion, in any context. It supports the concept of metamorphic class. Such a class
exists only at run time and manages all properties, methods, and inheritance as a
function of reuse, not hard-wired application logic.

By reducing our software-based classes to structural templates, the software
can manufacture new, metamorphic classes with relative ease. The metamorphic
class methods and properties are constructed from smaller, generalized,
embedded structure classes. The best part is that we really need only one meta-
morphic framework, with all underpinning components focused on its support.
We can then dynamically instantiate the framework into anything we want.

Summary of the Metamorphic Superpattern

Here is a short list of the primary principles we must understand and embrace
in order to fully exploit metamorphism:

• All machine quantities reduce to math.

• Symbols can represent all machine mathematics, including complex
structures and relationships.

• Semantics can describe complex behaviors through assembling elemental
behaviors.

• Humans can use high-level metadata to organize symbols and semantics
for custom application effects.

• Metadata interpreters can accept symbols and semantics as run-time
instructions, translating them into internal metamorphic structures,
behaviors, and relationships.

For some, metamorphism may seem too complex and uncontrollable. It is, in
fact, a perfect means to guarantee consistent behavior, structural integrity, and
deterministic outcome for every application we deploy. It also represents a foun-
dation for capturing our knowledge and re-deploying it to accelerate future
efforts and upgrade prior efforts.

We must forsake the idea that software is the maker, keeper, and foundation
of structural and behavioral rules. We must now begin to view software only as a
tool for exposing technical capabilities into abstract, programmable form. We
must then view application-centric features as virtual abstractions: dynamic, 
run-time definitions that don’t exist, and never existed, before the program’s
execution.

The Starting Point
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Symbols allow us to anchor and assemble structure and behavior, but the
order of their assembly, plus parameters and modifiers, are in the domain of
semantics.

Realizing How Semantics Activate Knowledge

Unless we want to institutionalize chaos, we cannot start by directly embedding
the user’s wishes into the software code, so we must therefore pick another
starting point. We must build code that enables the representation of the user’s
wishes rather than directly representing them. While software as textual script
contains keyword symbols recognized by the compiler, the context of the symbols
is highly significant in representing application knowledge, which entails the
embedded intentions of the end user as applied by the developer.

We can tag objects, properties, and methods with high-level symbols, but we
need semantics to shape the symbols into active knowledge. A Rock simply “is”
and will “do” nothing unless we apply a semantic command to combine the
object with an action. Throw Rock should give us a raw effect, but we may need to
modify the action, such as Throw Rock Hard, or even more vectored detail, such as
Throw Rock Hard at the Window.

Predefined keywords clarify semantics, especially when combining or
copying information from one symbol to another. For example, Set
Rock.Item(“Texture”) = “Smooth” is different language than If Rock.Item(“Texture”)
= “Smooth.” The first performs assignment and the second tests a conditional 
relationship.

NOTE Structured Query Language (SQL) is a common semantic model
used by most commercial database engines. In SQL, nouns (database
tables, columns, or other entities) are instructed to behave according to
verbs (insert, update, select, delete, and so on) with certain modifiers
(search predicates, insertion, or update information, and so forth).
The rules for syntactic construction are rigid enough to be accurate and
efficient, but flexible enough to promote limitless reusability of the
database engine for storage and retrieval logic.

Think in terms of a development language compiler’s syntax rules. Each rule
is a semantic compiler cue to perform a certain task, build a particular construct,
behave a certain way, etc. The compiler uses reserved keywords to affect its own
programmable behavior. Nouns (objects) are the actors. Verbs (methods) are the
actions, with modifiers (properties) to each action. Interpreted sentence struc-
tures can create dynamic objects, relationships, and activities that were unknown
before program execution.
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A language compiler provides the lexical and behavioral foundation for its
own programmability. It is the ultimate programmable program, so examining its
implementation provides insight to understanding how to put similar function-
ality into a dynamic application model.

Metadata instructions serve as pseudo-code, and cleanly separate the
program’s architecture from the application’s structures and relationships. The
software program containing the interpreter is compiled, deployed, and
constantly reused thereafter. Run-time interpretation means the application logic
can change at will, even by the minute, without affecting the program. We can
build whole applications with textual metadata, then deploy them with a simple
“file copy” to expose the metadata to the program. In fact, the application logic
can change even while the executable is running. (See the vUIMDemo earlier in
this chapter under “Metamorphism and Polymorphism” for an example of this.)

Shockwave Delivery

The vUIMDemo is a subsystem of a product (called vMach) that Virtual Machine
Intelligence, Inc. regularly deploys on user desktops. Whenever we need to ship a
new application upgrade to user screens, we bundle the metadata into a zip file
and send it via email. The user unzips the attachment and it’s installed. Can you
imagine making changes to a Visual Basic screen in Visual Basic, then
performing a simple file copy to deliver the goods? Or extending the database
design without breaking existing code, with a model that “senses” and wraps
itself around the changes rather than balking at them?

