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G r a v i t y o n E a r t h :
the inescapable force

1

Gravity is everywhere. No matter where you go, you can’t seem to escape it. In this chapter: the simplest
observations about gravity – it is
universal and attractive, and it
affects all bodies in the same way –
have the deepest consequences.
Galileo, the first modern physicist,
founded the equivalence principle
on them; this will guide us
throughout the book, including to
black holes. Galileo also introduced
the principle of relativity, used later
by Einstein. We begin here our use
of computer programs for solving
the equations for moving bodies.

Pick up a stone and feel its weight. Then carry it inside a building and feel
its weight again: there won’t be any difference. Take the stone into a car

and speed along at 100 miles per hour on a smooth road: again there won’t be any
noticeable change in the stone’s weight. Take the stone into the gondola of a hot-air
balloon that is hovering above the Earth. The balloon may be lighter than air, but
the stone weighs just as much as before.

This inescapability of gravity makes it different from all other forces of nature.
Try taking a portable radio into a metal enclosure, like a car, and see what happens
to its ability to pick up radio stations: it gets seriously worse. Radio waves are one
aspect of the electromagnetic force, which in other guises gives us static electricity
and magnetic fields. This force does not penetrate everywhere. It can be excluded �Remember, terms in boldface are

in the glossary.from regions if we choose the right material for the walls. Not so for gravity. We
could build a room with walls as thick as an Egyptian pyramid and made of any
exotic material we choose, and yet the Earth’s gravity would be right there inside,
as strong as ever. Gravity acts on everything the same way. �The picture underlying the text

on this page is of the famous bell
tower at Pisa, where Galileo is said
to have demonstrated the key to
understanding gravity, that all
bodies fall at the same rate. We will
discuss this below. Photo by the
author.

Every body falls toward the ground, regardless of its composition. We know
of no substance that accelerates upwards because of the Earth’s gravity. Again this
distinguishes gravity from all the other fundamental forces of Nature. Electric
charges come in two different signs, the “+” and “-” signs on a battery. A negative
electron attracts a positive proton but repels other electrons.

There is a simple home experiment that will show this. If you have a
clothes dryer, find a shirt to which a couple of socks are clinging after
they have been dried. Pulling the socks off separates some of the charges
of the molecules of the fabric, so that the charges on the sock will attract
their opposites on the shirt if they are held near enough. But the socks
have the same charge and repel each other when brought together.

The existence of two signs of electric charge is responsible for the shape of our
everyday world. For example, the balance between attraction and repulsion among
the different charges that make up, say, a piece of wood gives it rigidity: try to stretch
it and the electrons resist being pulled away from the protons; try to compress it
and the electrons resist being squashed up against other electrons. Gravity allows
no such fine balances, and we shall see that this means that bodies in which gravity
plays a dominant role cannot be rigid. Instead of achieving equilibrium, they have
a strong tendency to collapse, sometimes even to black holes.

These two facts about gravity, that it is ever-present and always attractive, might
make it easy to take it for granted. It seems to be just part of the background, a
constant and rather boring feature of our world. But nothing could be further from
the truth. Precisely because it penetrates everywhere and cannot be cancelled out, it
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is the engine of the Universe. All the unexpected and exciting discoveries of modern
astronomy – quasars, pulsars, neutron stars, black holes – owe their existence to
gravity. It binds together the gases of a star, the stars of a galaxy, and even galaxies
into galaxy clusters. It has governed the formation of stars and it regulates the
way stars create chemical elements of which we are made. On a grand scale, it
controls the expansion of the Universe. Nearer to home, it holds planets in orbit
about the Sun and satellites about the Earth.

The study of gravity, therefore, is in a very real sense the study of practically
everything from the surface of the Earth out to the edge of the Universe. But it is
even more: it is the study of our own history and evolution right back to the Big
Bang. Because gravity is everywhere, our study of gravity in this book will take
us everywhere, as far away in distance and as far back in time as we have scientific
evidence to guide us.

Galileo: the beginnings of the science of gravity
We will begin our study of gravity with our feet firmly on the ground, by meetingIn this section: Galileo laid the

foundations for the scientific study
of gravity. His demonstration that
the speed of fall is independent of

the weight of an object was the first
statement of the principle of

equivalence, which will lead us later
to the idea of black holes.

a man who might fairly be called the founder of modern science: Galileo Galilei
(1564–1642).

