
Moving to ASP.NET:
Web Development
with VB .NET

STEVE HARRIS AND ROB MACDONALD

090FM 3/15/02 7:04 PM Page i

Moving to ASP.NET: Web Development with VB .NET
Copyright ©2002 by Steve Harris and Rob Macdonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copy-
right owner and the publisher.

ISBN (pbk): 1-59059-009-0

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, we use the names only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Scott Brown
Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore,

Karen Watterson, John Zukowski
Managing Editor: Grace Wong
Project Manager and Production Editor: Laura Cheu
Copy Editors: Christina Vaughn and Kim Wimpsett
Compositor: Impressions Book and Journal Services, Inc.
Indexer: Rebecca Plunkett
Cover Designer: Tom Debolski
Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc.,
175 Fifth Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag
GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.
In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710.
Email info@apress.com or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author nor
Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in this
work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section. You will need to answer questions pertaining to this book in order to
successfully download the code.

090FM 3/15/02 7:04 PM Page ii

CHAPTER 1

Introducing ASP.NET

ASP.NET: The Five-Minute Guide

ASP.NET vs. Classic ASP

Developing Web Applications

Key Concepts for ASP.NET

Understanding Web Applications

Understanding Web Services

Introducing ASP.NET Intrinsic Objects

BY NOW, MOST DEVELOPERS will have heard of ASP.NET and will have seen it in action.
In fact, it’s a pretty sure bet that if you’ve bought this book then you already have
it installed, maybe with Visual Studio .NET, and there’s a good chance you’ve
tried a few things out. You probably already know that ASP.NET brings an object-
oriented and event-driven programming model to the world of Web development
and that it can dramatically simplify the structure and creation of Web appli-
cations. You might, like us, be really excited about the possibilities and improve-
ments it brings, or you might just see it as a tool you can use to save a bit of time
so you can get to the game earlier or spend more time with your kids. Either way,
you can’t afford to ignore it—ASP.NET is big news and plays a key role in
Microsoft’s .NET strategy.

ASP.NET solves many of the problems that currently face Web developers,
and it greatly simplifies the tasks of creating, debugging, and deploying Web
applications. It’s radically different from its predecessors in many ways, but it
shares a common heritage and background to some. It requires that you learn
new skills and forget about some you already have. It’ll take time to master, but
that investment will be repaid many times over once you start working with it in
earnest. In short, it’s what many Web developers have been asking for over the
past few years.

1

ch1 3/15/02 4:47 PM Page 1

ASP.NET: The Five-Minute Guide

Okay, let’s start by going (very briefly) back to basics. ASP.NET is the next stage in
the evolution of Microsoft’s server-side technologies for dynamically creating
Web pages. It’s a successor to ASP 1.0, 2.0, and 3.0 (now collectively referred to as
classic ASP) and enables you to do everything that these older technologies could
do, plus a whole lot more. Although it’s different from its predecessors, it does
share many classic ASP language features and supports much of the old object
model, thus providing a reasonable amount of backward compatibility.

Classic ASP

Over the past few years, classic ASP has provided a convenient and effective way
for developers to build dynamic and interactive Web applications. It’s widely used
in Internet and intranet applications, and it has found favor with developers who
already have experience with other Microsoft technologies. Like every develop-
ment tool, classic ASP isn’t perfect, and the different versions suffer from a variety
of limitations:

• VBScript, the language of choice for most ASP developers, is loosely typed,
is late bound, and is interpreted rather than compiled. It offers less func-
tionality than its “big-brother” versions of Visual Basic for Applications
(VBA) and Visual Basic (VB), even in terms of fundamental requirements
such as error trapping and management.

• The design and architecture of ASP applications are different from desktop
applications. If we’re honest, they’re primitive when compared to the
object-oriented designs that you can achieve with tools such as VB, Visual
C++, and Visual J++.

• Continuing on the theme of architecture, one of the greatest limitations in
ASP is the way it requires you to combine interface elements and code into
a single ASP file. This is awkward when creating more sophisticated appli-
cations and limits code reuse and sharing.

• ASP is largely procedural, with the code within an ASP page being executed
from top to bottom on each request. Modern developers are more familiar
with object-oriented or event-driven models, both of which offer greater
flexibility and savings in development and maintenance time.

2

Chapter 1

ch1 3/15/02 4:47 PM Page 2

• State management techniques in ASP are rather basic, and although
they’re satisfactory if you’re deploying to a single server, they’re completely
inappropriate if you’re hosting the application on a Web farm. Web farms
consist of multiple servers, each running a copy of your Web application.
With the limited state management in classic ASP, each server in the Web
farm maintains its own state and is unable to share it with other servers.

• Configuration and deployment of medium- to large-scale ASP applications
is cumbersome. You can copy basic content files to target servers with min-
imum effort, but there remains a variety of manual tasks for configuring
virtual directory settings and permissions, as well as the need to register
COM components and install Microsoft Transaction Server (MTS) pack-
ages and COM+ applications. The situation is further worsened because
the Internet Information Server (IIS) Metabase holds IIS and ASP settings,
with relatively few tools available to manage them.

• The development tools are rather immature (although usable). Visual
InterDev helps developers who are prepared to accommodate its quirks
and foibles, but it has the capacity to surprise the unwary user of server
components, design-time controls, and so on. Some third-party tools offer
improvements in a few areas, but none are perfect.