For users with a central file server, we send the changes to a central adminis-
trator, who in turn unzips them to the file server. The upgrade is instantly avail-
able to every desktop using the metadata. This transforms rapid application
delivery into shockwave delivery.

We’ll now use software code to build frameworks that manage actions
between participating objects. The software will accept textual instructions as
metadata, interpret them, and ultimately dispatch the activities between objects
with no knowledge as to the nature of the activity itself. Whether system-specific
or user-required, the software simply executes the action. The application
happens.

The software program will interpret events, semantic commands or rules, and
initiate activities. The program does not directly control the application behavior,
only the semantic interpretation of metadata. It is therefore incumbent upon us
to apply simplified interfacing capabilities to all embedded and dynamic entities,
allowing the semantic interpreter to find and control objects quickly.

The Starting Point
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Figure 1-7. Virtual architecture symbolically spans the gulfs with semantics.

Like a symbolic skywalk (see Figure 1-7), a metamorphic architecture seam-
lessly spans the gulfs, from physical to virtual and all elements of understanding
in between. It serves as an embedded language interpreter, actor, and observer,
and puts a consistent and predictable leash on all behavior, regardless of
processing domain or development language.

Developer in a Box

In an application-centric model, our “software development” activity consists of
abstracting and arbitrating symbols across the gulfs as we communicate with the
end users. This activity, when repeated a few times within and across projects,
gets tedious and boring. What if we could embed enough intelligence into the
software itself so this arbitration happens by proxy?

To contrast, we can define the symbols and build embedded software to
enforce them, or we can build an arbitration mechanism that will act on our
behalf just as we would.  Once in place, we have effectively migrated our own
development experience and expertise permanently into the software. Anyone
else using it gains the immediate benefit of our accumulated experience, not just
what a user asked for once upon a time.

This embeds our hard-won knowledge and skill into the architecture, rather
than requiring us to repeat the same rote software development with each new
application. This further accelerates reuse, so we can leverage our prior work, and
others can too, and is rocket fuel for innovation because what we (and others) do
is never lost again.

Development Projects

When executing projects using the architecture-centric approach depicted in
Figure 1-8, all software is founded upon metamorphic, programmable capabili-
ties. These form frameworks, driving the ability to dynamically generate complex
features and thus, applications.
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CROSS-REFERENCE See Chapters 5, 6, and 7 for more detail on 
frameworks.

Figure 1-8. Architecture-centric project execution

Reviewing Figure 1-8, all feature changes occur within the metadata environ-
ment. When we cannot fulfill a feature with current capabilities, we identify the
required capabilities and drive them back into the architecture as a capability
enhancement. We are then able to fulfill the feature, but the capability remains for
later reuse (by ourselves or others). This is the only true capability maturity model
applicable for reusable software.

Capability (im)Maturity

Many companies build volumes of process engineering notes to track the devel-
opment of “capabilities,” mostly in an application-centric context. For example,
a company might log that some of its developers rolled out a human resources
application, a supply-chain solution, or a retail sales data mart. Invariably, the
solutions are completely custom and not positioned for re-hosting to subse-
quent projects.

In each case, the company records the solution as part of a knowledge base, but
it is in fact the accumulated experience of its employees. Many technologists
balk at being pigeon-holed into repeating the same application endeavors,
regardless of the potential success (and thus avoid re-assignment). Some
employees are promoted out of direct implementation roles, while others leave
the company.
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The result is the same: the company isn’t really gathering steam in developing or
maturing capabilities. They are only creating a marginally viable portfolio that
rapidly grows stale. The company, like many others, will only be as good as its
last success.

Note that all capability enhancements are available to all features, not just the
feature that initiated the change. We can deploy the same capability set, or binary
program, for multiple applications. This is the only true high-reuse model, and as
promised, enables reuse of every single line of compiled software.

As the architecture and capabilities stabilize over time, we drive fewer
changes back into the program code. Architects have freedom to make the soft-
ware program more powerful, faster, easier to install, or otherwise technically
superior. Application developers using the program can depend on a reliable,
reusable, and solid foundation for feature deployment. Additionally, because the
software program is fueled with metadata, application-level deployment doesn’t
require a program rebuild, only a textual modification and file copy!

In the vUIMDemo, our change was instantly available to the end user without
changing the software. As quickly as we can change the metadata, we can change
the structure and behavior of the application-level features.