Figure 1.1. Galileo Galilei moved
science away from speculation and
philosophy and toward its modern

form, insisting on the pre-eminence
of careful experiment and

observation. He also introduced the
idea of describing the laws of

nature mathematically. Meeting
strong religious opposition in his
native Italy, his ideas stimulated

the growth of science in northern
Europe in the decades after his

death. Image reproduced courtesy
of Mary Evans Picture Library.

In Galileo’s time there was a strong interest in the trajectories of cannonballs. It
was, after all, a matter of life and death: an army that could judge how far gravity
would allow a cannonball to fly would be better equipped to win a battle over a less
well-informed enemy. Galileo’s studies of the trajectory problem went far beyond
those of any previous investigator. He made observations in the field and then per-
formed careful experiments in the laboratory. These experiments are a model of
care and attention to detail. He found out two things that startled many people in
his day and that remain cornerstones of the science of gravity.

First, Galileo found that the rate at which a body falls does not depend
upon its weight. Second, he measured the rate at which bodies fall and
found that their acceleration is constant, independent of time.

After Galileo, gravity suddenly wasn’t boring any more. Let’s look at these two
discoveries to find out why.

The story goes that Galileo took two iron balls, one much heavier than the other,
to the top of the bell tower of Pisa and dropped them simultaneously. Most people
of the day (and even many people today!) would probably have expected the heavier
ball to have fallen much faster than the lighter one, but no: both balls reached the
ground together.

The equality of the two balls’ rates of fall went against the intuition and much of
the common experience of the day. Doesn’t a brick fall faster than a feather? Galileo
pointed out that air resistance can’t be neglected in the fall of a feather, and that to
discover the properties of gravity alone we must experiment with dense bodies like
stones or cannonballs, where the effects of air resistance are small. For such objects
we find that speed is independent of weight.

But surely, one might object, we have to do much more work to lift a heavy
stone than a light one, so doesn’t this mean that a heavy stone “wants” to fall more
than a light one and will do so faster, given the chance? No, said Galileo: weight
has nothing to do with the speed of fall. We can prove that by measuring it. We
have to accept the world the way we find it. This was the first step towards what
we now call the principle of equivalence, which essentially asserts that gravity is
indistinguishable from uniform accleration. We shall see that this principle has a
remarkable number of consequences, from the weightlessness of astronauts to the
possibility of black holes.
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Investigation 1.1. Faster and faster: the meaning of uniform acceleration

In this investigation, we work out what Galileo’s law of constant ac-
celeration means for the speed of a falling body. The calculation is
short, and it introduces us to the way we will use some mathematical
symbols through the rest of the book.

We shall denote time by the letter t and the speed of the falling
body by v (for velocity). The speed at time t will be written v(t). The
acceleration of the body is g, and it is constant in time.

Suppose the body is dropped from rest at time t = 0. Then its
initial speed is v = 0 at time t = 0, in other words v(0) = 0. What will
be its speed a short time later?

Let us call this later time ∆t. Here we meet an important new nota-
tion: the symbol ∆ will always mean “a change in” whatever symbol
follows it. Thus, a change in time is ∆t. Similarly, we shall call the
change in speed produced by gravity ∆v. Normally we shall use this
notation to denote small changes; here, for example, I have defined
∆t to be “a short time later”. We shall ask below how small ∆t has to
be in order to be “short”.

The acceleration g is the change in the speed per unit time. This
definition can be written algebraically as

g =
∆v

∆t
. (1.1)

By multiplying through by the denominator of the fraction, we can
solve for the change in speed:

∆v = g∆t. (1.2)

Equation 1.1 basically defines g to be the average acceleration
during the time ∆t. If we take ∆t to be very small, then this gives
what we generally call the instantaneous acceleration. In this sense,
“small” effectively means “as small as we can measure”. If I have a
clock which can reliably measure time accurate to a millisecond, then
I would take ∆t to be 1ms if I wanted the instantaneous acceleration.

Now, Galileo tells us that the acceleration of a falling body does
not in fact change with time. That means that the average accel-
eration during any period of time is the same as the instantaneous
acceleration g. So in this particular case, it does not actually matter
if ∆t is small or not: Equation 1.1 is exactly true for any size of ∆t.
If we let t be any time, then we can rewrite Equation 1.2 as

∆v = gt.