• Finally, ASP is all about server-side features. Client-side control and inter-
action is possible but requires manual coding from the developer. This
means that pure ASP applications often require frequent server round-
trips, and this in turn often compromises performance.

ASP.NET

ASP.NET is full of new features and improvements, and throughout this book
we’ll look at all the important ones. It might be useful to start with a checklist of
what to look for, though, so you can start planning your approach to learning the
tools and techniques. The following list summarizes what we think are the most
significant changes and additions; however, once you’ve spent some time work-
ing on your own projects, you may well want to extend this list with some of
your favorites:

• ASP.NET is fully integrated with the .NET Framework and with the Visual
Studio .NET development environment. It’s not a bolt-on addition or after-
thought, and ASP.NET applications have full and unrestricted access to all
of the .NET classes and features.

3

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 3

• ASP.NET applications are built on top of the common language run-
time (CLR) and can be written in VB .NET, C#, or any other .NET-
compliant language.

• ASP.NET applications are largely component-based and modularized, and
almost every object, page, and HTML element can be a runtime compo-
nent that can be programmed through properties, methods, and events.
The currently supported languages offer full support for object-oriented
development, and third-party companies deliver additional languages.•

• ASP.NET applications typically involve less code than classic ASP through
the use of Web Forms, server controls, components, and other intrinsic
features. Also, the architecture and structure of ASP.NET applications
emphasize the separation of code from content, with interface elements
held in ASPX files while programming logic is compiled into a .dll.

• ASP.NET provides browser independence, with a base level of HTML 3.2
for older browsers while taking advantage of client-side features in later
browsers. ASP.NET causes the same source code to be rendered in the
most appropriate form for the browser in use.•

• Powerful server-side controls provide additional functionality and rich
content. Validation controls allow for automatic validating and checking
of user-entered data, and data-binding features enable the display
and updating of compatible data sources, including database and
XML information.

• Microsoft has also made available an additional library of server controls
(the Internet Explorer Web Controls) that generate rich client-side content
for clients using Internet Explorer 5.5 or later. This content takes the form
of DHTML, JavaScript, and DHTML behaviors to provide an interactive
interface including tab strips, tree views, and toolbars, with much of the
processing performed in client-side scripts. For clients using other
browsers, these server controls render to HTML 3.2 to present a similar
look and feel—though in this case any processing will be performed
server-side.

• ASP.NET supports numerous caching technologies to allow efficient stor-
age and retrieval of any kind of object or data, including XML, database
query results, partial or complete pages, any part of the browser stream,
images, and much more. You can associate cached items with a priority
that ASP.NET uses as a guide when clearing cached items if space is a pre-

4

Chapter 1

ch1 3/15/02 4:47 PM Page 4

mium, so you can preserve items that are costly to rebuild at the expense
of simpler items.

• ASP.NET is more crash tolerant than classic ASP, with better and tighter
security management. Much of the improvement is because of the .NET
environment and CLR, which provides reliable garbage collection, appli-
cation isolation, thread management, resource pooling, and more. If a
Web application crashes, ASP.NET restarts it when the next browser
request is received.

• There are major improvements to debugging and error handling, including
page- and application-level tracing. Error information can be reliably
passed between pages, so that common, centralized error logging and
reporting systems can be built. VB .NET supports structured error han-
dling, with consistent reporting of errors and error information regardless
of the source or cause of the error.

• ASP.NET supports easy deployment, updates and component manage-
ment, and text-based configuration through XML documents. You can roll
out changes to live Web servers, even while the application is running.
.NET objects have no direct dependency on the registry in terms of their
location and configuration, dramatically simplifying the tasks of initial
deployment and updates.

• The Microsoft development team made sure that Web farms and Web
gardens were supported by giving ASP.NET powerful and flexible state
management, server independence across page calls and postbacks,
and free-threaded components.

• ASP.NET supports creating and managing Web Services, replacing DCOM
technology with a solution that is platform neutral and firewall friendly,
plus incredibly easy to build, test, and deploy.

As you might imagine, we could continue this list even further, but these
details should give you a good idea of what ASP.NET offers. Hopefully these
points have also started to make you aware of just how different ASP.NET is from
desktop development and from classic ASP Web development. If you want to
make the most of these new tools and techniques, then you’ll need to invest
some time and effort into learning them; it’s unrealistic to expect to simply “pick
things up as you go.” What we aim to do in this book is to give your ASP.NET
career a real kick-start, not just by showing what ASP.NET offers but more impor-
tantly by showing how you’ll likely use it to create real-world Web applications.

5

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 5

ASP.NET vs. Classic ASP

As the previous section highlighted, there are many differences between classic
ASP and ASP.NET. They both seek to solve the same problems—the need to
deliver flexible and efficient architectures for Web applications, but the way they
achieve that goal is vastly different.

Although there are clearly differences in the implementation details, the real
difference lies at the heart of ASP.NET, which delivers a truly event-driven and
object-oriented development experience. What this means for you and other
real-world developers is that you should be able to write less code to achieve the
same objectives, which in turn should generate fewer errors and less mainte-
nance. Organizations that have begun developing ASP.NET applications are
reporting remarkable improvements in code efficiency and volume compared
to older technologies. Compare some well-known sample applications such
as IBuySpy (www.ibuyspystore.com) and Fitch and Mather (www.fmstocks.com),
and it becomes clear that the ASP.NET solution can have as little as 25 percent of
the code of its classic ASP sibling. Additionally, that code is better organized and
structured and is much easier to test, debug, deploy, and maintain.

