
Database Programming
with C#

CARSTEN THOMSEN

104fmat.qxp 3/13/02 3:28 PM Page i

Database Programming with C#

Copyright © 2002 by Carsten Thomsen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN (pbk): 1-59059-010-4

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Douglas Milnes

Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore,
Karen Watterson, John Zukowski

Managing Editor: Grace Wong

Copy Editors: Nicole LeClerc, Ami Knox

Production Editor: Tory McLearn

Compositor: Impressions Book and Journal Services, Inc.

Indexer: Valerie Haynes Perry

Cover Designer: Tom Debolski

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710.

Email info@apress.com or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

You will need to answer questions pertaining to this book in order to successfully download
the code.

104fmat.qxp 3/13/02 3:28 PM Page ii

CHAPTER 6

Using Stored
Procedures, Views,

and Triggers

How to Use Stored Procedures,
Views, and Triggers

SERVER-SIDE PROCESSING, which is when you let a server process your queries and
the like, is probably a concept you have heard of and it’s the very topic of this
chapter. Well, to some extent anyway. I discuss three specific ways of doing
server-side processing: stored procedures, triggers, and views. The good thing
about server-side processing is that you can use the power and resources of your
server for doing purely data-related processing and thus leave your client free to
do other stuff, and your network clearer of data that the client doesn’t want. It’s
not always appropriate to do so, but in many cases you can benefit from it.

This chapter includes several hands-on exercises that will take you through
creating stored procedures, views, and triggers. See the Exercise items that
appear throughout the text.

Although this chapter primarily focuses on SQL Server 2000 features, some
of the functionality can certainly be reproduced in the other DBMSs I cover in
this book:

• SQL Server 7.0: All functionality shown in this chapter can be reproduced.
However, SQL Server 7.0 doesn’t support the INSTEAD OF triggers
described in “Using Triggers.”

• Microsoft Access: Microsoft Access doesn’t support stored procedures or
triggers. However, views can be reproduced as queries in Microsoft Access,
but you can’t do this from within the VS .NET IDE; you have to use other
means, like the Microsoft Access front-end. If you are unfamiliar with

367

104ch06.qxp 3/13/02 3:58 PM Page 367

Microsoft Access, I can recommend you read the following book to get you
up to speed: From Access to SQL Server, by Russell Sinclair. Published by
Apress, September 2000. ISBN: 1893115-240.

• Oracle: Oracle supports all the server-side processing described in
this chapter.

• MySQL: For the examples in this book, I have been using MySQL version
3.23.45, which doesn’t support triggers, views, or stored procedures, mean-
ing there is no example code for MySQL in this chapter. However, at the
time of writing (March 2002), an alpha version (4.0) of MySQL is available
for download from http://www.mysql.com. The final version 4.0 is supposed
to support stored procedures, views, and triggers. Even when these server-
side processing means are available in MySQL, it’s still not possible to
create any of these items from within the VS .NET IDE.

The code for this chapter has examples for all the listed DBMSs
where appropriate.

Optimization Issues

When I talk about optimizing performance of an application, there are a number
of things to consider, but let’s just make one thing clear before I go on: I am only
talking distributed applications and not stand-alone applications that sit nicely
on a possibly disconnected single PC. These stand-alone applications are also
called single tier or monolithic applications.1 The applications I discuss here use
a network of some sort to access data and business services.

Okay, now that the basics are out of the way, I can focus on the obstacles that
can lead to decreasing performance and how you need to know these obstacles
well when you start the optimization process. You should keep such obstacles in
mind when you design your application. However, the various resources, such as
network bandwidth, processor power, available RAM, and so on, most often
change over time, and then you’ll have to reconsider if your application
needs changing.

Table 6-1 lists all the varying factors that can influence the performance of
your application, which could be a topic for an entire book. However, although
I only describe these factors briefly, I want you to be aware of the resources
mentioned; they have great influence on what server-side processing resources
you should choose when you design your application. In general, it’s often
the client queries and not the server itself that create the biggest
performance problems.

368

Part Two: Database Programming

1. Stand-alone applications don’t have to be single tier, but they generally are.

104ch06.qxp 3/13/02 3:58 PM Page 368

Table 6-1. Performance Resources Optimization

RESOURCE NAME DESCRIPTION

Network resources When speaking of network resources, I am referring to

the actual bandwidth of the network. Consider your

network setup—whether you are on a LAN or you are

accessing resources over a WAN such as the Internet,

and so on. If you have a low bandwidth, it’s obvious

that you want to transfer as little data across the

network as possible. If on the other hand you have

plenty of bandwidth, you might want to transfer large

amounts of data across the network. However, best

practices prescribe that you only transfer the data

needed across your network, even when you have

wide bandwidth.

Local processing resources If you have the raw power available on your local box,

it can be good to do most of the data processing there.

Mind you, it all depends on the available bandwidth

and the processing resources on the server.

Server processing resources Server-side processing is desirable, if the server has

resources to do so. Another thing you should consider

is whether it has the resources to serve all your clients,

if you let the server do some of the data processing.

Data distribution Although strictly speaking this isn’t a resource as such,

it’s definitely another issue you might need to

consider. If your data comes from various different

and even disparate data sources, it often doesn’t make

too much sense to have one server process data from

all the data sources, just to send the result set to the

client. In most cases, it makes sense to have all the

data delivered directly to the client.

Table 6-1 just provides a quick overview. Table 6-2 shows you some different
application scenarios.

369

Chapter 6: Using Stored Procedures, Views, and Triggers

104ch06.qxp 3/13/02 3:58 PM Page 369

Table 6-2. Different Application Scenarios

CLIENT MACHINE SERVER NETWORK RECOMMENDATION

Limited processing Plenty of Limited Now, this one is obvious. You should

resources processing resources bandwidth use the raw processing power of the

server to process the data and only

return the requested data. This will

save resources on the network and on

the client.

Plenty of Plenty of Limited Hmm, processing could be done on

processing resources processing resources bandwidth either the client or the server, but it

really depends on the amount of data

you need to move across the network.

If it’s a limited amount of data,

processing on either side will do, but

if it’s a lot of data, then let the server

do the processing. Another solution

could be to store the data locally and

then use replication or batch

processing to update the server.

Plenty of Limited processing Limited In this case, processing should be

processing resources resources bandwidth done on the client, but it really

depends on the amount of data you

need to move across the network. If

it’s a limited amount of data, the

client should do the processing; but if

it’s a lot of data, you might consider

letting the server do some of the

processing, or even better; upgrade

your server.

Plenty of Limited processing Plenty of Okay, don’t think too hard about this

processing resources resources bandwidth one—processing should be done on

the client.

370

Part Two: Database Programming

I could add plenty more scenarios to the list, but I think you get the picture.
You’ll rarely encounter a situation that matches a straightforward scenario with
a simple answer. It’s your job to know about all the potential issues when you
design your application and have to decide on where to process your data. Quite
often different aspects of an application have different data processing needs, so
the answer may vary even within a single application. One book that will help

104ch06.qxp 3/13/02 3:58 PM Page 370

you with many common problems you may encounter with SQL Server is
this one:

• SQL Server: Common Problems, Tested Solutions, by Neil Pike. Published by
Apress, October 2000. ISBN: 189311581X.

Troubleshooting Performance Degradation

When you realize that you have performance problems or when you just want
to optimize your server, you need one or more tools to help. SQL Server and
Windows NT/2000 provides a number of tools you can use when troubleshooting
and here are a few of them:

• Database Consistency Checker (DBCC) (SQL Server)

• Performance Monitor (Windows NT/2000)

• Query Analyzer (SQL Server)

• System Stored Procedures (SQL Server)

I’ll briefly describe what you can use these tools for and give you links for
obtaining more information.

Database Consistency Checker

The Database Consistency Checker (DBCC) is used for checking the logic as well
as the consistency of your databases using T-SQL DBCC statements. Further-
more, many of the DBCC statements can also fix the problems detected when
running. DBCC statements are T-SQL enhancements and as such must be run as
SQL scripts. Here is one example of a DBCC statement:

DBCC CHECKDB

This DBCC statement is used for checking the structural integrity of the objects
in the database you specify. It can also fix the problems found when running.
There are many DBCC statements, and this isn’t the place to go over these, but
check SQL Server Books Online (included with SQL Server) for more information
about DBCC.

371

Chapter 6: Using Stored Procedures, Views, and Triggers

104ch06.qxp 3/13/02 3:58 PM Page 371

Performance Monitor

The Performance Monitor (perfmon) is used for tracking and recording activity
on your machine or rather any machine within your enterprise. perfmon comes
with Windows NT/2000/XP and is located in the Administrative Tools menu, but
you can also run it from a command prompt, or the Run facility of Windows Start
Menu, by executing perfmon. Any of the Windows platforms mentioned pro-
duces counters that can be tracked or polled by perfmon at regular intervals if
needed. SQL Server also comes with counters that can be tracked or polled by
perfmon. Some of the more general counters are used for polling processor time,
disk access, memory usage, and so on. Arguably the best of it all is the ability to
save a session of all activity recorded or polled within any given time frame. You
can then play back a saved session, whenever appropriate. This is especially
important when you want to establish a baseline against which to compare
future session recordings.

Check your Windows NT/2000/XP documentation for more information
about perfmon.

Query Analyzer

The Query Analyzer is an external tool that comes with SQL Server for analyzing
and optimizing your queries. You can find it in the menus created by
SQL Server Setup.

Query Analyzer can be used for validating your queries in the form of script
files and queries you type yourself in the query window. Besides validating
a query, you can get Query Analyzer to analyze it by running. The analysis
includes an execution plan, statistics, and a trace of the query being executed.
Queries can get complicated, and many do when joining tables, and it isn’t
always obvious how much processing a particular query will take. There’s nor-
mally more than one way to get to complex data, so the trace is invaluable in
optimizing your data requests.

See SQL Server Books Online (included with SQL Server) for more infor-
mation about Query Analyzer. You can actually invoke the Query Analyzer part of
the SQL Server Books Online help text from within Query Analyzer by pressing F1.

System Stored Procedures

The System Stored Procedures is a set of stored procedures that comes with SQL
Server for database administrators to use for maintaining and administering
SQL Server. There are a number of System Stored Procedures, including two XML
ones, and I certainly can’t cover them here, but I can mention some of the

372

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 372

functionality they cover: they let you see who’s logged on to the system, adminis-
ter registration with Active Directory, set up replication, set up full-text search,
create and edit maintenance plans, and administer a database in general.

See SQL Server Books Online (comes with SQL Server) for more information
about the System Stored Procedures.

Using Stored Procedures

A stored procedure is a precompiled batch2 of SQL statement(s) that is stored on
the database server. The SQL statements are always executed on the database
server. Stored procedures have long been a good way of letting the server process
your data. They can significantly reduce the workload on the client, and once you
get to know them you’ll wonder how you ever managed without them.

There is certainly more to a stored procedure than just mentioned, but I do
think this is the most significant aspect of a stored procedure. Think about it: it’s
a way of grouping a batch of SQL statements, storing it on the database server,
and executing it with a single call. The fact that the stored procedure is pre-
compiled will save you time as well when executed. Furthermore, the stored
procedure can be executed by any number of users, meaning you might save a lot
of bandwidth just by calling the stored procedure instead of sending the whole
SQL statement every time.

A stored procedure can contain any SQL statement that your database server
can understand. This means you can use stored procedures for various tasks,
such as executing queries—both so-called action queries, such as DELETE
queries, and row-returning queries, such as SELECT statements.

Another task you can use a stored procedure for is database maintenance.
Use it to run cleanup SQL statements when the server is least busy and thus save
the time and effort of having to do this manually. I won’t cover maintenance tasks
in this chapter, but they are important, and you should be aware of the various
tasks you can perform with stored procedures. If you’re like me, you have been or
are working for a small company that doesn’t have a database administrator, in
which case you’re in charge of keeping the database server running. Granted, it’s
not an ideal situation, but you certainly get to know your DBMS in different ways
than you would just being a programmer, and that’s not bad at all.

To sum it up: a stored procedure is a precompiled SQL statement or batch
of SQL statements that is stored on the database server. All processing takes
place on the server, and any result requested by a client is then returned in
a prepared format.

373

Chapter 6: Using Stored Procedures, Views, and Triggers

2. Actually some stored procedures only hold one SQL statement.

104ch06.qxp 3/13/02 3:58 PM Page 373

Why Use a Stored Procedure?

You should use a stored procedure in the following cases (please note that other
cases do apply, depending on your circumstances):

• Executing one or more related SQL statements on a regular basis

• Hiding complex table structures from client developers

• Returning the result of your SQL statements because you have a limited
bandwidth on your network

• Delegating data processing to the server because you have limited pro-
cessing resources on your client

• Ensuring processes are run, on a scheduled basis, without
user intervention

Granted, there can be substantially more work in setting up a stored proce-
dure than in just executing the SQL statement(s) straight from the client, but my
experience has confirmed that the extra work saves you at least tenfold the time
once you start coding and using you application. Even SQL Server itself and
other major DBMSs use stored procedures for maintenance and other adminis-
trative tasks.

One last thing I want to mention is the fact that if you base a lot of your data
calls on stored procedures, it can be much easier to change the data calls at
a later date. You can simply change the stored procedure and not the application
itself, meaning you don’t have to recompile a business service or even your client
application, depending on how you have designed your application. On the neg-
ative side, stored procedures are often written using database vendor–specific
SQL extensions, which mean that they’re hard to migrate to a different
RDBMS. This of course is only a real concern if you’re planning to move to
another RDBMS.

374

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 374

Planning a Move to a Different RDBMS

If you’re planning to move to another RDBMS from SQL Server, or just want to
make it as easy as possible should management decide so in the future, it’ll
probably be a good idea to look up the following T-SQL statements in the SQL
Server Books Online Help Documentation:

• SET ANSI_DEFAULTS: This statement sets the ANSI defaults on for the
duration of the query session, trigger, or stored procedure.

• SET FIPS_FLAGGER: This statement can be used to check for compliance
with the ANSI SQL-92 standard.

If you use these statements appropriately, they can certainly help ease the
move from SQL Server to another ANSI SQL-92–compliant RDBMS.

Creating and Running a Stored Procedure

Creating a stored procedure is fairly easy, and you’re probably used to working
with the Enterprise Manager that comes with SQL Server or a different stored
procedure editor for SQL Server or Oracle. If this is the case, you may want to
check out the facilities in the Server Explorer in the VS .NET IDE. Among other
things, it’s much easier to run and test a stored procedure directly from the text
editor. Anyway, here’s how you would create a stored procedure for the example
UserMan database:

1. Open up the Server Explorer window.

2. Expand the UserMan database on your database server.

3. Right-click the Stored Procedures node and select New Stored Procedure.

This brings up the Stored Procedure text editor, which incidentally looks a lot
like your C# code editor. Except for syntax checking and other minor stuff, they
are exactly the same (see Figure 6-1).

375

Chapter 6: Using Stored Procedures, Views, and Triggers

104ch06.qxp 3/13/02 3:58 PM Page 375

Creating a Simple Stored Procedure

Once you’ve created a stored procedure, you need to give it a name. As you can
see from your stored procedure editor, the template automatically names it
StoredProcedure1. If you’re wondering about the dbo prefix, it simply means that
the stored procedure is created for the dbo user. In SQL Server terms, dbo stands
for database owner, and it indicates who owns the database object, which
is a stored procedure in this case. If you’ve been working with SQL Server for
a while, you probably know the term broken ownership chain. An ownership
chain is the dependency of a stored procedure upon tables, views, or other
stored procedures.

376

Part Two: Database Programming

Figure 6-1. Stored procedure editor with SQL Server default template

NOTE With SQL Server it’s only possible to use T-SQL for your stored pro-
cedures. However, the upcoming version of SQL Server, code-named
Yukon, will have support for the .NET programming languages. Knowing
this, perhaps you’ll want to create your stored procedures in C# or VB .NET.

104ch06.qxp 3/13/02 3:58 PM Page 376

Generally, the objects that a view or stored procedure depend on are also
owned by the owner of the view or stored procedure. In such a case there are no
problems, because SQL Server doesn’t check permissions in this situation. (It
doesn’t really have to, does it?) However, when one or more of the dependent
database objects are owned by a different user than the one owning the view or
stored procedure, the ownership chain is said to be broken. This means that SQL
Server has to check the permissions of any dependent database object that has
a different owner. This can be avoided, if the same user, such as dbo, owns all of
your database objects. I am not telling you to do it this way, but it's one option
available to you.

Okay, let’s say you’ve deleted the StoredProcedure1 name and replaced it
with SimpleStoredProcedure. To save the stored procedure before continuing,
press Ctrl+S. If you saved your stored procedure at this point, you would notice
that you don’t have to name it using a Save As dialog box, because you’ve already
named it. The editor will make sure that the stored procedure is saved on the
database server with the name you’ve entered, which in this case is
SimpleStoredProcedure. You shouldn’t save it until you’ve renamed it, because
you’ll end up having to remove unwanted stored procedures.

Although you can see your stored procedure in the Stored Procedure folder
of the SQL Server Enterprise Manager and the Stored Procedure node in the
Server Explorer, there isn’t actually an area in your database designated for just
stored procedures. The stored procedure is saved to the system tables as are most
other objects in SQL Server.

As soon as you have saved it, the very first line of the stored procedure
changes. The SQL statement CREATE PROCEDURE is changed so that the first
line reads:

ALTER PROCEDURE dbo.SimpleStoredProcedure

Why? Well, you just saved the newly created stored procedure, which means
that you can’t create another with the same name. Changing CREATE to ALTER
takes care of that. It’s that simple. In case you’re wondering what happens when
you change the name of your stored procedure and the SQL statement still reads
ALTER PROCEDURE . . . , I can tell you: the editor takes care of it for you and cre-
ates a new procedure. Try it and see for yourself! Basically, this means that
CREATE PROCEDURE is never actually needed; one can simply use ALTER
PROCEDURE, even on brand new procedures. However, this can be a dangerous
practice, if you inadvertently change the name of your stored procedure to the
name of an already existing one.

The SimpleStoredProcedure doesn’t actually do a lot, does it? Okay, let me
show you how to change that. In Figure 6-1, you can see two parts of the stored
procedure: The first part is the header and then there is the actual stored proce-
dure itself. The header consists of all text down to and including Line 7. Basically,

377

Chapter 6: Using Stored Procedures, Views, and Triggers

104ch06.qxp 3/13/02 3:58 PM Page 377

the header declares how the stored procedure should be called, how many argu-
ments to include and what type of arguments, and so on. Since this is a very
simple procedure, I don’t want any arguments, so I’ll leave the commented-out
text alone.

If you haven’t changed the default editor settings, text that is commented out
or any comments you have inserted yourself are printed in green. In a SQL Server
stored procedure, comments are marked using start and end tags: /* for the com-
ment start tag and */ for the comment end tag. This has one advantage over the
way you insert comments in your C# code in that you don’t have to have a com-
ment start tag on every line you want to comment out. You only need to have
both a start and end tag.

The second part of the stored procedure is the part that starts with the AS
clause on Line 8. The AS clause indicates that the text that follows is the body of
the stored procedure, the instructions on what to do when the stored procedure
is called and executed.

EXERCISE

1) Create a stored procedure, name it SimpleStoredProcedure, and save it as
described earlier.

