Apress™

Books for Professionals by Professionals™

Herding Cats:
A Primer for Programmers
Who Lead Programmers

by J. Hank Rainwater
ISBN # 1-59059-017-1

Copyright ©2001 Apress, L.P., 2560 Ninth St., Suite 219, Berkeley, CA 94710. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic or other record, without the prior agreement and written permission of the publisher.

Adapting to Your
Leadership Role

In the beginning of any new job, we all have great hopes
and, to some extent, a reasonable amount of fear that we
might fail. As a successful programmer, you have, no
doubt, had your share of new beginnings on projects and
at places of employment. Now that you've been given the
reigns to lead a group of programmers, a very new and
perhaps daunting task is before you. You must evolve
from programmer to leader as quickly as possible to thrive
in your new software development role. This will entail
adapting to a new social context and adopting new ways
of interacting with your work world and the people in it.

Adaptation, a driving force of biological evolution,
has been successful in helping our species climb out of
the ooze and up the ladder of life to sentience. It took mil-
lions of years, but here we are, using language and dealing
with abstract concepts such as computer programming. How did we get to this
point? You'll have to ask your local biologist that question, but in the pages of this
book, you'll rely heavily on your ability to adapt in order to face the challenges of
leading programmers.

In this first chapter, you're going to become somewhat of an anthropologist.
You'll look at the very human enterprise of writing code—specifically, you'll exam-
ine the types of individuals who engage in this wonderful activity. In learning
more about the people you manage, you gain insights into how to successfully
lead them. Many different ideas about how to lead programmers have currency
today. Each generation of leaders starts from their own unique perspective and
builds upon what they know and what they find works as a management and
leadership style. 'm from the generation that grew up with slide rules and punch
cards, and this will, no doubt, color my presentation. However, in years of working
with programmers much younger than myself, I've learned that my generation
doesn’'t own the only methods that work. I've had to adapt numerous times to the

Chapter 1

changing needs of business, revolutions in technology, and growth and stubborn-
ness in my own character as I faced the challenges of leadership. I'll share these
experiences with you, and I believe we'll have a great journey together.

Do Real Leaders Wear Black?

Some do, and some even sport ponytails, depending on their hair situation, to fit
in better with some of the younger geeks or (depending on your generational pref-
erences) nerds. You may prefer neither of these terms and see yourself as a
modern leader of business, guiding men and women like yourself who find pro-
gramming a great intellectual thrill. Thus, the affectations I've alluded to,
including the one referred to in the title of this section, shouldn’t be taken too
seriously. Do take seriously, however, your ability to personally relate to and iden-
tify with your programmers. Now that you're the leader, you can'’t fit in like you
once did as part of the group, and you shouldn’t really try too hard because you're
the boss and you’ll need to use this advantage from time to time in the course of
conducting the business of constructing software. Someone once said, “Give me a
lever large enough and I can move the earth.” Being the boss can be such a lever.

You may not be convinced that image isn't important. It took me a long time
to realize that what I looked like on the outside wasn’t necessarily a reflection of
my character. I still enjoy the trappings of “nerdom,” but I also know that leading
my team requires much more than just style. True, a certain image can go a long
way toward reassuring your folks that you're one of them. But is it a crucial leader-
ship skill? You may remember from the movie The Net how Angela (Sandra
Bullock) was accepted by her online pals. They all said she was one of them and
thus accepted her into their weird little circle. Of course, in the end it turned out
that this wasn't really such a great thing. Learn from this: Image is truly only skin
deep. What counts is character. That’s why all the management techniques you
may have learned and try to practice fail so often: They are techniques you have
grafted onto your brain rather than nourished and grown from your heart.

How Important Is Being Cool?

So, continuing in this serious tone, should you wear black and embrace the affec-
tations you believe contribute to coolness as a leader of programmers? Take the
“Assess Your Level of Cool” test in the sidebar and see how you do. Note that some
prefer the term “Ninjitsu”! rather than “cool,” but I'm from the old school.

1. You know what a Ninja is—this word refers to the quality of being one, as in black-belt
programming.

Adapting to Your Leadership Role

Remember, this is a self-help book, so you have to do some work. Pop quizzes
aren’t just given by stuffy old college professors—they show up in your daily work
life all the time.

Assess Your Level of Cool

Select one or more answers to the following questions.
1. A“hacker” is a person who

a. Makes furniture with an axe
b. Programs enthusiastically as opposed to just theorizing about it

c. Enjoys the intellectual challenge of creatively overcoming or
circumventing limitations

d. Maliciously tries to discover sensitive information

e. Was a character played by Angelina Jolie before she was a tomb
raider

2. A“cracker” is
a. One who breaks security on a system
b. A Southern white boy like your author
c. Thinner than a cookie (see question 6)
d. Considered to be a larval-stage hacker
3. “Phreaking” is
a. The art and science of cracking the phone network
b. An old nerd trying to be cool
4. “Ping” is
a. Packet Internet groper
b. The sound of a sonar pulse
c. The other half of pong
d. A quantum packet of happiness
5. “Worm” refers to
a. A write-once read-many optical disk drive
b. A virus program designed to corrupt data in memory or on disk
c. A bilaterally symmetrical invertebrate
6. A “cookie” is
a. A token of agreement between cooperating programs
b. Something Amos made famous

c. Something used to store and sometimes learn about the
browsing habits of users

Chapter 1

How do you think you did on the test? I once gave this assessment to a group
of nonprogrammer types during a lecture on computer security to illustrate the
kinds of people who get involved in hacking as well as protecting computers from
threats. They didn’t do very well on the test, but I bet you did way above average.
All the answers are correct for each question.2 Well, maybe choice b in question 3
is a bit of fiction, but this test does illustrate how programmers have been tradi-
tionally characterized as belonging to a particular subculture. Sometimes it’s
called, in the nonpejorative sense, the “hacker” culture (see the nice answers for
question 1). Today these hacker stereotypes are disappearing. A programmer
today more than likely holds an undergraduate degree in computer science and
an MBA to boot. Nevertheless, each corporation has a culture, and your team has
one as unique as the people who comprise the group. However the culture is
defined, it is within this context that you lead and manage your people. Under-
standing the warp-and-woof (ways of interacting and thinking) of your
programmers’ culture can help you relate better to them and aid your leadership
efforts. So wear a cool black T-shirt with an esoteric message emblazoned on the
front if you desire, but there are more effective ways to relate to your people than
just adopting or reinforcing a stereotypical image. This is the key theme of this
chapter.

Hacker stereotypes are disappearing. A programmer today more than
OO O likely holds an undergraduate degree in computer science and an MBA
to boot.

Be More Than Cool: Beware

Of course, if you're a dyed-in-the-wool hacker yourself, relating to programmers
may be no problem. However, beware: Good programmers, while often promoted
into management, don’t often make the best managers or leaders of program-
mers. You have a great desire to work on the coolest projects when you should
delegate. You often spend many hours on code review, when an hour would do,
trying to get every little comment and indentation just right. There are times when
you give up trying to help others understand what you want and you just do it
yourself. Don’t misunderstand me here, you must be concerned about the details
of the code for which you are responsible, but the programmer-cum-manager is
often guilty of not seeing the forest for the trees.

2. You can look up most of these terms in The New Hacker’s Dictionary, Third Edition, by
Eric S. Raymond (The MIT Press, 1998).

Adapting to Your Leadership Role

You must be concerned about the details of the code for which you are
OO O responsible but the programmer-cum-manager is often guilty of not
seeing the forest for the trees.

At the other extreme, you may manage during the day and write code at night,
depending on whether or not you have a life. Perhaps coding is your life and man-
aging is your day job—this can work unless you lose your passion for the work.
Maintaining your passion is essential in my understanding of what it takes to lead
programmers. You will work through a number of management skills in this chap-
ter and the chapters ahead, and these skills will help you balance your work life
and keep your passion strong for your job. One key management skill that allows
you to have time to lead is delegation. It is a cornerstone of leadership, and I focus
heavily on it in Chapter 8. For now, realize that delegation involves trusting your
staff. Trust takes time to build and is essential to successful leadership. Trust also
is a reciprocal human activity. In this chapter, you'll learn to trust your instincts
about people as you refine those instincts with a bit of anthropological insight
into the mind and hearts of programmers.