All this is great news for new developments, but what about existing classic
ASP applications; how can they benefit? Well, we’ve found that the migration
process is far from painless, and because of the new programming model, many
classic ASP applications would best be rewritten from scratch rather than simply
converted. As a result, classic ASP remains a necessary technology for existing
installations. As time moves on, we recommend you seriously consider ASP.NET
for new projects and for any significant redevelopment or enhancement of
current ones, but in many cases it won’t be financially viable to convert
existing applications.

Fortunately, there’s a simple solution; to ease the pressure of migrating from
ASP to ASP.NET, both technologies can coexist on the same Web server, and even
in the same application. When IIS receives a request, it uses the extension of the
requested filename to determine how a request is processed; Filename.asp would
be processed using ASP technologies, and Filename.aspx would be passed to
ASP.NET. Chapter 10 discusses exactly how this differentiation is achieved. If
you’ve been through previous upgrades of Microsoft’s developer tools, you might
feel a little suspicious, though—after all, can you really run two different versions
of ASP on a single Web server? Well, from our experience so far, we would say that
you can. It really does seem that there are no serious technical problems or diffi-
culties, although there will be design issues arising from the differences in state
management, component management, and so on.

Where we recommend caution is if you try to install Visual Studio .NET
alongside Visual Studio 6. In theory this should work fine, as the two environ-
ments share few files and should have no conflicting settings. However, where

6

Chapter 1

ch1 3/15/02 4:47 PM Page 6

you may notice changes is in terms of the supporting components and technolo-
gies, rather than the development tools themselves. For example, Visual Studio
.NET installs ADO 2.7 alongside any existing versions and upgrades your browser
to Internet Explorer 6.0. Depending on how you’ve written your code and the fea-
tures you’ve used, you may find these newer versions change the way your
existing Visual Basic 6 applications behave. On the whole, though, the ability to
have Visual Studio 6 and Visual Studio .NET installed alongside each other is pos-
itive, giving you the opportunity to build new projects in .NET while continuing
to support existing ones with the original development tools.

Developing Web Applications

Many of you reading this book will have strong desktop development skills, and
you’ll have experience coding Windows Forms, .dll files, and .exe files. You’ll be
used to the idea that if you put a value into a class-level variable, that value stays
there and won’t be changed or destroyed except under the control of your code.
You’ll have used components and controls within your application because you
know they can be deployed to client machines with the rest of the application.
More importantly, though, you’ll be familiar with the way in which events are
raised and handled, allowing your code to instantaneously react to almost every
user action.

Web development is different. A Web application could be comprised of
many different elements, some of which are compiled into .dll files and others
are deployed to the server in plain-text form. Web applications don’t automati-
cally maintain state for you, requiring that you add code to manage the per-
sistence of values, objects, and any other data you want to keep “alive.” Web
applications run in a diverse and unpredictable environment, and although
you have a certain degree of control over the configuration of the Web server, you
have no influence over the client browser’s type, version, or configuration.

Also, Web applications have traditionally been procedural rather than event
driven, but this is one of the big changes for ASP.NET as it now supports a rich
and powerful event model. However, ASP.NET events are generally handled on
the server, so actions in the client browser are passed across the network for han-
dling, and the result passed back to the browser. Too many round-trips can cause
performance problems, and although ASP.NET provides some facilities for you to
minimize and control the number of round-trips, it’s up to you to write the code
to do so.

7

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 7

Web vs. Desktop Development

To summarize the differences between these development styles, consider the
following list of key Web application features:

• Thin-client: The Internet is a large and varied environment, and robust
Web applications must be accessible from as many different client plat-
forms and browsers as possible. For many developers the solution is to
adopt a thin-client design, whereby the application returns browser-
neutral HTML to the client, but this approach results in static appli-
cations that require round-trips to the server to perform any processing
or updates. Contrast this with desktop development where it’s usual to
have thick-client technology, interactive controls and code, and the ability
to access workstation features and software.

• Rich versus reach: An Internet developer needs to make a conscious
decision to either target specific browsers (and provide a rich and interac-
tive application) or support the widest possible set of browsers (and reach
a broader audience). Desktop developers have this decision made for
them—the interactive nature of a typical desktop application means that
it has specific software and hardware requirements.

• Round-trips: Because of the thin-client nature of typical Web applications
it’s necessary to make a server round-trip to perform any processing, vali-
dation, or data retrieval. Each of these round-trips is expensive, however,
involving measurable delays as well as the possibility of network errors
because of poor Internet connections, routers, and so on. In a desktop
environment, the number of server hits can be kept to a minimum through
client-side caching, validation, and processing.

• State and scalability: You can design desktop applications using a variety
of architectures, from monolithic through client-server to n-tier. However,
from the point of view of building the client-side code, the developer can
be sure that they can store data in memory, save values to disk files if
needed, and generally write the code such that it will be used by a single
user. The Web environment is different—many users will call a single Web
page, often simultaneously, and therefore the code behind the page must
allow this level of concurrency while still maintaining each user’s infor-
mation in a suitable way. Failure to design the application correctly leads
to a non-scalable architecture, where the performance and reliability
degrade quickly as the number of users increases.