2) Type the following text on Line 10 in the SimpleStoredProcedure in place of the
RETURN statement:

SELECT COUNT(*) FROM tblUser

Now the stored procedure should look like the example in Figure 6-2. The
stored procedure will return the number of rows in the tblUser table. Please
note that it’s generally good practice to keep the RETURN statement as part of
your stored procedure, but I’m taking it out and leaving it for an explanation
later, when I discuss return values and how they’re handled in code.

378

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 378

3) Don’t forget to save the changes using Ctrl+S.

Running a Simple Stored Procedure from the IDE

Of course, there’s no point in having a stored procedure that just sits there, so
here’s what you do to run it: if you have the stored procedure open in the stored
procedure editor window, you can right-click anywhere in the editor window and
select Run Stored Procedure from the pop-up menu. If you do this with the
stored procedure you created in the exercise in the previous section, the Output
window, located just below the editor window, should display the output from
the stored procedure as shown in Figure 6-3.

379

Chapter 6: Using Stored Procedures, Views, and Triggers

Figure 6-2. Stored procedure that returns the number of rows in the tblUser table

104ch06.qxp 3/13/02 3:58 PM Page 379

If you have closed down the stored procedure editor window, you can run the
stored procedure from the Server Explorer. Expand the database node, right-click
the Stored Procedures node, and select Run Stored Procedure from the pop-up
menu. This will execute the stored procedure the exact same way as if you were
running it from the editor window.

Running a Simple Stored Procedure from Code

Okay, now that you have a fully functional stored procedure, you can try and run
it from code. Listing 6-1 shows you some very simple code that will run the stored
procedure. The example code in this listing uses data classes that were intro-
duced in Chapters 3A and 3B.

Listing 6-1. Running a Simple Stored Procedure
1 public void ExecuteSimpleSP() {

2 SqlConnection cnnUserMan;

3 SqlCommand cmmUser;

4 object objNumUsers;

5

6 // Instantiate and open the connection

7 cnnUserMan = new SqlConnection(STR_CONNECTION_STRING);

8 cnnUserMan.Open();

9

10 // Instantiate and initialize command

11 cmmUser = new SqlCommand(“SimpleStoredProcedure”, cnnUserMan);

12 cmmUser.CommandType = CommandType.StoredProcedure;

13

14 objNumUsers = cmmUser.ExecuteScalar();

15 MessageBox.Show(objNumUsers.ToString());

16 }

380

Part Two: Database Programming

Figure 6-3. The Output window with output from SimpleStoredProcedure

104ch06.qxp 3/13/02 3:58 PM Page 380

The code in Listing 6-1 retrieves the return value from the stored procedure.
Now, this isn’t usually all you want from a stored procedure, but it merely demon-
strates what a simple stored procedure looks like. The stored procedure itself
could just as well have had a DELETE FROM tblUser WHERE LastName=’Johnson’
SQL statement. If you want to execute this from code, you need to know if the
stored procedure returns a value or not. It doesn’t in this case, so you need to use
the ExecuteNonQuery method of the SqlCommand class.

EXERCISE

1) Create a new stored procedure and save it with the name uspGetUsers.

2) Type in the following text on Line 10 in place of the RETURN statement:

SELECT * FROM tblUser

Now the stored procedure should look like the one in Figure 6-4. This stored
procedure will return all rows in the tblUser table.

3) Don’t forget to save the changes using Ctrl+S.

381

Chapter 6: Using Stored Procedures, Views, and Triggers

Figure 6-4. The uspGetUsers stored procedure

104ch06.qxp 3/13/02 3:58 PM Page 381

What you need now is some code to retrieve the rows from the stored proce-
dure (see Listing 6-2).

Listing 6-2. Retrieving Rows from a Stored Procedure
1 public void ExecuteSimpleRowReturningSP() {

2 SqlConnection cnnUserMan;

3 SqlCommand cmmUser;

4 SqlDataReader drdUser;

5

6 // Instantiate and open the connection

7 cnnUserMan = new SqlConnection(STR_CONNECTION_STRING);

8 cnnUserMan.Open();

9

10 // Instantiate and initialize command

11 cmmUser = new SqlCommand(“uspGetUsers”, cnnUserMan);

12 cmmUser.CommandType = CommandType.StoredProcedure;

13

14 // Retrieve all user rows

15 drdUser = cmmUser.ExecuteReader();

16 }

The example in Listing 6-2 retrieves the rows returned from the stored proce-
dure by using the ExecuteReader method of the SqlCommand class. Please note
that this method and the related ExecuteXmlReader method are the only options
for retrieving rows as the result of a function call with the Command class.

Creating a Stored Procedure with Arguments

Sometimes it’s a good idea to create a stored procedure with arguments3 instead
of having more stored procedures essentially doing the same. It also gives you
some flexibility with regards to making minor changes to your application with-
out having to recompile one or more parts of it, because you can add to the
number of arguments and keep existing applications running smoothly by speci-
fying a default value for the new arguments.

Another reason for using arguments with stored procedures is to make the
stored procedure behave differently, depending on the input from the argu-
ments. One argument might hold the name of a table, view, or another stored
procedure to extract data from.

382

Part Two: Database Programming

3. I’m using the word argument here, but I might as well call it parameter, like T-SQL does.
However, the two words are synonymous in this case.

104ch06.qxp 3/13/02 3:58 PM Page 382

EXERCISE

1) Create a new stored procedure and save it with the name
uspGetUsersByLastName.

2) Type in the following text on Lines 10 and 11 in place of the RETURN
statement:

SELECT * FROM tblUser
WHERE LastName = @strLastName

3) Uncomment Lines 2 to 7, and insert the following text instead of Lines 3 and 4:

@strLastName varchar(50)

The stored procedure should look like the one in Figure 6-5. This stored proce-
dure will return all rows in the tblUser table where the LastName column
matches the strLastName argument.

4) Don’t forget to save your changes using Ctrl+S.

383

Chapter 6: Using Stored Procedures, Views, and Triggers

TIP In SQL Server you can use the EXECUTE sp_executesql statement and
System Stored Procedure with arguments of type ntext, nchar, or nvar-
char to execute parameterized queries. See the SQL Server Books Online
Help Documentation for more information.

Figure 6-5. The uspGetUsersByLastName stored procedure

104ch06.qxp 3/13/02 3:58 PM Page 383

Arguments in stored procedures can be either input or output. If you include
an input argument, you don’t have to specify anything after the data type, but if
you use an output argument, you need to specify the OUTPUT keyword after the
data type.

384

Part Two: Database Programming

NOTE I only cover the absolute basics of how to create a stored procedure
in this chapter. If you need more information, I suggest you look up the
CREATE PROCEDURE statement in the Books Online help application
that comes with SQL Server.

Running a Stored Procedure with Arguments from the IDE

Try and run the stored procedure you created in the last exercise and see how the
argument affects how it’s run. You can try running the stored procedure from
either the editor window or the Server Explorer window. The Run dialog box asks
you for a value for the strLastName argument. Type Doe in the text box and click
OK. Now all users with the last name of Doe are returned as the result of the
stored procedure.

Using a Stored Procedure with Arguments

The uspGetUsersByLastName stored procedure seems to work, so try and run it
from code. Listing 6-3 shows how you would do this.

Listing 6-3. Retrieving Rows from a Stored Procedure with an Input Argument
1 public void GetUsersByLastName() {

2 SqlConnection cnnUserMan;

3 SqlCommand cmmUser;

4 SqlDataReader drdUser;

5 SqlParameter prmLastName;

6

7 // Instantiate and open the connection

8 cnnUserMan = new SqlConnection(STR_CONNECTION_STRING);

9 cnnUserMan.Open();

10

11 // Instantiate and initialize command

12 cmmUser = new SqlCommand(“uspGetUsersByLastName”, cnnUserMan);

13 cmmUser.CommandType = CommandType.StoredProcedure;

14 // Instantiate, initialize and add parameter to command

15 prmLastName = cmmUser.Parameters.Add(“@strLastName”, SqlDbType.VarChar,

16 50);

104ch06.qxp 3/13/02 3:58 PM Page 384

17 // Indicate this is an input parameter

18 prmLastName.Direction = ParameterDirection.Input;

19 // Set the value of the parameter

20 prmLastName.Value = “Doe”;

21

22 // Return all users with a last name of Doe

23 drdUser = cmmUser.ExecuteReader();

24 }

In Listing 6-3, a SqlParameter object specifies the input parameter of the
stored procedure. On Lines 15 and 16, I ask the command object to create and
associate a parameter with the @strLastName argument. The value of this parame-
ter is set to “Doe”, which effectively means that only rows containing a last name
of Doe are returned.

As you can see, I have specified that the parameter is an input argument
using the ParameterDirection enum, although you don’t really have to, because
this is the default. Don’t worry too much about parameter and argument; they
are essentially the same thing.

Creating a Stored Procedure with Arguments and Return Values

So far I have created stored procedures that return a single value or a result set
(rows) and a stored procedure that takes an input argument. In many cases, this
is all you want, but sometimes it’s not enough. What if you want a value and
a result set returned at the same time? Actually, you may want several values
and a result set, but I’m sure you get the idea. In such instances, you can use
output arguments.

Actually, you can return as many different values and result sets as you want
by including multiple SELECT statements after the AS clause, but I personally
think this approach looks messy. If I return rows and one or more values, I gener-
ally use OUTPUT arguments for the values. I guess to some extent this is a matter
of preference. However, you should be aware that including an output parameter
is a faster approach than having it returned in a DataSet object, but sometimes
you might need the richer functionality of the DataSet class, once the values have
been returned.

Instead of using the following example code to return a scalar value, two
result sets, and another scalar value in that order:

...

AS

SELECT 19

SELECT * FROM tblUser

SELECT * FROM tblUserRights

SELECT 21

385

Chapter 6: Using Stored Procedures, Views, and Triggers

104ch06.qxp 3/13/02 3:58 PM Page 385

I would use something like this:

...

AS

SELECT * FROM tblUser

SELECT * FROM tblUserRights

The two return values should then be returned as OUTPUT arguments. But
it’s your call, my friend, as to which approach you prefer to use. Please note that
OUTPUT arguments can also serve as INPUT arguments by default, meaning you
can actually supply a value in the OUTPUT argument when calling the stored
procedure, and get a different value back. Just like a value passed by reference
from one procedure to another.

EXERCISE

Create a new stored procedure and save it with the name
uspGetUsersAndRights. This stored procedure should return the value 55 for the
OUTPUT argument lngNumRows, and then all rows in the tblUser table and all
rows in the tblUserRights table.

The stored procedure should look like the one in Figure 6-6.

386

Part Two: Database Programming

Figure 6-6. The uspGetUsersAndRights stored procedure

104ch06.qxp 3/13/02 3:58 PM Page 386

In the uspGetUsersAndRights stored procedure, shown in Figure 6-6, you can
see that the @lngNumRows int argument is set to the value 55 on Line 7. However,
using a default value for the argument you can achieve the same result, by chang-
ing Line 3 like this:

@lngNumRows int = 55 OUTPUT

This means that if for some reason you don’t set the value of this parameter
when calling the stored procedure or within the stored procedure itself, it’ll
return 55 as the output value. Default argument values also work for input argu-
ments, and they’re specified the same way, using the equal sign followed by the
default value, right after the data type.

Running a Stored Procedure with Arguments and
Return Values from the IDE

If you’ve created and saved the stored procedure in the previous exercise, test it
by running it. You can try running the stored procedure from either the editor
window or the Server Explorer window. The Output window, located just below
the editor window, will display the output from the stored procedure, and it
should look similar to the output in Figure 6-7.

387

Chapter 6: Using Stored Procedures, Views, and Triggers

NOTE Syntax testing of your stored procedure is done when you save it,
and I have a feeling you have already encountered this. If not, just know
that’s how it is—syntax errors are caught when you try to save your
stored procedure.

104ch06.qxp 3/13/02 3:58 PM Page 387

Using a Stored Procedure with Arguments and Return Values

Listing 6-4 shows the code to execute the uspGetUsersAndRights stored procedure
programmatically.

Listing 6-4. Retrieving Rows and Output Values from a Stored Procedure
1 public void GetUsersAndRights() {

2 SqlConnection cnnUserMan;

3 SqlCommand cmmUser;

4 SqlDataReader drdUser;

5 SqlParameter prmNumRows;

6

7 // Instantiate and open the connection

8 cnnUserMan = new SqlConnection(STR_CONNECTION_STRING);

9 cnnUserMan.Open();

10

11 // Instantiate and initialize command

12 cmmUser = new SqlCommand(“uspGetUsersAndRights”, cnnUserMan);

13 cmmUser.CommandType = CommandType.StoredProcedure;

14 // Instantiate, initialize and add parameter to command

15 prmNumRows = cmmUser.Parameters.Add(“@lngNumRows”, SqlDbType.Int);

16 // Indicate this is an output parameter

388

Part Two: Database Programming

Figure 6-7. The Output window with output from the uspGetUsersAndRights
stored procedure

104ch06.qxp 3/13/02 3:58 PM Page 388

17 prmNumRows.Direction = ParameterDirection.Output;

18 // Get first batch of rows (users)

19 drdUser = cmmUser.ExecuteReader();

20

21 // Display the last name of all user rows

22 while (drdUser.Read()) {

23 MessageBox.Show(drdUser[“LastName”].ToString());

24 }

25

26 // Get next batch of rows (user rights)

27 if (drdUser.NextResult()) {

28 // Display the id of all rights

29 while (drdUser.Read()) {

30 MessageBox.Show(drdUser[“RightsId”].ToString());

31 }

32 }

33 }

In Listing 6-4, two result sets are returned, and therefore I use the NextResult
method of the DataReader class to advance to the second result set on Line 27.
Otherwise this stored procedure works pretty much the same as one with input
parameters, although the parameter direction is specified as an output on Line 17.

Retrieving a Value Specified with RETURN

In a stored procedure, you can use the RETURN statement to return a scalar
value. However, this value cannot be retrieved using the ExecuteScalar method
of the Command class, as it would when you use the SELECT statement (refer
back to Figure 6-2). Of course there is a way of retrieving this value, which I show
you after the following exercise.

389

Chapter 6: Using Stored Procedures, Views, and Triggers

104ch06.qxp 3/13/02 3:58 PM Page 389

EXERCISE

Create a new stored procedure and save it with the name
uspGetRETURN_VALUE. This stored procedure should return the value 55 as the
RETURN_VALUE. The stored procedure should look like the one in Figure 6-8.

Listing 6-5 shows you how to retrieve the value from code.

Listing 6-5. Retrieving RETURN_VALUE from a Stored Procedure
1 public void GetRETURN_VALUE() {

2 SqlConnection cnnUserMan;

3 SqlCommand cmmUser;

4 SqlParameter prmNumRows;

5 object objResult;

6

7 // Instantiate and open the connection

8 cnnUserMan = new SqlConnection(STR_CONNECTION_STRING);

9 cnnUserMan.Open();

10

390

Part Two: Database Programming

Figure 6-8. The uspGetRETURN_VALUE stored procedure

104ch06.qxp 3/13/02 3:58 PM Page 390

11 // Instantiate and initialize command

12 cmmUser = new SqlCommand(“uspGetRETURN_VALUE”, cnnUserMan);

13 cmmUser.CommandType = CommandType.StoredProcedure;

14 // Instantiate, initialize and add parameter to command

15 prmNumRows = cmmUser.Parameters.Add(“@RETURN_VALUE”, SqlDbType.Int);

16 // Indicate this is a return value parameter

17 prmNumRows.Direction = ParameterDirection.ReturnValue;

18 // Get RETURN_VALUE like this, . . .

19 objResult = cmmUser.ExecuteScalar();

20 // or like this

21 MessageBox.Show(prmNumRows.Value.ToString());

22 }

In Listing 6-5, the ExecuteScalar method gets the RETURN_VALUE from
a stored procedure. Normally, you would use this method to return the value in
the lngResult variable, but this variable will contain the default value, 0, in this
case. However, because I have specified the Direction property of the prmNumRows
parameter with the ReturnValue member of the ParameterDirection enum,
I can simply look at the Value property of the parameter after executing the com-
mand.

Changing the Name of a Stored Procedure

If you change the name of your stored procedure in the editor window, the stored
procedure is saved with the new name when you save (Ctrl+S). However, if you’re
not using this method to copy an existing stored procedure, you should be aware
that the old stored procedure still exists. So you’ll have to delete it if you don’t
want it.

Viewing Stored Procedure Dependencies

In SQL Server Enterprise Manager, you can see what tables and other objects
your stored procedure uses or is dependent on. Open up Enterprise Manager,
expand your SQL Server, expand databases and your database, select the Stored
Procedures node, right-click the stored procedure you want to see the dependen-
cies for, and select All Task Display Dependencies from the pop-up menu. This
brings up the Dependencies dialog box, where you can see what database objects
your stored procedure depends on and vice versa. This is also called the owner-
ship chain.

391

Chapter 6: Using Stored Procedures, Views, and Triggers

104ch06.qxp 3/13/02 3:58 PM Page 391

Running Oracle Stored Procedures

Oracle stored procedures and stored functions are different from those of SQL
Server. That’s why I’ve chosen to explain the Oracle stored procedures in a sepa-
rate section. When discussing what you can do with stored procedures/functions
in Oracle compared to stored procedures in SQL Server, it’s pretty much the
same, but the implementation is quite different.

SQL Server stored procedures can return a value, just like a function in C#,
whereas in Oracle you have stored procedures and stored functions. This means
that if you want a return value that isn’t a parameter, you must use a stored
function. In this chapter, you won’t see how to create stored procedures and
stored functions in Oracle, but you can use the Oracle Database Project located
in the example code, which you can download from the Apress Web site
(http://www.apress.com) or the UserMan site (http://www.userman.dk), to create
the tables, stored procedures, views, and triggers used by the Oracle example
code. Please consult your Oracle documentation if you need more information
on how to implement stored procedures and stored functions in Oracle.

When you use ADO.NET and ADO for that matter, you can’t use the
ExecuteScalar method of the DataReader class to retrieve a return value, as
shown in Listings 6-1 and 6-5 and discussed in the “Retrieving a Value Specified
with RETURN” section. This is also true if you execute a stored function. You
need to return any return values in output parameters, just as I’ve demonstrated
in Listing 6-4. If you only need to return a value, as in Listing 6-1, which is what
the Oracle stored function in Listing 6-6 does, you can do as is shown in
Listing 6-7, which is really more or less the same code as in Listing 6-1.

Listing 6-6. A Simple Oracle Stored Function
1 CREATE OR REPLACE FUNCTION SIMPLESTOREDFUNCTION

2 RETURN NUMBER

3 AS

4 lngNumRows NUMBER;

5 BEGIN

6 SELECT COUNT(*) INTO lngNumRows FROM TBLUSER;

7 RETURN lngNumRows;

8 END SIMPLESTOREDFUNCTION;

In Listing 6-6, you can see an Oracle stored function that returns the number
of rows in the tblUser table. You can see in Listing 6-7 how you can access this
stored function and retrieve the return value.