Utilizing metamorphic objects, run-time programmability, and a stable,
consistent application delivery, every known development methodology either
stands itself on its head, or experiences stratospheric productivity.

Smooth Delivery Effect

Upon initial construction, the pattern-based and architecture-centric model
doesn’t deliver features right away. Developers and designers spend significant
hours formulating and building structural and behavioral foundations for later
feature deployment. When features appear, they arrive at a steady and sometimes
dramatic pace from beginning to end. Because the end users experience a steady
stream of smaller parts, the delivery highway for both features and binary soft-
ware will be in solid order and smooth operation by the time of a “go-live” produc-
tion delivery.

The initial time frame could be protracted because the team is trying to
deliver features while also building capabilities, but the product will be consis-
tently solid and the user won’t see the brutal 80/20 effect of the application-
centric deployment model.

In follow-on projects, users experience feature delivery in a relative fraction 
of the time required in the initial project. Capabilities are already present and
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stabilized, ready for reuse, enabling us to deliver features at mach speed
compared to the application-centric model. Any new capabilities become auto-
matically available to prior projects and applications.

The architecture-centric approach automatically supports incremental re-
delivery. Architects can focus on technical installation of the base program plus
the mechanics of metadata transmission and make these processes rock-solid.
This creates a repeatable delivery highway. Feature deployment, using metadata,
becomes so rapid and regular it appears fluid.

Ideally, this approach supports later maintenance activities. In fact, the initial
delivery happens so early in the cycle it’s often forgotten. Some architecture-
centric solutions deliver hundreds of preliminary feature versions during iterative
development. If the so-called final feature delivery is actually iterative delivery
#289, what of it? By the time the application enters the maintenance cycle, its
delivery mechanism is well-oiled and humming.

When first developing a metamorphic model, it does not quickly deliver in
the front of the project cycle, and many development teams feel under pressure to
deliver something. Thus it often falls on the sword of expedience, otherwise
known as trading off the important (reuse and maintenance) for the urgent
(quickie delivery).

However, this is a sensible delivery model for the following reasons:

Business: We can schedule, deploy, manage, and close the feature
requirements in a timely manner. Once a feature is in front of the user for
an extended period, it erodes their ability to arbitrarily change it later.
Maintenance costs are lower because fewer programmers are necessary
for upgrades and changes. Because of high productivity, team leaders can
quickly prototype working proof-of-concept models rather than empty
demonstrations. Rapid iteration creates manageable client satisfaction,
streaming functionality into their hands rather than experiencing
start/stop delivery.

Technology: As new technology arrives in the marketplace, the core
program can assimilate it without breaking existing applications. New
applications can directly leverage it while prior applications can access it
at leisure. In fact, even if forced to replace the underpinning technology,
including the development language, operating system, and components,
we can avoid impacting the application. Additionally, business managers
can negotiate with current clients to provide upgrades for additional
revenue.

Quality: Fewer programmers touch the core software, releasing it less
often than the metadata for application features. The core software
release cycle becomes much more stable and manageable, occurring on
boundaries under the control of the master architects. We then use 
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metadata to meet user requirements, on a separate and more volatile
release cycle. The users can get what they want without the inherent
destabilization of a program rebuild.

Human resources: Master developers can oversee initial application
design and have a footprint in multiple projects. Novice developers get
productivity boosts using the architectural safety net provided in the core
software. We can divide technical resources along flexible lines: those that
work in core architecture, those that work in application-level logic, those
that manage technical teams of both, etc. The high productivity of an
architecture-centric model provides schedule flexibility and personal
time for developers. It’s also a lot of fun to work with, consistently
achieves the “Wow” effect on delivery, and generally boosts the morale of
any team regardless of the delivery context.

Implications to Development Teams

Many experienced developers believe that business and functional requirements
are the primary variables from project to project. Feature-point analysis, which
involves breaking the project deliverables into irreducible minimums, should
yield a fairly predictable delivery schedule. When setting such schedules, we often
use past experiences in order to predict scope of effort and time lines for
upcoming projects.

For stable teams with little attrition, this method is ideal, in fact, perfect. For
the average development shop with relatively high attrition, feature-point analysis
is less predictable. The required knowledge base is unstable because developers
take knowledge with them when they leave a project or company.

In an application-centric model, the skills of the developers, their relationship
as a gelled team, and the complexity of the product all form convergent variables,
creating a higher project risk. In fact, a developer’s skills (not the user’s require-
ments) are the most variable and volatile quantities from team to team.

As application complexities and feature-richness increase for competitive
advantage, enormous pressure builds to assemble and keep a skilled team. It is,
therefore, incumbent upon project and company leadership to keep the team’s
skills sharp, their energy focused, and their minds challenged.

