
COM and .NET
Interoperability

ANDREW TROELSEN

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page i

COM and .NET Interoperability
Copyright © 2002 by Andrew Troelsen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-011-2
Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewers: Habib Heydarian, Eric Gunnerson
Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore,

Karen Watterson, John Zukowski
Managing Editor: Grace Wong
Copy Editors: Anne Friedman, Ami Knox
Proofreaders: Nicole LeClerc, Sofia Marchant
Compositor: Diana Van Winkle, Van Winkle Design
Artist: Kurt Krames
Indexer: Valerie Robbins
Cover Designer: Tom Debolski
Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710.
Phone: 510-549-5930, Fax: 510-549-5939, Email: info@apress.com, Web site:
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully down-
load the code.

*0112_ch00_CMP2.qxp 3/25/02 2:10 PM Page ii

CHAPTER 12

COM-to-.NET
Interoperability—
Advanced Topics

The point of this chapter is to round out your knowledge of exposing .NET types to
COM applications by examining a number of advanced techniques. The first
major topic is to examine how .NET types can implement COM interfaces to
achieve binary compatibility with other like-minded COM objects (a topic first
broached in Chapter 7). Closely related to this topic is the process of defining
COM types directly using managed code. Using this technique, it is possible to
build a binary-compatible .NET type that does not directly reference a related
interop assembly (and is therefore a bit more lightweight). As for the next major
topic, you examine the process of building a customized version of tlbexp.exe
while also addressing how to programmatically register interop assemblies at
runtime. Finally, you wrap up by taking a deeper look at the .NET runtime envi-
ronment and checking out how a COM client can be used to build a custom host
for .NET types. In addition to being a very interesting point of discussion, you will
see that a custom CLR host can simplify COM-to-.NET registration issues.

Changing Type Marshaling Using MarshalAsAttribute

Before digging into the real meat of this chapter, let’s examine yet another interop-
centric attribute. As you have seen, one nice thing about the tlbexp.exe utility is
that it will always ensure the generated type information is [oleautomation]
compatible. When you build COM interfaces that are indeed [oleautomation]
compatible, you are able to ensure that all COM-aware languages can interact
with the .NET type (as well as receive a free stub/proxy layer courtesy of the
universal marshaler). Typically, if you have created a COM interface that is not
[oleautomation] compatible, you have either (a) made a mistake, (b) are building a
COM server you only intend to use from C++, or (c) wish to define a custom stub
and proxy DLL for performance reasons.

633

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 633

Nevertheless, if you wish to create a managed method that is exposed
to COM as a non–oleautomation-compatible entity, you are able to apply the
MarshalAsAttribute type. The MarshalAs attribute can also be helpful when a
single .NET type has the ability to be represented by multiple COM types. For
example, a System.String could be marshaled to unmanaged code as a LPSTR,
LPWSTR, LPTSTR, or BSTR. While the default behavior (System.String to COM
BSTRs) is typically exactly what you want, the MarshalAsAttribute type can be
used to expose System.String in alternative formats.

This attribute may be applied to a method return type, type member, and a
particular member parameter. Applying this attribute is simple enough; however,
the argument that is specified as a constructor parameter (UnmanagedType) is a
.NET enumeration that defines a ton of possibilities. To fully understand the scope
of the MarshalAs attribute, let’s check out some core values of this marshal-centric
enumeration. First up, Table 12-1 documents the key values of UnmanagedType
that allow you to expose a System.String in various formats.

Table 12-1. String-Centric Values of UnmanagedType

String-Centric Meaning in Life
UnmanagedType
Member Name

AnsiBStr ANSI character string that is a length-prefixed single byte.

BStr Unicode character string that is a length-prefixed double byte.

LPStr A single-byte ANSI character string.

LPTStr A platform-dependent character string, ANSI on Windows 98,

Unicode on Windows NT. This value is only supported for Platform

Invoke, and not COM interop, because exporting a string of type

LPTStr is not supported.

LPWStr A double-byte Unicode character string.

To illustrate, assume you have a small set of .NET members that are defined
as follows:

[ClassInterface(ClassInterfaceType.AutoDual)]

public class MyMarshalAsClass

{

public MyMarshalAsClass(){}

// String marshaling.

public void ExposeAsLPStr

([MarshalAs(UnmanagedType.LPStr)]string s){}

public void ExposeAsLPWStr

([MarshalAs(UnmanagedType.LPWStr)]string s){}

}

Chapter 12

634

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 634

Once processed by tlbexp.exe, you find the following COM IDL:

interface _MyMarshalAsClass : IDispatch

{

[id(0x60020004)]

HRESULT ExposeAsLPStr([in] LPSTR s);

[id(0x60020005)]

HRESULT ExposeAsLPWStr([in] LPWSTR s);

};

Table 12-2 documents the key values of UnmanagedType that are used to
expose System.Object types as various flavors of COM types.

Table 12-2. System.Object-Centric Values of UnmanagedType

Object-Centric Meaning in Life
UnmanagedType Member Name

IDispatch A COM IDispatch pointer

IUnknown A COM IUnknown pointer

If you extend the MyMarshalAsClass type to support the following members:

// Object marshaling.

public void ExposeAsIUnk

([MarshalAs(UnmanagedType.IUnknown)]object o){}

public void ExposeAsIDisp

([MarshalAs(UnmanagedType.IDispatch)]object o){}

you find the following COM type information:

[id(0x60020006)]

HRESULT ExposeAsIUnk([in] IUnknown* o);

[id(0x60020007)]

HRESULT ExposeAsIDisp([in] IDispatch* o);

UnmanagedType also provides a number of values that are used to alter how a
.NET array is exposed to classic COM. Again, remember that by default, .NET
arrays are exposed as COM SAFEARRAY types, which is typically what you require.
For the sake of knowledge, however, Table 12-3 documents the key array-centric
member of UnmanagedType.

COM-to-.NET Interoperability—Advanced Topics

635

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 635

Table 12-3. Array-Centric Value of UnmanagedType

Array-Centric Meaning in Life
UnmanagedType Member Name

LPArray A C-style array

As you would guess, the following C# member definition:

// Array marshaling.

public void ExposeAsCArray

([MarshalAs(UnmanagedType.LPArray)]int[] myInts){}

results in the following IDL:

[id(0x60020008)]

HRESULT ExposeAsCArray([in] long* myInts);

Finally, UnmanagedType defines a number of members that allow you to
expose intrinsic .NET data types in various COM mappings. While many of these
values are used for generic whole numbers, floating-point numbers, and whatnot,
one item of interest is UnmanagedType.Currency. As you recall, the COM
CURRENCY type is not supported under .NET and has been replaced by
System.Decimal. Table 12-4 documents the key data-centric types.

Table 12-4. Data-Centric Values of UnmanagedType

Data Type–Centric Meaning in Life
UnmanagedType
Member Name

AsAny Dynamic type that determines the Type of an object at runtime

and marshals the object as that Type.

Bool 4-byte Boolean value (true != 0, false = 0).

Currency Used on a System.Decimal to marshal the decimal value as a

COM currency type instead of as a Decimal.

I1 1-byte signed integer.

I2 2-byte signed integer.

I4 4-byte signed integer.

I8 8-byte signed integer.

R4 4-byte floating-point number.

R8 8-byte floating-point number.

Chapter 12

636

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 636

Table 12-4. Data-Centric Values of UnmanagedType (continued)

Data Type–Centric Meaning in Life
UnmanagedType
Member Name

SysInt A platform-dependent signed integer. 4 bytes on 32-bit

Windows, 8 bytes on 64-bit Windows.

SysUInt Hardware natural-size unsigned integer.

U1 1-byte unsigned integer.

U2 2-byte unsigned integer.

U4 4-byte unsigned integer.

U8 8-byte unsigned integer.

VariantBool 2-byte OLE-defined Boolean value (true = -1, false = 0).

Again, the most useful of these data type-centric members of the Unman-
agedType enumeration is the UnmanagedType.Currency value, given that .NET no
longer supports the COM CURRENCY type. However, given that a System.Decimal
provides the same storage, you can apply MarshalAs as follows:

// Exposing Decimal and Currency.

public void ExposeAsCURRENCY

([MarshalAs(UnmanagedType.Currency)]Decimal d){}

This results in the following IDL:

[id(0x60020008)]

HRESULT ExposeAsCURRENCY([in] CURRENCY d);

So, now that you have seen the various ways that the MarshalAsAttribute type
can be configured, you may be wondering exactly when (or why) you may wish to
alter the default interop marshaler. In reality, you typically won’t need to alter the
default marshaling behavior. The only time it might be beneficial on a somewhat
regular basis is when you wish to expose .NET System.Objects as a specific COM
interface type (IUnknown or IDispatch) or expose a System.Decimal as a legacy
COM CURRENCY type.

CODE The MyMarshalAsLibrary project is included under the
Chapter 12 subdirectory.

COM-to-.NET Interoperability—Advanced Topics

637

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 637

.NET Types Implementing COM Interfaces

Recall from Chapter 9 that if a COM coclass implements a COM-visible .NET inter-
face, the coclass in question is able to achieve type compatibility with other like-
minded .NET objects. The converse of this scenario is also true: .NET types can
implement COM interfaces to achieve binary compatibility with other like-
minded COM types. When a .NET programmer chooses to account for COM inter-
faces in his or her type implementations, there are two possible choices:

• Implement a custom COM interface.

• Implement a standard COM interface.

As you recall from Chapter 2, although a COM interface always boils down to
the same physical form (a collection of pure virtual functions identified by a
GUID), standard interfaces are predefined types (published by Microsoft).
Furthermore, standard interfaces are already defined in terms of COM IDL, have a
predefined GUID, and are recorded in the system registry. Custom interfaces, on
the other hand, are authored by a COM developer during the course of a software
development cycle. In this case, the programmer is the one in charge of describing
the item in terms of COM IDL and registering the resulting type library (all of
which is done automatically when using VB 6.0). When a .NET type implements a
custom COM interface, the result is that a given COM client is able to interact with
the .NET type as if it were a coclass adhering to a specific binary format.

On the other hand, if a .NET type implements a standard interface (such as
IDispatch, IConnectionPointContainer, or ITypeInfo), it will be used as a
customized replacement for the equivalent interface implemented by the CCW. To
be sure, the chances that you will need to provide a customized implementation of
an interface supported by the CCW are slim to none. Given this likelihood, I focus
solely on the process of defining managed versions of custom COM interfaces.

Defining Custom COM Interfaces

Before you can examine how to implement custom COM interfaces on a .NET
type, you first need the IDL descriptions of the interfaces themselves. As you will
see later in this chapter, it is possible to build a binary-compatible .NET type
without a formal COM type description; however, for this example, assume you
have created an ATL in-proc COM server (AnotherAtlCarServer). This COM server
defines a coclass (CoTruck) by implementing two simple interfaces named

Chapter 12

638

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 638

IStartable and IStoppable. Here is the relevant IDL (if you need a refresher on
building COM servers with ATL, see Chapter 3):

[object,

uuid(7FE41805-124B-44AE-BEAE-C3491E35372B),

oleautomation,

helpstring("IStartable Interface"),

pointer_default(unique)]

interface IStartable : IUnknown

{ HRESULT Start(); };

[object,

uuid(B001A308-8D66-4d23-84A4-B67615646ABB),

oleautomation,

helpstring("IStartable Interface"),

pointer_default(unique)]

interface IStoppable : IUnknown

{ HRESULT Break();};

[uuid(7B69AEB6-F0B7-46BB-8AD4-1CACD1EA5AE9),

version(1.0),

helpstring("AnotherAtlCarServer 1.0 Type Library")]

library ANOTHERATLCARSERVERLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[uuid(862C5338-8AD7-43A3-A9A7-F21B145D61D0),

helpstring("CoTruck Class")]

coclass CoTruck

{

[default] interface IStartable;

interface IStoppable;

};

};

The implementation of the CoTruck::Start() and CoTruck::Break() methods
simply triggers a Win32 MessageBox() API to inform the caller which object has
been told to do what:

STDMETHODIMP CCoTruck::Start()

{

MessageBox(NULL, "The truck as started.",

"CoTruck::Start() Says:", MB_OK);

return S_OK;

}

COM-to-.NET Interoperability—Advanced Topics

639

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 639

STDMETHODIMP CCoTruck::Break()

{

MessageBox(NULL, "The truck as stopped.",

"CoTruck::Start() Says:", MB_OK);

return S_OK;

}

That’s it. Go ahead and compile this ATL project to ensure that this COM
server is properly recorded in the system registry.

CODE The AnotherAtlCarServer project can be found under the
Chapter 12 subdirectory.

Building and Deploying the Interop Assembly

Now that you have a COM server defining a set of custom interfaces, you need to
transform the COM type information into terms of .NET metadata. Thus,
assuming you have a valid *.snk file, configure a strongly named interop assembly
using tlbimp.exe as follows:

tlbimp AnotherAtlCarServer.dll /out:interop.AnotherAtlCarServer.dll

/keyfile:theKey.snk

Finally, deploy this interop assembly into the GAC (Figure 12-1).

Figure 12-1. Another machine-wide interop assembly

Chapter 12

640

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 640

CODE The interop assembly for AnotherAltCarServer.dll is included
under the Chapter 12 subdirectory.

Building a Binary-Compatible C# Type

To illustrate building a binary-compatible .NET type, let’s create a new C# Code
Library that defines a simple class (DotNetLawnMower) that supports both inter-
faces. First, add a reference to interop.AnotherAtlCarServer.dll, and for simplicity,
configure this type to be exposed to COM as an AutoDual class interface:

namespace BinaryCompatibleDotNetTypeServer

{

// This .NET class supports two COM interfaces.

[ClassInterface(ClassInterfaceType.AutoDual)]

public class DotNetLawnMower: IStartable, IStoppable

{

public DotNetLawnMower(){}

}

}

Now that DotNetLawnMower has defined support for IStartable and
IStoppable, and you are obligated to flesh out the details of the Start() and Break()
methods. While you could manually type the definitions of each inherited
member, you do have a shortcut. The Visual Studio .NET IDE supports an
integrated wizard that automatically generates stub code for an implemented
interface. However, the manner in which you interact with this tool depends
on your language of choice. Here, in your C# project, you activate this tool by
right-clicking a supported interface using Class View (Figure 12-2).