Leading Weird, Eccentric, Strange, and Regular
Folks into Great Work

Now, I don’t want to take all the fun out of managing programmers, even though it
has often been described as an exercise in “herding cats”—a reference, no doubt,
to the independent nature of the creative individuals who choose to write code.
The fun part is that these sometimes troublesome, always needed, and usually
fascinating employees can be a blast to work with. Getting to know them better
will improve your management style.

If you are a true lover of programming, you understand what it means to be
close to your code—it may seem like second nature to you. As Ellen Ullman writes
in Close to the Machine:

A project leader I know once said that managing programmers is like trying

to herd cats . . . mean you don’t want obedient dogs. You want all that weird

strangeness that makes a good programmer. On the other hand, you do have
to get them somehow moving in the same direction.3

3. Ellen Ullman, Close to the Machine (San Francisco: City Lights Books, 1997), p. 20.

Chapter 1

This “same direction” is the goal of programmer management, but since each
programmer is different, you have to lead in a unique way for each of your people.
You can’t lead programmers if you don’t understand them. In the following sec-
tion, I outline various programmer “types” and the traits that define them. You
may recognize some of your employees in this list of types, which I'll call “breeds,”
as this is a book about cats.

Recognizing Programmer Breeds

What's a typical programmer like? Can you stereotype programmers just for the
purpose of understanding them? Maybe. Like so many personality assessment
tests from the field of psychology, it is helpful to look at programmer traits in iso-
lation and recognize that many of these characteristics can coexist in the same
person even if they seem contradictory. I've grouped the breeds into three cate-
gories: major, minor, and mongrel. Major refers to the most common types you'll
find in the workforce. The minor breeds are sometimes seen, but not as frequently
as the major ones. Mongrels, as you might expect, are not very desirable, but they
do exist in the workplace, and as a result you need to recognize them. Mongrels
can work out fine, as long as you help them build up their skills to overcome the
weaknesses they inherently bring to the coding process.

As mentioned previously, any individual can be an amalgam of the character-
istics identified with a breed—this makes working with that person a challenge
but well worth the effort. Programmers are a wonderfully complex people. Relish
the differences and unique styles of each breed. You'll probably recognize many of
these traits the next time you look in the mirror.

The Major Breeds

The following are the major breeds and their characteristics.

The Architect.? This breed is highly prized by most managers and can be
a valuable asset to your team. Architects are mostly concerned with the
overall structure of the code. They dream in objects and printable white-
boards are their best friends. They live to solve business problems by
abstraction and system analysis and then create concrete solutions in
code. This is a necessary component of programming, but it isn’t suffi-
cient for the task. An architect may often have great ideas, but his or her

4. TI'm using the term “architect” here in the sense of a programmer, not a full-fledged software

architect. See Chapter 6 for a discussion about the importance of architecture in the grand
scheme of development.

Adapting to Your Leadership Role

code may be so skeletal or obtuse that no one can pick it up and extend
it. The rare architect can create a good system in his head, or preferably
in Visio, and then flesh out the code and almost become a one-person
show. The downside of this is that sometimes the architect’s code may
become a one-owner pet: It can’t do tricks for anyone else.> Some archi-
tects are only interested in getting the code started and then handing it
over to someone at a “lower” level for completion. You'll sometimes find
strange constructs in an architect’s code, such as message boxes in error
traps when the code is supposed to run as a DLL on a server.

The Constructionist. This programmer just loves the process and result
of writing code. Constructionists don’t always have a master plan, but
they are often fast and their code is usually fairly free of bugs even in the
alpha stage. Constructionists’ code originates from intuition and thus
they appear to code by the seat of their pants. A constructionist also may
have really great intuition and the master plan is in his or her head, so the
code flows naturally from this source. Ask a constructionist for documen-
tation and he or she will say the code is self-documenting. Tell a con-
structionist he or she must write documentation and you’ll probably get
some pretty good stuff. Of course, the code should be self-documenting,
but in his or her heart, this programmer loves the act of creation and puts
this first in his or her activities. The constructionist does so many daily
builds that even Microsoft would be amazed. This can lead to solid code,
but sometimes, as the scope creeps (and it always does), the solidity of
the code can fracture and the constructionist will find him- or herself
hacking away at solutions to preserve a personal sense of completeness
and having done the job well. Team a constructionist up with an architect
and you'll have a solid team. Find a constructionist in the same body as
an architect and you’ll solve most of your people problems.

The Artist. Writing code is as much an art as a science—that’s why uni-
versities often put both departments in the same college and call it the
College of Arts and Sciences. Take away the artistic side of programming
and you’ll lose many who find a great deal of job satisfaction in the craft
of coding. The artist is in love with the act of creation: taking business
requirements, mapping them to programming constructs, and elegantly
making user interface objects present themselves with grace. Some
artists, when they work on components that have no visible interface, will
create beautiful symmetries of logic. The downside of being an artist is
that it often leads to extended coding time as the programmer tries to see

This concept is important because one authority estimates that at least 70 percent of soft-
ware cost is related to maintenance. See William H. Brown et al, AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis (New York: John Wiley & Sons, 1998), p. 121.

Chapter 1

how many equal signs he or she can put in one line of code and still get
the correct Boolean result. The upside is that code that doesn't reflect
artistry is often lacking any real design and craftsmanship on the part of
the programmer. Take out these artful qualities and you have a time
bomb waiting to go off under the fingers of your users. The artist shares
qualities with the constructionist and architect but has a flare for style.

The Engineer. You have to love these boys and girls. They will buy every
third-party tool available, write dozens of COM obijects, and hook them all
together such that they actually work in version 1. It is only when version
1.1 needs to be built that their love of complexity rears its ugly head.
Programming is often described as software engineering, and many
aspects of our profession can be constrained and guided by this approach.
Just don'’t let the engineer run the whole show for you. Engineered soft-
ware isn't a bad thing because in the best sense of the term, engineering is
the application of scientific principles to software problems. You need pro-
grammers who aren't afraid of complexity, but you don’t want those who
are just in love with creating it needlessly. I don’t mean to give a bad rap to
engineers—I was one for many years on the hardware side of computers.
Nevertheless, it is this hardware dimension that sometimes runs counter
to the aspects of software that make it soft (i.e., flexible and easy to reuse).
Hardware usually serves one distinct engineered purpose, and you don't
always want your software to be like this.

The Scientist. These are men and women after the hearts of Babbage and
Turing. They would never write a GoTo in their life. Everything would be
according to the fundamentals of computer science, whenever the day
that programming is more science than art comes. And this is often the
problem: They are overly concerned with purity, while you are concerned
with tomorrow’s code-complete date and producing good enough soft-
ware. Scientists are useful and their ideas are often essential in solving
particularly tough coding problems. Just watch out that purity doesn’t
overshadow practicality. Engineers and scientists have some similarities
in that they both value the complex—sometimes you might think they
worship at the shrine of whatever god represents complexity. (They often
do bring their offerings to the temple!) Value the insights of the scientist
and use their creations when appropriate, but beware of the legacy of
complexity that will be perpetuated if they have free reign in the code.

The Speed Demon. As the name implies, these men and women are fast.
No comments, no indentations, and bad variable naming conventions,
but they do produce and it often works pretty well until the first
untrapped error occurs. Sometimes these coders are just young in the
profession and want to impress you because they think speed is the pri-
mary behavior you expect as a manager. Haven't we often given that

Adapting to Your Leadership Role

impression? Perhaps we managers are to blame for speed demons. Our
bosses hand down the milestones they gathered from some meeting of
the great minds and our job is to make it so. Haven't we often heard how
foolish it is to establish a coding deadline before the requirements are
gathered? Get over it. The real world is like this, and users and the market-
place often demand that we promise before we plan. That’s why you are
reading this book—you want some help in the fast, cruel, and often
unforgiving world of software development.

The Minor Breeds

The following are the minor breeds and their characteristics.

The Magician.® You don’t know how this programmer does it, but he or
she always seems to solve the apparently intractable problems with
unique solutions that no one thought of before. The magician also does it
on time and sometimes it is understandable and maintainable software.
A little magic can go a long way in our craft; too much and you may find
yourself a sorcerer’s apprentice rather than a clearheaded manager of
hardworking people. In other words, if you depend too much on the
magician, he or she will eventually let you down: No one can perform
magic every time.