The architecture-centric model captures knowledge, stabilizes teams, and
abates attrition (generally), allowing feature-point analysis to gain more foothold
and predictability. The model can satisfy the most demanding team’s professional
and career needs, because senior developers get the opportunity to gravitate
toward technical issues and new developers find themselves in a rich mentoring
environment as they deploy applications using the technology. With a stable
workforce, innovation also has a stronger foothold.
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We’ve seen enough of success and failure to know what works and what
doesn’t. Because software development, and especially innovation, is high-
intensity thought labor, mentoring is effective for handing down experience 
and transferring knowledge, but only if we can keep our teams together. The
architecture-centric model is an ideal mentoring foundation.

Implications on Revenue

Managers know they can make tons of money with custom development projects
billed to a client by the hour. If enabling accelerated reuse shrinks delivery time, it
also changes revenue equations: shorter projects mean less overall revenue if
billed by the hour. For an artificially extended project, the end user might not
know the difference if deliverables are on time and of high quality. They might
smile and cut a check.

However, if the clients, or end users, realize they paid high dollars for custom
craftsmanship when they could have paid much less, they will feel cheated, and
rightly so. If a young, agile upstart-startup company masters reuse, it will drive a
wedge into market share that a non-reuse company cannot remove. Even if the
reuse-masters take the same amount of project time, they’ll still have a higher
quality product.

The conclusion is that the architecture-centric model gives us more options
to increase quality, feature-richness, and keep the project timeline under our
control rather than racing breathlessly to the finish line with a marginally func-
tional product.

Companies using the architecture-centric model can deliver in a fraction 
of the timeframe required by the application-centric model. Does a quick-
turnaround diminish the value of the deliverables? Hardly! If anything, it gives 
the company an extreme competitive advantage. Companies that bill by the 
hour will have to rethink their billing practices. They will have to assign value to
their speed of deployment, increased product quality, and overall value of the
application to its end users. Faster time to market is highly valuable, and savvy
leaders can and will exploit this to competitive advantage.

The true software development starting point exists well before the user pens
the first application requirement. It exists before the developer breaks open the
language development tools. We find it when we invoke pattern-based abstrac-
tions to meet user features, rather than wiring them into the software. When we
begin to automatically think of programming in these terms, we’ve crossed the
virtual mach boundary with a shockwave in our wake. Those who begin there will
emerge with a firm technical, structural, and behavioral foundation for building
all sorts of applications.
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If we begin in the application realm, we’ve already lost. The application realm
must rest on the foundation we prepare in software, and must be the result of core
reusable software acting on metadata, not with application logic embedded in the
software.

If the software development cycle is a continuum, the application realm actu-
ally marks the 80 percent point and moves toward closure at 100 percent. Begin-
ning there forsakes the foundation itself. We will have missed four-fifths of the
architectural maturity required to build highly reusable code.

Keeping the Momentum

Now that I’ve proposed a different approach, touting the possibilities of the 
architecture-centric view; the propulsion of accelerated reuse; the power of 
metamorphism; the positive traction it creates on our careers, our lives, and
professional satisfaction; it’s time to show you some of its finer details. I will
strongly implore you to examine and perform the project exercises that you’ll 
find throughout this book because each one builds on the last.

Project 1—Groundwork

Let’s close out this chapter with a light example of some symbolic-tagging
concepts. They will provide a lead-in to the following chapter, which introduces
structural patterns. These are the primary project elements:

• Structural tools

• Factories

• Object/property manipulation

• Supporting code

The project language examples will be in Visual Basic .NET, but I’ve also
included the Visual Basic 6.0 versions, (a minimum of Service Pack 3, preferably
Service Pack 5). You won’t need any other third-party products to support the
examples. I’ve tested them under Windows NT 4.0 and 2000 Professional. The
.NET, Visual Basic projects use the *.vbproj extension, while VB 6.0 uses the *.vbp
extension.
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Additionally, in the interest of clarity all project examples in the book will use
the shorthand version of class names (e.g., vTools.TurboCollection will appear as
TurboCollection in the book content).

If you’ve not downloaded the book’s project listings and examples from
Apress, do so now and extract it into the working directory of your choice. Each
project has its own subdirectory, and a separate directory called VB6/ contains the
Visual Basic 6.0 equivalents.

ProjectOne includes a number of class modules and a main module used as a
skeleton to browse and manipulate their activity. Enter the ProjectOne/ subdirec-
tory and double-click the ProjectOne.sln file to load the project skeleton. Answers
to inquiries are available at info@virtualmach.com.