Again, the implementation of each member is irrelevant for this example, so
just set a reference to System.Windows.Forms.dll and call MessageBox.Show() in
an appropriate manner:

public void Start()

{

MessageBox.Show("Lawn Mower starting..." ,

"DotNetLawnMower says:");

}

public void Break()

{

MessageBox.Show("Lawn Mower stopping..." ,

"DotNetLawnMower says:");

}

COM-to-.NET Interoperability—Advanced Topics

641

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 641

Figure 12-2. The C# IDE Implement Interface Wizard

Because this .NET class library is to be used by a classic COM client, you will
want to deploy this binary as a shared assembly. Thus, be sure to set the
assembly’s version (1.0.0.0 will do) and specify a valid *.snk file. Once you have
done so, deploy this assembly to the GAC.

CODE The BinaryCompatibleDotNetTypeServer project is included
under the Chapter 12 subdirectory.

Building a Binary-Compatible VB .NET Type

Any managed language has the ability to implement COM interfaces, provided
they have access to the interface descriptions. To further highlight the process,
assume you have a VB .NET Code Library that defines a type named UFO. The
UFO type is able to be started and stopped (presumably) and thus wishes to
implement the COM interfaces defined in the ATL server. Once you set a reference

Chapter 12

642

*0112_Ch12_CMP3.qxp 3/24/02 8:13 AM Page 642

to the interop assembly and define support for each interface (via the Implements
keyword), the VB .NET IDE provides a simple shortcut to automatically build stubs
for each method. Simply select the name of the supported interface from the
left drop-down list and the name of the method from the right drop-down list
(Figure 12-3).

Figure 12-3. The VB .NET IDE Implement Interface Wizard

Here is the complete VB .NET definition of UFO, which also makes use of an
AutoDual class interface (again, be sure to assign a strong name to the assembly
and deploy this assembly to the GAC):

<ClassInterface(ClassInterfaceType.AutoDual)> _

Public Class UFO

Implements IStartable, IStoppable

Public Sub Start() _

Implements ANOTHERATLCARSERVERLib.IStartable.Start

MessageBox.Show("VB.NET UFO starting", "UFO says:")

End Sub

Public Sub Break() Implements ANOTHERATLCARSERVERLib.IStoppable.Break

MessageBox.Show("VB.NET UFO stopping", "UFO says:")

End Sub

End Class

CODE The BinaryCompatibleVbNetTypeServer project is included
under the Chapter 12 directory.

COM-to-.NET Interoperability—Advanced Topics

643

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 643

Registering the .NET Assemblies with COM

So, to recap the story thus far, at this point you have three objects (CoTruck,
LawnMower, and UFO). Each has been created in a specific language (C++, C#,
or VB .NET) using two different architectures (COM and .NET) that implement
the same two COM interfaces. Furthermore, the interop assembly for the
AnotherAtlCarServer.dll COM server and the strongly named .NET assemblies
have been deployed to the GAC. Like any COM-to-.NET interaction, however, you
must generate COM type information (and register the contents) for each native
.NET assembly using regasm.exe. Thus, from the command line, run regasm.exe
against both of your .NET assemblies. For example:

regasm BinaryCompatibleVbNetTypeServer.dll /tlb

Building a VB 6.0 COM Client

Now that each .NET assembly has been configured to be reachable by a COM
client, the final step of this example is to build an application that interacts with
each object in a binary-compatible manner. While you are free to use any COM-
aware programming language, I’ll make use of a VB 6.0 Standard EXE project that
interacts with each type. The big picture is illustrated in Figure 12-4.

Figure 12-4. Behold, the power of interface-based programming.

Chapter 12

644

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 644

The first step (of course) is to set a reference to each type library (Figure 12-5).

Figure 12-5. Referencing the COM type information

Just to keep things interesting, you will add one additional refinement to the
scenario suggested by Figure 12-4. Rather than declaring three Form-level
member variables of type UFO, LawnMower, and CoTruck, let’s make use of a VB
6.0 Collection type to contain each item (as this will better illustrate the interface-
based polymorphism of semantically gluing the types together). Thus, if the main
Form has two Button types that start and stop each item in the collection, you are
able to author the following VB 6.0 code:

Option Explicit

Private theObjs As Collection

' Loop through the collection

' and start everything using IStartable.

Private Sub btnStartObjs_Click()

Dim temp As IStartable

Dim i As Integer

For i = 0 To theObjs.Count - 1

Set temp = theObjs(i + 1)

temp.Start

Next

End Sub

COM-to-.NET Interoperability—Advanced Topics

645

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 645

' Loop through the collection and

' stop everything using IStoppable.

Private Sub btnStopObjs_Click()

Dim temp As IStoppable

Dim i As Integer

For i = 0 To theObjs.Count - 1

Set temp = theObjs(i + 1)

temp.Break

Next

End Sub

' Fill the collection with some

' binary compatible types.

Private Sub Form_Load()

Set theObjs = New Collection

theObjs.Add New CoTruck ' ATL type.

theObjs.Add New UFO ' VB .NET type.

theObjs.Add New DotNetLawnMower ' C# type

End Sub

Notice that you are able to communicate with each type using the custom
COM interfaces defined in the original ATL server (thus the binary compatibility
nature of the example). If you were to run the client application, you would see a
series of message boxes pop up as the types in the collection were manipulated.

CODE The Vb6COMCompatibleClient project is included under the
Chapter 12 subdirectory.

Defining COM Interfaces Using Managed Code

Although the previous example did indeed allow the .NET types to implement
existing COM interfaces, you had to jump through a few undesirable hoops during
the process. First, each .NET code library was required to obtain the type informa-
tion of IStoppable and IStartable via tlbimp.exe. This of course results in an
[.assembly extern] listing in each assembly manifest. Given this, each .NET
assembly now depends on the presence of the interop assembly on the target
machine. If the interop assembly is not present and accounted for, the .NET
consumer is unable to find the correct metadata and it becomes woefully binary-
incompatible with other like-minded COM types.

When you think about it, the C# LawnMower and VB .NET UFO types never
needed to directly interact with the CoTruck. All these projects required were the

Chapter 12

646

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 646

managed definitions of the raw COM interfaces. To simplify the process, you could
have defined IStartable and IStoppable (using managed code) directly within the
.NET assemblies. In this way, your .NET assemblies are no longer tied to an
interop assembly and are still binary compatible!

To illustrate, let’s see a simple example. Assume you have yet another C# Code
Library (ManagedComDefs) that contains a simple class named DvdPlayer. Given
that DVD players are also startable and stoppable, our goal is to achieve binary
compatibility with the CoTruck, UFO, and LawnMower types, without referencing
the interop.AnotherAltCarServer.dll assembly.

When you define COM interfaces directly within managed code, each and
every interface must be attributed with the ComImportAttribute, GuidAttribute,
and InterfaceTypeAttribute types. Therefore, all your managed interfaces look
something like the following:

// Some binary compatible COM interface

// defined in managed code.

[ComImport, Guid("<IID>"),

InterfaceType(ComInterfaceType.<type of COM interface>)]

public interface SomeBinaryCompatibleInterface

{ // Members…}

The ComImportAttribute type is simply used to identify this type as a COM
entity when exposed to a COM client. Obviously, the value of the GuidAttribute
type must be identical to the original IDL IID. As for the InterfaceTypeAttribute,
you are provided with the following related enumeration to mark the representa-
tion of the COM interface you are describing:

public enum System.Runtime.InteropServices.ComInterfaceType

{

InterfaceIsDual,

InterfaceIsIDispatch,

InterfaceIsIUnknown

}

The ComInterfaceType value passed into the InterfaceTypeAttribute is used by
the .NET runtime to determine how to build the correct vtable for the unmanaged
COM interface (more on this tidbit in just a moment). Recall that the IStartable
and IStoppable interfaces were defined in IDL as follows:

[object,

uuid(7FE41805-124B-44AE-BEAE-C3491E35372B),

oleautomation,

helpstring("IStartable Interface"),

pointer_default(unique)]

interface IStartable : IUnknown

{ HRESULT Start(); };

COM-to-.NET Interoperability—Advanced Topics

647

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 647

[object,

uuid(B001A308-8D66-4d23-84A4-B67615646ABB),

oleautomation,

helpstring("IStartable Interface"),

pointer_default(unique)]

interface IStoppable : IUnknown

{ HRESULT Break();};

Looking at these interface types, it should be clear that the COM-to-.NET
data type, type, and type member conversion rules still apply (for example,
System.String becomes BSTR and whatnot). In this case, you are happy to find
that Start() and Break() take no parameters, and therefore can be defined in terms
of C# in a rather straightforward manner. Here is the complete code behind the
binary-compatible DvdPlayer:

using System;

using System.Runtime.InteropServices;

using System.Windows.Forms;

namespace ManuallyInterfaceDefsServer

{

// Managed definition of IStartable.

[ComImport,

Guid("7FE41805-124B-44AE-BEAE-C3491E35372B"),

InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

interface IStartable { void Start(); };

// Managed definition of IStoppable.

[ComImport,

Guid("B001A308-8D66-4d23-84A4-B67615646ABB"),

InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]

interface IStoppable { void Break();};

// A binary compatible DVD player!

[ClassInterface(ClassInterfaceType.AutoDual)]

public class DvdPlayer : IStartable, IStoppable

{

public DvdPlayer(){}

public void Start()

{ MessageBox.Show("Staring movie...", "DvdPlayer");}

public void Break()

{MessageBox.Show("Stopping movie...", "DvdPlayer");}

}

}

Chapter 12

648

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 648

Once you compile this .NET assembly, if you (a) deploy this assembly into the
GAC and (b) export the metadata to a COM *.tlb file via regasm.exe, you would be
able to set a reference to the exported *.tlb file and update the VB 6.0 COM client
as follows:

' Add a DVD player into the mix.

Private Sub Form_Load()

Set theObjs = New Collection

theObjs.Add New CoTruck

theObjs.Add New UFO

theObjs.Add New DotNetLawnMower

theObjs.Add New DvdPlayer

End Sub

Sure enough, you are able to make use of IStartable and IStoppable of the
DvdPlayer as expected (Figure 12-6).

Figure 12-6. Using the binary-compatible DvdPlayer

CODE The ManagedComDefs project is included under the Chapter 12
subdirectory.

Selected Notes on Manually Defining COM Interfaces
Using Managed Code

The previous example was quite straightforward, given that the interfaces you
defined were IUnknown-derived entities (thus no DISPIDs) and contained
methods with no parameters (thus no [in], [out], or [out, retval] attributes to worry
about). As you might expect, if you attempt to manually pound out the details of
more complex COM interfaces, you need to apply additional .NET attributes.
Furthermore, it is possible (although not altogether likely) that you might need to
define other COM types (enums, structures, coclasses) in terms of managed code.
To be sure, if the COM type you are attempting to become binary-compatible with

COM-to-.NET Interoperability—Advanced Topics

649

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 649

has been defined in terms of COM IDL, you will never need to manually define
COM types other than the occasional interface. Even then, if the dependency on a
related interop assembly is acceptable, you will not need to bother to do this
much.

However, there may be some (hopefully) rare cases in which you will need to
manually define COM interfaces via managed code. For example, in C++, it is
possible to build a COM class supporting a set of COM interfaces without the use
of IDL. Given that the midl.exe compiler simply regards IDL interfaces as a collec-
tion of C++ pure virtual functions, a C++ developer could choose to define the
pure virtual functions directly in terms of C++. The obvious downfall to this
approach is that the programmer has effectively created a COM server that can
only be used by other C++ clients. If a .NET programmer wished to build a binary-
compatible type using an interface described in raw C++, it would demand
creating a managed definition of the COM type, given that the COM type library
(and thus the interop assembly) doesn’t exist!

The process of manually defining a COM type in terms of managed code can
be very helpful if you require only a subset of items defined in the type library, or if
you need to somehow modify the COM type to work better from a managed envi-
ronment. As you may recall from Chapter 9, it is possible to crack open an interop
assembly and tweak the internal metadata. The same result can often be achieved
by directly implementing the COM types using managed code (not to mention, it
can be achieved in a much simpler manner). Given these possibilities, let’s walk
through an extended example.

Manually Defining COM Atoms: An Extended Example

The next COM server you examine (AtlShapesServer) defines a coclass
(CoHexagon) that supports a single [dual] interface (IDrawable). IDrawable
defines a small set of methods, one of which makes use of a custom COM
enumeration. Here is the complete IDL:

typedef enum SHAPECOLOR

{

RED, PINK, RUST

}SHAPECOLOR;

[object,

uuid(B1691C03-7EA8-4DAB-86CC-7D6CD859671A),

dual,

pointer_default(unique)]

interface IDrawable : IDispatch

{

[id(1), helpstring("method Draw")]

HRESULT Draw([in] int top, [in] int left, [in] int bottom, [in] int right);

Chapter 12

650

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 650

[id(2), helpstring("method SetColor")]

HRESULT SetColor([in] SHAPECOLOR c);

};

[uuid(95FBF6E3-1B03-4904-A5D3-C77A02785F9A),

version(1.0)]

library ATLSHAPESSERVERLib

{

importlib("stdole32.tlb");

importlib("stdole2.tlb");

[uuid(204F9A4B-4D22-451B-BE2F-338F2917E7F5)]

coclass CoHexagon

{

[default] interface IDrawable;

};

};

Defining the Dual Interface (and SHAPECOLOR Enum)
Using C#

When you describe a [dual] interface in terms of managed code, you obviously
need to supply ComInterfaceType.InterfaceIsDual to the InterfaceTypeAttribute
constructor (given the IDL definition). Additionally, you are required to supply the
correct DISPID values for each member. This alone is not too earth-shattering.
However, recall that the IDrawable interface defines two members:

interface IDrawable : IDispatch

{

[id(1)]

HRESULT Draw([in] int top, [in] int left, [in] int bottom, [in] int right);

[id(2)] HRESULT SetColor([in] SHAPECOLOR c);

};

Now, as you are aware, COM interfaces are used to construct a vtable for the
implementing coclass. A vtable is little more than a listing of addresses that point
to the correct function implementation. Given that COM is so dependent on a
valid vtable, you must understand that it is critical that you define the methods of
a managed COM interface in the same order as found in the original IDL (or C++
header file). If you do not, you are most certainly not binary-compatible. Given
this, here is the definition of IDrawable (and the related SHAPECOLOR enum) in
terms of C#:

// Defining COM enums in managed

// code is painless.

public enum SHAPECOLOR

{ RED, PINK, RUST };

COM-to-.NET Interoperability—Advanced Topics

651

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 651

// The managed version of IDrawable.