The Minimalist. This programmer produces sparse code, though it is
often very powerful. Every procedure fits on a single screen in the code
editor. Objects are nice and tidy and have a single-minded purpose.
Sounds good, doesn't it? It can be, as long as the minimalist isn’t just try-
ing to get through the job so he or she can move on to the next, more
exciting project. Sometimes—and this is a trait sometimes shared by
architects—minimalists are easily bored once the problem is solved and
they don’t want to get down and dirty with the code as problems show up
in alpha testing. Some minimalists are rather picky about the applica-
tions they want to work on. They are often very bad at code maintenance.

The Analogist. Okay, I may have made up this word and no, it isn’t the
nurse that puts you to sleep before a surgery—this is the programmer
who really isn’t very good at abstraction but is excellent at analogy.
Analogists drive you mad during the design meeting as you constantly
tire of their analogies, but often they do grasp the problem at hand and

6. Some may prefer the term “guru” or “wizard.” I like “magic.”

Chapter 1

10

can often produce practical, maintainable code. Sometimes they have
favorite analogies that they try to apply to every software issue. They like
to think of components as moving parts and when things are working
well they will say their code is “firing on all cylinders.” Their analogies are
always tied to some tangible object rather than an abstract one. You get
the idea. Mix them with an architect and, if they don't kill each other first,
you'll have some righteous software. The only danger with an analogist is
that he or she may not do sufficient abstraction to create objects that
have a clean interface for hooking up to other layers in the software.
Being able to create a sufficiently abstract object interface is one of the
great strengths of object-oriented (OO) programming, and sometimes the
person who must always think in concrete ways will be unable to get the
job done adequately.

The Toy Maker. This programmer overemphasizes the joys of technology.
You have a person who loves new toys but you get the same old woes. In
all honesty, all of us in this great craft love the toy aspect of technology. I
remember my first computer: It was analog, you turned dials that closed
switches in a predetermined hardware algorithm. It was sort of a slide
rule on steroids and I loved it. I still love the joy that comes from working
with neat technological tools. With toy makers, temper their love of toys
with the purpose of their employment: to produce business solutions.
Just because they managed to fit 30 user interface controls on a screen
that is supposed to work at 800x600 doesn’t mean they have met users’
needs.” Toy makers, while showing a good grasp of the technology, fail to
consider the end purpose of the software. They often think that their job
is to have fun with the tools, rather than consider the aspects of program-
ming that make maintenance possible without massive efforts.

The Mongrels

The following are the mongrels and their characteristics.

The Slob. There isn't much good to say here. Some folks are just sloppy
and it shows in their code. They ignore small things such as properly
spelled variables in correct Hungarian notation. Perhaps personal prob-
lems prevent them from doing good work. Perhaps they need some guid-
ance in how to write effective code. They start out with one style and after
one or two procedures they have adopted another. Following their code is
painful and sometimes you have to rewrite it late at night just to be sure

Don’t you hate users? What fun we could have if we only wrote software for programmers.

Adapting to Your Leadership Role

you meet the deadline. You, their manager, failed—they didn’t, they are
just slobs who probably should be transferred to beta testing. No, strike
that, this would only move the problem down the path a bit and it could
come back to bite you. Some slobs can be rehabilitated if they really love
writing code and should be given more personal attention and mentor-
ing. Those that can’'t may just need a metaphorical kick in the seat of the
pants or an introduction to a job placement counselor.

The Intimidated. This programmer doesn’t know where to start. He or
she is constantly looking at (or waiting for) the specification, trying to
find a point to begin. Not to worry, being timid can be a good thing when
it leads to careful code, even if it is the result of the poor programmer not
wanting to create runtime errors. Your job is to give the intimidated some
prototype code that illustrates where to begin and a style to emulate.
Often, those with only a few years in the profession exhibit some timidity
and by nurturing them you can change their nature. You may also find
timidity in an experienced programmer who hasn’t had such a great track
record. Maybe his last performance review was bad and he wants to do
better but is afraid of screwing up. Lack of confidence often shows up as
timidity, so bear with him and enable him achieve a little success as you
hold his hand from time to time. I cover mentoring, which is the best way
to nurture a timid programmer, in Chapter 8. You'll discover that being a
mentor is one of your primary roles as a leader and it will pay you back
handsomely for the efforts you put into it.

The Amateur. Amateurs are programmer wannabes. They come into the
ranks of hackers as power users of some macro-writing tool. They left
their cozy role in support or testing because they think programmers are
way cool. Of course, we are cool but this is just a by-product of what we
do. These folks need education and you must carefully assess their
progress up the learning curve before you let them handle mission-criti-
cal application creation. These wannabes often become disillusioned
with the job once they learn how hard programming can be and how
much attention to detail is required. They often fail to see that object-ori-
ented methods are superior to the procedural paradigm because they just
haven't had the right epiphany. In defense of amateurs, remember the fol-
lowing saying: “Amateurs built the ark, professionals built the Titanic.”
Sometimes the fresh viewpoint of an amateur can be helpful to us old,
sour techno-grouches.

The Ignoramus. This programmer is also known as Mr./Ms. Stupid, or
worse, he or she is dumb and doesn’t know it. Watch out for these people.
You may have inherited them—please don't hire them. Now, I'm not
being prejudiced toward the mentally challenged, but they just don’t
have a useful role in a profession that requires constant learning and

11

Chapter 1

12

self-discipline. Ignorance can be tolerated as long as it isn't willful. Maybe
move this person to the testing department, because sometimes users
who are stupid find the bugs.8 Another word about stupidity: We all suffer
from the constant problem that occurs between the keyboard and the
chair. If writing code didn't require some smarts, everyone would do it,
right? Just be sure you don’t mistake ignorance for stupidity. Ignorance
can be cured, stupidity should be shunned. If you came on board a
department that wasn’'t assembled by a professional programmer, you
may find some of these breeds in your midst. Some nontechnical busi-
ness leaders may have put the group together from folks who had sold
themselves as programmers but don't have the gift.

The Salad Chef. A love of cooking up software reigns here. This breed
consists of a bit of the engineer, the slob, and a not-so-gifted artist com-
bined, but the ingredients are out of proportion. The result is a smorgas-
bord of coding styles and add-on components, and a general disorderli-
ness of code. It might look appealing, but one bite and you know you're
going to die. Send this programmer to a cooking class and be sure you
don’t have a full-blown slob lurking underneath what appears on the sur-
face to be talent. This mongrel breed might appear seldom as a pure
form, but I mention it because the trait shows up in a number of pro-
grammers’ coding styles. If they can’t conform to your corporate stan-
dards, you'll have a full-time job on your hands just trying to figure out
what they have done and how to maintain their code. Your role as a code
reviewer (see Chapter 6) will be crucial to rehabilitating the salad chef.

Working with the Breeds

Programmers are people first, so all the traits in the previous section may exist to
a greater or lesser degree in the same person. Some of these traits are in opposi-
tion to each other, but don’t worry about this. Every human walking the planet
tonight is a bit of a contradiction, and you and your programmers are no different.
What is important for you to do as the manager of these wonders of nature is
respond with understanding, appropriate motivation and, above all, wisdom
that’s best gained by experience on the job learning to know your folks. Try to
identify your programmers by the facets of their characters that shine the bright-
est under the sunshine of new endeavors and the lightening flashes of those
projects near their deadlines.

8. I prefer the term “program anomaly” or “undocumented feature offering (UFO)” over “bug.”

Adapting to Your Leadership Role

Try to identify your programmers by the facets of their characters that
OO O shine the brightest under the sunshine of new endeavors and the
lightening flashes of those projects near their deadlines.

What breeds would make up a good team of programmers, assuming you
could create your department from scratch? My first choice would be to have a
good balance between architects and constructionists. These two breeds bring the
best of needed skills to software creation: One has a high-level view, and the other
is good at the details. An artist might be your second choice to mix in from time to
time. Alas, you probably will not be able to assemble your group from the ideal
candidates. You'll need to work with what you have, and thus your ability to deal
with the blended nature of the traits I've stereotyped must be shaped by your
insight, patience, and mentoring—leadership requires all three working in concert.