TurboCollection

The first structure requiring attention is the TurboCollection. It appears as two
separate class objects, the TurboCollection.cls and the ParmNode.cls. The Turbo-
Collection is an Iterator pattern. It hides and manipulates a list of objects, in this
case ParmNodes. The TurboCollection acts by containing and linking ParmNodes
to each other, then browsing and manipulating the links. The ParmNode is a
simple Container pattern. It provides a memory-based storage location for both
simple and complex information. Together, these classes form structural glue to
enable metamorphism, bind and automate all other structural and behavioral
patterns.

The first exercise will add nodes (ParmNodes) to a TurboCollection to create a
simple list. Note that each node is a self-contained, detachable/attachable
container. The ParmNode is also an adapter of sorts, serving to wrap and anchor a
structure of any kind. For the first example, we’ll add and organize simple textual
data and then move into objects.

Load ProjectOne and find the Public Sub Main() header (see Listing 1-1).
You will see a number of data declarations at the top of the module. We’ll enlist
their aid as we move along. Supporting code also follows the Main() header.

From here, let’s build a simple list of information points using a 
TurboCollection structure. Under Public Sub Main() find this code:

Dim tcTest as New TurboCollection()

Dim pWrk as ParmNode
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This will instantiate one of the TurboCollection Iterators along with a ParmNode
for workspace. Now, let’s add a ParmNode container to the Iterator by invoking
tcTest’s Add:

tcTest.Add (New ParmNode())

Note that .NET will automatically wrap this statement with the appropriate
parenthesis. This will allow the addition of a newly instantiated ParmNode to the
Iterator’s list. By default, the TurboCollection will add the node to the end, or tail.
While this provides us with the power to add a pre-existing node, practically
speaking, most lists are created on the fly, so this notation could get clunky and
verbose. For agility, use the following shorthand:

tcTest.Add()

This assumes we want to add a ParmNode, so the TurboCollection will instan-
tiate and add one for us. We can get access to the new ParmNode in one of two
ways: on the TurboCollection or as a return value from the Add() method. Here’s
an example:

pWrk = tcTest.Add()

or

tcTest.Add()

pWrk = tcTest.Ref()   'Ref always contains the currently active node.

Next, let’s add the following data to the ParmNode container. It has several
generic properties, the Item, Obj, ItemKey, and SortKey among others. These prop-
erties are critical to node identification and manipulation.

Item: This property contains simple textual data associated with the node
(text, numeric, etc).

Obj: This property contains a reference to an object (complex data) asso-
ciated with the node.

ItemKey: This property contains a textual key to uniquely identify the
node in the Iterator list.

SortKey: This property contains collating information associated with the
node’s other information, used to sort and order all the nodes in relation
to each other.
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Thus, the following property references are equivalent to set the Item,
ItemKey, and SortKey properties, respectively. The first example shows how to set
the values directly on the ParmNode:

pWrk.Item = "A1"

pWrk.ItemKey = "A10"

pWrk.SortKey = "A10"

While this second example shows how to set the values on the same
ParmNode using the TurboCollection’s current Ref:

tcTest.Ref.Item = "A1"

tcTest.Ref.ItemKey = "A10"

tcTest.Ref.SortKey = "A10"

Even this notation can get cumbersome when coding the construction of a
list, so, since Item, ItemKey, and SortKey are the most-often used properties when
building a list, another method on the TurboCollection facilitates this as a
shortcut, the AddItem. Consider this example:

tcTest.AddItem ("A1", "A10", "A10")

This notation will perform the two following actions:

1. Create and add a ParmNode to the list.

2. Populate the Item, ItemKey, and SortKey values with the respective
parameters shown.

Now if we want to add multiple nodes to the Iterator, we can invoke the
following inline code:

tcTest.Clear()  'let's clear out the iterator first

tcTest.AddItem( "A1", "A10", "A10")

tcTest.AddItem ("A4", "A40", "A40")

tcTest.AddItem ("A2", "A20", "A20")

tcTest.AddItem ("A5", "A50", "A50")

tcTest.AddItem ("A6", "A60", "A60")

tcTest.AddItem ("A7", "A70", "A70")

tcTest.AddItem ("A3", "A30", "A30")

tcTest.AddItem ("A8", "A80", "A80")
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Note that I have deliberately added them out of key sequence. To examine the
TurboCollection list contents, let’s perform this simple browse:

tcTest.MoveFirst()                       'move to the first

' Node in the list

Do

Debug.WriteLine (tcTest.Ref.Item)    'display the Node's contents

tcTest.MoveNext()                        'move to the next node in the list

Loop While tcTest.More()                 'repeat until all nodes

' have been displayed

This loop will print the list nodes in exactly the order they were added. If we
want to retrieve any member of the list, perform a Find using the Itemkey value,
as shown here:

pWrk = tcTest.Find("A30")

Debug.Writeline( pWrk.Item)  'should be "A3"

or

Debug.WriteLine(tcTest.Find("A30").Item)

To reorganize information, simply browse the list once and set the SortKey to
a unique collating value prior to sorting. We’ve already done this upon creation of
the list, so let’s invoke it. I can also invoke a Dump, as follows, when it’s done to
review the contents:

tcTest.SortList (strParms:="Descending")

tcTest.Dump()

This notation will execute a descending sort on the nodes in the list, then dump
the result to Visual Basic’s “Immediate Window” for review.