We assumed above that the body was dropped from rest at time
t = 0. This means that the initial speed is zero, and so the speed at
a later time is just equal to ∆v as given above. But if the body has an
initial downward speed v(0) = v0, then its subsequent acceleration
only adds to the speed. This means that

v(t) = v(0) + ∆v,

or
v(t) = gt + v0. (1.3)

Exercise 1.1.1: Speed of a falling body
Using the fact that the acceleration of gravity on Earth is g = 9.8 m s-2, calculate the speed a ball would have after falling for two seconds,
if dropped from rest. Calculate its speed if it were thrown downwards with an initial speed of 10 m s-1. Calculate its speed if it were initially
thrown upwards with a speed of 10 m s-1. Is it falling or still rising after 2 s?

The acceleration of gravity is uniform
Galileo performed a number of ingenious experiments with the rather crude clocks In this section: near the Earth,

bodies accelerate downwards at a
uniform rate.

available in his day to demonstrate that the acceleration of falling objects is con-
stant. Now, the acceleration of an object is the rate of change of its speed, so if the
acceleration is constant then the speed changes at a constant rate; during any given
single second of time, the speed increases by a fixed amount. We call this constant
the acceleration of gravity, and denote it by g (for gravity). Its value is roughly
9.8 meters per second per second. The units, meters per second per second, should
be understood as “(meters per second) per second”, giving the amount of speed (me-
ters per second) picked up per second. These units may be abbreviated as m/s/s, but
it is more conventional (and avoids the ambiguous† ordering of division signs) to
write them as m s-2.

Figure 1.2. For the calculation in
Investigation 1.3 on page 5, the
vertical and horizontal distances
traveled by a cannonball launched
at an angle θ are the sides of a
right triangle whose hypotenuse is
the total distance V∆t.

As with any physical law, there is no reason “why” the world had to be this
way: the experiment might have shown that the speed increased uniformly with the
distance fallen. But that is not how our world is made. What Galileo found was that
speed increased uniformly with time of fall.

We can find out what Galileo’s law says about the distance fallen by
doing our first calculations, Investigation 1.1 and 1.2. These calcula-
tions show that uniform acceleration implies that the speed a falling
body gains is proportional to time and that the distance it falls increases
as the square of the time. The calculation also has another purpose: it
introduces the basic ideas and notation that we will use in later inves-
tigations to construct computer calculations of more complicated phe-

†Ambiguity: does m/s/s mean (m/s)/s or m/(s/s)? Either would be a valid interpretation of m/s/s,
but in the second form the units for seconds cancel, which is not at all what is wanted.
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Investigation 1.2. How the distance fallen grows with time

Here we shall calculate the distance d(t) through which a falling body
moves in the time t. Again we shall do this with simple algebra, but
the ideas we use will lay the foundations for the computer programs
we will write to solve harder problems later. Accordingly, much of
the reasoning used below will be more general than is strictly neces-
sary for the simple problem of a falling body.

We follow similar reasoning to that in Investigation 1.1 on the pre-
vious page. We are interested in the distance d(t) fallen by the body
by the time t. During the first small interval of time ∆t, the body
falls a distance ∆d. (Our ∆ notation again.) The average speed in
this time is, therefore,

vavg =
∆d

∆t
.

Solving this for ∆d gives

∆d = vavg∆t. (1.4)

Now, we saw in Investigation 1.1 that the speed of the body
changes during this interval of time. It starts out as zero (in the
simplest case we considered) and increases to g∆t. So it seems to
be an obvious guess that the average speed to use in Equation 1.4
is the average of these two numbers:

vavg = 1/2 (g∆t + 0) = 1/2g∆t.

If we put this into Equation 1.4, we find

∆d =
(

1/2g∆t
)

(∆t) = 1/2g (∆t)2 . (1.5)

I have said “an obvious guess” because it might not be right. If
the acceleration of the body were a very complicated changing func-
tion of time, then its average speed over a time ∆t might not be the
average of its speeds at the beginning and end of the time-interval.
For example, for some kinds of non-uniform acceleration it might
happen that the body was at rest at the beginning and end of the in-
terval, but not in between. Then its average speed might be positive,
even though our guess would give zero.