392

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 392

Listing 6-7. Running a Simple Oracle Stored Function
1 public void ExecuteSimpleOracleSF() {

2 OleDbConnection cnnUserMan;

3 OleDbCommand cmmUser;

4 OleDbParameter prmNumRows;

5 object objReturnValue;

6

7 // Instantiate and open the connection

8 cnnUserMan = new OleDbConnection(STR_CONNECTION_STRING);

9 cnnUserMan.Open();

10

11 // Instantiate and initialize command

12 cmmUser = new OleDbCommand(“SimpleStoredFunction”, cnnUserMan);

13 cmmUser.CommandType = CommandType.StoredProcedure;

14 // Instantiate output parameter and add to parameter

15 // collection of command object

16 prmNumRows = cmmUser.CreateParameter();

17 prmNumRows.Direction = ParameterDirection.ReturnValue;

18 prmNumRows.DbType = DbType.Int64;

19 prmNumRows.Precision = 38;

20 prmNumRows.Size = 38;

21 cmmUser.Parameters.Add(prmNumRows);

22

23 // Retrieve and display value

24 objReturnValue = cmmUser.ExecuteScalar();

25 MessageBox.Show(cmmUser.Parameters[0].Value.ToString());

26 }

In Listing 6-7, I’ve actually used the ExecuteScalar method of the
DataReader class on Line 24, but if you look carefully, you’ll see that I don’t use
the value returned from the function call (objReturnValue) as in Listing 6-1.
However, I do retrieve the return value in the prmNumRows parameter, which is
instantiated, initialized, and set up as a return value on Lines 12 through 21,
and display it after executing the command on Line 25. I use ExecuteScalar
method, because it has the least overhead of any of the Execute methods of
the DataReader class. So even if you don’t use the return value from the
ExecuteScalar method, which is always null when calling an Oracle stored
function or stored procedure, you can still get the return value from the
stored function. The trick is add a parameter to the command object and make
sure you set the Direction property of the parameter object to the ReturnValue
member of the ParameterDirection enum, as is shown on Line 13.

393

Chapter 6: Using Stored Procedures, Views, and Triggers

104ch06.qxp 3/13/02 3:58 PM Page 393

If you want to use an Oracle stored procedure instead of a stored function,
like the one shown in Listing 6-8, to retrieve one or more simple data types using
output parameters, you can use the example code shown in Listing 6-9.

Listing 6-8. A Simple Oracle Stored Procedure
1 CREATE OR REPLACE PROCEDURE SIMPLESTOREDPROCEDURE

2 (lngNumRows OUT NUMBER)

3 AS

4 BEGIN

5 SELECT COUNT(*) INTO lngNumRows FROM TBLUSER;

6 END SIMPLESTOREDPROCEDURE;

The Oracle stored procedure in Listing 6-8 accepts one output parameter
(lngNumRows) and sets this parameter to the number of rows in the tblUser table
when executed. You can see how you can call this stored procedure from code, in
Listing 6-9.

Listing 6-9. Running a Simple Oracle Stored Procedure
1 public void ExecuteSimpleOracleSP() {

2 OleDbConnection cnnUserMan;

3 OleDbCommand cmmUser;

4 OleDbParameter prmNumRows;

5 object objReturnValue;

6

7 // Instantiate and open the connection

8 cnnUserMan = new OleDbConnection(STR_CONNECTION_STRING);

9 cnnUserMan.Open();

10

11 // Instantiate and initialize command

12 cmmUser = new OleDbCommand(“SimpleStoredProcedure”, cnnUserMan);

13 cmmUser.CommandType = CommandType.StoredProcedure;

14 // Instantiate output parameter and add to parameter

15 // collection of command object

16 prmNumRows = cmmUser.CreateParameter();

17 prmNumRows.Direction = ParameterDirection.Output;

18 prmNumRows.DbType = DbType.Int64;

19 prmNumRows.Precision = 38;

20 prmNumRows.Size = 38;

21 cmmUser.Parameters.Add(prmNumRows);

22

23 // Retrieve and display value

24 objReturnValue = cmmUser.ExecuteScalar();

25 MessageBox.Show(cmmUser.Parameters[0].Value.ToString());

26 }

394

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 394

In Listing 6-9, I again use the ExecuteScalar method of the DataReader class
on Line 24 for retrieving a value from a stored procedure. The example code on
Listing 6-9 really isn’t all that different from Listing 6-7, but it does show you how
to call a stored procedure instead of a stored function.

The Oracle stored procedures and stored functions, and the example code
to execute them shown so far, only deal with simple return values. If you need to
return result sets, such as in Listings 6-2, 6-3, and 6-4, you need to use cursors in
the stored procedures.4 Listing 6-10 shows a stored procedure that returns
a result set using cursors.

Listing 6-10. Oracle Stored Procedure Returning Result Set
1 CREATE OR REPLACE PACKAGE PKGTBLUSER

2 AS

3 TYPE CUR_TBLUSER IS REF CURSOR RETURN TBLUSER%ROWTYPE;

4 END PKGTBLUSER;

5

6 CREATE OR REPLACE PROCEDURE USPGETUSERSBYLASTNAME

7 (ROWS OUT PKGTBLUSER.CUR_TBLUSER, strLastName IN VARCHAR2)

8 IS

9 BEGIN

10 OPEN ROWS FOR SELECT * FROM TBLUSER

11 WHERE LASTNAME = strLastName;

12 END USPGETUSERSBYLASTNAME;

In Listing 6-10, you can see how I first create a package definition (Lines 1
through 4) in my Oracle database, and in this package I define the CUR_TBLUSER
cursor type, which is of data type REF CURSOR,5 that returns rows from the
tblUser table. The package definition only holds the type declaration, which is
used in the stored procedure. Please note that the notion of Oracle package defi-
nitions and package bodies are beyond the scope of this book, although you can
certainly use a package body instead of the stored procedure shown on Lines 6
through 12. Please see your Oracle documentation for more information
on packages.

You need to declare the cursor type in a package, because you’re using it as
the data type for one of the parameters in the USPGETUSERSBYLASTNAME stored pro-
cedure. You can’t declare a data type in the parameters section of a stored

395

Chapter 6: Using Stored Procedures, Views, and Triggers

4. You can also use cursors with a stored function, but because I won’t be using the function
return value from this point on, I’ll concentrate on using stored procedures.

5. This is short for REFERENCE CURSOR, and basically it’s used as a pointer to the original
data. Please see your Oracle documentation for more information.

104ch06.qxp 3/13/02 3:58 PM Page 395

procedure, which is why you need it declared elsewhere. If you look at the param-
eters declaration on Line 7, you can see that I need to use the full path to the data
type, PKGTBLUSER.CUR_TBLUSER. Lines 10 and 11 of Listing 6-10 is where the rows
that match the passed last name criterion, are retrieved with the CUR_TBLUSER
cursor and saved in the ROWS OUT parameter. Listing 6-11 shows you how to
retrieve the result set from the stored procedure.

Listing 6-11. Retrieving Result Set from Oracle Stored Procedure
1 public void OracleGetUsersByLastName() {

2 OleDbConnection cnnUserMan;

3 OleDbCommand cmmUser;

4 OleDbParameter prmLastName;

5 OleDbDataReader drdUser;

6

7 // Instantiate and open the connection

8 cnnUserMan = new OleDbConnection(STR_CONNECTION_STRING);

9 cnnUserMan.Open();

10

11 // Instantiate and initialize command

12 cmmUser = new OleDbCommand(“USPGETUSERSBYLASTNAME”, cnnUserMan);

13 cmmUser.CommandType = CommandType.StoredProcedure;

14 // Instantiate, initialize and add parameter to command

15 prmLastName = cmmUser.Parameters.Add(“strLastName”, OleDbType.VarChar,

16 50);

17 // Indicate this is an input parameter

18 prmLastName.Direction = ParameterDirection.Input;

19 // Set the type and value of the parameter

20 prmLastName.Value = “Doe”;

21

22 // Retrieve rows

23 drdUser = cmmUser.ExecuteReader();

24 // Loop through the returned rows

25 while (drdUser.Read()) {

26 // Display the last name of all user rows

27 MessageBox.Show(drdUser[“LastName”].ToString());

28 }

29 }

In Listing 6-11, you can see how I set up the command object on Lines 12
through 13, and then prepare the prmLastName input parameter with the value of
“Doe”. I then call the ExecuteReader method of the Command class, which
returns the DataReader with all users with a last name of Doe. If you compare the
stored procedure in Listing 6-10 and the example code in Listing 6-11, you’ll see

396

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 396

There are other ways of calling a stored procedure in your Oracle database,
such as using the ODBC {call storedprocedurename} syntax, but I’ve chosen to
show you the way that looks and feels as close to the one used for calling SQL
Server procedures.

Using Views

A view is, as the word suggests, a display of data in your database. Perhaps it
helps to think of a view as a virtual table. It can be a subset of a table or an entire
table, or it can be a subset of several joined tables. Basically, a view can represent
just about any subset of data in your database, and you can include other views
in a view. Including a view in another view is called nesting, and it can be a valu-
able way of grouping display data. However, nesting too deeply can also result in
performance problems and can certainly make it a real challenge to track down
errors. There isn’t really any magic to a view or any big secrets that I can let you
in on; it’s simply just a great tool for manipulating your data. In the rest of this
section, I am going to look at why, when, where, and how you should use a view.

that there’s a mismatch of the number of parameters. The stored procedure has
two parameters, the last name input parameter and the result set output parame-
ter. However, I only set up one parameter in Listing 6-11 and that’s the last name
input parameter. The command object takes care of returning the result set as the
return value of the function call (ExecuteReader) instead of as an output param-
eter. It almost works the same as with the SQL Server example code in Listing 6-3.

397

Chapter 6: Using Stored Procedures, Views, and Triggers

NOTE It doesn’t matter where you place the ROWS OUT parameter in the
stored procedure parameter declaration—that is, whether you place it first
as is done in Listing 6-10, or last like this:
(strLastName IN VARCHAR2, ROWS OUT PKGTBLUSER.CUR_TBLUSER)

NOTE The example code shown in this section is SQL Server only, but if
you take a look at the accompanying example code, you’ll see that it works
exactly the same with Microsoft Access queries. Only the SQL Server .NET
Data Provider has been changed to the OLE DB .NET Data Provider. The
same goes for Oracle views. See the example code, which is almost identi-
cal to the Microsoft Access code. Views aren’t supported in MySQL 3.23.45.

104ch06.qxp 3/13/02 3:58 PM Page 397

View Restrictions

A view is almost identical to a row-returning query, with just a few exceptions.
Some of the restrictions are detailed here:

• COMPUTE and COMPUTE BY clauses cannot be included in your view.

• ORDER BY clauses aren’t allowed in a view, unless you specify the TOP
clause as part of the SELECT statement. However, you can index a view
with SQL Server 2000.

• The INTO keyword cannot be used to create a new table.

• Temporary tables cannot be referenced.

There are other restrictions, so please check with your SQL Server documen-
tation and/or Help Files.

Why Use a View?

Like stored procedures, views are used for server-side processing of your data,
but whereas stored procedures mainly are used for security and performance
reasons, views are generally used to secure access to your data and to hide com-
plexity of queries that contain many joins. You may want to use a view for
a variety of reasons:

• Security: You don’t want your users to access the tables directly, and with
the help of a view you can restrict users to seeing only the parts of a table
they are allowed to see. You can restrict access to specific columns and/or
rows and thus make it easy for your users to use for their own queries.

• Encryption: You can encrypt a view so that no one can see where the
underlying data comes from. Mind you, this is an irreversible action,
meaning that the textual SQL statements that form the view can’t be
retrieved again!

• Aggregated data: Views are often used on large scale systems to provide
aggregated data.

There are other reasons for creating a view, but the mentioned reasons are
certainly two of the most common.

398

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 398

The Add Table dialog box is also shown when the View Designer is displayed.
In this dialog box, simply select the tables you want to retrieve data from and
click Add. Click Close when all the required tables have been added.

As you start selecting in the Diagram pane the columns that should be out-
put when the view is run, the SQL pane and the Grid pane change accordingly.
When you are done selecting the columns to output, you should save the view
using Ctrl+S.

Creating a View

It’s easy to create a view. If you are used to working with the SQL Server’s Server
Manager, you should check out what the Server Explorer has to offer you. Here’s
how you create a view using the UserMan database as an example:

1. Open up the Server Explorer window.

2. Expand the UserMan database on your database server.

3. Right-click the Views node and select New View.

This brings up the View Designer, which in fact is the same as the Query
Designer.

399

Chapter 6: Using Stored Procedures, Views, and Triggers

NOTE The Query Designer is described in detail in Chapter 4. Although
the View Designer and Query Designer have the same look and feel, you
cannot create views that don’t adhere to the view restrictions mentioned in
the section, “View Restrictions.”

104ch06.qxp 3/13/02 3:58 PM Page 399

EXERCISE

1) Create a new view. This view should contain the following tables: tblUser,
tblRights, and tblUserRights. The following fields should be output:
tblUser.LoginName, tblUser.FirstName, tblUser.LastName, and tblRights.Name.

2) Save the view under the name viwUserInfo. The new view should look like the
one in Figure 6-9.

Running a View from the IDE

“Running a view” is perhaps not the most appropriate phrase when you think
about it. On the other hand, the view does have to retrieve the data from all the
tables referenced in the view, so I guess this phrase will have to do.

Anyway, you can run a view from the View Designer by right-clicking a blank
area of the View Designer and selecting Run from the pop-up menu. The data
retrieved by the view is then displayed in the Results pane of the View Designer.

400

Part Two: Database Programming

Figure 6-9. The viwUserInfo view

104ch06.qxp 3/13/02 3:58 PM Page 400

EXERCISE

1) Run the viwUserInfo view from the View Designer. The Results pane now dis-
plays rows like the ones in Figure 6-10.

2) Notice that the Name field of the tblRights table seems a bit confusing,
because it doesn’t really show what Name means. So in the Grid pane, you
should add the text RightsName to the Alias column in the Name row.

3) Run the view again and notice how the new column name appears in the
Results pane.

4) Save the view with Ctrl+S.

Using a View from Code

Actually, it’s very easy to use a view in code, because a view is referenced like any
standard table in your database, which means that you can retrieve data using
a command object or a data adapter that fills a data set, and so on.

401

Chapter 6: Using Stored Procedures, Views, and Triggers

Figure 6-10. The results of running the viwUserInfo view

NOTE Please see Chapter 3B for specific information on how to manipu-
late data in a table.

Retrieving Read-Only Data from a View in Code

The simplest use of a view is for display purposes, like when you just need to dis-
play some information from one or more related tables. Because in the example
code I don’t have to worry about updates, I don’t have to set up anything particu-
lar. Listing 6-12 demonstrates how to return all rows from a view and populate
a data reader.

104ch06.qxp 3/13/02 3:58 PM Page 401

Listing 6-12. Retrieving Rows in a View
1 public void RetrieveRowsFromView() {

2 SqlConnection cnnUserMan;

3 SqlCommand cmmUser;

4 SqlDataReader drdUser;

5

6 // Instantiate and open the connection

7 cnnUserMan = new SqlConnection(STR_CONNECTION_STRING);

8 cnnUserMan.Open();

9

10 // Instantiate and initialize command

11 cmmUser = new SqlCommand(“SELECT * FROM viwUserInfo”, cnnUserMan);

12 // Get rows

13 drdUser = cmmUser.ExecuteReader();

14 }

Listing 6-12 is just like any other row-returning query, except that a view is
queried instead of a table.

Manipulating Data in a View from Code

Listing 6-12 shows you how to retrieve data from a view into a data reader, and
this means the data cannot be updated, because the data reader doesn’t allow
updates. However, it’s possible to update data in a view. The problem with this is
that various versions of SQL Server support different levels of update support for
views. If you only have one table in a view, this isn’t a problem at all; however, if
you have multiple tables in a view, only SQL Server 2000 supports updating rows
in more than one of the source tables. Besides the mentioned problems, you’ll
certainly run into even bigger problems if you need to migrate to a different
RDBMS. Generally, I would discourage updating data in views.

402

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 402

EXERCISE

1) Create a new view. This view should contain the tblUser table. The following
fields should be output: Id, FirstName, LastName, and LoginName.

2) Save the view under the name viwUser. The new view should look like the one
in Figure 6-11.

This view, which can be located on SQL Server 7.0 as well as SQL Server 2000,
can be manipulated using the code in Listing 6-13.

Listing 6-13. Manipulating Data in a View Based on a Single Table
1 public void ManipulatingDataInAViewBasedOnSingleTable() {

2 const string STR_SQL_USER_SELECT = “SELECT * FROM viwUser”;

3 const string STR_SQL_USER_DELETE = “DELETE FROM viwUser WHERE Id=@Id”;

4 const string STR_SQL_USER_INSERT = “INSERT INTO viwUser(FirstName, “ +

5 “LastName, LoginName, Logged, Description) VALUES(@FirstName, “ +

6 “@LastName, @LoginName)”;

7 const string STR_SQL_USER_UPDATE = “UPDATE viwUser SET FirstName=” +

8 “@FirstName, LastName=@LastName, LoginName=@LoginName WHERE Id=@Id”;

9

10 SqlConnection cnnUserMan;

11 SqlCommand cmmUser;

403

Chapter 6: Using Stored Procedures, Views, and Triggers

Figure 6-11. The viwUser view

104ch06.qxp 3/13/02 3:58 PM Page 403

12 SqlDataAdapter dadUser;

13 DataSet dstUser;

14

15 SqlCommand cmmUserSelect;

16 SqlCommand cmmUserDelete;

17 SqlCommand cmmUserInsert;

18 SqlCommand cmmUserUpdate;

19

20 SqlParameter prmSQLDelete, prmSQLUpdate;

21

22 // Instantiate and open the connection

23 cnnUserMan = new SqlConnection(STR_CONNECTION_STRING);

24 cnnUserMan.Open();

25

26 // Instantiate and initialize command

27 cmmUser = new SqlCommand(“SELECT * FROM viwUser”, cnnUserMan);

28 // Instantiate the commands

29 cmmUserSelect = new SqlCommand(STR_SQL_USER_SELECT, cnnUserMan);

30 cmmUserDelete = new SqlCommand(STR_SQL_USER_DELETE, cnnUserMan);

31 cmmUserInsert = new SqlCommand(STR_SQL_USER_INSERT, cnnUserMan);

32 cmmUserUpdate = new SqlCommand(STR_SQL_USER_UPDATE, cnnUserMan);

33 // Instantiate command and data set

34 cmmUser = new SqlCommand(STR_SQL_USER_SELECT, cnnUserMan);

35 dstUser = new DataSet();

36

37 dadUser = new SqlDataAdapter();

38 dadUser.SelectCommand = cmmUserSelect;

39 dadUser.InsertCommand = cmmUserInsert;

40 dadUser.DeleteCommand = cmmUserDelete;

41 dadUser.UpdateCommand = cmmUserUpdate;

42

43 // Add parameters

44 prmSQLDelete = dadUser.DeleteCommand.Parameters.Add(“@Id”, SqlDbType.Int,

45 0, “Id”);

46 prmSQLDelete.Direction = ParameterDirection.Input;

47 prmSQLDelete.SourceVersion = DataRowVersion.Original;

48

49 cmmUserUpdate.Parameters.Add(“@FirstName”, SqlDbType.VarChar, 50,

50 “FirstName”);

51 cmmUserUpdate.Parameters.Add(“@LastName”, SqlDbType.VarChar, 50,

52 “LastName”);

53 cmmUserUpdate.Parameters.Add(“@LoginName”, SqlDbType.VarChar, 50,

54 “LoginName”);

404

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 404

55 prmSQLUpdate = dadUser.UpdateCommand.Parameters.Add(“@Id”, SqlDbType.Int,

56 0, “Id”);

57 prmSQLUpdate.Direction = ParameterDirection.Input;

58 prmSQLUpdate.SourceVersion = DataRowVersion.Original;

59

60 cmmUserInsert.Parameters.Add(“@FirstName”, SqlDbType.VarChar, 50,

61 “FirstName”);

62 cmmUserInsert.Parameters.Add(“@LastName”, SqlDbType.VarChar, 50,

63 “LastName”);

64 cmmUserInsert.Parameters.Add(“@LoginName”, SqlDbType.VarChar, 50,

65 “LoginName”);

66

67 // Populate the data set from the view

68 dadUser.Fill(dstUser, “viwUser”);

69

70 // Change the last name of user in the second row

71 dstUser.Tables[“viwUser”].Rows[1][“LastName”] = “Thomsen”;

72 dstUser.Tables[“viwUser”].Rows[1][“FirstName”] = “Carsten”;

73 // Propagate changes back to the data source

74 dadUser.Update(dstUser, “viwUser”);

75 }

In Listing 6-13, a data adapter and a data set were set up to retrieve and hold
data from the viwUser view. The LastName column of row 2 is then updated as
well as the data source with the changes in the data set. This simple demonstration
was designed to show you how to work with views based on a single table.