By default, the SortList will perform an ascending sort. Let’s try that now:

tcTest.SortList()

tcTest.Dump()

On a sort, the TurboCollection does not move data or ParmNodes around in
memory. The TurboCollection organizes information using the ParmNode’s
next/previous pointers, thus, when reorganizing, it simply reshuffles forward and
backward references without moving the actual information. This results in
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blinding speed in data movement and manipulation. More on this in Chapter 4:
Power Tools.

The Find() function, while fast on smaller lists, has a diminishing return on
larger lists. To optimize this, the TurboCollection uses binary trees to reorganize
information. A binary tree takes a sorted list and creates a navigable tree-structure
supporting a binary search. Recall that a binary search will split a sorted list into
two, select a targeted half for continuing the search, then repeat the split-and-find
operation until it finds the target key. Statistically, a list with 10,000 elements will
require a maximum of 13 compares to find any key, with an average of 11
compares per search. Now that’s some serious search power!

Let’s use the current list and build a tree as follows:

tcTest.TreeBuild()

tcTest.Dump()

The TreeBuild function will automatically sort the list, then perform the build.
The tree structure is best suited for large, stable lists of information, usually those
pulled from a database source. However, anywhere we need significant speed, the
tree will provide it—and once constructed we can still add nodes to it.

These simple exercises served to introduce lists, the Iterator pattern, the
container pattern, and how each helps the other to create a more powerful whole.
However, the ParmNode has a broader scope of capability: that of containing and
describing a data point with embedded metadata.

Property Manipulation

Within any class, adding functionality for the storage and retrieval of properties
often causes interface-bloat, which changes or updates the class interface to
expose new properties. Each time a user requests new features, developers often
race back to their software and UML drawings and start drafting the new inter-
face. The ideal solution should require changes only to the internal software, not
the interfaces. How is this accomplished?

For example, let’s say a RocketEngine class goes through several releases and
the end user (an intergalactic shipper) requests some brand-new functionality in
the form of warp speed. This entails the ability to jump into hyperdrive, warp
space, and reduce time-to-market. The Intergalactic Space Administration has
cleared the way for your engine design, so now you need to modify the onboard
computers to run them.

In any rocket-engine design, new features like this could require extensive
rework. Your mission is to perform the engine and system upgrades and install
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them without significantly changing any of the core navigation and control soft-
ware. But how?

Let’s say you have these three new properties:

Drive: Possible values include Twin-Ion (normal) and Warp (high-speed
point-to-point). Until now, Drive has always been Twin-Ion.

Navigation: Possible values include Visual Flying Rules (VFR) and Gravita-
tional (keying on location and gravity cues of passing planets and stars).
Until now, VFR was more than sufficient. High-speed travel will require
automated cues.

Inertial Dampening: The jump to hyperdrive can leave the passengers
queasy and disoriented. Dampening must be automatic.

The normal course of action is to directly attack the RocketEngine’s software
interface with the following notations:

Public Property Drive(enum TwinIon, Warp:Default TwinIon)

Public Property Navigation(enum VFR, Grav: Default VFR)

Public Property InternalDamp(True, False Default False)

Unfortunately, declaring these three properties changes the RocketEngine’s
software interface and requires the RocketEngine’s software consumers to wire
specific functionality into their own code to take advantage of it. In short, this
track will initiate the reconstruction and deployment of most system software on
board the spacecraft. So much for plug-and-play.

Now let’s build our instance of RocketEngine:

Dim pEngine as New RocketEngine()

After the necessary background initialization of the class (including inter-
facing to the actual engine hardware), we now have the following interface
exposed to the control and navigation systems. It’s a very simple interface,
mapping a single property, called Item, and allows it to map values into their
appropriate locations behind the RocketEngine’s interface. The KeyValue will be
the actual property name, while the ItemValue will be the actual value of the 
property.

pEngine.Item("Drive") = "TwinIon"

pEngine.Item("Navigation") = "VFR"

pEngine.Item("Inertia") = "Dampening=False"
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I’ve added one additional key value that will automatically set other key 
values behind the scenes. With such an interface, both the consumers and the
developers have complete freedom to use it without fear of breakage or change. 
The developer can change literally anything within the RocketEngine core, exposing
new features without breaking old ones. Here’s an example:

pEngine.Item("Warp") = "True"

Now let’s look at the internal implementations in Listing 1-1. The simple form
of Set Item will accept a key and a value. It will attempt to change the key’s associ-
ated value, if it exists, then call ExamineItem in order to determine if it should
handle the “Warp” property key differently. For brevity, the action associated with
“Warp” simply resets the Item values. In practice, it could kick off a whole host of
background processing.