8

Chapter 1

ch1 3/15/02 4:47 PM Page 8

In the ASP.NET environment, some of the new features address these problems:

• Thin-client: You can configure ASP.NET to generate browser-neutral
HTML 3.2, with a minimal dependence on client-side features such as
JavaScript support. You achieve this through Web Forms, although their
default property settings mean that they’re optimized for more modern
browsers, in particular Microsoft Internet Explorer 5.5. It’s up to you to
change the properties to the settings required for your chosen audience.

• Rich versus reach: Certain ASP.NET features are able to adapt their behav-
ior according to the browser in use. For example, validation controls are
special server controls you add to your Web page to check that the user has
entered data correctly. If a JavaScript-enabled browser (such as Internet
Explorer 5.5) is detected, the validation controls will be rendered using
some client-side code, but if a non-JavaScript browser is identified then
the client-side code will not be generated. This adaptive behavior allows
developers to take advantage of new browser technologies without com-
promising support for older standards.

• Round-trips: ASP.NET is by definition a server-side technology, so the
majority of event handling and processing is on the server. However, there
are times when a small amount of client-side code would prevent a server
hit, such as in the previous validation control example. In many cases such
as this, ASP.NET generates client-side code that minimizes or negates the
need for server round-trips.

• State and scalability: ASP.NET eases the management of state in Web
applications through numerous mechanisms. A special hidden control on
each Web Form now stores page state, which is sent to and from the server
transparently. This eases the creation of postback pages and means that
such page state need not be held on the server, thus increasing scalability.
Session state, which relates to a single user of the application, can now be
stored in a service that is distinct from the Web server or in a SQL Server
database. In both cases, you can specify a remote server to ease deploy-
ment of the application to a Web farm. You can also control caching
options at page or application level, enhancing performance with increas-
ing numbers of users.

The Visual Studio .NET development environment makes it easy for you to
build these features into your project, and it makes the process of building Web
applications easier than ever. In many cases it does an excellent job of hiding the
underlying detail, providing developers with a set of tools similar to the tradi-
tional Windows Forms/toolbox combination present in Visual Basic.

9

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 9

In fact, in some ways it’s almost too good at hiding these specifics and can
lead unwary developers into producing Web Forms that are fully featured but
incredibly inefficient. For example, ASP.NET server controls support a property
called AutoPostback that causes the page containing the control to be submitted
to the Web server if the control is changed or clicked. As you can imagine, incor-
rect use of this property is likely to result in many server round-trips, and across
the Internet this will almost certainly render the application unusable.

Key Concepts for ASP.NET

By now you should have a broad idea of what ASP.NET is about, and you’re prob-
ably itching to get started. Well, before we jump in and start building, there are
just a few concepts to introduce. These really are important, and with a grasp of
these ideas you’ll find creating and understanding ASP.NET Web Applications to
be a whole lot easier.

Web Application

The first concept we’ll investigate is a Web Application. As you might imagine,
a Web Application is pretty central to ASP.NET and Web development in general,
so it makes a good start point. There are a number of ways of defining a Web
Application, but one that works well for ASP.NET is as follows:

A Web Application consists of all the files, pages, handlers, modules, and
executable code that can be invoked or run in the scope of a given virtual
directory (and its subdirectories) on a Web Application server.

If you’re familiar with classic ASP then you should recognize this definition,
and it’s true to say that at first sight, little appears to have changed in the way that
ASP.NET Web Applications run. In reality there are big differences, most of which
are buried deep in the .NET Framework and supporting technologies. As a devel-
oper, you need to make sure the files and content you create are placed into the
correct folder, but even that is largely automated by Visual Studio .NET.

It’s important to realize a Web Application is different from a traditional desk-
top application. In particular, Web Applications do not have to be comprised of
a specific .exe or .dll file, and they’re likely to be made up of many individual files of
varying types. In fact, as you shall see later, there’s no need to have a compiled .exe
or .dll at all—you can create all Web Application functionality with plain-text files.

We’ll return to investigate Web Applications later in this chapter in “Under-
standing Web Applications,” but for now let’s look at some other important ideas
that make up ASP.NET.

10

Chapter 1

ch1 3/15/02 4:47 PM Page 10

Web Form

Web Forms are the most common components in Web Applications. They’re the
combination of the user interface and the associated logic that gets rendered as
a page in the user’s browser, and they’re implemented in ASP.NET as .aspx files,
in a similar way to the use of .asp files in classic ASP. However, where ASP.NET dif-
fers is that the associated logic for a Web Form can be written in a powerful and
full-featured language such as VB .NET or C# and stored in a compiled .dll. In
contrast, classic ASP relies on interpreting scripts embedded in the ASP file itself.

Each Web Form represents a separate page within an application and con-
tains an HTML <form> element. Any additional tags, elements, or controls you
add using Visual Studio .NET go within the <form>, which means that all of the
content of a Web Form passes back to the Web server when the form is submit-
ted. To make the creation of Web Forms as easy as possible, Visual Studio .NET
provides you with a convenient designer that supports drag-and-drop editing
and a What-You-See-Is-What-You-Get (WYSIWYG) viewer. For example,
Figure 1-1 shows a simple page in the designer, consisting of labels, text boxes, an
image, and a button.