Another personality type you should be on the lookout for is the cowboy pro-
grammer. This type doesn't fit well into the other breeds listed previously because
itis best described as an overall attitude. This attitude describes the programmer
who may be really good at what he or she does but practically impossible to man-
age. Cowboys have the idea that they can pick and choose the programming work
they want to do, and they can do it on their terms, according to their schedule,
and by whatever means they see fit to employ. You could call this type a lone wolf
(or a stray cat, in keeping with the context of this book). These cowboys can work
miracles or wreak havoc, depending on your needs and ability to tolerate personal
eccentricity. Be careful with cowboys—they will never be part of your team. Use
them only as a last resort or if the project is truly a stovepipe or silo job that you
don’t expect your team to maintain.

Why do we find all these interesting personality characteristics in program-
mers? I believe it is because the nature of the software developer’s work attracts a
certain breed of human. In the classic book, The Mythical Man-Month, Frederick
Brooks? describes our craft as one that provides five kinds of joys:

1. The joy of making things
2. The joy of making things that are useful to other people

3. The fascination of fashioning puzzle-like objects of interlocking moving
parts

9. Frederick P. Brooks, The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition (New York: Addison-Wesley, 1995), p. 230. This is a timeless classic—very few books
in our field are reissued after 25 years, and this one is truly worthy.

13

Chapter 1

4. The joy of always learning, of a nonrepeating task

5. The delight of working in a medium so tractable—pure thought-stuff—
which nevertheless exists, moves, and works in a way that word-objects
do not

These joys attract the kind of people you manage, and understanding what
motivates them (and you) can be a tremendous aid to your leadership role.

Cat Fight! A Hissing and Scratching Contest

John and Kevin were constantly at odds during the design meeting. We had
begun to discuss how the user would log into the system, and they were arguing
about low-level details of construction techniques. The meeting was not pro-
gressing and there were many more features to be designed, or at least everyone
thought so in spite of the lack of a clear agenda for the meeting. John and Kevin
always fought because John, who was a consultant, and Kevin, who was a long-
time employee and a very creative programmer, had very different motives and
plans for the meeting. They were more interested in proving who was the
smartest than designing a system, even though John had been designated as the
development leader, a job Kevin desperately wanted. It didn’t help that the boss
wasn't in the meeting; there was no one to act as a negotiator.

A day went by, and the other programmers grew more silent as John and Kevin
fought over each piece of the design. By the end of the second day, very few
whiteboard printouts had been produced and what had been done came at the
cost of long hours of tedious battling between the two scrapping cats, John and
Kevin. The rest of the team became so discouraged that they began to doubt
whether the system would ever be built. To compound matters, the team had
been tasked to get this new system created as soon as possible because the lega-
cy system was hurting the company in the marketplace.

This short story illustrates some of the difficulties with consultants and employ-
ees working on the same team, especially when the boss isn’t in the room. You
might question the choice of a consultant as the development leader, too. You
also can see that a design meeting without a careful plan, an agenda, and a
method for resolving differences can waste time and place the whole idea of
“design before coding” in jeopardy. The dynamics of interpersonal relationships
on the development team also illustrate the need to know your people before
you create team leadership roles.

The end result of this particular story was that the project was canceled and a
competing team in another division designed and built the software. The absent
manager also had some dreary and difficult days explaining to his boss why
they didn'’t step up to the plate and hit a home run after many promises and
reassurances were given prior to project commencement.

14

Adapting to Your Leadership Role

Glory, Honor, and Greenbacks

Everyone with a job wants to be appreciated and to feel his or her contributions
are meaningful. Even incompetent workers want to feel appreciated, in spite of
the fact that they make negative contributions to the company. Sure, we all say
coding is its own reward, but take away our paycheck and see how long we pound
the keys. Pay us well and we will still crave recognition among our peers and an
occasional pat on the back from the boss. Real cats may preen alone in a corner
thinking no one is watching, but programmer cats really do like to preen in public.
The practice of creating Easter eggs, though somewhat out of style at present, was
always a sure sign that programmers wanted and needed an audience. You, their
leader, are sitting in the first row and they are looking for your applause. Of
course, some don’t deserve applause but are truly in need of a serious word of
prayer.10

There is a time to praise and a time to pause and consider if you're getting
your money’s worth out of your people. This is your challenge as a leader and
manager. If you praise them, make sure it is in public. If you criticize, do it in pri-
vate. These guidelines are not just given because they conform to rules of polite
society—they are necessary because of the affect your actions toward one team
member have on the whole group. Public humiliation never makes a group func-
tion as a productive unit. Public praise, when done genuinely and because the
recipient deserves it, can work wonders. Don’t be flippant when you praise, shout-
ing out “You guys did a great job!” as your team walks out of a meeting. Take the
time to make it stick. Give thought to the reason for the praise and let your team
know your thinking.

There is a time to praise and a time to pause and consider if you're
OO O getting your money’s worth out of your people.

Another word about praise. You may feel left out yourself, depending on how
your boss treats you, when it comes time for compliments. As the leader, you are
striving to make the group successful. When the group is successful, you praise it.
Who praises you? Sometimes, the answer is “no one,” and you may wish for a pat
on the back from time to time yourself. This position, where your efforts and suc-
cesses are the reason for the good reputation of the team, can be awkward if you
seek fame for yourself. Leaders must learn to measure their confidence by how
well those they lead perform.

10. This is a Southern expression for a trip to the woodshed, usually involving a spanking.

15

Chapter 1

16

If you've risen among the ranks to become the leader, your job may be
doubly difficult since you may be in charge of deciding the professional fate of
your friends. Don't let friendship get in the way of business, but rather use it to
motivate for the benefit of all. No one will feel you're manipulating friendship if
in the end everyone enjoys the pleasure of success.

Motivating with Money

Well, I mentioned money previously, didn't I? Dang. I might as well get this over
with since, as the Good Book says, “. . . money is the answer to everything.”11

A recent salary survey concerning programmers shows hourly rates range from
$30 to over $150 per hour, with most of us in the middle of this wide spectrum.
What determines if your folks are worth their rate? Performance, experience,
effectiveness, timeliness, the current local market rate, and economic conditions
are all factors, as well as your company’s tradition of pay for high-tech workers.
Your challenge when hiring new people or giving raises is to be fair and prudent at
the same time.

Fair and prudent. Hmm, this is a difficult task because you may want to dole
out the money as if it grew on trees thinking this helps job performance. Think
again—a luxury today is a necessity tomorrow. Money is like power: It can corrupt,
and don’t make me quote another famous line from the newer portion of the
Bible.12 Getting back on track, how do you achieve a balance in monetary com-
pensation matters? If you consider the task as one of balance, envision the scales
of justice: On one side, you have a tray for fairness, on the other side, you have a
tray for prudence. Fairness accepts weights that are equivalent to the program-
mer’s experience and performance. Prudence accepts typical business smarts,
such as watching the bottom line and the average salary of the programming staff.
Keep these in mind as you make decisions about money—it’s a good theory.

Theory? What about application? This is why money can be such a tough area
to administer properly in your job. You have principles in mind you believe should
guide your efforts to reward your staff, but at the same time, the economics of the
current business climate and corporate policies you must live by may frustrate
your planning. Salary can be supplemented with bonuses based on merit and/or
corporate profits in some organizations. These incentives can work as long as the
staff member’s contributions can truly carry enough weight to affect the formula
used to determine the bonus. You can try quarterly bonuses if you want, but I've

11. Actually, it accuses the fool of saying this. See Ecclesiastes 9:14-19 in a modern version for
the context. Try not to get too depressed when you read this.

12. See the New Testament, 1 Timothy 6:10, where love, money, and evil are related together in
anice, logical syllogism.

Adapting to Your Leadership Role

found them problematic because once you start giving them, they begin to be
expected. You should consult with your boss to work out a plan that fits within
your organization. If you are the ultimate decision maker, do what you think is
appropriate and keep in mind the issues of fairness and prudence.

The Thunking!s Layer

Are you feeling all warm and fuzzy now? Probably not. You're most likely waiting
for the bulleted list of things to avoid and things to embrace. There will be plenty
of lists to look at in the chapters ahead, but at the moment I want to emphasize
the role of thinking in your new role, rather than give you a long list of dos and
don’ts. Thinking is perhaps the hardest thing we have to do as mangers and lead-
ers, but it is crucial—absolutely crucial—to our success. As Jim McCarthy writes in
Dynamics of Software Development:

The real task of software development management is to marshal as much
intellect as possible and invest it in the activities that support the creation of
the product.14

Think while you're in the shower. Think while you ride your bike, take a walk,
or go in-line skating. Think while you're listening to the dilemmas posed by design
decisions. Think instead of watching TV or surfing the Web—they both may have
500 channels, but nothing is on, even if they relieve you of thinking. Think your-
self full, work until you're empty, and then do it all over again. The result will
surprise you.