Using Triggers

A trigger is actually a stored procedure that automatically invokes (triggers) when
a certain change is applied to your data. Triggers are the final server-side pro-
cessing functionality that I’ll discuss in this chapter. Until SQL Server 2000 was
released, triggers were a vital part of enforcing referential integrity, but with the
release of SQL Server 2000, you now have that capability built in. In the rest of
this section, I’ll show you what a trigger is and when and how you can use it, but
there is little C# programming involved with using triggers, because they operate
entirely internally, only passing status or error indicators back to the client.

Triggers respond to data modifications using INSERT, UPDATE, and DELETE
operations. Basically, you can say that a trigger helps you write less code; you can
incorporate business rules as triggers and thus prevent the inclusion of data that
is invalid because it violates your business rules.

405

Chapter 6: Using Stored Procedures, Views, and Triggers

104ch06.qxp 3/13/02 3:58 PM Page 405

SQL Server implements AFTER triggers, meaning that the trigger is invoked
after the modification has occurred. However, this doesn’t mean that a change
can’t be rolled back, because the trigger has direct access to the modified row and
as such can roll back any modification. When SQL Server 2000 was released you
also got support for the notion of BEFORE triggers, which you might know from
the Oracle RDBMS. In SQL Server 2000, they are called INSTEAD OF triggers.

406

Part Two: Database Programming

NOTE The example code shown in this section is SQL Server only, but if
you take a look at the accompanying example code, you’ll see that Oracle
after triggers work almost the same as SQL Server triggers, although the
syntax is different. Only the SQL Server .NET Data Provider has been
changed to the OLE DB .NET Data Provider. Triggers aren’t supported in
Microsoft Access or MySQL 3.23.45.

Why Use a Trigger?

Triggers are automatic, so you don’t have to apply the business logic in your code.
Here’s a perfect situation for a business rule: you need to check if a member of an
organization has paid his or her annual fee and therefore is allowed to order
material from the organization’s library. An INSERT trigger could perform the
lookup in the members table when a member tries to order material and check if
the member has paid the annual fee. This is exactly what makes a trigger more
useful than a constraint in some situations, because a trigger can access columns
in other tables, unlike a constraint, which can only access columns in the current
table or row. If your code is to handle your business rule, this would mean that
you need to look up the member’s information in the members table before you
can insert the order in the orders table. With the trigger, this lookup is done auto-
matically, and an exception is thrown if you try to insert an order for library
material if the member hasn’t paid his or her annual fee. Furthermore, you don’t
have to rely on another front-end code developer to know what the business
rules are.

In short, use a trigger for keeping all your data valid or to comply with your
business rules. Think of triggers as an extra validation tool, while at the same
time making sure you have set up referential integrity.

NOTE With SQL Server 2000, you shouldn’t use triggers for referential
integrity (see Chapter 2), because you can set that up with the Database
Designer. See Chapter 4 for information on the Database Designer.

104ch06.qxp 3/13/02 3:58 PM Page 406

Creating a Trigger

It’s quite easy to create a trigger. This can be done using the Server Manager that
comes with SQL Server, but I’ll use the Server Explorer. Here’s how you create
a trigger for the example UserMan database:

1. Open up the Server Explorer window.

2. Expand the UserMan database on your database server.

3. Expand the Tables node.

4. Right-click the table for which you want to create a trigger and select
New Trigger from the pop-up menu.

This brings up the trigger text editor, which is more or less the same editor
you use for your C# code (see Figure 6-12).

In the trigger editor, you can see that the template automatically names
a new trigger Trigger1 prefixed with the name of the table. Actually, if another
trigger with this name already exists, the new trigger is named Trigger2,
and so on.

407

Chapter 6: Using Stored Procedures, Views, and Triggers

Figure 6-12. Trigger editor with default template

104ch06.qxp 3/13/02 3:58 PM Page 407

Once you are done editing your trigger, you need to save it by pressing
Ctrl+S. As soon as you have saved it, the very first line of the stored procedure
changes. The SQL statement CREATE TRIGGER is changed so that the first line
reads as follows:

ALTER TRIGGER dbo. . . .

408

Part Two: Database Programming

NOTE The trigger editor performs syntax checking when you save your
trigger, meaning if the syntax of your trigger is invalid, you aren’t allowed
to save it to your database.

EXERCISE

1) Create a new trigger for the tblUser table and save it with the name
tblUser_Update.

2) This is an update trigger, so you need to change the text on Line 3 to FOR
UPDATE.

3) Replace the text on Line 5 and down with the following:

DECLARE @strFirstName varchar(50)
/* Get the value for the FirstName column */
SELECT @strFirstName = (SELECT FirstName FROM inserted)
/* Check if we’re updating the LastName column.
If so, make sure FirstName is not NULL */
IF UPDATE (LastName) AND @strFirstName IS NULL
BEGIN

/* Roll back update and raise exception */
ROLLBACK TRANSACTION
RAISERROR (‘You must fill in both LastName and FirstName’, 11, 1)

END

104ch06.qxp 3/13/02 3:58 PM Page 408

Now the stored procedure should look like the one in Figure 6-13.

4) Don’t forget to save the changes using Ctrl+S.

When a trigger has been saved to the database, you can locate it under the
table to which it belongs in the Server Explorer.

The tblUser_Update trigger is invoked when updating a row in the user table.
The trigger first tests to see if the LastName column is updated. If it is, then the
trigger checks to see if the FirstName column is empty, because if it is the update
is rolled back and an exception is raised. Please note that this trigger is designed
to work with only one updated or inserted row at a time. If more rows are
inserted at the same time, the trigger will have to be redesigned to accommodate
this. However, this trigger only serves as a demonstration. The functionality
of this trigger can easily be implemented using constraints, because the check
I perform is done in the same table. If I had looked up a value in a different table,
then the trigger would be your only choice.

Please see your SQL Server documentation if you need more information on
how to create triggers. Listing 6-14 shows you how to execute the new trigger,
demonstrating how to raise an exception you can catch in code.

409

Chapter 6: Using Stored Procedures, Views, and Triggers

Figure 6-13. The tblUser_Update trigger

104ch06.qxp 3/13/02 3:58 PM Page 409

Listing 6-14. Invoking Trigger and Catching Exception Raised
1 public void TestUpdateTrigger() {

2 const string STR_SQL_USER_SELECT = “SELECT * FROM tblUser”;

3 const string STR_SQL_USER_DELETE = “DELETE FROM tblUser WHERE Id=@Id”;

4 const string STR_SQL_USER_INSERT = “INSERT INTO tblUser(FirstName, “ +

5 “LastName, LoginName) VALUES(@FirstName, @LastName, @LoginName)”;

6 const string STR_SQL_USER_UPDATE = “UPDATE tblUser SET “ +

7 FirstName=@FirstName, LastName=@LastName, LoginName=@LoginName WHERE” +

8 “ Id=@Id”;

9

10 SqlConnection cnnUserMan;

11 SqlCommand cmmUser;

12 SqlDataAdapter dadUser;

13 DataSet dstUser;

14

15 SqlCommand cmmUserSelect;

16 SqlCommand cmmUserDelete;

17 SqlCommand cmmUserInsert;

18 SqlCommand cmmUserUpdate;

19

20 SqlParameter prmSQLDelete, prmSQLUpdate, prmSQLInsert;

21

22 // Instantiate and open the connection

23 cnnUserMan = new SqlConnection(STR_CONNECTION_STRING);

24 cnnUserMan.Open();

25

26 // Instantiate and initialize command

27 cmmUser = new SqlCommand(“SELECT * FROM tblUser”, cnnUserMan);

28 // Instantiate the commands

29 cmmUserSelect = new SqlCommand(STR_SQL_USER_SELECT, cnnUserMan);

30 cmmUserDelete = new SqlCommand(STR_SQL_USER_DELETE, cnnUserMan);

31 cmmUserInsert = new SqlCommand(STR_SQL_USER_INSERT, cnnUserMan);

32 cmmUserUpdate = new SqlCommand(STR_SQL_USER_UPDATE, cnnUserMan);

33 // Instantiate command and data set

34 cmmUser = new SqlCommand(STR_SQL_USER_SELECT, cnnUserMan);

35 dstUser = new DataSet();

36

37 dadUser = new SqlDataAdapter();

38 dadUser.SelectCommand = cmmUserSelect;

39 dadUser.InsertCommand = cmmUserInsert;

40 dadUser.DeleteCommand = cmmUserDelete;

41 dadUser.UpdateCommand = cmmUserUpdate;

42

410

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 410

43 // Add parameters

44 prmSQLDelete = dadUser.DeleteCommand.Parameters.Add(“@Id”, SqlDbType.Int,

45 0, “Id”);

46 prmSQLDelete.Direction = ParameterDirection.Input;

47 prmSQLDelete.SourceVersion = DataRowVersion.Original;

48

49 cmmUserUpdate.Parameters.Add(“@FirstName”, SqlDbType.VarChar, 50,

50 “FirstName”);

51 cmmUserUpdate.Parameters.Add(“@LastName”, SqlDbType.VarChar, 50,

52 “LastName”);

53 cmmUserUpdate.Parameters.Add(“@LoginName”, SqlDbType.VarChar, 50,

54 “LoginName”);

55 prmSQLUpdate = dadUser.UpdateCommand.Parameters.Add(“@Id”, SqlDbType.Int,

56 0, “Id”);

57 prmSQLUpdate.Direction = ParameterDirection.Input;

58 prmSQLUpdate.SourceVersion = DataRowVersion.Original;

59

60 cmmUserInsert.Parameters.Add(“@FirstName”, SqlDbType.VarChar, 50,

61 “FirstName”);

62 cmmUserInsert.Parameters.Add(“@LastName”, SqlDbType.VarChar, 50,

63 “LastName”);

64 cmmUserInsert.Parameters.Add(“@LoginName”, SqlDbType.VarChar, 50,

65 “LoginName”);

66

67 // Populate the data set from the view

68 dadUser.Fill(dstUser, “tblUser”);

69

70 // Change the name of user in the second row

71 dstUser.Tables[“tblUser”].Rows[1][“LastName”] = “Thomsen”;

72 dstUser.Tables[“tblUser”].Rows[1][“FirstName”] = null;

73

74 try {

75 // Propagate changes back to the data source

76 dadUser.Update(dstUser, “tblUser”);

77 }

78 catch (Exception objE) {

79 MessageBox.Show(objE.Message);

80 }

81 }

In Listing 6-14, the second row is updated, and the LastName column is set
to “Thomsen” and the FirstName to a null value. This will invoke the update
trigger that throws an exception, which is caught in code and displays the
error message.

411

Chapter 6: Using Stored Procedures, Views, and Triggers

104ch06.qxp 3/13/02 3:58 PM Page 411

This should give you a taste for using triggers, and they really aren’t that hard
to work with. Just make sure you have a well-designed database that doesn’t use
triggers for purposes that can easily be achieved by other means such as referen-
tial integrity.

Viewing Trigger Source

In SQL Server Enterprise Manager, you can see the source for your triggers. Open
up Enterprise Manager, expand your SQL Server, and expand databases and your
database. Next, select the Tables node, right-click the table you have created the
trigger for, and select All Task Manage Triggers from the pop-up menu. This
brings up the Triggers Properties dialog box, where you can see and edit the trig-
gers for the selected table.

In the Server Explorer in the VS .NET IDE, you can also view the trigger
source by expanding your database, expanding the Tables node, expanding the
table with the trigger, and double-clicking the trigger.

Summary

In this chapter, I discussed how to create various server-side objects for server-
side processing of your data. I demonstrated stored procedures, views, and
triggers, and showed you how to create, run, and execute a stored procedure
from code; how to create, run, and use a view from code, including updating the
view; and finally how to create triggers.

I went into enough details about stored procedures, views, and triggers as to
what a C# programmer needs to know, but if you are also responsible for coding
the SQL Server database and you need more information and example code,
I can certainly recommend you read this book:

• Code Centric: T-SQL Programming with Stored Procedures and Triggers, by
Garth Wells. Published by Apress, February 2001. ISBN: 1893115836.

The next chapter is about hierarchical databases. I’ll discuss how you use the
LDAP protocol to access a network directory database like the Active Directory
and you’ll see how to access information stored on Exchange Server 2000.

412

Part Two: Database Programming

104ch06.qxp 3/13/02 3:58 PM Page 412

Index

637

Symbols and Numbers
\ (backslash) in Active Directory hierar-

chies, 420
* (asterisks), advisory about, 434
< (less than) column comparison sym-

bol, role in Query Designer
join types, 323

<= (less than or equal to) column com-
parison symbol, role in Query
Designer join types, 323

<> (not equal to) column comparison
symbol, role in Query
Designer join types, 323

= (equal to) column comparison sym-
bol, role in Query Designer
join types, 323

== operator, using in ADO.NET con-
nected layer, 87

> (greater than) column comparison
symbol, role in Query
Designer join types, 323

>= (greater than or equal to) column
comparison symbol, role in
Query Designer join types,
323

1NF (First Normal Form)
achieving, 47
checking against UserMan database

schema, 53
2NF (Second Normal Form)

checking against UserMan database
schema, 53

conforming to, 48
3NF (Third Normal Form)

achieving, 48–49
checking against UserMan database

schema, 53
4NF (Fourth Normal Form)

checking against UserMan database
schema, 53

conforming to, 49–50
5NF (Fifth Normal Form)

achieving, 51
checking against UserMan database

schema, 53

7304 and 7309 error messages, trou-
bleshooting in Microsoft
Exchange Server 2000, 445

A
Aborted member of

MessageQueueTransactionSt
atus Enum, description of,
483

abstract keyword in C#, relationship to
OOP, 510–512

AcceptChanges
DataRow class property, 246
DataSet class method, 199, 215
DataTable class method, 221

AcceptChangesDuringFill DataAdapter
class property, description of,
172

access control, securing message queu-
ing with, 499–502

accessibility of databases, understand-
ing, 32

ACL (Access Control List), role in secur-
ing message queuing, 499–500

Active Directory
accessing programmatically, 415
accessing with OLE DB .NET Data

Provider, 429–436
binding to objects in, 421–422
checking for existence of properties

with, 426
editing exiting properties with, 427
examining System.DirectoryServices

namespace in, 415–417
exploring, 414–415
identifying objects in, 420
introduction to, 413
manipulating object property values

with, 426–429
manipulating user properties with,

428–429
retrieving SID for users with, 435–436
searching for objects of specific

classes in, 423–424
searching objects in, 422–425

104indx.qxp 3/13/02 3:29 PM Page 637

Active Directory (continued)
specifying information for retrieval

with OLE DB .NET data
providers, 431–432

studying DirectoryEntry class in,
417–422

updating, 429
updating cache after making changes

to, 426
validating users with, 585
Web site for, 415, 434

Active Directory class, calling for
UserMan example appli-
cation, 581

Active Directory connections
specifying domains for LDAP access,

431
specifying OLE DB providers for,

430–431
Active Directory nodes or objects,

returning nondefault proper-
ties from, 424–425

Active Directory objects
adding to UserMan example appli-

cation, 579–581
updating, 435

Add Database Reference dialog box, dis-
playing, 297–298

Add Server dialog box, displaying, 286
Add Table dialog box, displaying in

Database Designer, 307
AddNew method

of CurrencyManager class, 540
of DataView class, 240

Addr or Address ConnectionString
property value, details of,
66–67

Admin Queue, receiving message
rejection notification in,
493–494

ADName column in tblUser column for
CUser class, details of, 514, 516

ADO (Active Data Objects)
accessing ODBC data sources in, 59
explanation of, 55
resources for, 56
using with ADO.NET disconnected

layer, 276–278
versus ADO.NET, 56, 59

ADO Recordset classes, populating
DataSet objects with, 205–206

ADO.NET (Active Data Objects.NET)
versus ADO, 56, 59
resources for, 57
role of data-related namespaces in,

58–59

ADO.NET connected layer
clearing OLE DB object pooling in,

93–94
closing connections in, 86
command class methods in, 138–139
command class properties in,

129–137
comparing connection objects in,

87–88
comparing State to ConnectionState

in, 89
comparing with ReferenceEquals

method in, 88
data providers and drivers in, 59–63
data providers in, 59
data-related namespaces in, 58–59
declaring and instantiating

XmlReader objects in, 168
defining transaction boundaries in,

99
disabling ODBC connection pooling

in, 94–96
disabling OLE DB connection pool-

ing in, 93
disposing of connections in, 86–87
DNs and RDNs in, 420
drivers in, 59
executing commands in, 139–142
handling Command class exceptions

in, 143–146
handling Connection class

exceptions in, 110–123
handling connection state changes

in, 89–90
handling fill operation errors in,

184–185
handling messages in, 97–98
handling row updates in, 185–188
introduction to, 55
manipulating connection state in,

88–96
opening connections in, 85–86
pooling connections for

SqlConnection, 92–93
pooling connections in, 90–96
role of Connection class in, 63–64
role of ConnectionString property in,

65–76
role of transactions in, 98
setting command properties in,

178–184
support for manual transactions, 99
using == operator in, 87
using command objects in, 123
using CommandBuilder class in,

188–191

638

Index

104indx.qxp 3/13/02 3:29 PM Page 638

using Connection class events with,
85–86

using Connection class methods
with, 80–84

using Connection class properties
with, 76–80

using DataReader class with, 146
using Equals method in, 87–88
using members of ConnectionState

Enum with, 89
ADO.NET disconnected layer

introduction to, 193
role of data source locking in,

265–276
using classic ADO and COM Interop

with, 276–278
using cursors in, 261–265
using DataColumn class in, 249–252
using DataRelation class in,

252–261
using DataRow class in, 245–249
using DataSet class with, 193–194
using DataTable class with, 218–223
using DataView class in, 238–245
using XML with DataSet class in,

195–196
ADSID column in tblUser column for

CUser class, details of, 514
adsPath, retrieving from Active

Directory with OLE DB .NET
data providers, 432

AFTER triggers, functionality of, 406
aggregated data, using views for, 398
Alias grid pane column in Query