11

Introducing ASP.NET

Figure 1-1. The Logon.aspx file

ch1 3/15/02 4:47 PM Page 11

Some of the content added in this example is static HTML, much as you
might create using Microsoft FrontPage, Macromedia Dreamweaver, or even
Notepad. However, the two text boxes and the button are server controls that,
as you’ll soon see, are intelligent server-side interface objects that allow for
easy interaction between your code and the Web Form. If you look closely at
Figure 1-1, you’ll see that the server controls have a small icon in their top-left
corner; static content is not annotated in this way.

It’s worth emphasizing that the designer is just a convenient tool for creating
a Web Form’s content. Anything added to the designer is actually converted and
stored as HTML elements, and you can see this representation of the Web Form
by clicking the HTML tab at the bottom of the designer. Figure 1-2 shows the
HTML View of the Web Form shown in Figure 1-1.

If you’re familiar with HTML then you should recognize much of this con-
tent. However, look closely at the HTML tags that define the two text boxes and
button, and you’ll see they have a rather non-standard format, consisting of
<asp:TextBox> and <asp:Button> tags as well as a variety of non-standard attri-
butes. Remember that these three controls are server controls—what you’re
seeing are the server control tags; the HTML sent to the browser by this Web

12

Chapter 1

Figure 1-2. HTML View of Logon.aspx

ch1 3/15/02 4:47 PM Page 12

Form will be quite different, and these server control tags will be replaced with
standard HTML elements.

As well as the visual content added in the designer, Web Forms will usually
contain code. This may be stored within the Web Form’s file itself
(<filename>.aspx) or may be placed into a code-behind module associated with
the Web Form. These modules typically have names that end in .aspx.vb for
Visual Basic .NET and .aspx.cs for C# code. We’ll return to the topic of code and
modules in the “Understanding Web Applications” section later in this chapter.

If you’re not familiar with HTML notation, or just want to brush up on your
knowledge, refer to Appendix A, which provides an overview of HTML syntax and
behavior. Chapter 2 returns to the topic of Web Forms in far more detail, showing
how they can be created, customized, and used throughout Web Applications.

Server Control

Server controls are intelligent user interface objects you add to your Web Forms.
Some server controls represent simple objects, such as text boxes, buttons, and
lists, and others represent more complex structures such as grids, tables, and
calendars. Server controls are able to change the way they render their output
according to the client browser’s capabilities. On modern browsers, they can
take advantage of features such as client-side scripts and DHTML to provide
a richer and more responsive interface while at the same time maintaining base-
level HTML 3.2 support for older browsers. They’re also interactive elements,
both with the user and with your code. This enables you to manipulate a server
control by setting or reading its properties and invoking its methods; at the same
time, the user sees it on their screen and can use it in the same way as a regular
HTML element.

Server controls can have quite different design-time and runtime appearances.
For example, Figures 1-1 and 1-2 showed the Design and HTML Views for a Web
Form containing text box and button server controls, but if you view the page in
a Web browser and display the HTML source, it appears similar to Figure 1-3.

13

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 13

You can see that the <asp:TextBox> and <asp:Button> tags have been trans-
lated to regular HTML <input> tags and that the runat=”server” attribute has
gone. Also, although the id attribute has been maintained, a matching name
attribute has been added in the HTML sent to the browser. These changes were
made within ASP.NET and were controlled by the logic within the controls them-
selves. There are other differences, too, including that the second textbox has
been rendered to an input element of type password as this had a TextMode=
“password” setting in the source file.

However, the really interesting thing about server controls is that, from the
point of view of code on the server, the controls are simply programmable
objects with rich sets of properties, methods, and events. They’re not HTML tags
nor elements, and they’re not textual definitions that have to be generated by
“cookie-cutter” code. They’re objects. This enables you to take a completely new
approach to Web development and lifts the barrier on structured coding, code
reuse, and many other often-requested features.

14

Chapter 1

Figure 1-3. Browser-side HTML for Logon.aspx

ch1 3/15/02 4:47 PM Page 14

Postback

Postback is the term given to the process that occurs when a Web Form is submit-
ted. Submission occurs when the user clicks one of the buttons on a Web Form or
when some other action causes a request to be sent to the Web server.

The definitive thing about postbacks—that is, the thing that makes them dif-
ferent from other submissions and requests—is that the Web Form is submitted
to itself. In other words, the code used to process the request and create the next
Web page is the same code used to create the current Web page.

The use of postbacks in this way enables ASP.NET to simplify page pro-
cessing because it ensures that all the logic for handling the Web Form request
(which is used when the postback occurs) has direct access to the objects that
define its interface. This is the same approach used for Visual Basic desktop
development, where each Windows Form contains the user interface objects and
the associated code that is executed when events occur for those objects. In fact,
as you’ll see in the next section, ASP.NET also adopts the concept of events
(known as server events) that are raised during the postback process.

Postbacks are the default mechanism used by Web Forms in ASP.NET and
occur because the <form> element within the Web Form has no action attribute
defined for it. For example, look back at the HTML View of the Web Form in
Figure 1-2 and notice that the only attributes are id, method, and runat. Now,
look back at Figure 1-3 and examine the <form> element sent to the browser.
When ASP.NET processed the Web Form, it replaced the design-time attributes
with valid HTML settings including an action=”Logon.aspx” attribute to cause
the postback.