Listing 1-1. Item() and ExamineItem() Code

Public Property Item(Optional ByVal strK As String = "") As String

Get

On Error Resume Next

Dim strVx As String

strVx = Nothing                         'set to null in case Find() fails

strVx = tcItem.Find(strK).Item          'do the find - if found will return value

Item = strVx                           'return to calling proc

End Get

Set(ByVal Value As String)

On Error Resume Next

tcItem.Find(strK).Item = Value       'find and set the property

If Err.Number <> 0 Then              'if not found, then need to add

tcItem.AddItem(Value, strK, strK) 'else if ok to add then add it

End If

ExamineItem(strK, Value)                'and examine it further

End Set

End Property
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And now the definition of ExamineItem():

Private Sub ExamineItem(ByVal strK As String, ByVal strV As String)

On Error Resume Next

Select Case strK

Case "Warp"                                'if "warp" is the key

Item("Drive") = "Warp"                    'automatically set the required

Item("Navigation") = "Gravitational"      'default configuration

Item("Inertia") = "Dampening=True"

End Select

End Sub

This very simple strategy provides all consumers with a consistent property
interface. In practice, the class initialization should internally build and expose
the key-value pairs. The RocketEngine New()does this:

Public Sub New()

Item("Drive") = "TwinIon"

Item("Navigation") = "VFR"

Item("Inertia") = "Dampening=False"

End Sub

While I’ve put some hard-wired values into the class definition, I’ve also
cordoned them off into textual constants. Anything that can be reduced to text is a
candidate to become structural, behavioral, or configuration metadata. Now that
we have simple values under control, let’s take a look at object manipulation.

Factories and Object Recycle

Within the scope of any software execution, especially object-modeled software,
the need for memory and resource management is critical to maintaining control
over the system and its performance. Memory leakage occurs in two primary
ways: building instances of objects and not destroying them when appropriate,
and destroying objects without the ability to fully reclaim all of the memory they
acquired when first instantiated.

The first problem is fairly easy to rectify: simply exercise diligence and destroy
objects after we’re done with them. This usually requires discipline on the part of
the individual developer, and sometimes presents a risk of runaway leakage.

The second problem is impossible to resolve completely. Each time our soft-
ware instantiates an object, the system allocates memory for it along with addi-
tional memory to track the instance. When we destroy the object, the system does
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not necessarily throw away the tracking memory, only the original memory. Addi-
tionally, destroying the object automatically creates an object-sized hole in
memory. The system will use this hole later to allocate an object of equal or lesser
size. The result is memory fragmentation. Within high-speed systems, this effect
can create a significant performance drag by literally throwing away useful
memory and requiring its fresh reallocation.

These effects usually don’t appear in slow-moving classes at the upper execu-
tion tier of a software program. They usually occur with the foundation classes,
the ones that are the smallest, most used, and most often forgotten. The bad news
is that a lack of attention on the part of our developers can create a runaway
memory leak very quickly. The good news is we can track all of our memory and
object allocations with a little forethought and the strategic use of the Factory
pattern.

Within main the method FactoryInit calls FactoryAdd once for each of four
classes already in ProjectOne. Each of these classes has a special interface to
support factory generation. This interface allows any member of the class to be a
“seed” object for multiple objects of its own kind. Thus FactoryAdd will simply
add a single instance of the newly created object (Listing 1-2) and key it on the
object’s type name, also included in the call.

NOTE Many languages do not support the ability to convert an object’s
type into a string value for textual searching, or their typename() func-
tions are too brittle for compiled executables. This is why FactoryInit
and FactoryAdd include the class names explicitly as string constants.

Listing 1-2. Factory Logic Described

Private Sub FactoryInit()

On Error Resume Next

FactoryAdd ("StringAdapter", New StringAdapter())

FactoryAdd ("TurboCollection", New TurboCollection())

FactoryAdd ("ParmNode", New ParmNode())

FactoryAdd ("Observer", New Observer())

End Sub

Note in Listing 1-2 that for extensive class lists, the FactoryInit could invoke a
TreeBuild at the end. This would sort and slice the class list into a binary tree for
blazing run time access. Practically speaking, don’t try to push all objects into a
single factory. Most framework-level functions (such as databases, screens, and so
on) warrant their own factories and sometimes are never co-related with the other
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frameworks or software subsystems. Use multiple factories to increase plug-and-
play freedom of subsystems so that none of them are directly dependent on a
master factory. I’ll show in the next chapter how an Abstract factory can provide
brokerage to multiple factories without direct dependency. Listing 1-3 shows how
to add objects to this factory.