Our guess is really only a good approximation in general if we
choose the time-interval ∆t small enough that the body’s accelera-
tion does not change by much during the interval. This gives a new
insight into what is meant by a short time-interval: it must be short
enough that the body’s acceleration does not change by very much.

Of course, in the case of a falling body, the acceleration is con-
stant, so we can expect Equation 1.5 to be exact for any time-
interval, no matter how long. So if we replace ∆t by t and ∆d by
d(t), we find

d(t) = 1/2gt2. (1.6)

Now suppose the body initially had a speed v0. Then the average
speed during the time ∆t would be v0 +g∆t/2, so Equation 1.5 would
become

∆d =
(
v0 + 1/2g∆t

)
∆t = v0∆t + 1/2g (∆t)2 .

Then, if the body does not start at distance d = 0 but rather at
distance d(0) = d0, we have that d(t) at a later time is

d(t) = 1/2gt2 + v0t + d0. (1.7)

This is the full law of distance for a uniformly accelerating body.
The calculation we have just done may seem long-winded, espe-

cially to readers who are comfortable with calculus, because the op-
erations I have gone through may seem like a beginner’s introduc-
tion to calculus. This is not my aim, however. It will become clear in
future examples that what we have actually met here is a method of
doing calculations by finite differences; this method is at the heart
of most computer calculations of the predictions of physical laws,
and we will see that it will help us to solve much more difficult prob-
lems involving the motion of bodies under the influence of gravity.
We can use finite differences reliably provided we use intervals of
time that are short enough that the acceleration of a body does not
change by much during the interval.

Exercise 1.2.1: Distance fallen by a body
For the falling ball in Exercise 1.1.1 on the preceding page, calculate the distance the ball falls in each of the cases posed in that exercise.

nomena. Anyone who can do algebra can follow these investigations.

Trajectories of cannonballs
We can now take up one of the subjects that contributed to the Renaissance interestIn this section: Galileo introduced

the idea that the horizontal and
vertical motions of a body can be

treated separately: the vertical
acceleration of gravity does not

change the horizontal speed of a
body.

in gravity, namely the motion of a cannonball. We have discovered that the vertical
motion of the ball is governed by the law of constant acceleration. What about its
horizontal motion? Here, too, Galileo had a fundamental insight. He argued that
the two motions are independent.

Consider dropping a rubber ball in an airplane moving with a large horizontal
speed. The rate at which the ball falls does not depend on how fast the plane is
moving. Moreover, imagine an observer on the ground capable of watching the
ball: it keeps moving horizontally at the same speed as the plane even though it is
free of any horizontal forces. That is, while it falls “straight down” relative to the
passengers in the plane, it falls in an arc relative to the observer on the ground.

Let us transfer this reasoning to the example of a cannonball launched at an
angle to the vertical so that its vertical speed is v0 and its horizontal speed is u0.
Since there are no horizontal forces acting on the ball if we neglect air resistance, it
will keep its horizontal speed as it climbs and falls, and the time it spends in the air
will be the same as that of a ball launched vertically with the same speed v0. Galileo
showed that the trajectory that results from this is a parabola.

This would be easy for us to show, as well, by doing a little algebra.
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Investigation 1.3. The flight of the cannonball

Here we show how the finite-differences reasoning of the two pre-
vious investigations allows us to construct a computer program to
calculate the flight of a cannonball, at least within the approximation
that the ball is not affected by air resistance.

From this book’s website you can download listing of the Java
program CannonTrajectory. If you download the Triana software
as well you can run the program and compute the trajectory of a can-
nonball fired at any given initial speed and at any angle. Figure 1.3
on the next page displays the result of the computer calculation for
three trajectories, all launched with the same speed at three different
angles. (The Triana software will produce plots of these trajectories.
The figures produced for this book have, however, been produced
by more sophisticated scientific graphics software.)

Here is how the program is designed. The idea is to calculate
the body’s horizontal and vertical position and speed at successive
times spaced ∆t apart. Let d be the vertical position and x the hor-
izontal one, both zero to start. If the ball is launched with speed V
at an angle θ with the horizontal (as in Figure 1.2 on page 3), then
our first job is to deduce the vertical and horizontal speeds, which
Galileo showed behaved independently of one another after launch.