[ComImport,

Guid("B1691C03-7EA8-4DAB-86CC-7D6CD859671A"),

InterfaceType(ComInterfaceType.InterfaceIsDual)]

interface IDrawable

{

[DispId(1)]

void Draw([In] int top, [In] int left,

[In] int bottom, [In] int right);

[DispId(2)]

void SetColor([In] SHAPECOLOR c);

};

Here, you are making use of the DispIdAttribute type to define the DISPIDs of
each interface. As you are most likely able to figure out, it is critical that the values
supplied to each DispIdAttribute match the values of the original COM IDL. If you
build a .NET type that is binary compatible with the IDrawable interface, you
might author the following:

[ClassInterface(ClassInterfaceType.AutoDual)]

public class Circle: IDrawable

{

public Circle(){}

public void Draw(int top, int left, int bottom, int right)

{

MessageBox.Show(String.Format("Top:{0} Left:{1} Bottom:{2} Right{3}",

top, left, bottom, right));

}

public void SetColor(SHAPECOLOR c)

{

MessageBox.Show(String.Format("Shape color is {0}", c.ToString()));

}

}

If you view the .NET metadata descriptions of the IDrawable interface using
ILDasm.exe, you find that the ComImportAttribute type is not listed directly with
the GuidAttribute and InterfaceType values. The essence of the ComImport
attribute is cataloged, however, using the [import] tag on the interface definition:

.class interface private abstract auto ansi import IDrawable

{

…

} // end of class IDrawable

Chapter 12

652

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 652

Assuming you have processed this .NET assembly using regasm.exe, you
would now be able to build an unmanaged COM client that interacts with the ATL
CoHexagon and C# Circle type in a binary-compatible manner (using either early
or late binding).

So, to wrap up the topic of building binary-compatible .NET types, under-
stand that just because you can define COM interfaces in managed code does not
mean you have to. Typically speaking, you simply set a reference to the correct
interop assembly. However, if you are building a managed application that needs
to communicate to a COM class using an interface for which there is no interop
assembly, it is often necessary to manually define the type in terms of managed
code (recall, for example, your C# COM type library viewer in Chapter 4).

Interacting with Interop Assembly Registration

As you recall from Chapter 2, a COM in-process server defines two function
exports that are called by various installation utilities (regsvr32.exe) to register or
unregister the necessary registry entries. As well, when a .NET assembly is to be
used by COM, the system registry must be updated using regasm.exe to effectively
fool the COM runtime. As you have seen, regasm.exe catalogs the correct entries
automatically. What happens, however, if you want to insert custom bits of infor-
mation into the registry during the default process performed by regasm.exe?

The System.Runtime.InteropServices namespace defines two attributes
for this very reason. To illustrate, assume you have a new C# code library
(CustomRegAsm) that defines some number of types. When you want to
allow regasm.exe to trigger a custom method during the registration process,
simply define a static (or Shared in VB .NET) method that is adorned with the
ComRegisterFunctionAttribute. Likewise, if you wish to provide a hook for
the unregistration process, define a second static member that supports the
ComUnregisterFunctionAttribute. For example:

public class SomeClass

{

public SomeClass(){}

// This method will be called when

// regasm.exe is run against this assembly.

[ComRegisterFunction()]

private static void CustomReg(Type t)

{

MessageBox.Show(String.Format("Registering {0}",

t.ToString()));

}

COM-to-.NET Interoperability—Advanced Topics

653

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 653

// This method will be called when

// regasm.exe is run against this

// assembly using the /u flag.

[ComUnregisterFunction()]

private static void CustomUnReg(Type t)

{

MessageBox.Show(String.Format("Registering {0}",

t.ToString()));

}

}

As you can see, the target methods must provide a single argument of type
System.Type, which represents the current type in the assembly being registered
for use by COM. As you might guess, regasm.exe passes in this parameter auto-
matically.

Inserting Custom Registration Information

So, when might you need to interact with the assembly’s registration process?
Assume that you wish to record the date and time on which a given .NET assembly
has been registered on a given user’s machine. To do this, you can make use of the
Microsoft.Win32 namespace, which contains a small number of types that allow
you to programmatically read from and write to the system registry. For example,
the CustomReg() and CustomUnReg() methods could be retrofitted as follows:

[ComRegisterFunction()]

private static void CustomReg(Type t)

{

RegistryKey k =

Registry.CurrentUser.CreateSubKey(@"Software\Intertech\CustomRegAsm");

k.SetValue("InstallTime", DateTime.Now.ToShortTimeString());

k.SetValue("InstallDate", DateTime.Now.ToShortDateString());

k.Close();

}

[ComUnregisterFunction()]

private static void CustomUnReg(Type t)

{

Registry.CurrentUser.DeleteSubKey(@"Software\Intertech\CustomRegAsm");

}

When you register this .NET assembly via regasm.exe,
you find the following information inserted under
HKEY_CURRENT_USER\Software\Intertech\CustomRegAsm (Figure 12-7).

Chapter 12

654

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 654

Figure 12-7. Getting involved with assembly registration

If you specify the /u flag, the information is correctly removed from the same
subkey.

CODE The CustomRegAsm project is included under the Chapter 12
subdirectory.

Programmatically Converting Assemblies to COM Type
Information

Recall from Chapter 9 that the System.Runtime.InteropServices.TypeLibConverter
type allows you to programmatically convert COM *.tlb files into .NET interop
assemblies. As mentioned at that time, this same class provides the ability to
convert .NET assemblies into COM type information programmatically. Given
this, let’s examine the process of building a customized version of the tlbexp.exe
command line utility (which as you will see looks much like the customized
tlbimp.exe utility).

To begin, assume that you have a new C# console application named
MyTypeLibExporter. The goal here is to allow the user to enter the path to a given
.NET assembly and, using TypeLibConverter, to build a corresponding COM type
library. The application’s Main() method prompts for the assembly to export and
passes this string into a static helper function named GenerateTLBFromAsm().

Once the *.tlb file has been generated (and stored in the application
directory), the user is again prompted to determine if the .NET assembly
should be registered for use by COM. If the user wishes to do so, make use of
the System.Runtime.InteropServices.RegistrationServices type. Here then, is the
complete implementation behind Main():

COM-to-.NET Interoperability—Advanced Topics

655

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 655

static void Main(string[] args)

{

// Get the path to the assembly.

Console.WriteLine("Please enter the path to the .NET binary");

Console.WriteLine(@"Example: C:\MyStuff\Blah\myDotNetServer.dll");

Console.Write("Path: ");

string pathToAssembly = Console.ReadLine();

// Generate type lib for this assembly.

UCOMITypeLib i = GenerateTLBFromAsm(pathToAssembly);

// Ask if user wants to register this server with COM.

int regValue;

Console.WriteLine("Would you like to register this .NET library with COM?");

Console.Write("1 = yes or 0 = no ");

regValue = Console.Read();

if(regValue == 1)

{

RegistrationServices rs = new RegistrationServices();

Assembly asm = Assembly.LoadFrom(pathToAssembly);

rs.RegisterAssembly(asm, AssemblyRegistrationFlags.None);

Console.WriteLine(".NET assembly registered with COM!");

}

}

As you can see, the real workhorse of this application is the
GenerateTLBFromAsm() helper function. Like the custom tlbimp.exe
application you created earlier in this text, the
TypeLibConverter.ConvertAssemblyToTypeLib() method requires you to pass in
an instance of a class that will be called by the TypeLibConverter type to resolve
references to additional assemblies as well as general reporting information. In
this case, however, the class type is required to adhere to the behavior defined by
ITypeLibExporterNotifySink:

public interface ITypeLibExporterNotifySink

{

void ReportEvent(ExporterEventKind eventKind,

int eventCode, string eventMsg);

object ResolveRef(System.Reflection.Assembly assembly);

}

Much like the ITypeLibImporterNotifySink interface seen in Chapter 9, the
implementation of ITypeLibExporterNotifySink delegates the work of resolving the
referenced assembly to the static MyTypeLibExporter.GenerateTLBFromAsm()
helper function:

Chapter 12

656

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 656

// The callback object.

internal class ExporterNotiferSink : ITypeLibExporterNotifySink

{

public void ReportEvent(ExporterEventKind eventKind,

int eventCode, string eventMsg)

{

Console.WriteLine("Event reported: {0}", eventMsg);

}

public object ResolveRef(System.Reflection.Assembly assembly)

{

// If the assembly we are converting references another assembly,

// we need to generate a *tlb for it as well.

string pathToAsm;

Console.WriteLine("MyTypeLibExporter encountered an assembly");

Console.WriteLine("which referenced another assembly...");

Console.WriteLine("Please enter the location to {0}", assembly.FullName);

pathToAsm = Console.ReadLine();

return MyTypeLibExporter.GenerateTLBFromAsm(pathToAsm);

}

}

Before you see the details behind MyTypeLibExporter.GenerateTLBFromAsm(),
you need to define some low-level COM types in terms of managed code. As you
may recall from Chapter 4, when you create a custom COM type library generation
tool, you need to call ICreateTypeLib.SaveAllChanges() to commit the type infor-
mation to file. The trouble, however, is that the System.Runtime.InteropServices
namespace does not define a managed equivalent of this method. Thus, using the
tricks presented in this chapter, here is a makeshift version. It is makeshift in that I
am representing the ICreateTypeInfo interface returned from the CreateTypeInfo()
method (also recall from Chapter 4 that the ICreateTypeInfo interface is huge).

[ComImport,

GuidAttribute("00020406-0000-0000-C000-000000000046"),

InterfaceTypeAttribute(ComInterfaceType.InterfaceIsIUnknown),

ComVisible(false)]

internal interface UCOMICreateTypeLib

{

// IntPtr is a hack to avoid having

// to define ICreateTypeInfo (which is HUGE).

IntPtr CreateTypeInfo(string name, TYPEKIND kind);

void SetName(string name);

void SetVersion(short major, short minor);

void SetGuid(ref Guid theGuid);

void SetDocString(string doc);

COM-to-.NET Interoperability—Advanced Topics

657

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 657

void SetHelpFileName(string helpFile);

void SetHelpContext(int helpCtx);

void SetLcid(int lcid);

void SetLibFlags(uint flags);

void SaveAllChanges();

}

Now that you have a managed definition for use by the GenerateTLBFromAsm()
method, you can flesh out the details as follows:

public static UCOMITypeLib GenerateTLBFromAsm(string pathToAssmebly)

{

UCOMITypeLib managedITypeLib = null;

ExporterNotiferSink sink = new ExporterNotiferSink();

// Load the assembly to convert.

Assembly asm = Assembly.LoadFrom(pathToAssmebly);

if (asm != null)

{

try

{

// Create name of type library based on .NET assembly.

string tlbname = asm.GetName().Name + ".tlb";

// Convert the assembly.

ITypeLibConverter TLBConv = new TypeLibConverter();

managedITypeLib = (UCOMITypeLib)

TLBConv.ConvertAssemblyToTypeLib(asm, tlbname, 0, sink);

// Save the type library to file.

try

{

UCOMICreateTypeLib managedICreateITypeLib =

(UCOMICreateTypeLib)managedITypeLib;

managedICreateITypeLib.SaveAllChanges();

}

catch (COMException e)

{

throw new Exception("Error saving the type lib : "

+ e.ErrorCode.ToString("x"));

}

}

catch (Exception e)

{

throw new Exception("Error Converting assembly" + e);

}

}

return managedITypeLib;

}

Chapter 12

658

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 658

I’d bet the details of this method are not too shocking by this point in the text.
Basically, you load the assembly based on the incoming string parameter and
define a name for the type library you are creating using the assembly’s name as a
base. Once you have an Assembly reference, you call ConvertAssemblyToTypeLib()
and specify the reference to the loaded assembly, the name of the type library to
create, any additional flags (or in our case, a lack thereof), and an instance of the
sink implementing ITypeLibExporterNotifySink.

The System.Object that is returned from ConvertAssemblyToTypeLib() actu-
ally represents a reference to the in-memory representation of the COM type
information, which is to say, an UCOMITypeLib interface. Once you cast this type
into your version of the unmanaged ICreateTypeLib type, you are able to call
SaveAllChanges() to commit the information to file.

Do note that your GenerateTLBFromAsm() helper function returns the
UCOMITypeLib interface to the caller. You really don’t need to do so. Using this
type, however, you could interact with the internal COM types defined by this type
library (as illustrated in Chapter 4). In any case, this wraps up the implementation
of your custom tlbexp.exe utility. Figure 12-8 shows a test drive by importing the
CSharpCarLibrary.dll assembly created in Chapter 6.

Figure 12-8. Exporting CSharpCarLibrary.dll

If you opened the generated *.tlb file using oleview.exe, you would find the
COM definitions for each .NET type (Figure 12-9).

COM-to-.NET Interoperability—Advanced Topics

659

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 659

Figure 12-9. The exported *.tlb file

CODE The MyTypeLibExporter project is included under the Chapter 12
subdirectory.

Hosting the .NET Runtime from an Unmanaged
Environment

The final topic of this chapter is a rather intriguing one: building a custom host
for the .NET runtime (aka the CLR). Like all things under the .NET platform,
the runtime engine is accessible using a set of managed types. In this case, the
assembly in question is mscoree.dll (where “ee” stands for execution engine). It
may surprise you to know that when you install the .NET platform, you receive a
corresponding *.tlb file for mscoree.dll (mscoree.tlb) that has been properly
configured in the system registry.

Chapter 12

660

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 660

Because the content of mscoree.dll has been expressed in terms of COM
metadata, it is possible to build a custom host using any COM-aware program-
ming language (within the realm of the language’s limitations). Do understand
that regardless of which COM language you choose, when you make use of
mscoree.tlb, you are also required to reference the related mscorlib.tlb file. For the
example that follows, assume that you have created a new Standard EXE applica-
tion using VB 6.0. This assumption aside, set a reference to each *.tlb file using the
IDE’s Project | References menu option (see Figure 12-10).

Figure 12-10. Referencing mscoree.tlb/mscorelib.tlb

Various chapters of this text have already examined some types contained
within mscorlib.tlb, but what of mscoree.tlb? Like any loaded type library, the VB
6.0 Object Browser allows you to view the contained types. As you can see from
Figure 12-11, despite the exotic nature of this exported assembly, mscoree.tlb
defines a surprisingly small number of items.

COM-to-.NET Interoperability—Advanced Topics

661

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 661

Figure 12-11. The crux of the CLR in terms of COM type information

A full treatment of each and every type defined in mscoree.dll is beyond the
scope of this text. Luckily, you are able to build a custom CLR host using a single
type: CorRuntimeHost. This single .NET class type implements a set of interfaces
(also defined within mscoree.tlb) that provide the following functionality:

• The ability to load and unload .NET application domains

• The ability to manipulate the .NET garbage collector

• The ability to validate code within a given .NET assembly

• The ability to interact with a given debugger attached to the current process

So, given that mscoree.tlb defines the types you need to build a custom CLR
host, the next logical question is when you might want to do this. Besides the fact
that building a custom host is extremely interesting in its own right, there is a
practical reason to do so. When you build a custom host from unmanaged code,

Chapter 12

662

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 662

you are able to dynamically load .NET assemblies for use by COM, without having
to register the assembly using regasm.exe.