If for some reason we didn’t want a postback to occur, but instead wanted to
submit the content of the Logon form to another page for processing, then at
design-time we could define an action attribute that referred to the required page.
At runtime ASP.NET will simply pass this through to the browser unmodified.

Server Event

The final concept we’ll introduce at this stage is the server event. Server events are
closely allied to Web Forms and server controls, and indeed these two types of
object are the source for many server events. As the term implies, server events
are notifications sent to your server-side code from ASP.NET objects, and these
events correspond to phases in the page-processing cycle or to actions initiated
by the user. Irrespective of the event’s cause, when it triggers on the server, your
code can respond to it by way of event procedures.

For example, if you return to Visual Studio .NET and double-click the button
on Logon.aspx, you’re presented with an empty event procedure for the button’s
click event. Any code you add to this procedure will be executed when the user

15

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 15

clicks the button in the browser. Figure 1-4 shows an extract of code to perform
simple verification of the details entered into the username and password
text boxes.

You can see that the controls are referenced as objects, and that the code
simply reads the Text property of each. In this respect it’s similar to code you
may write for desktop applications, but compared to classic ASP it’s a revolu-
tionary change.

We’ll examine how these events are raised in much more detail in later chap-
ters, but for now you should remember that although the source of the event was
an action in the browser, the effect of the event is to run code on the server.

16

Chapter 1

Figure 1-4. Code for the click event

ch1 3/15/02 4:47 PM Page 16

Understanding Web Applications

It’s worth spending a little more time investigating Web Applications at this stage,
but rather than just letting us describe what a Web Application looks like and
where it’s stored, why don’t you go ahead and create one?

Start by loading Visual Studio .NET. Unless you’ve configured it otherwise,
you should see a Start Page similar to that shown in Figure 1-5.

Click New Project, select Visual Basic Projects for the project type, and then
select the ASP.NET Web Application icon in the Templates pane. Finally, enter the
Location of the application as http://localhost/FirstApplication, at which
point the dialog box looks like Figure 1-6, and then click OK.

17

Introducing ASP.NET

Figure 1-5. Visual Studio .NET Start Page

ch1 3/15/02 4:47 PM Page 17

Once the project has been created, Visual Studio .NET shows a summary of
its content in the Solution Explorer. At the moment you should see that it con-
tains the following files:

• AssemblyInfo.vb

• FirstApplication.vsdisco

• Global.asax

• Styles.css

• Web.config

• WebForm1.aspx

It should also contain a References folder containing the .NET assemblies
currently referenced from the project, much as the References dialog box in
Visual Basic 6.0 lists the COM components currently referenced.

This is merely a summary of the project’s content because the default config-
uration of Visual Studio .NET hides many files from you. If you want to see all of
the files in the project, select Project ➢ Show All Files from the menu, and you’ll
see additional elements, mostly child elements of the existing files. Figure 1-7
shows the Solution Explorer with all of the files displayed.

18

Chapter 1

Figure 1-6. Creating your first Web Application

ch1 3/15/02 4:47 PM Page 18

Okay, so this is the Visual Studio .NET view; what about when you run it?
Well, if you try and run the application right now (by selecting Debug ➢ Start),
then it’ll look pretty plain. In fact, it’ll look empty because you’ve not created any-
thing on the Web Form to be displayed in the browser. Although there’s not much
to see at this stage, it’s actually quite useful to go and have a look at the project
files from the point of view of IIS because this is ultimately the software that
hosts the Web Application.

Load Windows Explorer and navigate to the main IIS root folder. This is
usually C:\Inetpub\wwwroot but could be different on your PC. You’ll see
a FirstApplication folder, which in turn contains the files shown in Figure 1-8.

19

Introducing ASP.NET

Figure 1-7. Complete project contents

ch1 3/15/02 4:47 PM Page 19

You can see that all of the files shown in the Solution Explorer are present,
plus some additional folders (which are flagged with a hidden attribute) and the
project file itself. Any files added to the Web project in Visual Studio .NET will be
copied to this folder as well.

20

Chapter 1

Figure 1-8. Project contents through Windows Explorer

NOTE This is the only copy of your project and its content
that is maintained by Visual Studio .NET. Make regular back-
ups of this folder.

Additional Content

The files that Visual Studio .NET creates within a Web Application are only a
starting point. You’ll most likely need to create additional Web Forms, classes,
controls, and Web Services at some stage (although not necessarily in the same
application), and you’ll probably want to bring in existing content files such as
HTML and XML documents. In truth, the list of possible content files is endless
because your Web Application can contain any valid file type that the operating

ch1 3/15/02 4:47 PM Page 20

system supports. However, most applications use a small subset of the possible
file types, with the following being the most common:

• .asp files: Classic ASP files, which can be run side by side with ASP.NET
applications, even within the same virtual directory. This eases migration
and upgrades by allowing conversion to be performed gradually. However,
classic ASP files will not have access to any of the new .NET features and
will be handled by the standard asp.dll handler.

• .aspx files: ASP.NET Web Forms, which form the user interface of a Web
Application. They’re often associated with .aspx.vb and .aspx.resx files,
which are used within the development environment to hold code and
resource information respectively.