Designer, 326
AllowDBNull DataColumn class prop-

erty, description of, 250
AllowDelete DataView class property,

description of, 239
AllowEdit DataView class property,

description of, 239
AllowNew DataView class property,

description of, 239
Alt+F11 keyboard shortcut, accessing

Macros IDE with, 22
anomalies in normal forms, explanation

of, 46
Antechinus C# Programming Editor,

Web site for, 15
Append grid pane column in Query

Designer, 326
Application Name ConnectionString

property value, details of,
66–67

ApplicationException class, explana-
tion of, 356

ApplyDefaultSort DataView class prop-
erty, description of, 239

Apress Web site
accessing, 57
downloading UserMan classes from,

567
ArgumentException exception, 351

handling for DataReader, 160
throwing, 113
thrown by CommandTimeout prop-

erty, 143
thrown by CommandType property,

144
thrown by UpdatedRowSource prop-

erty, 145–146
ArgumentNullException exception,

351, 353
ArgumentOutOfRangeException

exception, 170, 351, 354
arguments

advisory about usage with
SqlXmlAdapter and
SqlXmlCommand classes, 617

creating stored procedures with,
382–384

using stored procedures with,
384–385

arguments and return values, running
stored procedures with,
385–387

ASP (Active Server Pages), evolution of, 5
ASP.NET data binding, maintaining state

in, 548–549
ASP.NET, explanation of, 5
ASP.NET server controls, binding to data

sources, 545–548
assemblies

functionality of, 9–11
interaction of namespaces with, 13

assembly attributes, customizing, 11
Assert Debug class method, 363
assertions

definition of, 360
using with Debug class, 362–364

asterisks (*), advisory about, 434
AttachDBFilename ConnectionString

property value, details of,
66–67

AttributeCount XmlReader class prop-
erty, 162

auditing, securing message queuing
with, 502

authenticated messages, sending,
494–495

authentication, securing message queu-
ing with, 490–495

639

Index

104indx.qxp 3/13/02 3:29 PM Page 639

AuthenticationType property of
DirectoryEntry class,
description of, 417

AUTO SELECT . . . FOR XML statement
keyword, description of, 588

AutoIncrement DataColumn class
property, description of, 250

AutoIncrementSeed DataColumn class
property, description of, 250

AutoIncrementStep DataColumn class
property, description of, 250

automatic garbage collection, role in
.NET Framework, 8

automatic transactions
explanation of, 110
use of, 586

B
backslash (\) in Active Directory hierar-

chies, 420
BaseURI XmlReader class property, 162
BEFORE triggers, functionality of, 406
Begin method of Transaction class,

description of, 109
BeginEdit DataRow class property,

description of, 246
BeginLoadData DataTable class

method, description of, 221
BeginTransaction method

exception handling, 111–112
of OdbcConnection class, 83, 101
of OleDbConnection class, 81
of SqlConnection class, 80, 100–101

BINARY BASE64 SELECT . . . FOR XML
statement keyword,
description of, 588

binding context, examining for Windows
forms, 527–528

BindingContext object, role in Windows
forms, 527–528, 538–539

Bindings property of CurrencyManager
class, description of, 540

Body setting for message queue encryp-
tion, explanation of, 497–498

BOF (Beginning-Of-File), moving cur-
sors to, 263–264

Broken member of ConnectionState
Enum, description of, 89

broken ownership chain, explanation of,
376

browsers
appearance after restarting virtual

directory in SQLXML 2.0, 602
troubleshooting in SQLXML 2.0,

609–610
browsing scope, definition of, 19

Bulk Load feature of SQLXML 2.0,
resource for, 593

C
*.cmd extension, explanation of, 303
C (country) moniker, role in LDAP syn-

tax, 421
C# keywords related to OOP, list of,

510–511
Cancel Command class method,

description of, 138
CancelCurrentEdit CurrencyManager

class method, description of,
540

CancelEdit DataRow class property,
description of, 246

CanResolveEntity XmlReader class
property, 162

Caption DataColumn class property,
description of, 250

cascades, role in referential integrity, 44
CaseSensitive property

of DataSet class, 197
of DataTable class, 219

catch blocks
role in exception handling, 344,

348–349
role in filtering exceptions, 355

ChangeDatabase method
of OleDbConnection class, 81, 83
of SqlConnection class, 80
throws exception, 114

Chaos member of IsolationLevel Enum,
description of, 102

child tables
explanation of, 39
and referential integrity, 44–45

ChildColumns DataRelation class
property, description of, 254

ChildKeyConstraint DataRelation
class property, description of,
254

ChildRelations DataTable class prop-
erty, description of, 219

Children property of DirectoryEntry
class, description of, 417

ChildTable DataRelation class property,
description of, 254

Class View in Solution Explorer, switch-
ing to, 507

classes, wrapping as components, 582
clear DataSet, explanation of, 209
clear DataTable, explanation of, 227
Clear method

of DataSet class, 199
of DataTable class, 221

640

Index

104indx.qxp 3/13/02 3:29 PM Page 640

ClearErrors DataRow class property,
description of, 246

client-side cursors, explanation of, 262
clients, creating for UserMan example

application, 582–583
close connection, explanation of, 86
Clone method

of DataSet class, 199
of DataTable class, 221
using with DataSet objects, 210
using with DataTable objects, 228

Close method
of DataReader class, 152
of DirectoryEntry class, 419
of OdbcConnection class, 83
of OleDbConnection class, 81
of SqlConnection class, 80
of XmlReader class, 164

Closed member of ConnectionState
Enum, description of, 89

CLR (common language runtime)
handling exceptions with, 359
versus JVM, 9
.NET Framework adherence to, 6–8

CLR tasks, built-in type of, 7
CLS (Common Language Specification),

.NET Framework adherence
to, 4, 6

CN (common name) moniker, role in
LDAP syntax, 420–421

code, running simple stored procedures
from, 380–382, 401–405

column and row change events, examin-
ing order of, 232–233

column attributes for tables, displaying
with Database Designer, 310

column changes, handling in DataTable
objects, 233–234

Column grid pane item in Query
Designer, 326

ColumnChanged DataTable class event,
description of, 224

ColumnChanging DataTable class
event, description of, 224

ColumnMapping DataColumn class
property, description of, 250

ColumnName DataColumn class prop-
erty, description of, 250

columns
adding to tables with Table Designer,

315–316
checking for null values in, 149–150
choosing in Data Form Wizard, 532
in database table rows, definition of,

36
role in databases, 36

sorting with Query Designer, 324
Columns DataTable class property,

description of, 219
COM components, using from within

.NET Framework, 276–278
COM Interop

resource for, 56
using with ADO.NET disconnected

layer, 276–278
COM types, generating metadata for,

277–278
Command class

methods, 129–137
properties, 138–139

command files, adding for scripts,
303–304

command mode, role in VS .NET IDE,
18–19

command object parameters, adding to
UserMan example appli-
cation, 575–576

Command objects
instantiating for UserMan database,

573–574
using in ADO.NET connected layer,

123
command properties, setting in

ADO.NET connected layer,
178–184

Command Window in VS .NET IDE,
modes for, 18–19

CommandBuilder class, using in
ADO.NET connection layer,
188–191

commands, executing in ADO.NET con-
nected layer, 139–142

CommandText property
of OdbcCommand class, 135
of OleDbCommand class, 132
of SqlCommand class, 130

CommandTimeout property
of OdbcCommand class, 135of

OleDbCommand class, 132
of SqlCommand class, 130
throws ArgumentException

exception, 143
CommandType property

of OdbcCommand class, 135–136
of OleDbCommand class, 132–133
of SqlCommand class, 130
throws ArgumentException

exception, 144
Commit method of Transaction class,

description of, 109
CommitChanges DirectoryEntry class

method, description of, 419

641

Index

104indx.qxp 3/13/02 3:29 PM Page 641

Committed member of
MessageQueueTransactionSt
atus Enum, description of,
483

common language runtime. See CLR
Common Language Specification. See

CLS
common type system. See CTS
compare connections, explanation of,

87–88
comparisons, performing in ADO.NET

connected layer, 87
components, wrapping classes as, 582
composite keys

in databases, definition of, 43
role in databases, 43

Computer Management MMC versus
Server Explorer, advisory
when creating public message
queues, 457

Compute DataTable class method,
description of, 221

concurrency violations
handling, 273–275
ignoring, 271–273
occurrence of, 269–270

Connect As dialog box, displaying, 287
Connect Timeout or Connection

Timeout ConnectionString
property value, details of,
68–69

Connecting member of
ConnectionState Enum,
description of, 89

Connection class
events, 84–85
exceptions handling, 110–123
explanation of, 63
functionality of, 63–64
methods of, 80–84
properties of, 76–79

Connection Lifetime ConnectionString
property value, details of,
68–69

Connection objects, comparing in
ADO.NET connected layer,
87–88

Connection OdbcCommand class prop-
erty, details of, 136

Connection OleDbCommand class
property, details of, 133

connection oriented programming,
explanation of, 450

connection pools
explanation of, 90–96
resetting connections in, 93

Connection property of Transaction
class, description of, 108

Connection Reset ConnectionString
property value, details of,
70–71

Connection Reset value, resetting con-
nections in connection pools
with, 93

Connection SqlCommand class prop-
erty, details of, 130

connection state, manipulating in
ADO.NET connected layer,
88–96

connection state messages, handling in
ADO.NET connected layer,
97–98

connectionless programming, expla-
nation of, 450

connections
choosing in Data Form Wizard, 530
closing in ADO.NET connection layer,

86
deleting with Server Explorer, 285
disposing in ADO.NET connected

layer, 86–87
handling with Server Explorer,

282–285
opening in ADO.NET connected

layer, 85–86
removing from pools, 92
setting with VS .NET IDE, 26

ConnectionState, comparing State to,
89

ConnectionString property
examining after setting, 76
example of white space in, 91
exception handling, 112–113
functionality of, 65
values for, 66–75

ConnectionTimeout property
exception handling, 113
of OdbcConnection class, 79
of OleDbConnection class, 78
of SqlConnection class, 77

constraints, adding with Table Designer,
319–320

Constraints DataTable class property,
description of, 219

constructors, adding to CUser class for
wrapped databases, 518–519

Contains public property and method
of BindingContext class,
description of, 538

ContinueUpdateOnError DataAdapter
class property, description of,
172

642

Index

104indx.qxp 3/13/02 3:29 PM Page 642

copy DataSet, explanation of, 209
copy DataSet structure, explanation of,

210
copy DataTable, explanation of, 227
copy DataTable rows, explanation of,

230–232
copy DataTable structure, explanation

of, 227
Copy method

of DataSet class, 200
of DataTable class, 222

CopyTo DataView class method, 240
CopyTo DirectoryEntry class method,

description of, 419
Count DataView class property,

description of, 239
Count property of CurrencyManager

class, description of, 540
Create Command File dialog box, dis-

playing, 303
Create Database dialog box, displaying,

292
Create Message Queue dialog box, dis-

playing, 290
CreateCommand method

of OdbcConnection class, 83
of OleDbConnection class, 81
of SqlConnection class, 80

CreateParameter Command class
method, description of, 138

Criteria grid pane column in Query
Designer, 326

cross-language inheritance, role in .NET
Framework, 8

Ctrl+Alt+J keyboard shortcut, opening
Object Browser with, 19

Ctrl+Alt+K keyboard shortcut,
accessing Task List window
with, 27

Ctrl+Alt+S keyboard shortcut, accessing
Server Explorer with, 281

Ctrl+S keyboard shortcut
saving changes to stored procedures

with, 381, 383
saving database diagrams with, 310
saving SQL Editor scripts with, 336
saving triggers with, 408
saving views with, 399

Ctrl+Shift+C keyboard shortcut, switch-
ing to Class View in Solution
Explorer with, 507

Ctrl+Shift+N keyboard shortcut, display-
ing New Project dialog box
with, 296

CTS (common type system), .NET
Framework adherence to, 4, 6

Culture, Processor, OS, manifest compo-
nents of assemblies,
description of, 10

CurrencyManager class methods and
properties, 540–541

CurrencyManager object, role in
Windows forms, 527,
538–544

Current Language ConnectionString
property value, details of,
70–71

Current property of CurrencyManager
class, description of, 540

cursor locations, options for, 262–263
cursor types, 263–265
cursors, using in ADO.NET discon-

nected layer, 261–265
CUser class

adding command object parameters
to, 575–576

adding constructors and destructors
to, 518–519

adding error event class to, 520–521
adding events to, 519–524
creating, 513–524
declaring event and method raising

event for, 522
declaring event delegate for, 522
displaying method receiving event in,

523
displaying private database constants

and variables for, 567–568
filling data sets in, 576
hooking event receiver with event in,

523
hooking up public properties to data

sets in, 576–578
instantiating and initializing data

adapters in, 574–575
instantiating command objects in,

573–574
instantiating DataSet objects in, 574
locating code for, 579
making connection object shared in,

570
opening database connection for,

570–572
setting maximum column length

variables for, 569–570
specifying parent classes in, 578
triggering invalid LoginName error

event in, 523

D
DAP (Directory Access Protocol), intro-

duction to, 413

643

Index

104indx.qxp 3/13/02 3:29 PM Page 643

data
displaying in databases, 397
manipulating in views from code,

402–405
data adapters, instantiating and initial-

izing in UserMan example
application, 574–575

data binding, suspending and resuming,
543–544

data-bound controls
choosing right data storage for,

549–551
communication with data sources,

528
controlling validation of edit oper-

ations in, 543–544
versus manual data hooking, 525–526
retrieving current row of data sources

for, 542
retrieving and setting current

position in data sources for,
542–543

retrieving number of rows in data
sources for, 542

using Data Form Wizard with,
528–536

using with Web forms, 545–551
using with Windows forms, 527

data-bound Web forms, creating and
updating, 551–561

data-bound Windows form controls,
creating, 544

data classes for .NET Data Providers, list
of, 63

data connections
choosing in Data Form Wizard, 530
closing in ADO.NET connection layer,

86
deleting with Server Explorer, 285
disposing in ADO.NET connected

layer, 86–87
handling with Server Explorer,

282–285
opening in ADO.NET connected

layer, 85–86
removing from pools, 92
setting with VS .NET IDE, 26

data distribution, performance
resources optimization
of, 369

Data Form Wizard
choosing data connections in, 530
choosing data display in, 533
choosing data sets in, 529
choosing tables and columns in, 532
choosing tables and views in, 531

creating data-binding forms with,
551–557

creating forms for data-bound con-
trols with, 528–536

examining code created by, 536–537
examining frmUser.cs file in, 537
examining objUser object declaration

in, 536–537
opening frmUser form with, 536
role of Dispose methods in, 536
sample form created by, 534

data integrity
in databases, explanation of, 44
role in databases, 44

Data Link Properties dialog box, display-
ing, 283–284

data providers
in ADO.NET connected layer, 59–62
role in ADO and ADO.NET, 57

data-related exceptions, handling,
357–359

data-related namespaces, role in
ADO.NET connected layer,
58–59. See also namespaces

data sets
choosing in Data Form Wizard, 529
filling in UserMan example appli-

cation, 576
Data Source ConnectionString property

value, details of, 66–67
data source locking, role in ADO.NET

disconnected layer, 265–276
data source messages, handling in

ADO.NET connection layer,
97–98

data sources
binding ASP.NET server controls to,

545–548
binding Windows form controls to,

537–538
locking data at, 266–268
retrieving and setting current

position for data-bound
controls, 542–543

retrieving number of rows for data-
bound controls, 541–542

updating from DataSet objects,
618–619

updating with DataAdapter classes,
206–209

updating with SqlXmlCommand
class, 631–635

data storage, choosing for data-bound
controls, 549–551

data wrappers
definition of, 505

644

Index

104indx.qxp 3/13/02 3:29 PM Page 644

reasons for use of, 505
DataAdapter classes

explanation of, 170–171
events, 174–175
methods of, 173–174
populating DataSet objects with,

203–206
preparing for CommandBuilder class,

189–191
properties of, 172
role in ADO.NET, 59, 170–172
setting command properties,

178–184
updating data sources with, 206–209

DataAdapter object, instantiating,
explanation of 176–178

Database ConnectionString property
value, details of, 66–67

DATABASE ConnectionString property
value, details of, 66–67

Database Designer
adding relationships with, 311
adding tables with, 309
creating tables with, 309–313
deleting and removing tables with,

309
deleting relationships with, 311
designing databases with, 306–313
displaying column attributes with,

310
editing database properties with, 311

database diagrams
changing table views for, 313
changing viewable area of, 312
creating with Database Designer,

306–313
moving view ports in, 312–313
overview of, 311–312
saving, 314
showing relationship names in, 312
sizing tables automatically in, 313
zooming in, 311–312

database objects
adding to database projects, 300–304
creating with Server Explorer, 285
identifying, 37

database projects
adding database objects to, 300–304
creating, 296–298
creating folders for, 298–299
definition of, 296
deleting folders from, 299

database properties, editing with
Database Designer, 311

Database property
of OdbcConnection class, 79

of OleDbConnection class, 78
of SqlConnection class, 77
throws exceptions, 114

Database Query database object tem-
plate, description of, 301

database tables versus message queues,
452

databases. See also SQL Server databases
benefits of, 32–33
columns in, 36
composite keys in, 43
data integrity in, 44
declarative referential integrity (DRI)

in, 45
definition of, 31–32
designing with Database Designer,

306–313
designing with Visio for Enterprise

Architect, 305
determining objects for, 37–38
displaying data in, 397
domain integrity in, 45
entity integrity in, 44
fields in, 36
foreign keys in, 42–43
hierarchical, description of, 33–34
indexes in, 43
keys in, 42
lookup keys in, 42
normalization in, 46
null values in, 36
primary keys in, 42–43
procedural referential integrity (PRI)

in, 45
reasons for use of, 32–33
records in, 36
referential integrity in, 44–45
rows in, 36
tables in, 36
wrapping, 513–524

DataBind method, role in binding
ASP.NET server controls to
data sources, 545, 547–548

DataBindings dialog box, displaying, 560
DataColumn class

properties of, 250–252
using in ADO.NET disconnected

layer, 249–252
DataColumn objects, declaring and

instantiating, 252
DataGrid Properties dialog box, display-

ing, 553
DataGridCancelCommand event proce-

dure, displaying, 554–555
DataGridEditCommand event proce-

dure, displaying, 553

645

Index

104indx.qxp 3/13/02 3:29 PM Page 645

DataGridUpdateCommand event pro-
cedure, displaying, 555–556

DataReader classes
closing, 149
exception handling, 160
handling multiple results with, 150
instantiating, 176–178
methods of, 151–160
properties of, 151
reading rows in, 148
usage of, 160–161
use of server-side cursors by, 263
using with ADO.NET connected layer,

146
DataReader objects, declaring and

instantiating, 147–148
DataRelation class

properties of, 254
using in ADO.NET disconnected

layer, 252–261
DataRelation objects

declaring and instantiating, 254–256
exceptions, 253

DataRow and DataColumn classes,
functionality of, 232–233

DataRow class, using in ADO.NET dis-
connected layer, 245–249

DataRow objects
building, 249
declaring and instantiating, 249

DataSet class
events of, 202–203
methods of, 199–201
properties of, 197–199
using with ADO.NET disconnected

layer, 193–194
DataSet Designer, creating typed data

sets with, 338–340
DataSet objects

accepting or rejecting changes to
data in, 214–218

building UserMan database schema
as, 256–261

clearing data from, 209
copying data and structures of,

209–210
detecting and handling changes to

data in, 212–214
instantiating, 203
instantiating in CUser class, 574
merging data between, 210–212
populating with DataAdapter class,