Building a Custom Host

The first detail of your VB 6.0 host is to establish a valid application domain to host
the loaded assemblies. As you may know, under the .NET platform an application
domain is a unit of isolated execution within a Win32 process (similar in function
to the apartment architecture of classic COM). Just as a process may contain
numerous application domains, a given application domain may contain
numerous .NET assemblies. You are able to represent a given application domain
using the System.AppDomain type.

Given this, the Form_Load() event handler creates an instance of
CorRuntimeHost. Once the host has started, obtain a valid AppDomain via
CorRuntimeHost.GetDefaultDomain(). The Form_Unload() event handler shuts
down the CLR via the aptly named CorRuntimeHost.Stop(). Here is the story
thus far:

' The types we need to host the CLR.

Private myAppDomain As AppDomain

Private myCLRHost As CorRuntimeHost

' Load the CLR and set app domain.

Private Sub Form_Load()

Set myCLRHost = New CorRuntimeHost

myCLRHost.Start

myCLRHost.GetDefaultDomain myAppDomain

End Sub

' Unload the CLR.

Private Sub Form_Unload(Cancel As Integer)

myCLRHost.Stop

End Sub

Now assume that the main Form has three VB 6.0 Button types. The Click
event handler of the first button (btnListLoadedAsms_Click()) obtains and
displays the list of each assembly currently hosted by the default application
domain. To do this, you are able to obtain an array of Assembly types from the
GetAssemblies() method of the AppDomain type. To display the name of each
assembly, you are able to simply make use of the Assembly.FullName property:

' List all the loaded assemblies.

Private Sub btnListLoadedAsms_Click()

Dim loadedAsms() As Assembly

loadedAsms = myAppDomain.GetAssemblies()

COM-to-.NET Interoperability—Advanced Topics

663

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 663

Dim theAsms As String

Dim i As Integer

For i = 0 To UBound(loadedAsms)

theAsms = theAsms + loadedAsms(i).FullName + vbLf

Next

MsgBox theAsms

End Sub

The next Button type is responsible for loading the System.Collections.dll
assembly from the GAC to exercise the ArrayList type. Note how the
CreateInstance() method requires you to send in (a) the friendly name of the
assembly containing the type and (b) the fully qualified name of the type itself.
What is returned from AppDomain.CreateInstance() is an ObjectHandle type,
which provides the ability to obtain the underlying type using the Unwrap()
method:

' Load a type from the GAC.

Private Sub btnLoadFromGAC_Click()

Dim arLst As ArrayList

Dim obj As ObjectHandle

Set obj = myAppDomain.CreateInstance("mscorlib",

"System.Collections.ArrayList")

Set arLst = obj.Unwrap

arLst.Add "Hello there!"

arLst.Add 12

arLst.Add True

Dim items As String

items = items + arLst(0) + vbLf

items = items + CStr(arLst(1)) + vbLf

items = items + CStr(arLst(2)) + vbLf

MsgBox items

End Sub

Chapter 12

664

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 664

If you run the application at this point, once you load System.Collection.dll,
you find the message displayed in Figure 12-12.

Figure 12-12. Interacting with System.Collections.dll

The final button of your VB 6.0 Form type is responsible for loading a private,
and unregistered, .NET assembly. To ensure that this example illustrates the point
of loading unregistered .NET binaries, assume you have the following trivial C#
class definition, defined in an assembly named (of course) UnregisteredAssembly:

using System;

using System.Runtime.InteropServices;

namespace UnregisteredAssembly

{

[ClassInterface(ClassInterfaceType.AutoDual)]

public class AnotherAdder

{

public AnotherAdder(){}

public int Add(int x, int y)

{ return x + y;}

}

}

Now, although you do not need to register this assembly, you still need to
generate type information for your VB 6.0 client. Thus, run tlbexp.exe against this
binary, and place the *.tlb and UnregisteredAssembly.dll files in the same directory
as the current VB 6.0 project (Figure 12-13).

COM-to-.NET Interoperability—Advanced Topics

665

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 665

Figure 12-13. Configuring the unregistered assembly and related *.tlb file

Now that you have a private assembly, you are able to write the following
event handler for the Form’s final Button type:

' NOTE!!! Because VB projects do not directly

' run from the application directory within

' the IDE, you will

' need to run the EXE to use this function.

Private Sub btnLoadFromPrivateAsm_Click()

Dim adder As AnotherAdder

Dim obj As ObjectHandle

Set obj = myAppDomain.CreateInstance("UnregisteredAssembly", _

"UnregisteredAssembly.AnotherAdder")

Set adder = obj.Unwrap

MsgBox adder.Add(99, 3)

End Sub

As you can gather from the lengthy code comment, before you can test this
final bit of functionality, you need to build the VB 6.0 application (File | Make) and
run the application outside the VB IDE. Once you have built the EXE, simply
double-click the executable file. If you loaded UnmanagedAssembly.dll and
System.Collections.dll via the correct Button types, you would now find the
results shown in Figure 12-14 when you click on the “list all loaded assemblies”
Button type.

Chapter 12

666

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 666

Figure 12-14. Documenting loaded assemblies

With your custom host complete, you come to the end of Chapter 12. As illus-
trated by this example, when you build a custom host for the CLR, you are able to
avoid the process of registering .NET assemblies prior to building COM clients
that consume them. If you want to dive into further details of the functionality of
mscoree.dll, be sure to check out the tool-builders documents included with the
.NET SDK (installed by default under C:\Program Files\Microsoft Visual Studio
.NET\FrameworkSDK\Tool Developers Guide\docs).

CODE The UnmanagedAssembly and CustomCLRHost projects are
located in the Chapter 12 subdirectory.

Summary

The chapter wraps up your investigation of COM-to-.NET interoperability issues.
As you have seen, just as a COM type can implement .NET interfaces to achieve
type compatibility, a .NET type can implement COM interfaces to achieve binary
compatibility with related coclasses. Using managed code, you are able to build
managed representations of COM types to avoid creating a dependency with a
related interop assembly.

Another key aspect of this chapter illustrated how you are able to build a
customized version of tlbexp.exe. While you may never be in the position of
needing to do so, this should solidify your understanding of what this tool does on
your behalf. The final major topic presented here illustrated how you can interact
with the CLR via mscoree.tlb to build a custom host from unmanaged code.

At this point in the text, you have drilled quite deeply into the COM and .NET
type systems, and you have seen numerous aspects of the interoperability layer.
Before I wrap things up, the next (and final) chapter addresses the topic of
building COM+ types (i.e., configured components) using managed code.

COM-to-.NET Interoperability—Advanced Topics

667

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 667

*0112_Ch12_CMP3.qxp 3/24/02 8:14 AM Page 668

*
*.cab file, 686

*.cls file, 147–148

*.cpp file, 132–133

*.def files, 90, 133

*.dll files, 672

*.idl files, 65

compiling with MIDL compiler, 77

format of, 162–163

manually editing, 135

regions of, 162

*.il files, 510–512, 525

*.msi file, 686

*.pdb file, 468–469

*.reg files, 137, 574

*.res files, 513, 524

*.rgs file, 139

*.snk files, 261, 392, 640

*.tlb files, 202, 535, 549, 586, 649, 655,

659–661, 666, 695

A
Abstract base class

building in C#, 238–239

translating, 551

Abstract method and property, defining,

258

ACID properties of a transaction, 717

Activator class, 331–332

Activator.CreateInstance() method, 332

ActiveX controls

building, 490–493

consuming from managed code,

490–504

consuming using VS .NET, 495–501

generated assemblies, 498–501

generated IDL, 493–494

importing using AxImp.exe, 501–504

ActiveX interop assemblies, 497–500

Add Method tool (ATL), 145

Add Reference dialog box, COM tab, 343

Add() method, overloaded, 586

AddArray() function, 6

AddNumbers() function, 6, 34, 41

[.addon] directive, 448, 454

AddRef() method, 81, 82, 85

ADO (active data objects), 399

accessing from a managed

application, 400

Connection type, 400

Recordset, 400–401

ADO type library, reading, 211

ADO.NET types, in custom type viewer,

322

Advise() method, 438–439, 614

Alias, mapping a function to, 31

Allocated structures, receiving, 37–39

AppDomain type, 663

AppDomain.CreateInstance() method,

664

AppID (COM server application ID), 70

Application configuration file, 252–253

Application directory

defined, 12

viewing, 251

Application domain, 663

739

Index

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 739

Application object (VB 6.0), 176

Application proxy (COM+), 686

[Appobject] coclass, mapping, 387–388

AppWizard utility (ATL COM), 128–129

Array of pointers, in C++, 57

Array type (System.Array), 348, 414,

416–417

Array-centric value of UnmanagedType,

636

ArrayList type, 478–479, 616, 619–620

ArrayList.RemoveAt() method, 619–620

Arrays

of blittable items, 350

in COM IDL, 179–184

C-style, 419–420

functions using, 6–7

marshaling, 34–35

of non-blittable items, 351

ASAP deactivation, 709, 710–711

ASP.NET Web Service client, 734–736

Assemblies (.NET binaries), 233. See also

Interop assembly; Shared

assemblies

accessing from C++ COM client, 590

of ActiveX controls, 498–501

vs. COM binaries, 234

compiling, 284

for complex C# code library, 302–304

composition of, 233–234

configured as COM invisible, 572

configuring private, 251–253

deploying, 582–583

displaying information about,

316–322

documenting loaded, 667

dumping to a file, 512–513

dynamically loading, 310–312

enumerating types in referenced, 311

installed in the GAC, 262

late binding, 285, 332–338

late binding to private, 332–334

late binding to shared, 335–338

logical view of, 237

referencing, 236, 584–586

registering with COM, 545–546, 644

referencing via VB 6.0, 584–586

specifying locations for, 253–254

strongly named, 255–256, 335, 692

using friendly names, 368

using the /primary flag, 393

viewing type names in, 313

Assembly class, 310

Assembly details, displaying, 317

Assembly (interop). See Interop

assembly

Assembly manifest, 233, 242–245, 514

Assembly metadata, viewing, 245–246

Assembly statement, 367–371

Assembly types, viewing, 243

[Assembly:] prefix, 328

Assembly.FullName property, 663

Assembly.GetCustomAttribute()

method, 330

Assembly.GetCustomAttributes()