• .asmx files: ASP.NET Web Services, which are components that can be
called over the network by other applications to perform specific
functions. Web Services are one of the replacement technologies for
DCOM, and they’re designed to be Internet and firewall friendly. As with
Web Forms, they’re usually associated with .asmx.vb and .asmx.resx files.

• Global.asax: ASP.NET version of global.asa, which contains application-
level event handlers, definitions, and objects.

• .htm, .html, .css: Traditional HTML files and style sheets.

• .xml: XML documents, which can be processed by .NET applications (see
Chapter 9) or passed straight to the browser for client-side manipulation.

• .gif, .jpeg: Image files and graphics, often maintained in their own \Images
directory, although this is a preference rather than a requirement.

• .config: XML documents that manage .NET specific settings. The project
will contain a Web.config file in the virtual root, but each subdirectory
can have its own Web.config file to override specific settings. There’s also
a global Machine.config file that maintains machine-wide settings; you
can find this file under the folder
C:\WINNT\Microsoft.NET\Framework\v1.0.XXXX\CONFIG
rather than within any single application.

• \bin directory: Contains .NET assemblies and compiled code required by
the Web Application. If you use Visual Studio .NET to build Web Appli-
cations, there will be a .dll file with the same name as the project that
contains the compiled code for the application.

21

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 21

To add any of these files types to an application, you need only to place them
into the Web Application’s virtual directory. Subject to permissions and configu-
ration settings (see Chapters 10 and 11 for a full discussion of these issues), the
files will then be accessible from the client browser.

However, content added in this way will not automatically become a part of
the Visual Studio .NET project. To add a file to the project you can select Project
➢ Add Existing Item and then browse for the names of the files to be added. If
necessary, Visual Studio .NET will copy them to the virtual directory and then add
them to the list of files shown in the Solution Explorer.

The benefit of adding files to the project becomes clear when you need
to deploy the application because a Web Setup Project can be used to automat-
ically deploy all of the project content. Web Setup Projects are the .NET equivalent
of tools such as the Package and Deployment Wizard and the Visual Studio
Installer; you’ll see how to create them in Chapter 10, which discusses the pro-
cesses of packaging and deploying Web Applications. You may also find that other
management and development tasks are also eased, as you will have the full capa-
bilities of the Visual Studio .NET development environment available to you.

Virtual Directories and ASP.NET

IIS configures the FirstApplication folder that contains the Web Application as
a virtual directory (see Appendix A for more information if you’re not sure what
this means). This happens when the Web Application is first created and
enables IIS to apply a variety of configuration parameters to the application inde-
pendently of any other sites or applications running on the same server. To see
the virtual directory configuration, load the Internet Services Manager utility,
found in Administrative Tools, and then expand the ComputerName and Default
Web Site nodes to display the list of folders, virtual directories, and applications.
Click on FirstDirectory to display the content. Figure 1-9 shows how this may
appear, although the list of virtual directories on your computer will contain dif-
ferent entries.

22

Chapter 1

ch1 3/15/02 4:47 PM Page 22

As you can see, the content of the virtual directory matches that shown in
Windows Explorer, but Internet Services Manager also allows you to view the
properties of the virtual Web directory. Right-click the FirstApplication entry,
select Properties from the context menu, and you’ll see the dialog box shown in
Figure 1-10.

23

Introducing ASP.NET

Figure 1-9. Project contents shown through Internet Services Manager

Figure 1-10. Properties for the FirstApplication virtual directory

ch1 3/15/02 4:47 PM Page 23

Clearly, you can define many settings, some of which we’ll return to later. For
now, notice that the Directory tab contains basic permissions and application
settings. If you switch to the Documents tab, you’ll see that it defines the names
of the default files that IIS will search for when a user browses to this application.
Visual Studio .NET defined all of these settings when it created the virtual direc-
tory, during the initial creation of the project.

Web Application Content

In our previous definition of a Web Application we stated, “a Web Application con-
sists of all the files, pages, handlers, modules, and executable code that can...”
How does this compare with the Visual Studio .NET view of a Web Application?
Well, you can clearly see that all the content added to the application was placed
in a single virtual directory, and when we delve further into the architecture of
.NET you’ll see that ASP.NET functionality contained within HTTP Handlers and
HTTP Modules are also executed within the scope of the application.

However, this does not mean you must create all content within Visual Studio
.NET. To illustrate this, we’ll use Notepad to create an additional file in our
virtual directory:

1. If Visual Studio .NET is open, close it completely, so you can be sure it
doesn’t play any role in what follows.

2. Load Notepad, and open the Webform1.aspx file in the FirstApplication
directory. Add a heading to identify the page between the <form> and
</form> tags:

<form id=”Form1” method=”post” runat=”server”>

<h1>This is WebForm1.aspx</h1>

</form>

3. Save Webform1.aspx, then create a new blank file in Notepad, and enter
the following:

<%@ Page Language=”vb” %>

<html>

<body>

<form id=”Form1” method=”post” runat=”server”>

<h1>Welcome to FirstApplication</h1>

<asp:button id=”btnNavigate” runat=”server” text=”Navigate”/>

</form>

</body>

</html>

24

Chapter 1

ch1 3/15/02 4:47 PM Page 24

4. Save this file as Default.aspx in the FirstApplication directory. Make sure
that Notepad doesn’t add its own .txt file extension.