203–206
populating with SqlXmlAdapter

class, 614–616
updating data sources from, 618–619

using AcceptChanges method with,
215

using RejectChanges method with,
216–218

using with data-bound controls, 550
DataSet property

of DataRelation class, 254
of DataTable class, 219

DataSetName DataSet class property,
description of, 197

DataSource property
of OdbcConnection class, 79
of OleDbConnection class, 78
of SqlConnection class, 77

DataTable class
events of, 223–224
methods of, 220–223
properties of, 218–220
using with DataSet class, 194,

218–223
DataTable objects

building, 225–227
clearing data from, 227
copying, 227–229
copying rows in, 230–232
declaring and instantiating, 224–225
examining order of column and row

change events in, 232–233
handling column changes in,

233–234
handling row changes in, 235–236
handling row deletions in, 236–238
merging DataSet objects with, 212
populating, 227
searching and retrieving filtered data

views from, 229–230
using with CommandBuilder class,

188–189
DataType DataColumn class property,

description of, 250
DataView class

events of, 241
methods of, 240
properties of, 239
using in ADO.NET disconnected

layer, 238–245
DataView objects

declaring and instantiating, 242
searching, 243
sorting, 244–245

DataViewManager DataView class
property, description of, 239

DBCC (Database Consistency Checker),
functionality of, 371–372

DBMS (database management system),
definition of, 35

646

Index

104indx.qxp 3/13/02 3:29 PM Page 646

dbo (database owner), role in creating
SQL Server stored procedures,
376

DBObject virtual name, querying
objects with, 605–606

DBQ ConnectionString property value,
details of, 66–67

DC (domain component) moniker, role
in LDAP syntax, 421

dead-letter message queues
explanation of, 485–486
rejecting messages in, 492

debug assertions, using, 363–364
Debug class

advisory about, 364
methods and properties of, 366
using, 359–366
using error messages with, 364–366

debugger in VS .NET IDE, explanation
of, 20–21

debugging, enabling and disabling,
360–362

DefaultValue DataColumn class prop-
erty, description of, 250

DefaultView DataTable class property,
description of, 219

DefaultViewManager DataSet class
property, description of, 197

Delete DataRow class property,
description of, 246

Delete DataView class method, 240
DELETE queries, using Query Designer

for, 331–332
DeleteCommand DataAdapter class

property, description of, 172
DeleteTree DirectoryEntry class

method, description of, 419
denormalization, explanation of, 51
deployment tools, upgrades in VS .NET

IDE, 23
Depth property of DataReader class,

description of, 151
Depth XmlReader class property, 162
DesignTimeVisible property

of OdbcCommand class, 136
of OleDbCommand class, 133
of SqlCommand class, 130

destructors, adding to CUser class for
wrapped databases, 518–519

deterministic finalization versus auto-
matic garbage collection, 8

diagram pane of Query Designer, func-
tionality of, 322–325

DiffGrams
advisory about using with SQLXML

2.0 Managed classes, 619

generating and executing, 633–635
direct URL queries in SQLXML 2.0, advi-

sory about, 606
DirectoryEntries class in

System.DirectoryServices
namespace, description of, 416

DirectoryEntry class
description of, 416
methods of, 419–420
studying in Active Directory, 417–422
in System.DirectoryServices name-

space, 415
DirectorySearcher class

description of, 416
in System.DirectoryServices name-

space, 415
using with objects in Active Directory,

422–423
DisplayExpression DataTable class

property, description of, 219
Dispose methods, role in Data Form

Wizard code, 536
dispose of connection, explanation of,

86–87
distributed applications versus stand-

alone applications, 368
DLL (dynamic link library) classes ver-

sus assemblies, 10
DN (distinguished name), role in Active

Directory, 420
domain integrity in databases, expla-

nation of, 45
DRI (declarative referential integrity) in

databases, explanation of, 45
DRIVER ConnectionString property

value, details of, 66–67
driver messages, handling in ADO.NET

connection layer, 97–98
Driver OdbcConnection class property,

description of, 79
drivers. See OLE DB drivers
DSN ConnectionString property value,

details of, 68–69
dynamic cursors, explanation of, 265
Dynamic Help, role in VS .NET IDE,

21–22

E
edit mode, generating data-bound Web

forms in, 555
edit operations, controlling validation

for data-bound controls,
543–544

ELEMENTS SELECT . . . FOR XML state-
ment keyword, description of,
588

647

Index

104indx.qxp 3/13/02 3:29 PM Page 647

encapsulation, role in OOP, 510
encrypted messages, sending and

receiving, 498–499
encryption

securing message queuing with,
495–499

using views for, 398
EndCurrentEdit CurrencyManager class

method, description of, 540
EndEdit DataRow class property,

description of, 246
EndLoadData DataTable class method,

description of, 222
EnforceConstraints DataSet class prop-

erty, description of, 197
Enlist ConnectionString property value,

details of, 70–71
entity integrity

in databases, explanation of, 44
role in databases, 44

enums, tip when passing arguments to
methods and properties, 522

EOF XmlReader class property, 162
equal to (=) column comparison sym-

bol, role in Query Designer
join types, 323

Equals method, using in ADO.NET con-
nected layer, 87–88

Equals method
of OdbcConnection class, 83
of OleDbConnection class, 82
of SqlConnection class, 80

ER/Studio, Web site for, 37
ErrorCode property of OleDbException

class, details of, 117
Errors property

of OdbcException class, 121
of OleDbException class, 117

ERwin, Web site for, 37
events, adding to CUser class for

wrapped databases, 519–524
Exception class

examining, 346–348
methods of, 348

exception handlers
handling exceptions in, 348–354
using two or more in single proce-

dures, 345–346
exception handling

enabling, 345
functionality of, 343–344
role of catch blocks in, 344
role of finally blocks in, 344–345
role of try statement in, 344
types of handlers in, 345

Exception type, 350

exceptions
CLR handling of, 359
creating, 356
filtering, 354–356
handling data-related type of,

357–359
throwing, 356–357
types of, 350–351
understanding generation of, 111

Exchange Server 2000
accessing, 436–447
accessing as linked server from SQL

Server, 442–447
retrieving contacts for UserMan user

from, 438–439
reviewing content of sample folder

with, 440–441
ExecuteNonQuery method

description of, 138
usage of, 140–141, 631–632

ExecuteReader method
description of, 138
usage of, 140–141

ExecuteScalar method
description of, 138
usage of, 140, 142

ExecuteXmlReader method
description of, 139
usage of, 140, 142

Executing member of ConnectionState
Enum, description of, 89

Exists DirectoryEntry class method,
description of, 419

ExOLEDB (Microsoft OLE DB Exchange
Server Provider), using,
438–439

EXPLICIT SELECT . . . FOR XML state-
ment keyword, description of,
588

Expression DataColumn class property,
description of, 251

ExtendedProperties property
of DataColumn class, 251
of DataRelation class, 254
of DataSet class, 197
of DataTable class, 219

external transactions, role in message
queues, 480

F
Fail method, role in using error mes-

sages with Debug class, 365
FAQs (Frequently Asked Questions),

about databases, list of, 35–51
fault handlers, role in exception han-

dling, 345

648

Index

104indx.qxp 3/13/02 3:29 PM Page 648

Fetching member of ConnectionState
Enum, description of, 89

FieldCount property of DataReader
class, description of, 151

fields, role in databases, 36
FIFO (First In, First Out) principle versus

message queues, 453
FIL ConnectionString property value,

details of, 70–71
file-based XML templates, executing

from code with SQLXML 2.0,
617

File Name ConnectionString property
value, details of, 70–71

File Table manifest component of
assemblies, description of, 10

Fill method
of DataAdapter class, 173
populating DataSet objects with,

203–206
fill operation errors, handling in

ADO.NET connection layer,
184–185

FillError DataAdapter class event,
description of, 175

FillSchema DataAdapter class method,
description of, 173

filter handlers, role in exception han-
dling, 345

finally blocks, role in exception han-
dling, 344–345

finally handlers, role in exception han-
dling, 345

Find DataView class method, 240
FindRows DataView class method, 240
FirstName column in tblUser column

for CUser class, details of, 514
folders

creating for database projects,
298–299

deleting for database projects, 299
foreign keys

in databases, definition of, 42
role in databases, 42–43

ForeignKeyConstraint objects, advisory
when using DataSet objects,
215

format names, binding to existing mes-
sage queues with, 460–461

formatters, using with message queues,
464–467

forms, creating for data binding,
551–557

forms for data-bound controls, creating
with Data Form Wizard,
528–536

forward-only cursors, explanation of,
263–264

friendly names, binding to existing mes-
sage queues with, 459–460

frmUser form, opening with Data Form
Wizard, 536

frmUser.cs file, examining in Data Form
Wizard, 537

G
garbage collection, role in .NET

Framework, 7–8
Generate Dataset dialog box, displaying,

559
Get* methods of DataReader class,

152–159
GetAttribute XmlReader class method,

164
GetBaseException method

of OdbcException class, 123
of OleDbException class, 119

GetBoolean method of DataReader
class, 152

GetByte method of DataReader class,
152

GetBytes method of DataReader class,
152

GetChanges method
of DataSet class, 200
of DataTable class, 222

GetChar method of DataReader class,
153

GetChars method of DataReader class,
153

GetChildRows DataRow class property,
description of, 247

GetColumnError DataRow class prop-
erty, description of, 247

GetColumnsInError DataRow class
property, description of, 247

GetDataTypeName method of
DataReader class, 153

GetDateTime method of DataReader
class, 153

GetDecimal method of DataReader
class, 153

GetDouble method of DataReader class,
154

GetEnumerator DataView class
method, 240

GetErrors DataTable class method,
description of, 222

GetFieldType method of DataReader
class, 154

GetFillParameters DataAdapter class
method, description of, 174

649

Index

104indx.qxp 3/13/02 3:29 PM Page 649

GetFloat method of DataReader class,
154

GetGuid method of DataReader class,
154

GetHashCode method
of OdbcConnection class, 83
of SqlConnection class, 80

GetInt16 method of DataReader class,
154

GetInt32 method of DataReader class,
154

GetInt64 method of DataReader class,
155

GetName method of DataReader class,
155

GetOleDbSchemaTable
OleDbConnection class
method, details of, 82

GetOrdinal method of DataReader class,
155

GetParentRow DataRow class property,
description of, 247

GetParentRows DataRow class property,
description of, 248

GetSchemaTable method of DataReader
class, 155

GetSqlBinary method of DataReader
class, 155

GetSqlBoolean method of DataReader
class, 156

GetSqlByte method of DataReader class,
156

GetSqlDateTime method of DataReader
class, 156

GetSqlDecimal method of DataReader
class, 156

GetSqlDouble method of DataReader
class, 156

GetSqlGuid method of DataReader
class, 156

GetSqlInt16 method of DataReader
class, 157

GetSqlInt32 method of DataReader
class, 157

GetSqlInt64 method of DataReader
class, 157

GetSqlMoney method of DataReader
class, 157

GetSqlSingle method of DataReader
class, 157

GetSqlString method of DataReader
class, 157

GetSqlValue method of DataReader
class, 158

GetSqlValue method of DataReader
class, 158

GetSqlValues method of DataReader
class, 158

GetString method of DataReader class,
158

GetTimeSpan method of DataReader
class, 158

GetType method
of OdbcConnection class, 83
of OleDbConnection class, 82
of SqlConnection class, 80

GetValue method of DataReader class,
158

GetValues method of DataReader class,
159

GetXml DataSet class method,
description of, 200

GetXmlSchema DataSet class method,
description of, 200

greater than (>) column comparison
symbol, role in Query
Designer join types, 323

greater than or equal to (>=) column
comparison symbol, role in
Query Designer join types,
323

grid pane of Query Designer, functional-
ity of, 325–327

Group By grid pane column in Query
Designer, 326

guarded blocks of code, using exception
handlers with, 345

Guid property of DirectoryEntry class,
description of, 417

H
Has . . . a inheritance, explanation of,

507
HasAttributes XmlReader class prop-

erty, 162
HasChanges DataSet class method,

description of, 200
HasErrors property

of DataRow class, 245
of DataSet class, 198
of DataTable class, 219

HasValue XmlReader class property, 162
HasVersion DataRow class property,

description of, 248
Help system, integration in VS .NET IDE,

21–22
HelpLink property

of Exception class, 347
of OdbcException class, 121
of OleDbException class, 117

hierarchical databases, description of,
33–34

650

Index

104indx.qxp 3/13/02 3:29 PM Page 650

hierarchical versus relational databases,
33–35

HResult property
of OdbcException class, 121
of OleDbException class, 118

I
ICT Database Designer Tool, Web site

for, 37
Id column in tblUser column for CUser

class, details of, 514–515
Identity manifest component of assem-

blies, description of, 10
IDEs (Integrated Development

Environments). See also VS
.NET IDE

running scripts in, 302
running simple stored procedures

from, 379–380
running stored procedures with argu-

ments from, 384
running views from, 400–401

IDL (Interface Definition Language) files,
role in language compilation, 8

IDs, retrieving for message queues,
458–459, 468–469

immediate mode, role in VS .NET IDE,
18–19

implementation inheritance, role in
OOP, 509–510

ImportRow method, using with
DataTable objects, 232

ImportRow DataTable class method,
description of, 222

IMS (Information Management System),
Web site for, 34

indexes
adding with Table Designer, 317–319
in databases, definition of, 43
role in databases, 43

IndexOutOfRangeException exception,
350, 352, 355

InferXmlSchema DataSet class method,
description of, 200

InfoMessage Connection class event,
details of, 85

information hiding, role in OOP, 510
inheritance, role in OOP, 507–510
Initial Catalog ConnectionString prop-

erty value, details of, 70–71
Initial File Name ConnectionString

property value, details of,
70–71

Initialized member of
MessageQueueTransactionSt
atus Enum, description of, 483

InnerException property
of Exception class, 347
of OdbcException class, 122
of OleDbException class, 118

INSERT queries, using Query Designer
for, 333

INSERT triggers, functionality of, 406
InsertCommand DataAdapter class

property, description of, 172
integrated debugger in VS .NET IDE,

explanation of, 20–21
Integrated Security ConnectionString

property value, details of,
70–71

interface inheritance, role in OOP,
507–509

interface keyword in C#, relationship to
OOP, 511

interface modes for VS .NET IDE, expla-
nation of, 16

interfaces, creating and implementing
with OOP, 508–509

internal transactions, role in message
queues, 480–481

Interop Assemblies, location of, 278
InvalidCastException exception

handling for DataReader class, 160
thrown by XmlReader methods, 164

InvalidConstraintException exception
thrown by DataRelation class,
253

InvalidOperationException exception,
351–352

handling for DataReader class, 160
handling for XmlReader class, 170
throwing, 111–112, 115, 144–145

Invoke DirectoryEntry class method,
description of, 419

Is a . . . inheritance, explanation of, 507,
509

ISAPI extension
configuring for SQLXML 2.0,

593–598
testing for SQLXML 2.0, 599

IsClosed property of DataReader class,
description of, 151

IsDBNull method of DataReader class,
159

IsDefault XmlReader class property, 162
IsEmptyElement XmlReader class

property, 162
IsName XmlReader class method, 164
IsNameToken XmlReader class method,

164
IsNull DataRow class property,

description of, 248

651

Index

104indx.qxp 3/13/02 3:29 PM Page 651

isolation levels, determining for running
transactions, 107–108

IsolationLevel Enum, members of, 102
IsolationLevel property of Transaction

class, description of, 108
IsReadOnly public property and

method of BindingContext
class, description of, 538

IsStartElement XmlReader class
method, 164

ItemArray DataRow class property,
description of, 245

J
JIT (Just in Time) compiler, functionality

of, 9
join dependence, role in 5NF, 51
join types, changing with diagram pane

of Query Designer, 323–324
journal storage

controlling size of, 489–490
retrieving messages from, 489
using with message queues, 486–490

JScript, implications of CLR for, 6–7
JVM (Java Virtual Machine)

versus CLR, 9

K
keys

adding with Table Designer, 317–319
in databases, definition of, 42
role in databases, 42

keyset cursors, explanation of, 265

L
labels, binding to existing message

queues with, 461
LastName column in tblUser column for

CUser class, details of, 514
LDAP display names for users, Web site

for, 425
LDAP (Lightweight Directory Access

Protocol), introduction to,
413–414

LDAP query filters, Web sites for, 425
LDAP syntax, examining, 420–421
less than (<) column comparison sym-

bol, role in Query Designer
join types, 323

less than or equal to (<=) column com-
parison symbol, role in Query
Designer join types, 323

line numbers, using in VS .NET IDE text
editors, 24

link tables, using with many-to-many
relationships, 41

linked servers
accessing Microsoft Exchange Server

as, 442–447
creating, 443–444
creating views on, 447
dropping, 446
setting up, 442

List property of CurrencyManager class,
description of, 540

LoadDataRow DataTable class method,
description of, 222

local processing resources, performance
resources optimization of, 369

Locale property
of DataSet class, 198
of DataTable class, 219

LocalName XmlReader class property,
162

locking types, explanations of,
265–276

LoginName column in tblUser column
for CUser class, details of, 514,
518, 523

lookup keys, role in databases, 42
LookupNamespace XmlReader class

method, 164

M
machine names, creating message

queues with, 454–455
Macros IDE, accessing, 22–23
mail messages, sending with SMTP,

437
mail, retrieving from Active Directory

with OLE DB .NET data
providers, 432

Make Table queries, using Query
Designer for, 332

Managed Classes in SQLXML 2.0, intro-
duction to, 611

managed code
definition of, 6
role in .NET Framework, 7

manifest components of assemblies, list
of, 10

manipulation of databases, understand-
ing, 33

manual data hooking versus data-bound
controls, 525–526

manual transactions
aborting, 106
ADO.NET connection layer support

for, 99
committing, 107
summary of, 109–110

many forms, 506–507

652

Index

104indx.qxp 3/13/02 3:29 PM Page 652

many-to-many relationships, expla-
nation of, 41

mapping schema for XPath queries, dis-
playing, 629–630

Max Pool Size ConnectionString prop-
erty value, details of, 70–71

Max Pool Size value names, role in pool-
ing connections for
SqlConnection, 92

MaxLength DataColumn class property,
description of, 251

MDAC (Microsoft Data Access
Components)

2.6, required on your system, 61
2.7, distributed with VS .NET, 61

MDI (multiple document interface)
mode, explanation of, 16

merge DataSet, explanation of, 210
Merge DataSet class method,

description of, 200
merge failures, handling with DataSet

class, 202–203
MergeFailed DataSet class event, 200
Message Exception class property,

description of, 347
message formatters, setting up for mes-

sage queues, 464–467
message journaling, explanation of,

488–489
Message property

of OdbcError class, 121
of OdbcException class, 122
of OleDbError class, 117
of OleDbException class, 118

message queues
aborting transactions for, 483
assigning labels to, 458
binding to existing types of, 459–461
binding with labels, 461
clearing messages from, 472–473
committing transactions for, 482–483
controlling storage size of, 479–480
creating programmatically, 454–456
creating with Server Explorer, 289–290
deleting with Server Explorer, 290
displaying or changing properties in,

456–459
enabling authentication on, 491
enabling journaling on, 487
ending transactions for, 482–483
locating, 475–477
making transactional, 480–485
peeking at messages in, 467
picking specific messages from,

468–469
prioritizing messages in, 473–475

rejecting nonencrypted messages in,
496–497

removing, 477–479
removing messages after specified

time elapse, 493
retrieving all messages from, 470
retrieving IDs of, 458–459
retrieving messages from, 463–467
sending and retrieving messages

from, 466–467
sending messages to, 461–463
setting up message formatters for,

464–467
starting transactions for, 481
usage of, 449, 451–453
using journal storage with, 486–490
using system-generated type of,