method, 330

Assembly.GetTypes() method, 311

Assembly.Info.* file, 328

AssemblyKeyFile attribute, 692

Assembly-level attributes, 328–329

Assembly.Load() method, 310

Assembly.LoadFrom() method, 310

ATL (active template library), 127–146

Add Method tool, 145

autogeneration of DLL exports, 130

implemention of coclass, 136–137

ATL COM AppWizard utility, 128–129

ATL COM map, 136

ATL COM server

reading, 227

testing, 156–159

Index

740

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 740

ATL COM server project, 128

*.cpp file, 132–133

*.def file, 133

adding interface methods, 141

adding methods, 140–143

code updates, 135–136

initial IDL file, 131–132

inserting COM objects, 133–135

ATL error server, building, 462–464

ATL 4.0, SAFEARRAY helper templates,

184

ATL Object Wizard, 133–135

ATL Object Wizard Properties

Attributes tab, 134–135

Names tab, 134

ATL project files, 129–133

ATL project workspace, 129–131

files generated, 130

FileView, 131

with initial files, 131

ATL registration support, 137–140

ATL Simple Object methods, 169

ATL string conversion macros, 179

ATL 3.0, .NET type compatible coclass,

481–484

AtlAdderClass type, 515, 522

ATL-based coclass, COM interfaces for,

143–146

AttachInterfaces() function, 501

Attribute class, 323–324, 517

Attribute class core members, 324

Attribute metadata (.NET), 517–519

Attribute-derived type

(System.Attribute), 525–526

Attributes

assembly (and module) level,

328–329

defined, 72

IDL vs. .NET, 323, 326

.NET, 323–325

reading at runtime, 330–335

restricting use of, 327–328

that take attributes, 327

AttributeTarget enumeration, 327

AttributeUsage type, 327

A2W (ANSI to Unicode) macro, 179

AutoComplete attribute, 712–713, 723

AutoDual class interface, 643

Auxiliary interfaces, defining in VB 6.0,

148–149

Ax- prefixed assemblies, 497, 499–500

AxHost base class, 499–500

AxHost-derived type code, modifying,

504–508

AxImp.exe utility, 501–504, 508–509

B
Base class, specifying for a new type, 80

Base client component design, 737

Basic data types, functions using, 6–7

Behavior of a class, explained, 52

Binaries (.NET). See Assemblies

Binary compatibility, VB 6.0 COM,

151–152

Binary-compatible C# type, building,

641–642

Binary-compatible VB .NET type,

building, 642–643

Binding (late), 331–338

Binding process (.NET), 269–270

BindingFlags enumeration, 333–334

Bit reading/writing-centric members of

Marshal type, 24

Blittable data types, 349–350

BSTR (BASIC String) data type, 178, 181,

183, 214

COM strings as, 177–179

translating to System.String type, 348,

351

Index

741

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 741

BSTR COM library functions, 178

ByRef keyword (VB .NET), 377–378,

380–381

Byte length prefixed Unicode characters,

178

Byte type (System.Byte), 595

ByVal keyword (VB .NET), 377–381

C
C#

accessing a configured .NET

component, 699

applying .NET attributes, 326

building a binary-compatible .NET

type, 641–642

custom attribute, 517

defining a dual interface, 651–653

defining an event, 445

foreach keyword, 434

intercepting incoming COM events,

455

late binding to shared assemblies,

337

out keyword, 378

params keyword, 421

ref keyword, 377–378, 422

serviced component example,

724–736

struct keyword, 598

Windows Forms client application,

732–733

C# abstract type/base class, building,

238–239

C# callback client, building, 46–49

C# class library, 235

C# client application underlying IL,

41–42

C# client interacting with Custom DLL,

40

C# code library

building, 235–242

building complex, 302–304

C# COM server client interop assembly,

342–345

C# COM type information viewer

building, 220–227

displaying COM types, 224–227

loading the type library, 221–224

C# derived types/classes, building,

240–242

C# IDE, Implement Interface Wizard,

642

C# typeof operator, type reference from,

306–307

C#-style destructors, translating,

549–551

C++

#import directive, 102–103

defining an interface in, 54

dynamically writing and reading

COM IDL, 161

implementing an interface in, 55–57

private class members, 54

public structure members, 54

VARIANTS in, 114–115

C++ class, implementing, 119–122

C++ class header file, 119

C++ COM client, 101

accessing an assembly from, 590

building, 589–590

developing, 97–105

C++ COM to .NET main() function, 613

C++ COM-centric macros, 80

C++ equality operator (==), overloading,

71

C++ event client

building, 610–614

client-side sink, 611–614

C++ IDispatch example, 116–117

Index

742

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 742

C++ interface-based programming,

52–62

C++ with managed extensions, defined,

232

C++ not equal operator (!=), overloading,

71

Call objects (COM+), 674

Callback

triggering using a function pointer,

43–44

unmanaged, 42–43

Callback client, building, 46–49

Callback example, 43–44

Callback function, 42, 44–45

Callback pattern, 42

CALLBACK tag, 43

Calling conventions, specifying, 30

CallingConvention field, 30

Call-level context, explained, 671

Categories, grouping COM objects into,

577–578

Categories (.NET), 578

CategoryAttribute type, 506

CATID (COM category ID), 70, 95,

577–578

C-based DLL, building custom, 5–9

CComBSTR class, 178–179

CComModule helper class, 137–138

CComSafeArray helper template, 184

CComSafeArrayBounds helper template,

184

CCW (COM Callable Wrapper), 539–544

simulation of COM identity, 543–544

simulation of implemented COM

interfaces, 542–543

Character set, specifying, 29–30

CharSet values, 29

CheckThisVariant() method (VB 6.0),

469–470

Class, 51–62. See also Coclass

building, 281–284

building .NET type compatible,

476–479

defined, 299

defining in IDL, 174–176

implementing in C++, 119–122

nested, 300

support for IUnknown, 72

supporting multiple behaviors, 60

supporting multiple interfaces, 59–60

Class behavior, 52, 60

Class characteristics (.NET), 299

Class definition, 81

Class details, displaying, 317

Class factory

building, 85–87, 123

explained, 63

Class interface (.NET), 557–562

autogenerated, 485–487

the case against, 563–564, 593

defined, 485

establishing, 559–561

registering, 580

Class keyword (C#), 36–37

Class library (C#), 235

Class member information, displaying,

320–322

Class member parameters, displaying,

321–322

Class members, enumerating, 311

Class members (C++), 54

Class object, 63, 84

Class structure declaration, 514

Class types

building in C++, 55–58

defined, 299

functions using, 8–9

managed representation of, 36–37

.NET, 299–300, 357–358

Index

743

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 743

Class-centric members of

InteropServices, 364

ClassInterface attribute, 690

ClassInterfaceAttribute type, 486

ClassInterfaceType enumeration, 558

Client-side sink (C++ event client),

611–614

Clone method(), 480–481

Cloneable COM object, using, 481

Cloneable COM type, building, 480–481

CLR (Common Language Runtime), 231,

662

CLR host, building, 662, 663–667

CLS (Common Language Specification),

231

CLSCTX, core values of, 98

CLSID (class ID), 70, 75, 96, 140, 397

CLSID key, 92–93, 575–577

Coclass, 63. See also Class

accessing with CoCreateInstance(),

100

ATL implemention of, 136–137

building, 200–201

configuring attributes of, 135

default constructor for, 389

defined, 51

defining in IDL, 75–76, 155–156, 175

implementing .NET interfaces,

475–484

managed, 453–454

naming, 134

naming in VB 6.0, 147

RCW for, 341

support for IUnknown, 72

Coclass (ATL), COM interfaces from,

143–146

Coclass conversion, 385

Coclass IDL attributes, 175

Coclass keyword, 75

Coclass statistics, listing, 208

CoCreateGuid() function, 69, 191

CoCreateInstance() method, 97, 100, 105

Code provider, building, 279

CodeDOM (Code Document Object

Model), 270

languages supported by, 272

member-building types of, 275

namespace-building types of, 274

type-building types of, 274

types of, 274–275

CodeDOM example, 276–284

CodeDOM namespace, 270–284

CoGetCallContext() API function, 674

CoGetClassObject() API function, 97–98,

100

CoGetObjectContext() API function, 674

Collection member variable (private),

429

Collection type (VB 6.0), 429, 645

Collections (COM), 426–436

from managed code, 433–436

typical members of, 429

Collections (custom .NET), 614–619

Collections namespace

(System.Collections), 615

Collections.dll (System), 665–666

COM array representation, 179–184

COM atoms, manually defining, 650–653

COM binaries, vs. .NET binaries

(assemblies), 234

COM classes. See Class; Coclass

COM client

accessing System.Type from, 588

C++, 97–105, 589–590

obtaining .NET type’s enumerator,

622

VB 6.0, 103–105, 644–646

VBScript, 590–591

COM coclass. See Coclass

Index

744

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 744

COM collections, 426–436

from managed code, 433–436

typical members of, 429

COM (Component Object Model), 51

exposing custom .NET interfaces to,

564–566

language-independence of, 51, 84

path of, 230

registering .NET assemblies with, 644

COM connection points, 437–440

COM data types

vs. COM types, 163–164

defined, 163

primitive, 164–167

COM DLL, composition of, 63–64

COM DLL function exports, 64

COM DLL project workspace, creating,

67–68

COM enum statistics, listing, 209–210

COM enums. See also Enums

as name/value pairs, 597

converting to .NET, 391–392

converting .NET enums to, 593–598

32-bit storage, 596

COM error information, handling from

managed code, 466–468

COM error objects, 459–464

COM event interface, creating, 605–606

COM events

intercepting incoming in C#, 455, 456

intercepting incoming in VB .NET,

456–457

from managed environment, 437–440

COM IDL, dynamically writing and

reading (C++), 161

COM IDL data types, conversion to

managed data types, 346–351

COM interface types, IDL definitions of,

171–185

COM interfaces, 51, 68–79, 136

as strongly typed variables, 58–59

for an ATL-based coclass, 143–146

CCW simulation of, 542–543

class support for multiple, 59–60

consumed by RCW, 351–353

containing methods, 106

converting to managed equivalent,

371–374

defining auxiliary in VB 6.0, 148–149

defining in C++, 54

defining in IDL, 73

defining and supporting multiple, 76

derived, 487–488

hidden from managed client, 351–352

implementing in C++, 55–57

implementing explicit, 567

implementing in VB 6.0, 149–151

from multiple base interfaces, 301

[oleautomation]-compatible, 633

parent interface of, 624

registered for universal marshaling,

580–582

supported by VB 6.0, 154

versioned/versioning, 61–62, 373–374

versioning existing, 62

viewing metadata for, 247

COM invisible, .NET assemblies

configured as, 572

COM late binding sytax, vs. .NET,

336–338

COM library definition, controlling, 568

COM library information, displaying,

205–207

COM map, defined, 136

COM memory management, 72

COM metadata, translating into .NET

metadata, 249–250

COM method parameter, conversion to

.NET method parameter, 377–381

Index

745

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 745

COM objects, 72

activating, 97–100

defined, 51

destroying using Marshal class,

474–475

grouping into well-known categories,

577–578

language- and location-neutral, 84

COM programming frameworks,

127–159

COM properties, 105–107

defining in VB 6.0, 155

represented internally as methods,

106

COM registration, 94–95

COM SAFEARRAYs. See SAFEARRAYs

COM server, anatomy of, 51–126

COM server registration, 91–97

COM server registration file, updating,

124

COM strings, as BSTR data types,

177–179

COM structures, 421–425

converting .NET structures to,

598–603

from managed code, 424–425

COM subsystem, initializing, 97

COM type

building cloneable, 480–481

building connectable, 441–442

COM type definitions, generating, 545

COM type information, 161–228

dumping, 207–208

generating at runtime, 161

generating programmatically,

189–191

loading programmatically, 531–533

reading programmatically, 203–212

COM type information generation,

testing, 201–203

COM type information viewer, in C#,

220–227

COM type libraries

library statement section, 368–371

loading, 221–224

registering, 582

setting references to, 156

[version] identifier, 368

COM type and managed code,

marshaling calls between, 340

COM type to .NET type conversion rules,

371–392

COM types

vs. COM data types, 163–164

defined, 163

displaying, 224–227

manipulating using _Class types,

357–358

manipulating using discrete

interfaces, 358–359

with multiple [source] interfaces,

457–459

table of, 164

using [default] interface to interact

with, 361–362

using managed interfaces to interact

with, 359–361

COM VARIANT. See VARIANT data type

COM wrapper types, 355, 398

COM+ application

activation level, 680

configuring using .NET attributes,

703–704

creating, 679–681

deploying, 685–687

defined, 670

installing a .NET type, 693–694

library or server, 680

loading within dllhost.exe, 698

registering, 696–697

Index

746

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 746

COM+ Application Export Wizard, 686

COM+ Application Install Wizard, 679,

681

COM+ Catalog, 671

new COM+ application in, 697

role of, 675–677

COM+ client, VB 6.0, 683–685

COM+ (Component Services), 669–738

application-level attributes, 703

component statistics, 699–700

instance management, 708–709

location transparency, 683

object construction strings, 704–706

poolable objects, 715–717

transactional programming, 720–724

COM+ example, 682–683

COM+ Explorer. See Component

Services Explorer

COM+ interop, explained, 738

COM+ 1.0, 670

COM+ 1.5, 670

COM+ 1.5 private components, 733–734

COM+ runtime environment, 672–675

COM+ shared property manager, 688

COM+ type

activated, 684

installed, 683

stateless, 709

COM+-specific behaviors, 671–672

COMAdminCatalogClass type, 676

ComAdmin.dll, 675–676

COM-aware .NET types

guidelines for building, 547–554

type member visibility, 548

type visibility, 547

COM-centric macros, 79–80

COM-centric members of Marshal type,

20–21, 472

_com_error type, 623

ComEventInterfaces attribute, 607

COMException type, 466

ComImportAttribute type, 647, 652

ComInterfaceAttribute type, 605

ComInterfaceType values, 372, 564, 647

ComInterfaceType.InterfaceIsDispatch,

566

ComInterfaceType.InterfaceIsDual, 565

ComInterfaceType.InterfaceIsUnknown,

565, 629

Communications proxy (.NET-to-COM).

See RCW

CompileCode() method, 284

Compiling an assembly, 284

Component design, base clients and,

737

Component housing, generating,

128–129

Component Services. See COM+

Component Services Explorer, 671, 675,

678–681, 685

Component statistics (COM+), enabling,

699–700

ComRegisterFunctionAttribute type, 653

ComSourceInterfaces attribute, 606, 609

COM-to-.NET communications, core

requirements, 544–546

COM-to-.NET data type mappings, 347

COM-to-.NET interoperability

advanced, 633–667

basic, 539–592

intermediate, 593–631

ComUnRegisterFunctionAttribute type,

653

ComVisible attribute, 475

ComVisibleAttribute type, 548–549

Configured component, defined, 671

Conformant C-style arrays, 419–420

Connectable COM type, building,

441–442

Connectable object, 437–439

Index

747

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 747

Connection point architecture (classic

COM), 437

Connection point container, 437

Connection points (COM), 437–440,

604–609

Consistency bit (JITA), 710

Const keyword, 165

Constant members, translating, 554

ConstructionEnabled attribute, 705

Constructors

parameterized, 300

translating, 549–551

Context object (COM+), 671–673, 675

ContextUtil type, 706–708

ContextUtil.DeactivateOnReturn

attribute, 723

ContextUtil.MyTransactionVote

property, 723

ContextUtil.SetAbort() method, 722

ContextUtil.SetComplete() method, 722

Conversion rules, COM type to .NET

type, 371–392

ConvertAssemblyToTypeLib() method,

659

ConvertTypeLibToAssembly() method,

533–536

CorRuntimeHost type, 662

CorRuntimeHost.GetDefaultDomain()

method, 663

CorRuntimeHost.Stop() method, 663

COSERVERINFO structure, 98

CoUninitialize() method, 97

CreateFile() helper function, 280

CreateInstance() method, 84, 86–87, 332,

664

CreateInterface() helper method,

195–200

CreateTypeInfo() method, 196, 201

CRMs (compensating resource

managers), 737

C-style arrays, 419–420

C-style DLLs, 2–5, 27

CTS (Common Type System), 231, 294

Culture information (strong name), 260

Currency value (UnmanagedType), 637

CurrencyWrapper, 409

CUSTDATA structure, 216

CUSTDATAITEM array, 216–217

Custom C-based DLL, building, 5–9

Custom CLR host, building, 662, 663–667

Custom COM interfaces, managed

versions of, 638–644

Custom database, building, 725–726

Custom dialog GUI, 318

Custom DLL

C# client interacting with, 40

exports of, 10–11

imported modules used by, 10

interacting with, 33–42

Custom DLL path, 14

Custom IDL attributes

AxImp.exe and, 503–504, 508–509

defining, 212–218

for namespace naming, 370

for ProgID of COM type, 561

reading, 214–218

tlbimp.exe and, 508–509

Custom members, exporting, 3–4

Custom metadata, viewing, 326

Custom .NET attributes, building,

325–329

Custom .NET collections, 614–619

Custom .NET data types, building,

297–301

Custom .NET exceptions, 620–621

Custom .NET interfaces

exposing to COM, 564–566

registering, 580

Custom .NET type viewer, building,

312–322

Index

748

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 748

Custom stub and proxy DLL, 581–582

Custom type library importer, 528–538

Custom wrapper (.NET), creating,

519–521

Customize Toolbox, COM Components

tab, 496

CustomReg() method, 654

CustomUnreg() method, 654

D
Data type conversions, 18–19, 540–542

Data type language mappings, 296–297

Data type mappings, COM-to-.NET, 347

Data type representation, Win32 and

.NET, 19

Data type system (.NET), 294–297

Data types (see also COM type

information; .NET types)