Suppose that we turn off gravity for a moment and just watch a
cannonball launched with speed V at an angle θ to the ground. Then
after a small time ∆t, it has moved a distance V∆t in its launch direc-
tion. This is the distance OP in Figure 1.2. Simple trigonometry tells
us that this distance is the hypotenuse of a right triangle whose
other sides are the lines PA (the vertical distance d it has traveled)
and AO (the horizontal distance x it has traveled). Then by definition
we have

sin θ =
d

V∆t
⇒ d = V∆t sin θ,

cosθ =
x

V∆t
⇒ x = V∆t cosθ.

The vertical speed is the vertical distance d divided by the time ∆t,
and similarly for the horizontal speed. We therefore find that the
initial vertical speed is

v0 = V sin θ
and the initial horizontal speed is

u0 = V cosθ.

The horizontal speed remains fixed, so the horizontal distance in-
creases by u0 × ∆t each time step. The vertical speed decreases by

g∆t each time step, and we calculate the vertical distance using the
average vertical speed in each time step. (In vertical motion, upward
speeds are positive and downward ones negative.) The program sets
up a loop to calculate the variables at successive time-steps sepa-
rated by a small amount of time.

Normally one would expect a program like this to become more
accurate for smaller time-steps, because of the remark we made in
Investigation 1.2: our method of taking finite steps in time is better
if the acceleration is nearly constant over a time step. In this case
the relevant time step is ∆t. By making ∆t sufficiently small, one can
always insure that the acceleration changes by very little during that
time, and therefore that the accuracy of the program will increase.
But in the present case that does not happen because our method of
using the average speed over the time-step gives the exact result for
uniform acceleration.

Let us look at the results of the three calculations in Figure 1.3 on
the following page. Of these, the trajectory with the largest range for
a given initial speed is the one that leaves the ground at a 45◦ angle.
In fact it is not hard to show that this trajectory has the largest range
of all possible ones. What is this range? We could calculate it from
the results of Investigation 1.2, but in the spirit of our approach we
shall try to guess it from the numerical calculation.

Given that the initial angle will be 45◦, the range can only depend
on the initial speed V and the acceleration g. The range is measured
in meters, and the only combination of V and g that has the units
of length is V2/g : ( m s-1)2/( m s-2) = m. We therefore can conclude
that there is some constant number b for which range = bV2/g.
(This reasoning is an example of a powerful technique called dimen-
sional analysis, because one is trying to learn as much as possible
from the units, or dimensions, of the quantities involved in the
problem.)

The numerical results let us determine b. Since the calculation
used V = 100 m s-1, it follows that V2/g is 1020 m. From the graph
the range looks like 1020 m as well, as nearly as I can estimate it.
Since the value of b is likely to be simple, it almost surely equals 1.
An algebraic calculation shows this to be correct:

maximum range = V2/g.

The reader is encouraged to re-run the program with various initial
values of V to check this result.

Exercise 1.3.1: Small steps in speed and distance
Suppose that at the nth time-step tn, the vertical speed is vn and the vertical distance above the ground is hn. Show that at the next time-step
tn+1 = tn + ∆t, the vertical speed is vn+1 = vn - g∆t. Using our method of approximating the distance traveled by using the average speed
over the interval, show that at the next time-step the height will be

hn+1 = hn + 1/2(vn + vn+1)∆t = hn + vn∆t - 1/2g(∆t)2.

Exercise 1.3.2: Suicide shot
What is the minimum range of a cannonball fired with a given speed V , and at what angle should it be aimed in order to achieve this
minimum?

Exercise 1.3.3: Maximum range by algebra
For readers interested in verifying the guess we made above from the numerical data, here is how to calculate the range at 45◦ algebraically.
The range is limited by the amount of time the cannonball stays in the air. Fired at 45◦ with speed V , how long does it take to reach its
maximum height, which is where its vertical speed goes to zero? Then how long does it take to return to the ground? What is the total time
in the air? How far does it go horizontally during this time? This is the maximum range.