Okay, let’s do a little thinking about how to handle some typical situations.

Say you have a cat who is primarily a minimalist, but a very sharp one. You
need him to enhance a product that he didn’t write but that is critical for the cur-
rent business goals. How do you motivate him when he takes one look at the other
guy’s code and says, “This is too complicated. It needs to be rewritten.” He says
this, of course, staring at code that took 2 years to write and is making the com-
pany money. The “other guy” is no longer around to explain the code, either. You
have two choices: Give in, make him happy, and ruin any chance of meeting the
deadline, or help him see how he can learn the existing architecture and make a
significant contribution. Appeal to his sense of wanting a tidy architecture by ask-
ing him to document the existing code with the view that in the future, as time

13. You know what “thunking” is if you've been under the covers with compilers. You'll soon
figure out my play on words.

14. Jim McCarthy, Dynamics of Software Development (Redmond, WA: Microsoft Press, 1995),
p- 5.

17

Chapter 1

18

permits, he can rewrite some of the objects to make them easier to follow. If he is a
sharp programmer he ought to be able to figure out what another one has accom-
plished. Never hesitate to let competition serve a useful goal. For the minimalist,
anything he didn’t write is junk, but the truth may be that he is afraid he can’t
understand the code and doesn’t want to admit it. Look for the hidden motiva-
tions that all of us share as humans and realize that programmers often hide
behind intellectual excuses rather than admit their brains are not up to the task
at hand.

How do you deal with an architect who thinks her object designs are far supe-
rior to anything that has been invented before and yet you think you see some
weaknesses? Don't tell her that her design is flawed from the get-go or she will be
on you like white on rice.1> Ask her to explain how all the moving parts will work
and to build some prototypes or test programs to illustrate the functions. If her
prototypes don’t show any problems, maybe you were wrong to see design flaws.
Ask her to “componentize” her architecture if it seems like one massive and
monolithic edifice. If the components can work together, maybe she has some
good ideas. If the objects are too coupled and intertwined, she is too in love with
complexity, which can lead to expensive software maintenance costs. A really
great architect can create a framework that anyone who applies him- or herself
can follow and extend. It also doesn't break when the next set of enhancements
need to be added to the code. The key to working with an architect is to try to see
the code through her eyes, not yours, even if she is blind in one and can’t see out
of the other.

Listen first and seek to understand before you use your authority as the
OO O manager to railroad a solution.

What is the common technique I'm suggesting for dealing with these people-
induced situations? It is to listen first and seek to understand before you use your
authority as the manager to railroad a solution. Programmers are no different
from the rest of the human race when it comes to confrontations: They want to
have a fair hearing of their point of view. As Stephen Covey writes in The 7 Habits
of Highly Effective People, “Seek first to understand . . . then to be understood.”
Building consensus in technical decisions is an art whose canvas is openness to
the ideas of others. It takes patience to construct such a canvas, even though you
often feel you don't have time to build software and have everyone agree about

15. The phrase “like white on rice” is Southern for “in your face.”

Adapting to Your Leadership Role

the methods. This may be your feeling in many cases, but consensus should still
be your goal.16 T have more to say about building consensus in Chapter 5, which
deals with leading and managing a design meeting. You may be surprised to learn
that consensus is not built through compromise.

Another example will illustrate the concept of understanding before judging.
Some languages, such as Visual Basic (VB), don’t allow true object constructors.
I've seen an artist use the VB class initialize event to do a reasonable amount of
work for getting the object set to be used by the consuming (parent) class.17 In VB,
if an object can’t be instantiated, the error is difficult to trap—you will simply get a
failure to create the object. When I asked him why he chose to use this event to
handle error-prone activity, he replied that it was elegant, clean, and didn't require
any action on the part of the calling object to be ready to use the interface. My
opinion, of course, is that safe error handling should precede any attempt at
beauty. I didn’t tell him this first. I listened to his reasons, described how things
could go wrong with his object, and then demonstrated an example in code. He
learned something from the code example lesson that he would not have learned
as well if T had just said, “Change it, this is not right.” Again, when you give some-
one an opportunity to explain his or her point of view, that person will open up to
your perspective.

How Are You Adapting?

You've taken in a lot of ideas in this chapter. You may feel overwhelmed by the
scope of adaptation required to become an effective leader. Not to worry. We
humans are still 99 percent genetically identical to monkeys, and the 1 percent
that makes us different didn’t appear overnight. The chapters ahead will help you
adapt, overcome, and succeed as you look at other aspects of leadership and
management.

Let’s review what’s been covered so far to help cement the key principles in
your heart and mind.

You must adapt. Learning new management skills so you can lead
requires adapting yourself to a new social context at work. You're the boss
and this changes your relationship to those on your team.

16. Many would say that if everyone agrees then when things go bad, everyone is to blame. This
may be true, but as managers we should be more concerned with fixing problems than
affixing blame. Success has many parents—be one.

17 The initialize event in VB accepts no parameters and does not return any.

19

Chapter 1

20

Character development is more important than image refinement.
Leadership comes from within and is not manifested by an image. You're
still a programmer, but your role as a leader of programmers requires you
to work on deep issues involving insight into others’ behavior as well as
your own.

Know your staff. Become an anthropologist of programmer culture and
people. Learn why your staff writes code the way they do and how you
can work with the best qualities and rehabilitate the areas that do not
lead to productivity. Herding cats means getting them to move in the
same direction: This is what a leader strives to do.

Reward your staff appropriately. Act on the need to praise with words
and compensate with money. Consider all the factors that constrain you
financially, but be fair and prudent. Lavish praise in public when appro-
priate and reprove in private.

Think. Learn to apply what you know about people to build consensus.
Listen to and understand other points of view before you make judg-
ments. Cultivate your life of the mind: Make learning second nature in
your new role as leader. Off-the-shelf plans to solve people problems are
no substitute for you crafting plans and methods to deal with the prob-
lems and opportunities unique to your organization.

What Lies Ahead

In the next chapter, you'll turn an introspective eye on you, the manager, just as
you did on your staff in this chapter. I'll ask some hard questions about how you
approach your job as a leader of the critically important endeavor of building soft-
ware in today’s business climate. You must manage your staff to be a good leader,
but managing yourself comes first.

Index

Numbers and Symbols

4GLs. See fourth generation languages
(4GLs)

A

adaptation, importance of in leadership
role, 166-167
adapting, practical questions to ask
yourself about, 166-167
Adaptive Development Life Cycle,
benefits of following, 114
Adaptive Software Development (James
A. Highsmith, II), 114, 236
administration
customizing yours, 70-71
managing, 41-44
administrative activities, creating
software to direct, 65-70
Administrative Director software
appropriate standards for, 228-230
caring for, 221-225
code review of, 227-233
cohesion and coupling in, 230-232
context and origin of, 227
creating, 65-70
guidelines to follow, 228
how the database connection is
maintained, 232
importance of comments in, 229-230
parent (MDI) container window, 223
the role of recordsets in, 232
Today screen, 69
Web site address for downloading, 221
administrative distractions, typical, 43
administrative filter, for navigating to
your goals, 42
age group, effect of on your leadership,
172
Agile Alliance, Web site address, 207
agile development, vs. extreme
programming (XP), 207-208
Agile Software Development (Alistair
Cockburn), 207, 236
amateur programmer, 11
ambition, making it work for you, 24-25
analogist programmer, 9-10

analogy, programmers that are good at,
9-10

analysis viewpoints, managing design
forces with, 109-110

AntiPatterns in Project Management
(William H. Brown et al), 78, 139, 237

AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis
(William H. Brown et al), 7, 237

for examples of mortal programming
sins, 51

Appleman, Dan, Moving to VB.NET:
Strategies, Concepts, and Code by, 241

Applied Software Measurement (Capers
Jones), 119, 240

architect programmer, 6-7

architecture, planning before choosing
your technology, 28

ARPANET, 172

artist programmer, 7-8

Assess Your Level of Cool test, 2-3

Assigned view, Administrative Director
software, 224

assignments, distribution of to your
programmers, 73

At Home in the Universe (Stuart
Kauffman), 114, 242

attitudes, managing yours and your
staffs, 76-77

B

Bacon, Francis, essay Of Innovations, 26
Beck, Kent, Extreme Programming
Explained: Embrace Change by, 157,
206, 236
Beyond Chaos: The Expert Edge in
Managing Software Development
(Larry L. Constantine), 76, 238
bibliography
general management and leadership
books, 241
miscellaneous works, 242
software development books, 235-241
software language-specific works, 241
Blake, William, The Complete Poetry and
Prose of William Blake, ed. David V.
Erdman, 23, 242