blittable, 349–350

building custom, 297–301

COM, 163

COM primitive, 164–167

converting between managed and

COM IDL, 346–351

.NET, 298

non-blittable, 349–351

Data types (.NET), categories of, 298

Data-centric values of UnmanagedType,

636–637

DataGrid type (.NET), 401–402

DataTable type, building with ADO

recordset, 401

Debugging COM servers using VS .NET,

468–470

Declarative programming, COM+, 671

Declarative transactional settings, 720

DECLARE_REGISTRY_RESOURCED

macro, 138

Declspec (declaration specification), 4

Default constructor (private), 387

Default context, defined, 675

[Default] IDL attribute, 76

[Default] interface, 361–362

adding members to, 140–141

defining, 76

Default interop marshaler, changing,

637

Default parameters (COM IDL), 381–383

Default stub code, VB 6.0 IDE used to

generate, 150

[Defaultvalue] keyword (COM IDL),

381–383

Delegate keyword, 444

Delegates (.NET), 298, 443–445

converting to COM connection

points, 604–609

defined, 443

generated by tlbimp.exe, 450–451

Derived interfaces, 487–488

Derived type, viewing metadata for,

247–248

Derived types/classes, building, 240–242

DescriptionAttribute type, 506, 518–519,

522

DescriptionAttributes type, 504

Destructors (C#-style), translating,

549–551

Digital signature (strong name), 260

Discrete interface references, 358–359

Discrete interfaces, using to manipulate

COM types, 358–359

DispEventAdvise() method, 611, 614

DispEventUnadvise() method, 611

DispGetIDsOfNames() method, 122

DispIdAttribute type, 502, 652

DISPID_BACKCOLOR, 492–494, 502

DISPID_NEWENUM, 435

Index

749

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 749

DISPIDs, 109–110, 173, 397, 652

assigning to event interface

members, 605

cataloging, 388–389

controlling generation of, 566

obtaining, 111–112

setting, 432

Dispinterface (oleautomation interface),

109–110, 166

defined, 108–109, 171

defining, 171–172

raw, 566, 604, 611

DISPPARAMS structure, 112, 115–116

DLL client, dynamic C++, 15–17

DLL component housing,

implementing, 88–90

DLL exports, ATL autogeneration of, 130

DLL functions, exporting, 90–91

DLL project type, selecting, 67

DllCanUnloadNow() method, 88–89

Dllexport declaration specification, 4–5

DllGetClassObject() method, 88,

123–124

Dllhost.exe, 672, 698

DllImport statement, 34–35, 37, 47

DllImportAttribute type, 25–26, 28, 41

DllImportAttribute type fields, 28

DllMain() method, 2–3, 68

DllRegisterServer() method, 90, 95

DLLs (dynamic link libraries), 129

core system-level, 12

C-style, 2–5, 27

custom, 10–11, 33–42

deploying traditional, 12–14

location of core Win32, 13

DllUnregisterServer() method, 90

Domain (application), 663

Done bit (JITA), 709–710, 712–713, 722

Doomed bit (in transaction processing),

719

Dot notation, for nested namespace

definitions, 371

DotNetCalcWithInterface type, 589

Dual attribute, 172

Dual interfaces, 118–119

defining, 172–173, 696

defining using C#, 651–653

explained, 118

VB 6.0, 155

Dumpbin.exe

flags, 9

viewing imports and exports with,

9–11

DumpComTypes() helper function, 207

DumpLibraryStats() method, 206

DWORD parameter, 2

Dynamic C++ DLL client, 15–17

Dynamically loading an assembly,

310–312

Dynamically loading an external library,

15–16

DynamicInvoke() method, 444

E
EnterpriseServices core types, 687–688

EnterpriseServices namespace, 687–690,

701, 703, 736–737

EnterpriseServices.AutoComplete

attribute, 712–713

EnterpriseServices.ContextUtil type,

706–708

EnterpriseServices.dll, 669, 691, 699

EnterpriseServices.ServicedComponent

type, 689–690

EntryPoint field, 31

EntryPointNotFoundException, 29

Enum base class type (System.Enum),

597

Enum details, displaying, 317

Index

750

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 750

Enum keyword, 176

Enum type, 301

extracting underlying name of, 597

underlying, 596

Enumerating class members, 311

Enumerating method parameters,

311–312

Enumerating types in a referenced

assembly, 311

Enumeration, viewing metadata for, 246

Enumeration fields, displaying, 320

Enumeration types (.NET), 301

Enums (see also COM enums; .NET

enums)

as name/value pairs, 176, 213, 597

assigned alternative numeric values,

594

assigned a default numeric value, 594

naming convention, 594

Environment variables, viewing, 14

Equality tests, 290, 292–294

Equals() method, 290, 293–295

Error 1400, 33

Error handling (.NET), 464–468

Error information (COM), handling from

managed code, 466–468

Error Lookup utility, 32

Error objects (COM), 459–464

Error-centric members of Marshal type,

24

Event client (C++), building, 610–614

Event client (VB 6.0), building, 609–610

Event interface

creating, 605–606

name string, 606

using ComSourceInterfaces attribute,

606

Event keyword (VB .NET), 609

Event keyword (VB 6.0), 442

Event metadata (.NET), 447

Event server (.NET), building using VB

.NET, 608–609

Event-centric generated types, 449–450

Events (see also COM events)

defining in C#, 445

defining and sending in VB 6.0, 441

loosely coupled, 670–671

.NET events, 445–448, 604–606,

608–609

EventTrackingEnabled attribute, 700

ExactSpelling field, specifying, 29

Exceptions (.NET), 619–621

Explicit interfaces, implementing, 567

Exported class types, interacting with,

39–40

Exporting custom members, 3–4

Exporting DLL functions, 90–91

Exports, viewing using dumpbin.exe,

9–11

EXPORTS tag, 4

Extending COM types, 390–391

External library, dynamically loading,

15–16

F
Fields (database)

converting .NET, 557

reordering at runtime, 35

FillListBoxes() helper function, 224–226

Fixed-length C-style arrays, 419

Foreach keyword (C#), 434

FormatMessage() API function, 33

Form_Load() event handler, 663

Form_Unload() event handler, 663

Friendly alias, mapping a function to, 31

Friendly name, 260, 310, 368

Friendly salutation, 258

Friendly string name, 310

FullName property (assembly), 663

Index

751

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 751

FUNCDESC structure, 198–199, 209

Function entry points, specifying, 31

Function pointers

array of, 57

smart, 102

using to trigger a callback, 43–44

Functions

mapping to friendly aliases, 31

pure virtual, 54

receiving structures, 7–8

using basic data types and arrays, 6–7

using class types, 8–9

G
GAC (Global Assembly Cache), 12

binding to an assembly in, 335

loading an interop assembly from,

396

machine-wide interop assembly in,

640

placing interop assemblies in, 392

serviced assembly in, 692

shared assemblies in, 255

VB .NET binary installed in, 262

Garbage Collector (.NET), 714–715

GenerateAssemblyFromTypeLib()

method, 536–538

GenerateGuidForType() method, 474

GenerateTLBFromAsm() helper

function, 655–656, 659

GetCollection() method

(COMAdminCatalogClass), 676

GetCustomAttributes() method, 330

GetDefaultDomain() method, 663

GetDescription() method, 620

GetDocumentation(), 532–533

GetEnumerator() method, 615, 622–623

GetHashCode() method, 290, 293

GetIDsOfNames() method, 111–122

GetIUnknownForObject() method, 474

GetLastWin32Error() method, 32–33

GetMembers() method, 311

GetMethod(), overloading, 336

GetObjectForIUnknown() method, 474

GetOcx() method, 501

GetParameters() method, 311–312

GetProcAddress() method, 16–17

GetType() method, 290, 306–308, 398

GetTypeInfo() method, 122

GetTypeInfoCount() method, 122

GetTypeLibName() method, 536

GetTypes() method, 311

Global counters, 64

Global ULONG, 87

Global variables, 64

Global-level attributes, 328

GUID helpers, 70–71

GUID structure, 69

GuidAttribute type, 372

GUID-centric members of

InteropServices, 366

Guidgen.exe utility, 69

GUIDs, 213–214, 216–217

comparison of, 70

defined, 69

freezing current values of, 152

mapping managed, 348–349

obtaining at design time, 69

preventing generation of, 151

role of in COM interfaces, 68–71

Guid.ToString() method, 348

H
Handles keyword (VB .NET), 456–457

Happy bit (JITA), 709–710, 722–724

Heap-based entities, 598

Helper sink, building, 535–536

[Helpstring], 157

Index

752

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 752

[Helpstring] attributes, 131–132,

492–494, 506

Helpstrings (.NET), 509–510

AxImp.exe and, 503–504, 508

tlbimp.exe and, 508–509

Hives (registry), 91

HKCR (HKEY_CLASSES_ROOT) hive, 91

CLSID key, 92–93, 575

Component Categories key, 95, 579

ProgIDs key, 92

TypeLib key, 94

HRESULTs (COM), 74, 82, 459–460

Hungarian notation, defined, 19

I
IAdd interface, 516

IBaseInterface interface, 487, 489

IBasicMath interface, 565, 567

IClassFactory interface, 84–87, 136

CreateInstance() method, 86–87

LockServer() method, 87

ICloneable interface, 480–481, 483

ICloneable.Clone method(), 480–481

ICodeCompiler interface, 280

ICodeGenerator interface, 279

IComparable interface, 476–477, 479

IConnectionPoint interface, 438–439,

441, 610, 614

IConnectionPointContainer interface,

437–438, 441, 609–610, 614

IContextState interface, 673, 710

ICreateErrorInfo interface, 460–461

ICreateTypeInfo interface, 657

ICreateTypeInfo2 interface, 190

ICreateTypeLib interface, 191–193, 201

ICreateTypeLib interface members, 192

ICreateTypeLib.SaveAllChanges()