Listing 1-3. FactoryAdd

Public Sub FactoryAdd(strK As String, iObj As Object)

On Error Resume Next

Dim pWrk As ParmNode

pWrk = tcFactory.Find(strK)                'try to find it

If pWrk Is Nothing Then                    'If not already there - then

tcFactory.AddItem( "", strK, strK)       'add a new Item with the proper keys

tcFactory.Ref.obj = iObj                 'then set the ParmNode's Obj

reference

Else

pWrk.obj = iObj                          'otherwise, it's there,

' just add the reference

End If

End Sub

Now that the tcFactory has “seed” objects with keys to each, let’s build the
following factory method to give us access to each type:

Public Function Factory(strK As String, iObj As Object) As Object

On Error Resume Next

Dim pWrk As ParmNode

Factory = Nothing                                 'prep in case not found

Factory = tcFactory.Find(strK).obj.Create(iObj)   'find the seed, create new one

' from it, and return it.

End Function

Note how the first part of the function presets the Factory return value to
Nothing. This is a best practice of proper error control (discussed later in Chapter
5). It will use Find on the tcFactory to retrieve the “seed,” then call the seed’s
Create. Each member of the factory’s list must support a Create function that
returns an instance of its own kind.
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What then, would be the most appropriate means to reclaim the object once
it’s no longer necessary? It seems a shame to build a factory function to manufac-
ture them, but not use it to take them back. The FactoryRelease method allows a
consumer to put the object back into the factory environment.

We will need to expand the roll of the tcFactory TurboCollection. Each node
on tcFactory will now hold the seed object and another TurboCollection for
storing the returns, now available objects. This will require the following simple
change to the FactoryAdd method (highlighted):

Public Sub FactoryAdd(strK As String, iObj As Object)

On Error Resume Next

Dim pWrk As ParmNode

pWrk = tcFactory.Find(strK)                  'find it

If pWrk Is Nothing Then                      'if not found then

tcFactory.AddItem( "", strK, strK)         'add it

tcFactory.Ref.obj = iObj                   'and populate the seed

tcFactory.Ref.Ref = New TurboCollection()  'add the "available" list here

Else

pWrk.obj = iObj                            'otherwise populate the seed

End If

End Sub

We will then need the following new function, FactoryRelease, to receive the
reclaimed objects:

Public Sub FactoryRelease(strK As String, iObj As Object)

On Error Resume Next

Dim tcAv As TurboCollection                  'allocate a TurboCollection

Dim pWrk As ParmNode                         'and a placeholder

pWrk = tcFactory.Find(strK)                  'find the class type with the key

tcAv = pWrk.Ref                              'and get the "available" list

tcAv.AddItem "", strK, strK                  'add the recycled object

tcAv.Ref.obj = iObj                          'and set it to the list's obj

End Sub

The Starting Point
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Now we’ll need to modify the Factory method, as follows, to take advantage of
reusing the recycled objects before creating a new one (modification are in bold):

Public Function Factory(strK As String, iObj As Object) As Object

On Error Resume Next

Dim pWrk As ParmNode

Dim tcAv As TurboCollection

Set Factory = Nothing

Set pWrk = tcFactory.Find(strK)

Set tcAv = pWrk.Ref                         'get the available list

If tcAv.DataPresent Then                    'If something Is on it?

Set Factory = tcAv.Top.obj               'use the node on the top of the list

tcAv.Remove tcAv.Top                     'then remove the top node

Else                                        'otherwise it's empty

Set Factory = tcFactory.Find(strK).obj.Create(iObj)

'so create a new one

End If

End Function

Now we’ll just call to initialize the Factory (only once)

FactoryInit()

and invoke it to get a new instance of the Observer class.

Dim oWrk as Observer

oWrk = Factory("Observer")

Now put it back

FactoryRelease("Observer",oWrk)

and go get it again. It’s the same object as before, only recycled.

oWrk = Factory("Observer")

The primary objective is to build a central clearinghouse for object creation
and destruction rather than relying on the programmer’s discipline alone. The
alternative: having direct create/destroy functionality scattered throughout
hundreds of thousands of lines of code, and encountering a pervasive memory
leak we cannot pinpoint.

These constructs are more than strategies. They are patterns of plug-and-play
capability that exist in every software program. By directly identifying and lever-
aging them, we enable them as building blocks for supporting all sorts of 
applications.

Chapter 1
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