485–490
using system journals with, 486–487
using transactions with, 484–485

message queuing
using access control with, 499–502
using auditing with, 502
using authentication with, 490–495
using encryption with, 495–499

MessageQueue class, examining, 450
MessageQueueTransaction class, using,

483–485
messages

deleting messages from, 290
enabling journaling on, 487–488
rejecting nonauthenticated type of,

491
removing from message queues,

472–473
removing from message queues after

specified time elapse, 493
retrieving from journal storage, 489
sending and retrieving asynchro-

nously, 470–472
sending and retrieving from message

queues, 466–467
metadata, generating for COM types,

277–278
Microsoft Access, advisory about,

367–368
Microsoft Data Access Components. See

MDAC.
Microsoft Exchange Server

accessing, 436–447
accessing as linked server from SQL

Server, 442–447
retrieving contacts for UserMan user

from, 438–439
reviewing content of sample folder

with, 440–441

653

Index

104indx.qxp 3/13/02 3:29 PM Page 653

Microsoft OLE DB Exchange Server
Provider (ExOLEDB), using,
438–439

Microsoft OLE DB Provider for Internet
Publishing (MSDAIPP), using,
439–441

Microsoft Visual Studio .NET documen-
tation, role in VS .NET IDE
Help system, 22

Microsoft.Data.Odbc namespace,
description of, 58

Microsoft.Jet.OLEDB.4.0 provider,
description of, 61

Min Pool Size ConnectionString
property value, details of,
72–73

Min Pool Size value names, role in pool-
ing connections for
SqlConnection, 92

MinimumCapacity DataTable class
property, description of,
220

MissingMappingAction DataAdapter
class property, description of,
172

MissingSchemaAction DataAdapter
class property, description of,
172

monikers, role in LDAP syntax,
420–421

Move* XmlReader class methods,
165–166

MoveTo DirectoryEntry class method,
description of, 419

MoveToAttribute XmlReader class
method, 165

MoveToContent XmlReader class
method, 165

MoveToElement XmlReader class
method, 165

MoveToFirstAttribute XmlReader class
method, 165

MoveToNextAttribute XmlReader class
method, 166

MSDAIPP (Microsoft OLE DB Provider
for Internet Publishing),
using, 439–441

MSDAORA provider, description of, 61
MSIL (Microsoft intermediate lan-

guage), compilation of code
to, 8

MSMQ (Microsoft Message Queue
Server), explanation of,
449–450

multivalued dependencies, role in 4NF,
49

MySQL, advisory about, 368

N
n-tier applications, relationship to

ADO.NET, 56
Name property

of DirectoryEntry class, 418
of SqlParameter class, 612
of XmlReader class, 162

named parameters, executing SQL
queries with, 623–625

named SQL transactions, beginning,
103

named transactions, tip about, 107
namespace pollution, definition of, 12
Namespace property

of DataColumn class, 251
of DataSet class, 198
of DataTable class, 220

namespaces. See also data-related
namespaces

determining for classes, 123
functionality of, 11–13
public status of, 13

NameSpaceURI XmlReader class prop-
erty, 163

NameTable XmlReader class property,
163

NativeError property
of OdbcError class, 121
of OleDbError class, 117

NativeGuid property of
DirectoryEntry class,
description of, 418

NativeObject property of
DirectoryEntry class,
description of, 418

Nested DataRelation class property,
description of, 254

nested OleDb transactions, beginning,
105–106

nesting, definition of, 397
.NET Data Providers

Connection class in, 63–64
explanation of, 62–63

.NET-enabled applications, connecting
to, 64

.NET Framework
components of, 4–9
cross-language inheritance in, 8–9
data-related namespaces in, 58
description of, 3–4
garbage collection in, 7–8
managed code in, 7
using COM components from within,

276–278

654

Index

104indx.qxp 3/13/02 3:29 PM Page 654

.NET Framework class library, contents
of, 13–14

Net or Network Library
ConnectionString property
value, details of, 72–73

Network Address ConnectionString
property value, details of,
72–73

network directory services, explanation
of, 413

network resources, performance
resources optimization of, 369

New Project dialog box, displaying, 296
New Value grid pane column in Query

Designer, 326
NewRow DataTable class method,

description of, 222
NextResult method of DataReader class,

159
nodes, separating in Active Directory

hierarchy, 420
NodeType XmlReader class property,

163
non-row returning SQL statements, exe-

cuting, 632
non-row-returning string templates,

executing, 632–633
non-row-returning templates, execut-

ing, 633
normal forms, explanation of, 46–51
normalization in databases, explanation

of, 46
not equal to (<>) column comparison

symbol, role in Query
Designer join types, 323

NotSupportedException exception,
handling for DataReader, 160

null values
advisory when using

CommandBuilder class, 190
checking in columns, 149–150
in databases, definition of, 36
role in databases, 36

NullReferenceException exception,
explanation of, 350, 352

O
O (organization) moniker, role in LDAP

syntax, 421
Object Browser, role in VS .NET IDE,

19–20
object property values, manipulating

with Active Directory, 426–429
objects

binding to in Active Directory,
421–422

checking structural integrity with
DBCC, 371–372

determining for databases, 37
querying with DBObject virtual

name, 605–606
searching in Active Directory,

422–425
objectSid retrieving from Active

Directory with OLE DB .NET
data providers, 432

objUser object declaration, examining
in Data Form Wizard,
536–537

ODBC connection pooling, disabling,
94–96

ODBC connection strings, setting up,
61–62

ODBC object pooling, clearing, 96
ODBC (Open Data Base Connectivity),

Web site for, 96
ODBC (Open Data Base Connectivity)

data sources, accessing in
ADO, 59

ODBC standard escape sequences, Web
sites for, 137

OdbcCommand class
instantiating, 126–127
properties of, 79, 135–137
usage of, 124

OdbcConnection class,
BeginTransaction method of,
101

OdbcConnection data type, pooling
connections of, 94–96

OdbcConnection exceptions, handling,
119–123

OdbcConnection managed connection,
explanation of, 63–64

OdbcDataAdapter class, setting com-
mand properties in, 182–184

OdbcDataReader class, use of, 147
OdbcError class, examining, 119–120
OdbcException class, examining,

121–123
ODBC .NET data provider, downloading,

58
OdbcTransaction classes, nesting trans-

actions with, 106
OLE DB connection pooling, disabling,

93
OLE DB drivers

in ADO.NET connected layer, 59
specifying when connecting, 61–62

OLE DB .NET data provider, accessing
Active Directory with,
429–436

655

Index

104indx.qxp 3/13/02 3:29 PM Page 655

OLE DB (Object Linking and Embedding
Data Base) specification,
explanation of, 59

OLE DB object pooling, clearing, 93–94
OLE DB providers

compatibility with OLE DB.NET
providers, 61

selecting for data sources with Server
Explorer, 283

specifying for Active Directory con-
nections, 430–431

specifying when connecting, 61–62
OLE DB.NET providers compatible with

OLE DB providers, list of, 61
OleDbCommand class

properties of, 132–134
usage of, 124

OleDbCommand object, instantiating,
124–126

OleDbConnection class
methods of, 81–84
properties of, 78

OleDbConnection data type, pooling
connections of, 93–94

OleDbConnection exceptions, throw-
ing, 115–119

OleDbConnection managed con-
nection, explanation of, 63–64

OleDbDataAdapter class, setting com-
mand properties in, 181–182

OleDbDataReader class, use of, 147
OleDbError class, examining, 116–117
OleDbException class

examining, 117–119
methods of, 119
traversing, 116

OleDbTransaction class, nesting trans-
actions with, 105–106

one-to-many relationships, explanation
of, 40

one-to-one relationships, explanation
of, 39–40

OOP (Object Oriented Programming)
C# keywords related to, 510–511
overriding properties in derived

classes with, 512–513
overview of, 506–513
resources for, 506
role of encapsulation in, 510
role of implementation inheritance

in, 509–510
role of inheritance in, 507–510
role of polymorphism in, 506–507

open connection, explanation of, 85–86
Open member of ConnectionState

Enum, description of, 89

Open method
of OdbcConnection class, 83
of OleDbConnection class, 82
of SqlConnection class, 81
throwing exceptions, 115

optimistic locking, explanation of, 265,
268–276

optimization issues, explanation of,
368–373

Option setting for message queue
encryption, explanation of,
498

Options dialog box, accessing, 24–25
Options dialog box in SQL Editor, dis-

playing, 334
Or . . . grid pane column in Query

Designer, 326
Oracle, advisory about, 368
Oracle Database Project, downloading,

392
Oracle stored functions, running,

391–392
Oracle stored procedures

retrieving result set from, 396
running, 392–397

order systems, typical objects for, 38
Ordinal DataColumn class property,

description of, 251
organization of databases, understand-

ing, 32
orphaned child tables, preventing with

referential integrity, 45
OU (organizational unit) moniker, role

in LDAP syntax, 420–421
Output grid pane column in Query

Designer, 326
override keyword in C#, relationship to

OOP, 511
ownership chain, definition of, 391

P
Packet Size ConnectionString property

value, details of, 72–73
PacketSize SqlConnection class prop-

erty, details of, 77
Page_Load event procedure, displaying,

556–557
Parameters property

of OdbcCommand class, 136
of OleDbCommand class, 133
of SqlCommand class, 130

parent classes, specifying in CUser class,
578

Parent property of DirectoryEntry class,
description of, 418

parent tables, explanation of, 39

656

Index

104indx.qxp 3/13/02 3:29 PM Page 656

ParentColumns DataRelation class
property, description of, 254

ParentKeyConstraint DataRelation
class property, description of,
254

ParentRelations DataTable class prop-
erty, description of, 220

ParentTable DataRelation class prop-
erty, description of, 254

Password column in tblUser column for
CUser class, details of, 514

Password or Pwd ConnectionString
property value, details of,
72–73

Password property of DirectoryEntry
class, description of, 418

Path property of DirectoryEntry class,
description of, 418

PE (portable executable) files, storage of
compiled code in, 8

Peek and Receive methods of
MessageQueue class, expla-
nation of, 464

Pending member of
MessageQueueTransactionSt
atus Enum, description of,
483

perfmon (Performance Monitor), func-
tionality of, 372

performance degradation, troubleshoot-
ing, 371–373

performance resources optimization
table, 369

Permissions manifest component,
description of, 10

Persist Security Info ConnectionString
property value, details of,
72–73, 76

pessimistic locking, explanation of,
266–268

polymorphism, role in OOP, 506–507
pooling connections

in ADO.NET connected layer, 90–96
of data type OdbcConnection, 94–96
of data type OleDbConnection, 93–94
of data type SqlConnection, 92–93

Pooling ConnectionString property
value, details of, 74–75

pools
removing connections from, 92
testing for, 92

populate DataSet with DataAdapter
class, 203–206

populate DataTable, explanation of, 227
Position property of CurrencyManager

class, description of, 540

positional parameters, executing SQL
queries with, 625–627

Prefix property
of DataColumn class, 251
of DataSet class, 198
of DataTable class, 220
of XmlReader class, 163

Prepare Command class method,
description of, 139

PRI (procedural referential integrity) in
databases, explanation of, 45

primary keys
in databases, definition of, 42
role in databases, 42–43
setting with Table Designer, 316–317

PrimaryKey DataTable class property,
description of, 220

privacy for message queue encryption,
explanation of, 497

private message queues
creating on local machines, 454–456
versus public message queues,

453–454
retrieving, 475–476
using with Server Explorer, 288

private variables, creating for CUser
class, 515–516

procedures, using multiple exception
handlers in, 345–346

processing resources, determining for
optimization, 370

programming concepts, review of, 4–14
properties

adding to Active Directory, 427–429
checking existence with Active

Directory, 426
displaying and changing for message

queues, 456–459
editing with Active Directory, 427
overriding in derived classes with

OOP, 512–513
using local cache for, 426

Properties property of DirectoryEntry
class, description of, 418

Property Pages dialog box in Table
Designer, displaying, 318–319

PropertyCollection class in
System.DirectoryServices
namespace, description of,
416

PropertyValueCollection class in
System.DirectoryServices
namespace, description of,
416

Provider ConnectionString property
value, details of, 74–75

657

Index

104indx.qxp 3/13/02 3:29 PM Page 657

provider messages, handling in ADO.NET
connection layer, 97–98

Provider OleDbConnection class prop-
erty, details of, 78

providers. See OLE DB providers
public message queues

creating, 455
versus private message queues,

453–454
retrieving, 476–477
using with Server Explorer, 288

public properties, hooking up to data
sets in UserMan example
application, 576–578

public status of namespaces, advisory
about, 13

PWD ConnectionString property value,
details of, 72–73

Q
queries

executing from browsers using file-
based templates, 606–610

executing with Query Designer, 330
Query Analyzer, functionality of, 372
Query Builder, accessing, 335
Query Designer

changing join types with, 323–324
creating select query with, 321
creating SQL statements with, 325
diagram pane in, 322–325
executing queries with, 330
grid pane in, 325–327
grouping and sorting output in,

324–325
hiding and showing panes in, 328–329
removing tables with, 323
Results pane in, 328
sorting columns with, 324
SQL pane in, 327–328
using DELETE queries with, 331–332
using INSERT queries with, 333
using Make Table queries with, 332
using SELECT queries with, 331
using UPDATE queries with, 331
using Verify SQL Syntax facility in,

329–330
Query Editor, producing SQL statements

with, 335–336
query types, examining in Query

Designer, 330–334
QuoteChar XmlReader class property,

163

R
RAW SELECT . . . FOR XML statement

keyword, description of, 588

RCWs (Runtime Callable Wrappers),
using with COM types, 277

RDBMSes (relational database manage-
ment systems), planning
move to, 375

RDN (relative distinguished name), role
in Active Directory, 420

Read method of DataReader class, 159
Read method of XmlReader class, 166
read-only data, retrieving from views in

code, 401–402
read-only mode, generating data-bound

Web forms in, 554
Read* XmlReader class methods,

166–167
ReadAttributeValue method of

XmlReader class, 166
ReadCommitted member of

IsolationLevel Enum,
description of, 102

ReadElementString method of
XmlReader class, 166

ReadEndElement method of
XmlReader class, 166

ReadInnerXml method of XmlReader
class, 166

ReadOnly DataColumn class property,
description of, 251

ReadOuterXml method of XmlReader
class, 167

ReadStartElement method of
XmlReader class, 167

ReadState XmlReader class property,
163

ReadString method of XmlReader class,
167

ReadUncommitted member of
IsolationLevel Enum,
description of, 102

ReadXml DataSet class method,
description of, 200

ReadXmlSchema DataSet class method,
description of, 201

Receive and Peek methods of
MessageQueue class, expla-
nation of, 464

records, role in databases, 36
RecordsAffected property of DataReader

class, description of, 151
Recordset class versus DataSet class,

194–196
reference points, saving in transactions,

104–105
Referenced Assemblies manifest com-

ponent, description of, 10
ReferenceEquals method, comparing

with, 88

658

Index

104indx.qxp 3/13/02 3:29 PM Page 658

referential integrity in databases, expla-
nation of, 44–45

Refresh CurrencyManager class
method, description of, 541

RefreshCache DirectoryEntry class
method, description of, 419

Register SQL Server Instance dialog box,
displaying, 291

Registry, explaining absence of, 4
RejectChanges method

of DataRow class, 248
of DataSet class, 201
of DataTable class, 223
using with DataSet objects, 216–218

relational database design, explanation
of, 37–38

Relational Database Model, explanation
of, 36

relational databases, key aspects of,
35–51

relational versus hierarchical databases,
33–35

RelationName DataRelation class prop-
erty, description of, 254

Relations DataSet class property,
description of, 199

relationship names, showing in data-
base diagrams, 312

relationships
adding with Database Designer, 311
creating with Table Designer, 320
deleting with Database Designer, 311
explanation of, 39

ReleaseObjectPool method
clearing ODBC object pooling with, 96
clearing OLE DB object pooling with,

93–94
of OdbcConnection class, 84
of OleDbConnection class, 82

RemoveAt CurrencyManager class
method, description of, 541

Rename DirectoryEntry class method,
description of, 420

RepeatableRead member of
IsolationLevel Enum,
description of, 102

Reset method
of DataSet class, 201
of DataTable class, 223

ResetCommandTimeout Command
class method, description of,
139

ResolveEntity method of XmlReader
class, 167

result sets
appending to streams, 621–622
representation in ADO.NET, 261

retrieving from Oracle stored proce-
dures, 396

retrieving in XmlReader class, 620
saving to streams, 620–621

ResultPropertyCollection class in
System.DirectoryServices
namespace, description of,
416

ResultPropertyValueCollection class in
System.DirectoryServices
namespace, description of,
416

Results pane of Query Designer, func-
tionality of, 328

ResumeBinding CurrencyManager
class method, description of,
541

return values and arguments, running
stored procedures with,
385–387

RETURN_VALUE, retrieving from stored
procedures, 390–391

Rollback method
role in aborting manual transactions,

106
of Transaction class, 109

row and column change events, examin-
ing order of, 232–233

row changes, handling in DataTable
objects, 235–236

row deletions, handling in DataTable
objects, 236–238

row updates, handling in ADO.NET con-
nection layer, 185–188

RowChanged DataTable class event,
description of, 224

RowChanging DataTable class event,
description of, 224

RowDeleted DataTable class event,
description of, 224

RowDeleting DataTable class event,
description of, 224

RowError DataRow class property,
description of, 245

RowFilter DataView class property,
description of, 239

rows
appending to tables with INSERT

Results queries, 333
copying in DataTable objects,

230–232
reading in XmlReader class, 168–169
retrieving from stored procedures,

382
retrieving from stored procedures

with input arguments,
384–385

659

Index

104indx.qxp 3/13/02 3:29 PM Page 659

rows (continued)
retrieving in views, 402
role in databases, 36
in database tables, definition of, 36

Rows DataTable class property,
description of, 220

rows of data sources
navigating in bound controls, 543
retrieving for data-bound controls, 542
RowState DataRow class property,

description of, 245
RowStateFilter DataView class property,

description of, 239
RowUpdated DataAdapter class event,

description of, 175
RowUpdating DataAdapter class event,

description of, 175
Run On dialog box, displaying, 302
running transactions, determining

isolation levels of,
107–108

S
sa (system administrator), role in SQL

Servers, 293
samAccountName retrieving from

Active Directory with OLE DB
.NET data providers, 432

Save method of Transaction class,
description of, 109

save points, using with SqlTransaction
class, 104–105

scalar values, returning with stored pro-
cedures, 389–391

SchemaClassName property of
DirectoryEntry class,
description of, 418

SchemaEntry property of
DirectoryEntry class,
description of, 418

SchemaNameCollection class in
System.DirectoryServices
namespace, description of,
416