method, 657, 659

ICreateTypeLib2 interface, 190

IDerivedInterface interface, 487–488

IDispatch client (VB 6.0), 117

IDispatch example (C++), 116–117

IDispatch interface, 124

in action, 125

for building scriptable objects,

108–112

helper functions, 120

IDL definition of, 108–109

implementing, 121

methods, 109

IDispatch-based interface statistics,

listing, 209

IDL

meta language used to describe COM

items, 65

viewing with VB 6.0 Oleview.exe,

152–156

IDL attributes, 72

defining custom, 212–218

vs. .NET attributes, 323, 326

reading custom, 214–218

IDL COM types, viewing in Object

Browser, 157

IDL const keyword, 165

IDL core data types, 165–166

IDL data type conversion, 346–351

IDL enumeration, defining, 176

IDL interface attributes, 174

IDL interface definition, 177

IDL interface modifiers, 173–174

IDL method parameter attributes,

167–171

IDL parameter attributes, 74

IDL structures, defining, 176–177

IDL syntax to define COM interfaces,

171–185

IDLCustomAttribute type, 521–524

IDR_ custom resources, 138–139

IE (Internet Explorer), 124

Index

753

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 753

IEnumConnectionPoints interface, 438

IEnumerable interface, 434–435, 615,

617, 621–623

IEnumerable.GetEnumerator() method,

622–623

IEnumerator interface, 436

IEnumVARIANT interface, 431–432, 436,

615, 617, 621

IEnumXXXX interface, 431–432

IErrorInfo interface, 460–461, 466, 620

IErrorInfo.GetDescription() method, 620

IHello interface, creating, 193–198

IID (interface ID), 70, 566

IL (Intermediate Language), 41

ILDasm.exe tool, 243–250

building a version of, 312–322

underlying IL code, 249–250

Implement Interface Wizard, 144,

481–483, 642, 643

Implemented interface, 386

Implements definitions, 149

[Implements] directive, 385

ImportedFromTypeLibAttribute type,

369

ImporterEventKind enumeration, 535

Importlib() statement, 586

Imports, viewing using dumpbin.exe,

9–11

InAttribute type, converting, 556

IndexOutOfBounds exception, 620

IndexOutOfRange exception, 619

Inheritance, multiple, 60

InstallAssembly() method, 701

Instance of a class, in class definition, 36

Instance management (COM+), 708–709

Interface details, displaying, 317

Interface hierarchies

implementing, 487–489

importing, 373–374

Interface members to .NET method

conversion, 375–377

Interface methods, 83, 141

Interface properties, IDL syntax for,

106–107

Interface references, 57, 184

Interface types as method parameters,

184–185

Interface types (.NET), 301

InterfaceIsDispatch COM interface type,

566

InterfaceIsDual COM interface type, 565

InterfaceIsUnknown COM interface

type, 565, 629

Interfaces. See COM interfaces; Dual

interfaces; .NET interfaces

Interfaces from a non-COM perpective,

52–62

Interface-based programming, 52–62

Interface-centric members of

InteropServices, 364–365

InterfaceTypeAttribute type, 372, 629,

647

[Internalcall] directive, 377

Interop assembly, 448–459

building, 342–346, 519–526

building and deploying, 640

building with tlbimp.exe, 354–355

defined, 342

deploying, 392–393

dumping to a file, 512–513

editing, 510–517

generating, 511

IL/metadata definitions, 514–517

loading from the GAC, 396

modifying manually, 508–510

namespace naming, 369–371

.NET types in, 356–362

obtaining, 353–355

placing in the GAC, 392

primary, 393–396

private, 343–344

recompiling the IL code, 524–526

Index

754

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 754

strongly named, 640

two ActiveX-generated, 497–500

updating, 522–524

Interop assembly attributes, 396–399

Interop assembly metadata, 398,

514–517

Interop assembly registration,

interacting with, 653–655

Interop assembly-centric members of

InteropService, 363

Interop marshaler, changing the default,

637

InteropServices namespace, 18,

218–220, 362–367

class-centric members, 364

GUID-centric members, 366

InAttribute and OutAttribute types,

556

interface-centric members, 364–365

interop assembly-centric members,

363

managed attributes, 378–379

method-centric members, 365

parameter-centric members, 365

registration-centric members,

363–364

runtime-centric members, 366

type library-centric members, 363

types to handle VARIANTs, 409

visibility-centric members, 363–364

InteropServices.COMException type,

466

InteropServices.RegistrationServices

type, 655

InteropServices.RuntimeEnvironment

type, 366–367

InteropServices.TypeLibConverter type,

528–530, 655–656

Invoke() method, 111, 333–335

Invoking members, 16–17

IObjectConstruct interface, 672

IObjectContext interface, 673

IObjectContextActivity interface, 673

IObjectContextInfo interface, 673

IObjectControl interface, JITA and,

713–715

IObjectControl interface methods, 710,

713

ISecurityCallContext interface, 674

IStartable and IStoppable, 647

ISupportErrorInfo interface, 462–463

ITypeInfo interface, 121, 185–189, 207

core members of, 187

data types, 188–189

related structures and enums,

188–189

ITypeInfo2 interface, 188, 215, 217

ITypeInfo2 interface core members, 215

ITypeLib interface, 204–206, 532–533

ITypeLib interface core members, 206

ITypeLibConverter interface, 530

ITypeLibExporterNotifySink interface,

656, 659

ITypeLib.GetDocumentation(), 532–533

ITypeLibImporterNotifySink interface,

533

ITypeLib2 interface, 217

ITypeLib2 interface core members, 215

IUnknown interface, 63

AddRef() method of, 81–82

formal IDL definition of, 73

implementing, 81–83

interacting with using Marshal class,

473–474

methods, 72

Release() method of, 81–82

role of, 71–73

IUnknown-based interface statistics,

listing, 209

IUnknown-derived interfaces, building,

173

Index

755

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 755

J
Java, path of, 230

JITA (just-in-time activation), 671,

708–715

enabling, 710–711

and IObjectControl, 713–715

JITAAwareObject class type, 714

JustInTimeActivation attribute, 711

K
Keys (registry), 91

Keywords, language-specific, 84,

296–297

L
Language files (MIDL output), 66

Language mappings of system data

types, 296–297

Language- and location-neutral COM

object, 84

Language-independence of binary IDL,

65

Language-independence of COM

components, 51, 84

Languages supported by CodeDOM, 272

Language-specific keywords, 84,

296–297

Late binding, 331–338

Activator class and, 331

invoking a member using, 333

.NET platform, 331

to a private assembly, 332–334

to shared assemblies, 335–338

Late binding syntax, COM vs. NET,

336–338

Late-bound clients, 110–111, 117,

124–126, 155

Late-bound VB 6.0 IDispatch client, 117

Late-bound VBScript client, building,

124–126

LayoutKind enumeration, 35, 603

LayoutKind.Auto, 603

LayoutKind.Explicit, 603

Lazy (automatic) registration, 693,

700–701

LCE (loosely coupled events), 670–671

Legacy binary modules, accessing using

PInvoke, 49

LIBID (COM type library ID), 70

Libraries (type). See Type libraries

Library applications (COM+), 680

Library of C# code, building complex,

302–304

Library statement, 163, 367–371

LIBRARY tag, 4

Library version attribute, 75

Library-centric Win32 API functions, 15

LoadAndRunAsm() helper function, 285

LoadCOMTypeInfo() helper function,

532

Loading an assembly dynamically,

310–312

Loading an external library dynamically,

15–16

LoadLibrary() method, 15

LoadLists() helper function, 313–314

LoadTypeLib() COM library function,

204

LoadTypeLibEx() method, 217

LoadTypeLibrary() helper function, 223

Location transparency (COM+), 683

Lock counter, 64

LockServer() method of IClassFactory, 87

LONG, 109

Index

756

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 756

M
Macros (COM-centric), 79–80

Managed client, building, 250–253,

526–528

Managed coclass, 453–454

Managed code, defined, 1

Managed COM wrapper types, 355

Managed data types

COM IDL conversion to/from,

346–351

explained, 27

Managed delegates, 450

Managed GUID mappings, 348–349

Managed interfaces

tlbimp.exe-generated, 451–453

using to interact with COM types,

359–361

Managed languages, working with,

232–233

Manifest (assembly), 233, 242–245, 514

Marshal class, 20–25, 471–475

destroying COM objects, 474–475

interacting with IUnknown, 473–474

type library-centric members of, 21

Marshal type

bit reading/writing-centric members

of, 24

COM-centric members of, 20–21, 472

error-centric members of, 24

memory/structure-centric members

of, 23

string conversion members of, 22

Marshal.AddRef() method, 474

MarshalAsAttribute type, 420, 633–637

Marshal.GenerateGuidForType()

method, 474

Marshal.GetIUnknownForObject()

method, 474

Marshal.GetLastWin32Error() method,

32–33

Marshal.GetObjectForIUnknown()

method, 474

Marshal.GetTypeLibName() method,

536

Marshaling arrays, 34–35

Marshaling calls between managed code

and COM type, 340

Marshal.Release() method, 474

Marshal.ReleaseComObject() method,

474

MC++ (Managed C++), 232–233

Member-building types of CodeDOM,

275

Members, invoking, 16–17

Memory/structure-centric members of

Marshal type, 23

Message boxes, 170 639–640

MessageBox() Win32 API function,

639–640

Metadata

translating COM into .NET, 249–250

viewing for an assembly, 245–246

viewing custom, 326

viewing for a derived type, 247–248

viewing for an enumeration, 246

viewing for an interface, 247

Metadata descriptions, 248–249

Metadata dump, 249

Method parameters

COM to .NET conversion, 377–381

enumerating, 311–312

interface types as, 184–185

Method signatures, converting, 555–556

Method-centric members of

InteropServices, 365

MethodInfo.GetMethod() method, 336

MethodInfo.GetParameters() method,

311–312

Index

757

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 757

MethodInfo.Invoke() method, 333

Methods

COM, 105

COM properties as, 106

handling overloaded, 569–570

interfaces containing, 106

invoking parameterized, 334–335

.NET, 375–377

Microsoft.Win32 namespace, 654

MIDL compiler, 65, 77

configuring, 77

core base types, 165–166

output, 66

MIDL compiler-generated files, 78–79

MIDL (Microsoft IDL), 165

Mixed mode debugging, 468–470

MMC (Microsoft Management Console)

snap-ins, 678

_Module (instance of CComModule),

614

Module-level attributes, 328–329

More Details menu

building, 316–322

submenus, 316

Mscoree.dll, 660–661

Mscoree.tlb, 660–662

Mscorlib.dll, 475, 571

Mscorlib.tlb, 477

importing, 570–572

interacting with, 586–589

referencing, 587

MSMQ (Microsoft Message Queue), 672

MTS (Microsoft Transaction Server),

669–670

MulticastDelegate class, 443–445

Multifile assemblies, 233

Multiple base interfaces

interfaces derived from, 301

.NET interface with, 624–627

Multiple behaviors, class supporting, 60

Multiple inheritance, 60

Multiple interfaces

class support for, 59–60

defining and supporting, 76

Multiple [source] interfaces

COM types with, 457–459

establishing, 607–608

N
Named mangling, defined, 11

Namespace definitions

dot notation for nested, 371

programming custom, 369–371

Namespace-building types of

CodeDOM, 274

Namespaces, that have existing

attributes, 324

Name/value pairs, enums as, 176, 213,

597

Nested classes, 300

Nested namespace definitions, dot

notation for, 371

.NET

building blocks of, 231–232

[custom] wrapper, 519–521

error handling, 464–468

Garbage Collector, 714–715

[helpstrings], 509–510

late binding under, 331

philosophy of, 230–231

value type vs. reference type entities,

598

variable declarations in, 296

.NET application, running, 285–288

.NET application code, 287

.NET assemblies. See Assemblies

.NET attribute metadata, 517–519

.NET attributes, 323–325

building custom, 325–329

vs. IDL attributes, 323, 326

restricting use of, 327–328

Index

758

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 758

.NET binaries. See Assemblies

.NET binding process, 269–270

.NET Category, type assignment to, 578

.NET class characteristics, 299

.NET class interface, establishing,

559–561

.NET class types, 299–300, 607–608

.NET collection client (VB 6.0), 617–619

.NET collections, custom, 614–619

.NET collections and exceptions

handled by C++ COM, 621–623

.NET component

accessing from C#, 699

accessing from VB 6.0, 698

.NET data type language mappings,

296–297

.NET data type system, 294–297

.NET data types, building custom,

297–301

.NET DataGrid type, 401–402

.NET delegates, 298, 443–445

converting to COM connection

points, 604–609

defined, 443

generated by tlbimp.exe, 450–451

.NET enums, 301

converting to COM enums, 593–598

inheriting from System.Object, 597

mapping to COM IDL, 593–594

use of System.Int32 type, 595

.NET event metadata, 447

.NET event server, building using VB

.NET, 608–609

.NET events, 445–448, 604–606

.NET exceptions, 619–621

.NET fields, converting, 557

.NET interface hierarchies, converting,

627–630

.NET interface inheritance, simulating,

627

.NET interface types, 301

.NET interfaces, 453

COM coclasses implementing,

475–484

COM type compatibility, 476

discrete, 358–359

exposing custom to COM, 564–566

implementing twice, 485

with multiple base interfaces,

624–627

registering custom, 580

tlbimp.exe-generated, 451–453

using to interact with COM types,

359–361

.NET late binding sytax, vs. COM,

336–338

.NET metadata, translating COM

metadata into, 249–250

.NET methods, converting interface

members to, 375–377

.NET namespace existing attributes, 324

.NET project workspace, 256–257

.NET properties, converting, 556

.NET runtime, 331, 367, 660

.NET runtime spy, 367

.NET server, anatomy of, 229–288

.NET shared assembly, versioning,

265–267

.NET source code file format, 273

.NET structure types, 300

.NET structures, 300

as IDL unions, 603

converting to COM structures,

598–603

.NET type assignment to .NET Category,

578

.NET type compatible coclass, building,

476–479, 481–489

.NET type viewer, building custom,

312–322

Index

759

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 759

.NET types, 289–338

binary-compatible C#, 641–642

binary-compatible VB .NET, 642–643

categories of, 298

COM-aware, 547–554

COM+-aware, 669–738

creating and configuring, 690–694

enumerating, 311, 622

exposing to COM applications,

633–667

implementing COM interfaces, 638

installing in a COM+ application,

693–694

in interop assembly, 356–362

managed representation, 36–37

viewing, 243

.NET UDTs mapped to COM IDL

structures, 600

.NET and Win32 data type

representation, 19

.NET-to-COM communications proxy.

See RCW

.NET-to-COM conversion, critical

details, 554–557

.NET-to-COM IDL data type

conversions, 540–542

.NET-to-COM interoperability

advanced, 471–538

basic, 339–402

high-level overview, 339–342

intermediate, 403–470

New keyword, re-listing inherited

members using, 626, 629–630

_NewEnum() method, 431–432

NewGuid() method, 348

Non-blittable data types, 349–351

Nonconfigured component, defined, 671

[Noncreatable] coclass, mapping,

387–388

[Noncreatable] IDL keyword, 428

Nonpoolable object lifecycle, 714–715

O
Object Browser

IDL COM types in, 157

interop assembly in, 344

type information in, 104

Object construction strings (COM+),

672, 704–706

Object context, 672–673, 675

_Object interface, 562–563, 695

_Object interface members, 562

Object map (server-wide), 136

Object pooling, 715–717

Object references, testing for equality,

292

Object variables, scoped at class level,

708

OBJECT_ENTRY macro, 136, 138

ObjectHandle type, 664

ObjectPooling attribute, 717

ObsoleteAttribute type, 324–325

Oleautomation, defined, 166

Oleautomation data types, 166–167

Oleautomation interface (dispinterface),

109–110, 166

defined, 108–109, 171

defining, 171–172

raw, 566, 604, 611

[Oleautomation]-compatible COM

interface, 633

[Oleautomation]-compatible types,

mapping, 348

Oleaut32.dll (universal marshaler), 565,

581

Oleview.exe utility (VB 6.0), 152–156

OnTheEvent() method, 612

OpenFileDialog type (Windows Forms),

530

Out keyword (C#), 378

OutAttribute type, converting, 556

Outbound interface, 439–440

Index

760

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 760

Overloaded Add() method, 586

Overloaded methods, handling, 569–570

Overridable members, translating,

551–553

P
ParamArray keyword (VB .NET), 421

ParamArrayAttribute type, 421

Parameter arrays (COM), 420–421

Parameter conversions, 379

Parameter modifier decoder, 556

Parameter-centric members of

InteropServices, 365

Parameterized constructors, explained,

300

Parameterized methods, invoking,

334–335

Parameters passed by reference (VB 6.0),

379–381

Params keyword (C#), 421

Parent interface of COM interface, 624

Partial strong name of an assembly, 335

Passing structures, 35–37

Path of COM (.NET philosophy), 230

Path to custom DLL, 14

Path of Java (.NET philosophy), 230

PInvoke COM library function, 531

PInvoke example, 26–33

PInvoke (Platform Invocation), 1–49

to access legacy binary modules, 49

atoms of, 18–26

Platform Invocation Services, 1–49

Pointers

array of, 57

smart, 102

using to trigger a callback, 43–44

Policy assemblies, 267–270

Polymorphism, 58, 61

Poolable objects (COM+), 715–717

Populate() method

(COMAdminCatalogClass), 676

PopulateNamespace() helper method,

281–284

Primary interop assembly

creating, 393–396

determining, 396

registering, 395–396

strong name for, 394

PrimaryInteropAssemblyAttribute type,

394–395

Primitive COM data types, 164–167

Private assembly

configuring, 251–253

late binding to, 332–334

prefixed with Interop, 343–344

relocating, 252

Private class members (C++), 54

Private Collection member variable, 429

Private components (COM+ 1.5),

733–734

Private default constructor, 387

Private interop assemblies, 343–344, 392

Procedure Attributes dialog box, 432,

492–493

ProgIDs (Programmatic Identifiers),

91–92, 96, 140, 561, 575

Project workspace (VB .NET), 256–257

Project-wide imports, setting up, 257

Properties (COM), 105–107

from client’s point of view, 107

defined, 105

mapping to .NET equivalent, 375–376

Properties (.NET), converting, 556

Proxy (.NET-to-COM communications).