Exercise 1.3.4: Best angle of fire
Prove that 45◦ is the firing angle that gives the longest range by calculating the range for any angle and then finding what angle makes it a
maximum. Use the same method as in Exercise 1.3.3.
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But instead we show in Investigation 1.3 on the previous page how to
use a personal computer to calculate the actual trajectory of a cannon-
ball. These computer techniques will form the foundation of computer
programs later in this book that will calculate other trajectories, such as
planets around the Sun, stars in collision with one another, and particles
falling into black holes.

Galileo: the first relativist
It would be hard to overstate Galileo’s influence on science and therefore on theIn this section: Galileo introduced

what we now call the principle of
relativity, which Einstein used as a

cornerstone of his own
revolutionary theories of motion

and gravity almost 300 years later.

development of human society in general. He founded the science of mechanics;
his experiments led the English scientist Isaac Newton (1642–1726) to discover his
famous laws of motion, which provided the foundations for almost all of physics for
200 years. And almost 300 years after his death his influence was just as strong on
Albert Einstein. The German–Swiss physicist Einstein (1879–1955) replaced New-
ton’s laws of motion and of gravity with new ones, based on his theory of relativity.
Einstein’s revolutionary theories led to black holes, the Big Bang, and many other
profound predictions that we will study in the course of this book. Yet Einstein, too,
kept remarkably close to Galileo’s vision.

The main reason for Galileo’s influence on Einstein is that he gave us the first
version of what we now call the principle of relativity. We have already encoun-
tered Galileo’s version: the vertical motion of a ball does not depend on its horizontal
speed, and its horizontal speed will not change unless a horizontal force is applied.

Figure 1.3. Trajectories computed by the program developed in Investigation 1.3
on the previous page, for three angles of firing, each at the same initial speed of

100 m s-1. The trajectory at 45◦ goes furthest.

Where we used a fast-flying airplane to
justify this, Galileo imagined a sailing ship
on a smooth sea, but the conclusion was the
same: an experimenter moving horizontally
will measure the same acceleration of gravity
in the vertical direction as he would if he were
at rest.

Galileo took this idea and drew a much
more profound conclusion from it. The radi-
cal proposal made half a century earlier by the
Polish priest and astronomer Nicolas Coperni-
cus (1473–1543), that the Earth and other plan-
ets actually moved around the Sun (see Fig-
ure 1.4), was still far from being accepted by
most intellectuals in Galileo’s time. Although
the proposal explained the apparent motions of
the planets in a simple way, it was open to an
important objection: if the Earth is moving at
such a rapid rate, why don’t we feel it? Why

isn’t the air left behind, why doesn’t a ball thrown vertically fall behind the moving
Earth?

Galileo used the independence of different motions to dispose of this objection.
Galileo’s answer is that a traveler in the cabin of a ship on a smooth sea also does
not feel his ship’s motion: all the objects in the cabin move along with it at constant
speed, even if they are just resting on a table and not tied down. Anything that falls
will fall vertically in the cabin, giving no hint of the ship’s speed. So it is on the
Earth, according to Galileo: the air, clouds, birds, trees, and all other objects all have
the same speed, and this motion continues until something interferes with it. There
is, in other words, no way to tell that the Earth is moving through space except to
look at things far away, like the stars, and see that it is.
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Figure 1.4. The Copernican view of
the planets known in Galileo’s day
as they orbit the Sun.

Today we re-phrase and enlarge this idea to say that all the laws of physics are
just the same to an experimenter who moves with a uniform motion in a straight
line as they are to one who remains at rest, and we call this the principle of relativity.
We shall encounter many of its consequences as we explore more of the faces of
gravity.

Figure 1.5. Part of a sketch by
Galileo of the positions of Jupiter
(open circles) and its moons (stars)
on a sequence of nights (dates given
by the numbers). The big changes
from night to night puzzled Galileo.
At first he believed that Jupiter
itself was moving erratically, but
after a few observations he realized
that the “stars” were moons
orbiting Jupiter in the same way
that the planets orbit the Sun.

Unfortunately for Galileo, his clear reasoning and his observations with one of
the first telescopes made him so dangerous to the established view of the Roman
Catholic Church that in his old age he was punished for his views, and forced to
deny them publicly. Privately he continued to believe that the planets went around
the Sun, because he had discovered with his telescope that the moons of Jupiter orbit
Jupiter in the same way that the planets orbit the Sun.

Today we recognize Galileo as the person who, more than anyone else,
established the Copernican picture of the Solar System.