SchemaPath property, role in executing
XPath queries, 630

script editing with SQL Editor, perform-
ing, 334–337

script templates, editing and using with
SQL Editor, 336

scripts
placing in command files, 303–304
running in IDEs, 302
saving with SQL Editor, 336

sealed keyword in C#, relationship to
OOP, 511

search Active Directory, explanation of,
422–424

search DataTable, explanation of,
229–230

search DataView, explanation of, 243
SearchResult class in

System.DirectoryServices
namespace, description of,
416

SearchResultCollection class in
System.DirectoryServices
namespace, description of,
416

security, using views for, 398
Select DataTable class method,

description of, 223
SELECT . . . FOR XML AUTO, ELE-

MENTS output, 589–590
Select method, finding rows in

DataTable objects with,
229–230

SELECT queries, using Query Designer
for, 331

SelectCommand DataAdapter class
property, description of, 172

SelectCommand property, setting, 178,
189

SELECT . . . FOR XML AUTO, XMLDATA
output, 590–591

SELECT . . . FOR XML RAW output, 590
SELECT . . . FOR XML statement key-

words, list of, 588–589
Serializable member of IsolationLevel

Enum, description of, 102
Server ConnectionString property

value, details of, 74–75
SERVER ConnectionString property

value, details of, 74–75
Server Explorer

adding servers with, 286–287
Connect As dialog box options in,

287
connecting servers as different users

with, 286–287
creating database objects with, 285
creating SQL Server databases with,

292–295
creating triggers with, 407–412
deleting and dropping SQL Server

databases with, 295
deleting data connections with, 285
deleting servers with, 295–296
explanation of, 25–26
handling data connections with,

282–285
introduction to, 281–282

660

Index

104indx.qxp 3/13/02 3:29 PM Page 660

registering SQL Server instances with,
291

selecting message queues in, 478
unregistering SQL Server instances

with, 292
using message queues with, 288–290
using server resources with, 288–295
using with SQL Server databases,

290–295
server processing resources, perfor-

mance resources
optimization of, 369

server resources, using with Server
Explorer, 288–295

server-side cursors, explanation of,
262–263

server-side processing, definition of, 367
servers

adding with Server Explorer,
286–287

connecting as different users with
Server Explorer, 286–287

deleting with Server Explorer,
295–296

ServerVersion property
of OdbcConnection class, 79
of OleDbConnection class, 78
of SqlConnection class, 77

SET ANSI_DEFAULTS T-SQL statement,
role in RDBMS migration
from SQL Server, 375

set, property arguments, checking
length of, in CUser class, 517

SetColumnError DataRow class prop-
erty, description of, 248

SetParentRow DataRow class property,
description of, 248

SetPermissions method, using with
access control for message
queues, 501–502

SimpleStoredProcedure, displaying out-
put from, 380

Skip XmlReader class method, 167
SMTP (Simple Mail Transfer Protocol),

sending mail messages with,
437

SOAP (Simple Object Access Protocol),
based on XML, 5
uses HTTP protocol, 5
XML Web services based on, 5

Solution Explorer
finding database projects in, 298–299
locating Show All Files button in, 535
running SQL scripts with, 336–337
switching to Class View in, 507

sort DataView, explanation of, 244–245

Sort DataView class property,
description of, 239

Sort Order grid pane column in Query
Designer, 326

Sort Type grid pane column in Query
Designer, 326

SortOption class in
System.DirectoryServices
namespace, description of,
416

Source property
of Exception class, 347
of OdbcError class, 121
of OdbcException class, 122
of OleDbError class, 117
of OleDbException class, 118

sp_addlinkedserver system stored
procedure, resource for,
442–443

sp_dropserver system stored proce-
dures, resource for, 446

SQL Dialect, Web site for, 434
SQL Editor

editing and using script templates
with, 336

running SQL scripts with, 336–337
saving scripts with, 336
using, 334–337

SQL pane of Query Designer, functional-
ity of, 327–328

SQL queries
executing with named parameters,

623–625
executing with positional parame-

ters, 625–627
executing with SqlXmlCommand

class, 620–624
SQL Script database object template,

description of, 301
SQL scripts, running with SQL Editor,

336–337
SQL Server 7.0, advisory about, 367
SQL Server databases. See also databases

accessing Microsoft Server as linked
server from, 442–447

creating nondefault values and prop-
erties for, 294

creating simple stored procedures
with, 376

creating with Server Explorer,
292–295

deleting and dropping with Server
Explorer, 295

functionality of stored procedures in,
392

resources for, 371

661

Index

104indx.qxp 3/13/02 3:29 PM Page 661

SQL Server databases (continued)
retrieving from, with SqlXmlAdapter

class, 614–619
updating with SqlXmlAdapter class,

618–619
using Server Explorer with, 290–295,

290–295
using stored procedures with,

375–379
SQL Server Enterprise Manager, viewing

stored procedure dependen-
cies with, 391

SQL Server instances
registering with Server Explorer, 291
unregistering with Server Explorer,

292
SQL Server .NET Data Provider versus

SQLXML 2.0 Managed classes,
611

SQL standards, Web site for, 327
SQL statements

creating in SQL pane of Query
Designer, 325

executing non-row-returning type of,
632

producing with Query Editor,
335–336

SQL syntax, verifying with Query
Designer, 329–330

SqlCommand class
properties of, 130–131
usage of, 124

SqlCommand object, instantiating,
128–129

SqlCommandBuilder class, using, 190
SqlConnection class, BeginTransaction

method for, 100–101
SqlConnection class exceptions

catching, 357
handling, 110–115
methods of, 80–81
properties of, 77

SqlConnection data type, pooling con-
nections for, 92–93

SqlConnection managed connection,
explanation of, 63–64

SqlDataAdapter class
instantiating, 176–178
setting command properties of,

179–180
SqlDataReader class and object, instan-

tiating, 147–148
SqlInfoMessageEventArgs class

argument, 97–98
Message property, 98
Source property, 98

SQLOLEDB provider, description of, 61
SQLState property

of OdbcError class, 121
of OleDbError class, 117

SqlTransaction class
nesting transactions with, 104–105
using transaction save points with,

104–105
SQLXML 2.0

advisory about direct URL queries in,
606

advisory about using template string
method with, 617

configuring ISAPI extension for,
593–598

executing directory queries from
browser in, 601–606

executing file-based XML templates
from code in, 617

executing queries from browsers with
file-based templates, 606–610

installing, 592–593
introduction to, 591
introduction to Managed Classes in,

611
querying tables in, 601–603
sample connection string in, 614
sample template query with parame-

ters in, 608–609
SQLXML 2.0 Managed Classes, using

DiffGrams and UpdateGrams
with, 619

SqlXmlAdapter class
examining, 612–619
retrieving SQL Server data with,

614–619
updating SQL Server data with,

618–619
SqlXmlAdapter objects, instantiating,

613–614
SqlXmlCommand class

executing SQL queries with, 620–623
introduction to, 619
populating DataSets with, 615–616
updating data sources with, 631–635

SqlXmlCommand objects, instantiating,
619

SqlXmlParameter class, examining, 612
StackTrace property

of Exception class, 347
of OdbcException class, 122
of OleDbException class, 118

stand-alone applications versus distrib-
uted applications, 368

standard HTML programming model for
ASP.NET, explanation of, 5

662

Index

104indx.qxp 3/13/02 3:29 PM Page 662

State, comparing to ConnectionState, 89
State property

of OdbcConnection class, 79
of OleDbConnection class, 78
of SqlConnection class, 77

StateChange Connection class event,
details of, 85

static cursors, explanation of, 264
storage capability of databases, under-

standing, 32
Stored Procedure Script database object

template, description of, 301
stored procedures, 372–373

creating, 375–379
creating with arguments, 382–384
creating with arguments and return

values, 385–387
introduction to, 373
reasons for use of, 374–375
renaming, 391
retrieving rows and output values

from, 388–389
retrieving rows from, 382
running from code, 380–382
running from IDE, 379–380
running with arguments from IDE, 384
running with Oracle, 392–397
syntax testing of, 387
using RETURN statement with,

389–391
using with arguments, 384–385
viewing dependencies for, 391

streams
appending result sets to, 621–622
saving result sets to, 620–621

strong typing versus weak typing, exam-
ple of, 196

SuspendBinding CurrencyManager class
method, description of, 541

syntax for creating namespaces, 12
system-generated message queues,

examining, 485–490
system journals, using with message

queues, 486–487
system message queues, using with

Server Explorer, 288
System .NET root namespace, expla-

nation of, 11–12
System Stored Procedures. See stored

procedures, 372–373
System* data-related namespaces, list

of, 58
System.Data namespace, description of,

58
System.Data.OleDb namespace,

description of, 58

System.Data.SqlClient namespace,
description of, 58

System.DirectoryServices namespace,
examining in Active Directory,
415–417

SystemException exception type, 350

T
*.tlb (type libraries), role in generating

metadata for COM types, 277
T-SQL, adding linked Microsoft

Exchange Server with,
442–443

tabbed documents mode, explanation
of, 16

Table Designer
adding columns to tables with,

315–316
adding constraints with, 319–320
adding indexes and keys with,

317–319
creating relationships with, 320
creating tables with, 314–315
setting primary keys with, 316–317
using triggers with, 320

Table grid pane column in Query
Designer, 326

Table property
of DataColumn class, 251
of DataRow class property,

description of, 245
of DataView class, 239

Table Script database object template,
description of, 301

table views, changing for database dia-
grams, 313

TableMappings DataAdapter class prop-
erty, description of, 172

TableName DataTable class property,
description of, 220

tables
adding and showing in tables with

Query Designer, 322
adding with Database Designer, 309
creating with Database Designer,

309–313
creating with Table Designer, 314–315
deleting and removing with Database

Designer, 309
in databases, definition of, 36
querying with SQLXML 2.0, 601–603
removing with diagram pane of

Query Designer, 323
role in databases, 36
sizing automatically in database dia-

grams, 313

663

Index

104indx.qxp 3/13/02 3:29 PM Page 663

tables and columns, choosing in Data
Form Wizard, 532

tables and views, choosing in Data Form
Wizard, 531

Tables DataSet class property,
description of, 199

TargetSite Exception class property,
description of, 347

TargetSite property of OdbcException
class, details of, 122

TargetSite property of OleDbException
class, details of, 118

Task List in VS .NET IDE, explanation of,
27–28

tblLog table in UserMan database
schema, explanation of, 52

tblRights table in UserMan database
schema, explanation of, 52

tblUser columns for CUser class, list of,
514

tblUser table in UserMan database
schema, explanation of, 52

tblUser_Update trigger, displaying, 409
tblUserRights table in UserMan data-

base schema, explanation of,
52

TCP/IP (Transmission Control
Protocol/Internet Protocol),
role in connectionless and
connection oriented pro-
gramming, 450

TDS (tabular data stream) protocol, role
in .NET Data Provider for SQL
Server, 59

template string method, advisory in
SQLXML 2.0, 617

templates
advisory about, 606
executing as string templates,

632–633
specifying with SQLXML 2.0, 602–603

text editors
using in VS .NET IDE, 24
using SQL Editor, 334–337

throw statements, using, 356–357
Toolbox in VS .NET IDE, explanation of,

27
tools, modifying in VS .NET IDE, 24–25
ToString method

of OdbcException class, 123
of OdbcConnection class, 84
of OleDbConnection class, 82
of OleDbException class, 119
of SqlConnection class, 81

transaction boundaries, defining in
ADO.NET connected layer, 99

Transaction class
methods of, 109
properties of, 108

Transaction property
of OdbcCommand class, 136
of OleDbCommand class, 133
of SqlCommand class, 131

transaction save points, using with
SqlTransaction class, 104–105

transactional message queues, creating,
481

transactional private message queues,
creating, 456

transactions
aborting for message queues, 483
beginning with nondefault isolation

levels, 102
committing for message queues,

482–483
ending for message queues, 482–483
functionality of, 98
locking data at data sources with,

266–268
nesting with OdbcTransaction class,

106
nesting with OleDbTransaction class,

105–106
nesting with SqlTransaction class,

104–105
saving reference points in, 104–105
starting for message queues, 481
using with message queues,

484–485
trigger and catch concurrency violation,

example of, 269–270
Trigger Script database object template,

description of, 301
triggers

advisory about, 406
creating, 407–412
introduction to, 403–404
invoking and catching exception

raised example, 410–411
locating after saving, 409
reasons for use of, 406
using with Table Designer, 320
viewing source for, 412

Trusted_Connection ConnectionString
property value, details of,
74–75

try blocks, role in filtering exceptions,
355

try statements, role in exception han-
dling, 344

Type Reference manifest component,
description of, 10

664

Index

104indx.qxp 3/13/02 3:29 PM Page 664

typed data sets
in ADO.NET disconnected layer, 196
creating with DataSet Designer,

338–340
creating with XML Designer, 338

U
UID ConnectionString property value,

details of, 74–75
Unique DataColumn class property,

description of, 251
unmanaged code, definition of, 6
Unspecified member of IsolationLevel

Enum, description of, 102
untyped data sets in ADO.NET discon-

nected layer, explanation of,
196

update data source using DataAdapter
class, 206–209

Update DataAdapter class method,
description of, 174

UPDATE queries, using Query Designer
for, 331

UpdateCommand DataAdapter class
property, description of, 172

UpdatedRowSource property
of OdbcCommand class, 137
of OleDbCommand class, 134
of SqlCommand class, 131
throws ArgumentException

exception, 145–146
UpdateGrams, advisory about using

with SQLXML 2.0 Managed
classes, 619

URLs (uniform resource locators), advi-
sory about querying with, 606

UsePropertyCache property of
DirectoryEntry class,
description of, 418

User ID ConnectionString property
value, details of, 74–75

user permissions, setting programmati-
cally, 501

user properties
adding to Active Directory, 428
editing with Active Directory, 427
manipulating with Active Directory,

428–429
UserMan Properties dialog box, display-

ing, 433–434
UserMan database schema, 51–52
UserMan example application

adding Active Directory objects to,
579–581

adding command object parameters
to, 575–576

building as DataSet object, 256–261
calling Active Directory class in, 581
conformity to 5NF, 53
creating additional objects for,

581–582
creating select query in, 321
creating stored procedures for

accessing database tables in,
584

creating triggers with, 407–412
creating views in, 399–400
creating Web client for, 583
creating Windows client for, 582
downloading classes for, 567
exception handling in, 586
exposing functionality with Web ser-

vices, 585–586
filling data sets in, 576
hooking up public properties to data

sets in, 576–578
identifying information and objects

in, 565–566
instantiating and initializing data

adapters in, 574–575
instantiating command objects in,

573–574
instantiating DataSet objects in, 574
introduction to, 51–53
logging to event log in, 583–584
opening and closing connection to,

570–573
optimizing, 583–586
passing connection object to various

classes in, 584
retrieving contacts from Exchange

Server 2000, 438–439
schema for, 51–52
securing Password column in user

table of, 583
setting up database security for,

584–585
setting up triggers for enforcing busi-

ness rules in, 584
specifying parent classes in, 578
using constants for table and column

names in, 585
using local transactions with, 585
Web site for, 57

Username property of DirectoryEntry
class, description of, 418

userPrincipalName retrieving from
Active Directory with
OLE DB .NET data providers,
432

users, retrieving SID with Active
Directory, 435–436

665

Index

104indx.qxp 3/13/02 3:29 PM Page 665

using statement
importing namespaces into classes

with, 58
uspGetRETURN_VALUE stored proce-

dure, displaying, 390
uspGetUsers stored procedures, display-

ing, 381
uspGetUsersAndRights stored proce-

dure, displaying, 386–388
uspGetUsersByLastName stored proce-

dure, displaying, 383

V
Value property

of SqlParameter class, 612
of XmlReader class, 163

VBA (Visual Basic for Applications),
implications of CLR for, 7

VBScript, implications of CLR for, 7
view ports, moving in database dia-

grams, 312–313
View Script database object template,

description of, 301
views

choosing in Data Form Wizard, 531
creating, 399–400
creating on linked servers, 447
introduction to, 397
manipulating data from code in,

402–405
reasons for use of, 398
restrictions of, 398
running from IDE, 400–401
saving, 399
using from code, 401–405

virtual directory in SQLXML 2.0
managing with SQLXML 2.0, 593–599
restarting after making changes to,

600
virtual keyword in C#, relationship to

OOP, 511
Virtual Name Configuration dialog box,

displaying in SQLXML 2.0, 605
Visible Analyst DB Engineer, Web site

for, 37
Visio for Enterprise Architect, designing

databases with, 305
viwUser view, displaying, 403
VS .NET IDE (Integrated Development

Environment). See also IDEs
built-in Object Browser for, 19–20
built-in Web browser functionality

for, 17
Command Window modes for, 18–19
integrated debugger in, 20–21
integrated Help system in, 21–22

interface modes for, 16
macros in, 22–23
modifying, 24–25
Server Explorer in, 25–26
setting up data connections with, 26
sharing with all .NET languages, 13
Task List in, 27–28
text editors in, 24
Toolbox in, 27
upgraded deployment tools in, 23

VSA (Visual Studio for Applications),
implications of CLR for, 7

W
weak typing versus strong typing, exam-

ple of, 196
Web browser functionality feature of VS

.NET IDE, explanation of, 17
Web clients, creating for UserMan exam-

ple application, 583
Web Forms programming model for

ASP.NET, explanation of, 5
Web forms, using data-bound controls

with, 545–551
Web services, exposing functionality

with, 585–586
Web sites

Active Directory, 415, 434
Antechinus C# Programming Editor,

15
Apress, 57
DiffGrams, 633
IMS (Information Management

System), 34
LDAP display names for users, 425
LDAP query filters, 425
modeling relational databases, 37
ODBC (Open Data Base

Connectivity), 96
ODBC standard escape sequences,

137
Oracle Database Project, 392
SQL Dialect, 434
SQL standards, 327
SQLXML 2.0 download, 592
UserMan, 57
UserMan Web client, 583
UserMan Windows client, 582
for VS .NET IDE Command Window,

19
X.500 directory standard, 413
XPath Web site, 605

Web user controls, data binding in,
557–561

Windows form controls, binding to data
sources, 537–538

666

Index

104indx.qxp 3/13/02 3:29 PM Page 666

Windows forms
creating data-bound controls for, 544
examining binding context for,

527–528
role of BindingContext object in,

527, 538–539
role of CurrencyManager object in,

527
using data-bound controls with, 527

Workstation ID ConnectionString prop-
erty value, details of, 74–75

WorkstationId SqlConnection class
property, details of, 77

wrappers
definition of, 505
reasons for use of, 505

wrapping databases, 513–524
WriteXml DataSet class method,

description of, 201
WriteXmlSchema DataSet class

method, description of, 201

X
X.500 directory standard, Web site for,

413
XML Designer, creating typed data sets

with, 338
XML documents, writing to disk, 617
XML (eXtensible Markup Language),

using with DataSet class in
ADO.NET disconnected layer,
195–196

XML Parser feature of SQLXML 2.0,
resource for, 593

XML templates, sample for updating
data sources, 632

XML Web services programming
model for ASP.NET, expla-
nation of, 5

XMLDATA SELECT . . . FOR XML state-
ment keyword, description of,
588

XmlException, handling for XmlReader
class, 170

XmlLang XmlReader class property,
163

XmlNodeReader class, usage of, 161
XmlReader class

closing, 169
exception handling, 170
methods of, 164–167
properties of, 161–163
reading rows in, 168–169
retrieving result sets in, 620
usage of, 161–168

XmlReader objects, declaring and
instantiating, 168

XmlSpace XmlReader class property,
163

XmlTextReader class, usage of, 161
XmlValidatingReader class, usage of,

161
XPath queries, executing, 627–631
XPath, querying database tables with,

603
XPath Web site, 605
.xsd files, creation by Data Form Wizard,

534

667

Index

104indx.qxp 3/13/02 3:29 PM Page 667