See RCW

Public default constructor, explained,

549

Public entity, explained, 547

Public key, 260

Index

761

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 761

Public members

exported structure field data as, 599

inheriting, 553–554

Public structure members (C++), 54

[.publickey] tag, 692

PublicNotCreatable (Instancing

property), 428

Publisher, explained, 267

Publisher policy, explained, 267

Publisher policy assemblies, 267–270

Pure virtual functions, defined, 54

Q
QC (Queued Components), 672

QueryInterface() method, 73, 82, 86, 105

R
RaiseEvent keyword (VB .NET), 608

Random type, 478

Raw dispinterface, 171–172, 566, 604,

611

RCW (Runtime Callable Wrapper), 340,

539

for each coclass, 341

interfaces consumed by, 351–353

responsibilities of, 342

role of, 340–342

RCW translator, 218

Ref keyword (C#), 377–378, 422

Reference type (heap-based) entities,

598

ReferenceEquals() method, 290, 292

Reflection, defined, 203

Reflection namespace, 304, 309

Reflection namespace members, 309

Reflection.Emit, 323

Regasm.exe utility, 395, 572–574, 578

interacting with, 653–655

key flags, 573

updated entries, 574–582

Registering (in the registry)

a COM server, 95–97

the COM type library, 582

a COM+ application, 696–697

exposed interfaces, 579–582

a .NET assembly, 545–546, 644

a primary interop assembly, 395–396

a type, 124

Registration, lazy (automatic), 700–701

Registration of COM server, VB 6.0

automatic, 151

Registration of interop assembly,

interacting with, 653–655

Registration-centric members of

InteropServices, 363–364

RegistrationHelper type, 693, 701–703

RegistrationServices type, 655

Registry, 91. See also Registering (in the

registry)

role of, 66

updated entries in, 574–582

Registry Editor (regedit.exe), 91

Registry hives, 91

Registry keys, 91

Registry subkeys, 91

REGKIND enumeration, 531–532

Regsvcs.exe utility, 681, 693, 694–698

/appname flag, 695

core flags, 694

/fc flag, 695

updating the COM+ Catalog, 697

updating the registry, 696

Release() method, 81–82, 85, 100, 196

ReleaseComObject() method, 474–475

[.remove] directive, 454

RemoveAt() method (ArrayList), 619–620

[.removeon] directive, 448

ReportCOMError() helper function, 467

ReportEvent() method, 535

ResolveRef() method, 535–536

Index

762

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 762

Root object, in transaction processing,

718

Runtime

COM type generation at, 161,

189–191, 201–203

.NET, 331, 367, 660

reading attributes at, 207, 330–335

reordering fields at, 35

Runtime environment (COM+), 672–675

Runtime spy (.NET), 367

Runtime-centric members of

InteropServices, 366

RuntimeEnvironment type, 366–367

S
SAFEARRAY COM library functions,

181–182

SAFEARRAY helper tmeplates (ATL 4.0),

184

SAFEARRAY structure, 180, 183

SAFEARRAYBOUND structure, 180

SAFEARRAYs, 180–181, 410–418, 424

from managed code, 413–418

mapped to System.Array, 348, 414

SayHello() method, building, 198–200

Scriptable object, 108–112, 118–122

Secondary objects (in transactions),

718–719

SecurityCallContext type, 674

SEH (structured exception handling),

464

Self-describing entities, 234

Server lifetime, managing, 88–89

Serviced component example, 724–736

ASP.NET Web Service client, 734–736

C# code library, 726

CarInventory class type, 728–731

CarsSold table, 726

custom database, 725–726

design notes, 724

Inventory table, 725

LogSale type, 727–728

Windows Forms front end, 732–734

Serviced components, building, 669–738

ServicedComponent type

(EnterpriseServices), 689–690

Serviced.Component.Construct()

method, 704

SetErrorInfo() COM library function, 461

SetLastError field (DllImportAttribute),

32–33

SetType() helper method, 319

Shared assembly, 254–267, 261, 393

late binding to, 335–338

placed into the GAC, 255

recording, 263

using, 262–263

versioning, 264–267

Shared interop assemblies, 393

Shared name. See Strong name

ShowMemberStats() helper function,

318–319

ShowTypeStats() helper method, 315

Single-file assemblies, 233

Smart pointers, 102

Sn.exe utility, 392

Solution Explorer, 497

[Source] interface, 439, 442

COM types with multiple, 457–459

establishing multiple, 607–608

IDL definition of, 440

[Source] keyword (IDL), 604

SPM (shared property manager), COM+,

688

Square brackets ([]), use of, 72

Stack-based entities, 598

Stateless COM+ type, explained, 709

Stateless entities, configured

components as, 671

Static members, translating, 554

String conversion macros (ATL), 179

Index

763

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 763

String conversion members of Marshal

type, 22

String name, friendly, 310

String type (System.String), 348, 351, 634

String-centric values of

UnmanagedType, 634

Strong name, 255, 260–262

for an interop assembly, 394, 640

for a .NET assembly, 255–256, 335,

640, 692

for a primary interop assembly, 394

Strongly typed variables, interfaces as,

58–59

Struct keyword (C#), 598

StructLayout attribute, 35, 603

Structure details, displaying, 317

Structure field data exported to COM

IDL, 599

Structure keyword (VB .NET), 598

Structure members (C++), 54

Structure types (.NET), 300

Structures

with blittable fields, 350

COM, 421–425

converting .NET to COM, 598–603

functions receiving, 7–8

with non-blittable fields, 351

passed by reference, 602

passing, 35–37, 602

receiving allocated, 37–39

Structures containing structures, 7–8

Stub and proxy DLL, custom, 581–582

Stub code, VB 6.0 IDE used to generate

default, 150

Stub/proxy files (MIDL output), 66

Subkeys (registry), 91

System data type language mappings,

296–297

System path variable, 13

System registry. See Registering (in the

registry); Registry

System.Activator class, 331–332

System.Activator class members, 332

System.Array type, 416–417

mapping SAFEARRAYS to, 348, 414

members of, 414

System.Attribute base class, 517

System.Attribute core members, 324

System.Attribute-derived type, 525–526

System.Byte type, 595

System.CodeDOM namespace 270–284.

See also CodeDOM

System.Collections namespace, 434–435,

615–616

System.Collections.dll, 665–666

System._ComObject, role of, 399

System.EnterpriseServices namespace,

687–690, 701, 703, 736–737

System.EnterpriseServices.dll, 669, 691,

699

System.Enum base class type, 301, 597

System.Exception base class, 465, 619

System.Exception type members, 465

System.Guid mappings, 348–349

System.IComparable interface, 476

System.InPtr type, 420

System.Int32 type, 595

System-level DLLs, 12

System.MulticastDelegate class, 443–445

System.Object

coclasses derived from, 389

methods of, 290

.NET enum inheriting from, 597

role of, 289–294

variable data types, 404

VARIANTs mapped to, 407

System.Object members, inherited, 390,

597

Index

764

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 764

System.Object-centric values of

UnmanagedType, 635

System.Object.Finalize() method,

714–715

System.Object.GetType() method, 306,

398

System.Object.ToString() method, 239,

563

System.ObsoleteAttribute type, 324–325

System.ParamArrayAttribute type, 421

System.Random type, 478

System.Reflection namespace, 304, 309,

323

System.Reflection namespace members,

309

System.Reflection.Emit, 323

System.Runtime.InteropServices. See

InteropServices namespace

System.String type, 348, 351, 634

System.Type class, 304–308, 418, 588

System.Type class members, 305

System.Type reference, obtaining,

306–307

System.Type.GetCustomAttribute()

method, 330

System.Type.GetCustomAttributes()

method, 330

System.Type.GetType() method, 307–308

System.Type.Missing read-only field,

384–385

System.ValueType, 294, 422

System.ValueType-derived types,

tlbexp.exe and, 599

System.Windows.Forms.AxHost base

class, 499

T
TheEnum type, 326, 330

Tlbexp.exe (Type Library Exporter)

utility, 475

building a custom version of, 655–660

[dual] interface with DISPIDs, 565

and System.ValueType-derived types,

599

using, 546–547

Tlbimp.exe (Type Library Importer)

utility, 342, 353–355, 367, 448–459,

508–509

building an interop assembly with,

354–355

core options of, 354

custom IDL attribute for ProgID, 561

ToString() method, 239, 290, 597

overriding, 290–291

transforming, 563

TPM (Transaction Processing Monitor),

718

Transaction

ACID properties of, 717

defined, 717

enlisting multiple objects, 719

single object, 718

Transaction attribute, 721–722

Transaction processing, and root object,

718

Transactional COM+ settings, 721

Transactional programming, 717–724

Transactional programming (COM+),

720–724

TransactionOption enumeration,

721–722

Type class, 80, 304–308

Type compatible (COM type with .NET

interface), 476

Index

765

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:39 PM Page 765

Type information, 161–228

as binary IDL, 65

displaying details, 315–316

dumping, 207–208

generating programmatically,

189–191

located under HKCR\TypeLib, 94

obtaining for a COM wrapper type,

398

reading programmatically, 203–212

viewing in the Object Browser, 104

Type information generation, testing,

201–203

Type information viewer, in C#, 220–227

Type libraries

as binary IDL, 78

building, 191–193

defined, 65

library statement section, 368–371

registering, 582

role of, 65–66

[version] identifier, 368

Type library attributes, reading at

runtime, 207

Type library browser application

building, 203–212

displaying information, 205–207

dumping COM type information,

207–208

listing coclass statistics, 208

listing COM enumeration statistics,

209–210

listing IDispatch interface statistics,

209

listing IUnknown interface statistics,

209

program skeleton, 204–205

reading, 210–212

Type library creation elements, 189

Type library importer utility, building,

528–538. See also Tlbimp.exe

Type library statement name, changing,

568

Type library-centric COM library items,

204

Type library-centric members of

InteropServices, 363

Type library-centric members of

Marshal class, 21

Type marshaling, 633–637

Type member visibility

controlling, 548–549

establishing, 548

Type members, displaying details about,

316–322

Type metadata, viewing, 245–246

Type names in an assembly, displaying,

313

Type reference

from C# typeof operator, 306–307

from System.Object.GetType(), 306

from System.Type.GetType(), 307–308

Type viewer (custom), 312–322

ADO.NET types in, 322

custom dialog GUI, 318

displaying assembly details, 317

displaying assembly information,

316–322

displaying class member

information, 320

displaying class member parameters,

321–322

displaying enumeration fields, 320

displaying type details, 315–316

displaying type names, 313, 315

More Details menu, 316–322

Type visibility

controlling with ComVisibleAttribute,

548–549

establishing, 547

Type-building types of CodeDOM, 274

TYPEFLAGS enumeration, 197–198, 373

Index

766

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:40 PM Page 766

TYPEFLAGS values, 197–198

Type.GetMembers() method, 311

TYPEKIND enumeration, 196, 207

TYPEKIND structure, 201, 207, 226

TYPELIBATTR structure, 224

TypeLibConverter class, 528–530,

533–535, 655–656

TypeLibConverter.ConvertTypeLibToAss

embly(), 533–535

TypeLibImporterFlags enumeration, 534

TypeLibTypeAttribute type, 373

Typeof operator (C#), 306–307

Types. See COM type; Data types; .NET

types; Type information

Types hierarchy, 237, 295

U
UCOM (unmanaged COM) prefix, 220

UCOMITypeLib interface, 537, 659

UDTs (user-defined types), 3, 163, 600.

See also Structures

ULONG, global, 87

Unadvise() method, 438–439

Unicode characters, 18, 178

UninstallAssembly() method, 701

Unions, .NET structures as, 603

Universal marshaler (oleaut32.dll), 565,

581

Universal marshaling, 565, 580–581

Unmanaged callbacks, 42–43

Unmanaged code, 1–2, 232

UnmanagedAssembly.dll, 666

UnmanagedType

array-centric value of, 636

data-centric values of, 636–637

string-centric values of, 634

System.Object-centric values of, 635

UnmanagedType.Currency value, 637

UnregisteredAssembly namespace,

665–666

Unsigned char mapped into a VB 6.0

Byte, 596

Unwrap() method, 664

Updating interop assemblies, 522–524

USES_CONVERSION macro, 179

V
Value type (stack-based) entities, 598

ValueType type, 294

[Vararg] IDL attribute, 420–421

Variable declarations, in .NET, 296

Variables, scoped at class level, 708

VARIANT array, 621

VARIANT COM library functions, 115

Variant compliant types, 166

VARIANT data type, 112–116, 166–167,

217, 384–385, 403–410

in C++, 114–115

from managed code, 407–409

mapped to System.Object, 407

in VB 6.0, 115

VARIANT field, 216

VARIANT structure, 112–114

VARIANT vt field, .NET data types

setting, 404

VARIANT wrappers, 409

VARIANT-centric COM server, building,

405–410

VariantInit() COM library function, 114

Varying C-style arrays, 419

VB COM type, preventing direct creation

of, 428

VB .NET application code, 287

VB .NET binary installed in the GAC, 262

VB .NET client interop assembly, 346

VB .NET code library hierarchy, 256

VB .NET IDE, Implement Interface

Wizard, 643

VB .NET .NET event server, 608–609

VB .NET project workspace, 256–257

Index

767

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:40 PM Page 767

VB .NET shared assembly, versioning,

265–267

VB .NET type, building binary-

compatible, 642–643

VB .NET (Visual Basic .NET)

as a managed language, 232

byRef keyword, 377–378, 380–381

byVal keyword, 377–381

completed application, 286

Event keyword, 609

Handles keyword, 456–457

intercepting incoming COM events,

456–457

ParamArray keyword, 421

RaiseEvent keyword, 608

running application, 285–288

Structure keyword, 598

WithEvents keyword, 456–457

VB 6.0 Byte

building, 644–646

unsigned char mapped into, 596

VB 6.0 client methods, 169–170

VB 6.0 COM client, 103–105, 157,

584–589, 644–646

VB 6.0 COM server

reading, 212

testing, 156–159

VB 6.0 COM types, locating, 153

VB 6.0 COM+ client, building, 683

VB 6.0 COM-supported COM interfaces,

154

VB 6.0 custom CLR host, 663–667

VB 6.0 event client, building, 609–610

VB 6.0 form, code behind, 158

VB 6.0 IDE, using to generate default

stub code, 150

VB 6.0 .NET collection client, 617–619

VB 6.0 structure server, building,

423–424

VB 6.0 (Visual Basic 6.0)

accessing configured .NET

component, 698

ActiveX control, 490–493

application object, 176

applying IDL [helpstrings], 492

automatic registration of COM server,

151

binary compatibility, 151–152

building COM servers using, 146–148

CheckThisVariant() method, 469–470

coclass COM event atom support, 442

Collection type, 429, 645

core COM project types, 147

defining auxiliary interfaces, 148–149

defining and sending events, 441

disallowing structures passed by

value, 601–602

Event keyword, 442

IDispatch client, 117

implementing interfaces in, 149–151

and interfaces with underbars, 489

LameColorControl, 495–496

Oleview.exe utility, 152–156

parameters passed by reference,

379–381

role of, 146–159

setting DISPID_BACKCOLOR, 492,

493

VARIANTs in, 115, 481

WithEvents keyword, 610

VBScript COM client, building, 590–591

VBScript late bound client, building,

124–126

_VBStructObject interface, 424

[Version] identifier of COM type library,

368

Version number (strong name), 260

Versioned interfaces, 61–62, 373–374

Versioning shared assemblies, 264–267

Index

768

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:40 PM Page 768

Virtual functions, pure, 54

Visibility-centric members of

InteropServices, 363–364

VS .NET IDE, 584

VS. NET (Visual Studio .NET), 343

consuming ActiveX controls, 495–501

debugging COM servers, 468–470

managed languages, 232

private interop assemblies, 344

referencing a COM server using, 343

Vtable, 651

W
Web Service client (ASP.NET), 734–736

Well-known category, grouping COM

objects into, 577–578

Win32 *.def file, assembling standard, 90

Win32 API functions, library-centric, 15

Win32 callback functions, 42

Win32 console application project,

creating, 52–53

Win32 DLLs, location of core, 13

Win32 error, obtaining the last, 32

Win32 error code as friendly text string,

32

Win32 namespace, 654

Win32 and .NET data type

representation, 19

Win32 structure, managed equivalent of,

35

WithEvents keyword (VB .NET), 456–457

WithEvents keyword (VB 6.0), 610

WSDL (Web Service Description

Language), 270–272

Wsdl.exe utility, 270–272

W2A (Unicode to ANSI) macro, 179

Index

769

*0112_Ch14_Index_CMP2.qxp 3/25/02 2:40 PM Page 769