Index

bonuses, for programmers, 16-17
book review, adding to your weekly staff
meetings, 89
books, reading to stay current in your
primary programming language, 32
bosses
helping them plan for success,
183-185
summary of guidelines for working
with, 191
understanding the world of, 179-180
working with, 179-192
breeds of programmers, characteristics
of, 6-12
Brooks, Frederick P, The Mythical
Man-Month: Essays on Software
Engineering, Anniversary Edition by,
13,235
Brooks’ Law, 183
Brown, William H. et al,
AntiPatterns in Project Management
by, 78, 139, 237
AntiPatterns: Refactoring Software,
Architectures, and Projects in
Crisis by, 7, 51, 237

C

Carlson, Richard, Don'’t Sweat the Small
Stuff at Work by, 75, 241
cat fight
asleep at the wheel, 117-118
disagreements between
programmers, 14
The Foreign Legion, 200-201
green card blues, 55
the outsider, 94-95
the owner who couldn't let go, 135
Champy, James, The Arc of Ambition by,
241
change, basic flavors of, 80-81
change management, 80-81
checklists, daily inspection for
managers, 38-39
Chess Master 5000, skill levels in, 186
Churchill, Winston, quote by, 54
Close to the Machine (Ellen Ullman), 5,
242
clsApplication, module level
declarations, 231-232
clsTasks, module level declarations, 229
Cockburn, Alistair, Agile Software
Development by, 207, 236
code comments, importance of good in
software design, 120-121
Code Complete (Steve McConnell), 239

code modules, importance of testing
when complete, 158
code police, importance of code review
by, 118-119
code reuse vs. design reuse, 103-105
code standard violations, importance of
correcting immediately, 122
cohesion and coupling, weak as coding
standards violations, 122
collaboration and solitude, needed for
software development, 194-195
Collected Poems 1909-1962 (T. S. Elliot),
118, 242
comments, importance of in good code,
120-121
communicating
as a cornerstone of leadership,
154-156
the goal of, 154-155
importance of for managing a
distributed workforce, 196-197
communication, elements of effective,
155
complete mentoring, 162
computers, types needed by
programmers, 83-84
ComputingFailure.com (Robert L. Glass),
50, 238
conference calls, using as meetings,
99-100
consistency, striving for in leadership
role, 169
Constantine, Larry L.
Beyond Chaos: The Expert Edge in
Managing Software Development
by, 76, 238
The Peopleware Papers by, 94, 238
constructionist programmer, 7
consultants, guidelines for hiring, 53-54
control issues, list of things you can and
can'’t control, 71-72
cookie, 3
correcting errors, as part of your
leadership role, 164
Covey, Stephen R.
The 7 Habits of Highly Effective
People by, 18, 241
Principle-Centered Leadership by, 241
cowboy programmers, managing, 13
cracker, 3
craftsmanship, of software development,
209-210
criticism, dealing with in leadership role,
145-146
customer service, importance of,
190-191

D

daVinci, Leonardo, a case study of
philosophy in action, 124-126
daily inspection checklist, for managers,
38-39
danger signs, of overload in leadership
role, 144-146
dark empire builders
characteristics of leaders, 143
flirting with darkness, 144-146
in a leadership role, 142-144
deadlines, setting and following up on,
27
deadlines and honesty, importance of in
leadership role, 181-183
Death March (Edward Yourdon), 239
Decline and Fall of the American
Programmer (Edward Yourdon), 184
delegating, as a cornerstone of
leadership, 156-157
delegation
importance of for success, 29
importance of in leadership, 5
DeMarco, Tom
The Deadline by, 240
Peopleware: Productive Projects and
Teams, Second Edition by, 25, 236
design documents, importance of, 29
design forces, managing with analysis
viewpoints, 109-110
design meetings
dynamics and issues of a typical, 90
guidelines for, 91
importance of note taking in, 91-92
leading, 90-94
design reuse vs. code reuse, 103-105
developers, pitfalls of adding to a late
project, 157
development team, importance of
interpersonal relationships in, 14
diplomacy skills, importance of, 93-94
distractions
deflecting, 44-46
some typical administrative, 43
distributed workforce
challenge of working with, 194-195
lessons learned about multicultural,
200-201
motivating and controlling the team,
199-200
solution for working with, 195-198
value of visiting periodically, 198
documentation, importance of for
project success, 29

Don’t Sweat the Small Stuff at Work
(Richard Carlson), 75, 241

dot-com companies, economic woes of,
212-213

duty, fostering a sense of in your
department, 168

Dynamics of Software Development (Jim
McCarthy), 17, 205, 237

E

Eisenberg, Ronni, Organize Your Office
by, 64

Elliot, T. S., Collected Poems 19091962,
118, 242

Emerson, Ralph Waldo, Self-Reliance by,
89

employee performance reviews,
gathering information for, 96

engineer programmer, 8

envisioning, as part of your leadership
role, 165-166

equipment, needed by programmers,
83-84

Erickson, Jim, Hard Drive: Bill Gates and
the Making of the Microsoft Empire
by, 174, 242

expectations, controlling those of others,
75-76

extreme programming (XP), 205-207

vs. agile development, 207-208
how it works, 206-207

Extreme Programming Explained:
Embrace Change (Kent Beck), 157,
206, 236

F

facility management, importance of,
82-84

Failure is Not an Option (Gene Kranz),
184, 242

fan-in and fan-out, 122

filing system, creating to organize your
projects, 64

firing practices, importance of
documenting problems, 56

focus, importance of in leadership role,
43-44

fourth generation languages (4GLs),
creating bad architecture with, 110

Foxall, James D., Practical Standards for
Microsoft Visual Basic by, 241

Index

Index

Freedman, Daniel P, Handbook of
Walkthroughs, Inspections, and
Technical Reviews by, 240

G

gardening metaphor, for software
development, 105-106
Gates, Bill, example of leadership role of,
174
Gelb, Michael J., How to Think Like
Leonardo da Vinci by, 124-125
genius vs. leader, 141-142
Glass, Robert L.
ComputingFailure.com by, 50, 238
Software Runaways by, 50, 238
goals, importance of providing written
for your programmers, 88
green card blues, 55
Grove, Andy, Only the Paranoid Survive
by, 173, 241
guidelines, for design meetings, 91

H

hacker, 3

Handbook of Walkthroughs, Inspections,
and Technical Reviews (Freedman
and Weinberg), 240

Hard Drive: Bill Gates and the Making of
the Microsoft Empire (Wallace and
Erickson), 174, 242

herding cats, leading the herd, 41-59

Highsmith, James A., III, Adaptive
Software Development by, 114, 236

hiring practices, guidelines, 53-54

Hodge, Challis, Smoothing the Path
article by, 190

Hollis, Billy S., Visual Basic 6 Design,
Specification, and Objects by, 111,
241

honesty and deadlines, importance of in
leadership role, 181-183

How to Think Like Leonardo da Vinci
(Michael J. Gelb), 124-125

Humphrey, Watts S.

Managing the Software Process by, 47,
240

Hunt, Andrew, The Pragmatic

Programmer by, 105, 237

I

IEEE Standard Computer Dictionary,
definition of software engineering,
202

ignoramus programmer, 11-12

“inertia of success” defined by Andy
Grove, 188

information, organizing into knowledge
and action, 62-70

information flow, understanding and
organizing incoming, 72-77

inspection checklist, for managers,
38-39

instant messaging, using to convey
information, 45

intimidated programmer, 11

J

job description, importance of having
written for job applicants, 53

Jones, Capers, Applied Software
Measurement by, 119, 240

journals, reading to stay current in your
field, 32

Julius Caesar, quotation about timing
from, 189

K

Katzenbach, Jon R., The Wisdom of
Teams by, 241
Kauffman, Stuart, At Home in the
Universe by, 114, 242
Kerth, Norman L., Project Retrospectives
by, 98, 240
Kranz, Gene
Failure is Not an Option by, 184, 242
leadership principles described by
him, 184-185

L

language and culture, multicultural
factors to deal with in, 198-199
leaders
common reasons why people follow,
167-170
vs. geniuses, 141-142
importance of being knowledgeable
in your field, 170
working to elicit admiration from
staff, 168-169

leadership

building on the cornerstones,
176-177

building upon the foundation,
161-167

communicating as a cornerstone of,
154-156

cornerstones of, 152

delegating as a cornerstone of,
156-157

effect of age on, 171-172

expecting the unexpected, 187

foundations of, 151-160

generational dimensions to, 170-172

importance of acknowledging your
limits, 186

importance of knowing your people,
199-200

importance of monitoring software
design, 158-159

pitfalls of participating in the coding,
159-160

practice makes it real, 176

the role of mentoring in, 161-162

understanding as a cornerstone of,
152-154

leadership role

adapting to new, 1-20

of Andy Grove of Intel, 173

answers to skills questions, 34-36

antipatterns in management, 130-132

avoiding eclipses, 147-148

being sensitive to timing, 189-190

of Bill Gates, 174

the blinding light of misapplied
genius, 140-142

building and managing your staff,
53-58

building trust between you and your
staff, 136-137

consequences of the unfocused style,
138-140

creating a vision for the future,
165-166

daily inspection checklist, 38-39

danger signs to look for, 144-146

dark empire builders, 142-144

the dark side of, 129-149

dealing with project scope creep,
46-50

dealing with unfocused managers,
137-140

describing yourself as a leader,
174-175

devoting time to research, 213

examining your skills objectively,
21-22

firing practices, 56

getting help with unfamiliar language
areas, 52

grooming your replacement, 58

hiring practices, 53-54

how your work has changed, 24

importance of adapting to, 166-167

importance of character in, 2

importance of delegation to, 29

knowing your limits, 185-186

leading the herd, 41-59

learning to increase the value of your
relationships, 215

living on the edge of chaos, 193-216

making strategic planning a science,
214

managing meetings, 87-102

managing promotions and raises,
56-58

marrying style to substance in,
172-175

methods of correcting your
programmers, 164

vs. micromanagement, 134

multicultural factors in, 198-200

organizing for success, 61-85

preparing yourself for the
unexpected, 187

re-evaluating success, passion, and
ambition in, 24-25

reading to improve knowledge and
experience, 32-33

review of, 151-177

striving for consistency in, 169

surviving and emerging from an
eclipse, 146

turning administration into an
engineering discipline, 214

value of visiting your distributed
workforce, 198

watching for your weaknesses, 31-33

working to improve your skills, 23-25

leading vs. managing, 61
Leading a Software Development Team: A

Developer’s Guide to Successfully
Leading People & Projects (Richard
Whitehead), 241

Levinson, Daniel J., The Seasons of a

Man'’s Life by, 171-172, 242

Lister, Timothy, Peopleware: Productive

Projects and Teams, Second Edition
by, 25, 236

Index

Index

M

magician programmer, 9
Maguire, Steve, Writing Solid Code by,
238
Malveau, Raphael C., Software
Architecture Bootcamp by, 108, 238
management
antipatterns in, 130-132
multicultural factors in, 198-200
management role. See leadership role
managers, types of unfocused, 138
managing vs. leading, 61
managing meetings, practicing the
principles of effective leadership in,
100-101
managing the leader, 21-39
Managing the Software Process (Watts S.
Humphrey), 47, 240
McBreen, Pete, Software Craftsmanship
by, 57, 237
McCarthy, Jim, Dynamics of Software
Development by, 17, 205, 237
McConnell, Steve, Code Complete by, 239
meetings
avoiding unnecessary and ineffective,
26
for consensus and action, 101
criteria for one-on-one, 95-96
managing, 87-102
with other groups, 97-98
project retrospective, 98-99
simple agenda for weekly, 87
using conference calls for, 99-100
mentoring
as part of your leadership role,
161-162
typical example of, 162
Merton, Thomas, No Man Is an Island by,
81, 242
micromanagement, the shadow of,
132-137
micromanagers
advice for, 136-137
vs. good leaders, 134
variations of, 133-134
Microsoft Solutions Framework (MSF),
203-205
minimalist programmer, 9
money, using as a motivating force,
16-17
monitoring
importance of for managing a
distributed workforce, 197
techniques for in code design, 158

motivational tools, external forces as,
167-168

Moving to VB.NET: Strategies, Concepts,
and Code (Dan Appleman), 241

Mowbray, Thomas, Software Architecture
Bootcamp by, 108, 238

MSF milestones, focus of, 204

MSF teams, the processes roles are
centered upon, 205

N

naming conventions, importance of
following in software design,
120-121

natural selection and time, 25-29

Ninjitsu, 2

No Man Is an Island (Thomas Merton),
81, 242

Nohria, Nitin, The Arc of Ambition by,
241

note taking template, example of, 93

0

object-oriented design concept. See OO
design concept
Olson, Don S., The Manager Pool:
Patterns for Radical Leadership by,
175, 239
one-on-one meetings, criteria for, 95-96
Only the Paranoid Survive (Andy Grove),
173, 241
OO0 design concept, for designing and
constructing software, 41-42
organization
helping your company be successful,
-84
importance of for success, 27
to insure control, 71-77
some elementary principles of, 64-65
for success, 61-85
turning information into knowledge
and action, 62-70
organizational inertia, overcoming,
187-191
organizational software, creating to
direct administrative activities,
66-70
Organize Your Office (Ronni Eisenberg),
64
overload, danger signs of in leadership
role, 144-146
overtime, controlling for yourself and
your staff, 74-75

P

paper chase, pros and cons of, 63-65
paranoia, defined by Andy Grove, 173
participatory leadership, pitfalls of,
159-160
passion, preserving yours for success,
24-25
Pasternack, Bruce A., The Centerless
Corporation by, 180, 241
pedagogy, the academic field of, 161
people problems, working to solve,
76-77
Peopleware: Productive Projects and
Teams, Second Edition (Tom
DeMarco and Timothy Lister), 25,
236
performance reviews, gathering
information for, 96
personal information manager (PIM)
software, managing the paperless
chase with, 65-70
philosophy in action, a case study of,
124-125
phreaking, 3
PIM software. See personal information
manager (PIM) software
ping, 3
planning, importance of for managing a
distributed workforce, 195-196
Practical Standards for Microsoft Visual
Basic (James D. Foxall), 241
praise, importance of, 15-16
Principle-Centered Leadership (Stephen
R. Covey), 241
process management, 80-81
product development, importance of
project definition for, 79-80
product management, importance of
appropriate, 78-79
product management group, working
with for better program
development, 79
product modification, questions to ask
before making, 81
product testing, importance of, 82
productivity, measuring yours, 30-31
program anomaly, 12
programmer
amateur, 11
analogist, 9-10
architect, 6-7
constructionist, 7
cowboy, 13
ignoramus, 11-12
intimidated, 11

Index

magician, 9
minimalist, 9
salad chef, 12
scientist, 8
slob, 10-11
speed demon, 8-9
toy maker, 10
programmer-manager, your role as,
24-25
programmers
adapting to leading, 1-20
building a good team from scratch,
13-14
determining what they are worth,
16-17
encouraging the intimidated, 11
gathering strays, 51
importance of organizing
collaboration and solitude, 82-83
importance of praise and recognition
to, 15-16
leading into great work, 5-6
major breeds and their
characteristics, 6-9
minor breeds and their
characteristics, 9-10
the mongrels and their
characteristics, 10-12
recognizing breeds of, 6-12
some pitfalls of managing, 4-5
tools needed by, 83-84
working with the breeds, 12-14
programming
balancing purity with practicality, 28
importance of continuing after
promotion, 21
joys provided by, 13-14
project definition, importance of for
good product development, 79-80
project management software, using to
convey information, 45
project plans
example of realistic, 49-50
example of unrealistic, 48
principles of realistic, 181
real-world conditions that affect, 182
project post-mortems. See project
retrospective meetings
project retrospective meetings,
importance of, 98-99
Project Retrospectives (Norman L. Kerth),
98, 240
project scope creep
dealing with, 46-50
example of, 48

Index

Project view, Administrative Director
software, 224

promotions and raises, managing, 56-58

“proof of concept” exercise, 111-113

psychology assessment test, Web site
address for, 53

R

raises and promotions, managing, 56-58
rapid application development (RAD),
110
Raymond, Eric S. ed., The New Hacker’s
Dictionary, Third Edition, 4, 242
recruiting guidelines, 53-54
remote monitoring software, for viewing
your developers’ workstations, 197
retrospective meetings, typical questions
to research in, 99
rewards
example performance weighting
scheme, 163
granting for outstanding
performance, 162-164
as a motivating force for your staff,
169
Rich, Adrienne, The Dream of a Common
Language by, 121, 242
Rise & Resurrection of the American
Programmer (Edward Yourdon), 184,
239
Roundetable on Project Management
(Bullock, Weinberg, and Benesh,
eds.), 240

S

salad chef programmer, 12

salaries and promotions, managing,
56-58

salary rates, for programmers, 16-17

scientist programmer, 8

scope bloat. See project scope creep

scope creep. See project scope creep

Selected Poems and Three Plays of
William Butler Yeats, ed. ML.L.
Rosenthal, 242

Self-Reliance (Ralph Waldo Emerson), 89

Sewell, Marc T. and Laura M., The
Software Architect’s Profession: An
Introduction by, 107, 239

shadows, avoiding in leadership role,
147-148

Shenk, David, The End of Patience:
Cautionary Notes on the Information
Revolution by, 31, 242

slob programmer, 10-11

Smith, Douglas K., The Wisdom of Teams
by, 241
software, typical process of delivering, 47
software architects, role of, 107
software architecture
design forces in planning, 108-109
enforcing the laws of, 118-119
goal of, 103-105
philosophy in action, 123-126
the primacy of, 106-110
results of bad, 123
tools for creating reusable system
designs, 108
violation of standards, 120-121
Software Architecture Bootcamp
(Malveau and Mowbray), 108, 238
Software Craftsmanship (Pete McBreen),
57,237
software design
design step 0, 111-113
designsteps 1,2,3,2,1,4 ..., 113-117
a fresh look at, 110-117
guidelines for, 115
importance of code review, 118-122
importance of documenting new
code modules, 158
results of poor, 123-124
software design principles, common
violations of, 119-122
software development
bibliography of reference books,
235-242
characteristics of companies most
successful at, 119
craftsmanship of, 209-210
economic woes in, 212-213
evaluating the methodologies of,
201-210
gardening metaphor for, 105-106
guiding your ship on a stormy sea,
217-220
pitfalls of participatory leadership,
159-160
preventing major disasters in, 51
reasons for disasters, 50
rules to live by, 212-213
strategic concerns for long-term
planning goals, 211
software engineering, 202-203
balancing purity with practicality, 28
importance of avoiding complexity
in, 8
Software Runaways (Robert L. Glass), 50,
238
solitude and collaboration, needed
for software development, 194-195

Solutions Development Discipline
Workbook (Microsoft Corporation),
about Microsoft approach to
software engineering, 204

Source view, Administrative Director
software, 224

speed demon programmer, 8-9

staff meetings, weekly, 87-89

staffing, managing, 53-58

Stimmel, Carol L., The Manager Pool:
Patterns for Radical Leadership by,
175, 239

Straight from the Gut (Jack Welch), 33,
241

Strathern, Paul, Turing and the
Computer by, 165, 242

system architecture

importance of controlling, 73-74
proving it works from top to bottom,
111-113

T

Tablet PC, using as an organizational
tool, 63
targeted mentoring, 162
task concept
displaying and organizing tasks,
68-70
an implementation of, 67-68
task lists, for weekly staff meetings,
88-89
tasks, displaying and organizing, 68-70
team building, importance of, 41-59
technical leadership
a bird’s-eye view, 126-127
devoting time to research, 213
experimenting with new methods
and techniques, 189
a guideline for success, 116-117
importance of studying industry
trends, 188
learning to increase the value of your
relationships, 215
making strategic planning a science,
214
philosophy and practice of, 103-127
recognizing the customer is first,
190-191
the shadow of micromanagement,
132-137
turning administration into an
engineering discipline, 214
your role of managing architecture
and design, 103-105

technology
planning your architecture before
choosing, 28
revolutions in, 210-211

telecommuting, allowing to minimize
programmer distractions, 46

teleconferencing, for meetings, 99-100

template, example for design meeting
note taker, 93

testing, products before releasing, 82

testing applicants, guidelines for, 53-54

The 7 Habits of Highly Effective People
(Stephen Covey), 18, 43

The Arc of Ambition (Champy and
Nohria), 241

The Art of War (Sun Tzu), 211, 242

The Centerless Corporation (Pasternack
and Viscio), 180, 241

The Complete Poetry and Prose of
William Blake, ed. David V. Erdman,
242

The Deadline (Tom DeMarco), 240

The Dream of a Common Language
(Adrienne Rich), 121, 242

The End of Patience: Cautionary Notes on
the Information Revolution (David
Shenk), 31, 242

The Manager Pool: Patterns for Radical
Leadership (Olson and Stimmel),
175, 239

The Marriage of Heaven and Hell
(William Blake), 23

The Mythical Man-Month: Essays on
Software Engineering, Anniversary
Edition (Frederick P. Brooks), 13, 235

The New Hacker’s Dictionary, Third
Edition (Eric S. Raymond), 4

The Peopleware Papers (Larry L.
Constantine), 94, 238

The Pragmatic Programmer (Andrew
Hunt and David Thomas), 105, 237

The Psychology of Computer
Programming: Silver Anniversary
Edition (Gerald M. Weinberg), 52,
235-236

The Seasons of a Man’s Life (Daniel J.
Levinson), 171-172, 242

The Software Architect’s Profession: An
Introduction (Marc T. and Laura M.
Sewell), 107, 239

The Wisdom of Teams (Katzenbach and
Smith), 241

thinking, the role of in your new
leadership role, 17-19

Index

Index

Thomas, David, The Pragmatic
Programmer by, 105, 236-237

time and natural selection, 25-29

timing, importance of being sensitive to,
189-190

Today screen, for administrative director
software, 69

tools, needed by programmers, 83-84

toy maker programmer, 10

trade magazines, reading to stay current
in your field, 32

Turing, Alan, decryption of the German
Enigma codes by, 165-166

Turing and the Computer (Paul
Strathern), 165, 242

Tzu, Sun, The Art of War by, 211, 242

U

Ullman, Ellen, Close to the Machine by, 5,
242
understanding
as the first cornerstone of leadership,
152-154
tasks involved in, 154
undocumented feature offering (UFO),
12
unfocused managers, dealing with,
137-140

\%

vaporware, the stir it creates, 210-211

vertical thinking, 33

viewpoint, 109

Viscio, Albert J., The Centerless
Corporation by, 180, 241

Visual Basic 6 Design, Specification, and
Objects (Billy S. Hollis), 111, 241

w

Wallace, James, Hard Drive: Bill Gates
and the Making of the Microsoft
Empire by, 174, 242

weak cohesion and strong coupling, as
coding standards violations,
121-122

Web site address

Agile Alliance, 207
for psychology assessment test, 53

Weinberg, Gerald M.

Handbook of Walkthroughs,
Inspections, and Technical
Reviews by, 240

The Psychology of Computer
Programming: Silver Anniversary
Edition by, 52, 235

Welch, Jack
seeking out as advisor, 172
Straight from the Gut by, 33, 241
Whitehead, Richard, Leading a Software
Development Team: A Developer’s
Guide to Successfully Leading People
& Projects by, 241
work assignments, distribution of, 73
worker density, impact of on
productivity, 46
working hours, controlling for yourself
and your staff, 74-75
workweek, managing for yourself and
your staff, 74-75
worm, 3
Writing Solid Code (Steve Maguire), 238

Y

Yeats, William Butler, Selected Poems and
Three Plays of William Butler Yeats,
ed. M.L. Rosenthal, 23, 242
Yourdon, Edward
Death March by, 239
Decline and Fall of the American
Programmer by, 184
Rise & Resurrection of the American
Programmer by 184, 239

	rainwater cover.pdf
	Apress™
	Books for Professionals by Professionals™