5. Load your browser, and navigate to http://LocalHost/FirstApplication.
You should see the Default.aspx page because this name is configured as
one of the default documents that IIS recognizes. However, although the
button is displayed, it doesn’t do anything yet.

6. Return to the source code of Default.aspx in Notepad, and add the fol-
lowing at the bottom of the file:

<script runat=”server”>

Protected Sub btnNavigate_Click(Sender as Object, E as EventArgs)

Server.Transfer(“webform1.aspx”)

End Sub

</script>

This code defines an event-handling routine, the purpose of which is
to transfer control to another Web Form (Webform1.aspx) when
a user clicks the Navigate button. We’ve chosen to do this with the
Server.Transfer method, although we could also have used
Response.Redirect. Chapter 12 examines navigation techniques and
methods, and describes the relative merits and disadvantages of each
approach. The signature of this procedure is important, as all .NET
event handlers are expected to accept two parameters.

The first parameter (Sender) is a reference to the object that raised the
event. You might think this is redundant because we’ve already decided
that this handler will be associated with events from the Navigate but-
ton; however, as we shall see in Chapter 4, you can define event-
handling routines to be associated with multiple controls, and so the
Sender parameter provides an easy way to identify which of these
controls has raised the event.

The second parameter (E) is a reference to an object that provides addi-
tional information about the event. In the case of a click event there’s no
useful additional information, but for events such as ItemClick (in
a ListBox) or ItemCommand (in a DataGrid) the E parameter includes
details of which item or row has been selected or activated.

7. Modify the tag for the <asp:button> by adding a definition of the OnClick
handler. This will read as follows:

25

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 25

<asp:button id=”btnNavigate” runat=”server” text=”Navigate”

onclick=”btnNavigate_Click”/>

We need to add this additional attribute to ensure that ASP.NET associ-
ates our server-side event procedure with the control.

8. In the Web browser, navigate to http://LocalHost/FirstApplication
once again. Click the button on the page, and you’ll be redirected to the
WebForm1.aspx page. Return to the Default.aspx page and view its
source—you’ll see that there’s no client-side script, demonstrating that
the event handler we added is executed only on the server.

Although you can create content using Notepad or other text editors, in most
cases it would be inappropriate to do so. In this example, the Default.aspx file
contains both the visual elements for the page as well as the code that handles
the events. This approach can be problematic in the long term, increasing main-
tenance requirements and minimizing the chance of reusing code. One of the
key features of ASP.NET is its ability to separate code from content, and this is
emphasized when you build applications using the Visual Studio .NET tools.

Another point worth noting is that if you return to Visual Studio .NET and
view the content of the project in the Solution Explorer, the Default.aspx file will
either be gray (if Show All Files is selected) or be hidden (if the option is off). This
is because you have not added the Default.aspx file to the ASP.NET project, even
though you added it to the application’s virtual directory. Figure 1-11 shows the
view when Show All Files has been selected.

As mentioned earlier, you may find it easier to manage Web Applications if
all of the content is included in the Visual Studio .NET project. Because
Default.aspx is already present in the application’s virtual directory, the easiest

26

Chapter 1

Figure 1-11. Solution Explorer showing all files

ch1 3/15/02 4:47 PM Page 26

way to add it to the project is to right-click on the name in the Solution Explorer
and select Include In Project. You’ll be warned that no class file exists for the
Web Form, but you should specify No when asked if one should be created.
Our Web Form contains code embedded in the .aspx file, whereas Visual Studio
.NET expects it to be in a code-behind module. There’s nothing wrong with this
approach, it’s just not what the development environment is expecting.

Understanding Web Services

The type of application you’ve seen up until this point is perhaps more accurately
described as a Web Forms application because it uses Web Forms to create a visi-
ble user interface that can be displayed in a browser. However, Web Applications
can contain other types of component as well, and one of these is a Web Service.

Web Services present a programmatic interface rather than a visible one, and
users usually access them from other applications (including Web Applications
and desktop applications) rather than from a browser. You build Web Services
using .asmx files rather than .aspx files, but the two types of file can freely coexist
within the same project. Web Services and Web Forms share many features, and
you’ll find that their coding structures and style are similar.

We’ll discuss Web Services in much more detail in Chapter 14, and you’ll get
plenty of opportunities to try creating your own. For now, let’s add a simple Web
Service to the FirstApplication project created previously:

1. If necessary, load Visual Studio .NET and open the FirstApplication project.

2. Select Project ➢ Add Web Service and set the Name for the new compo-
nent to Forecast.asmx.

3. You’ll be presented with a blank designer, which you can close as this
Web Service will be entirely code-based.

4. Select Forecast.aspx in the Solution Explorer, then display the code for
the component by selecting View ➢ Code or pressing the F7 function
key. It’ll appear as shown in Figure 1-12.

27

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 27

5. Delete all of the commented (green) code, and replace it with the following:

<WebMethod()> Public Function GetUKWeather() As String

Dim intRandom As New Random()

Select Case intRandom.Next(3)

Case 0

Return “It is cloudy”

Case 1

Return “It is raining”

Case 2

Return “It is raining hard”

Case 3

Return “It is raining very hard”

End Select

End Function

6. Save the file, then right-click in the Solution Explorer and choose Build
And Browse. Ordinarily you would use a separate client application to
call the Web Service, but in this case you don’t yet have one. Fortunately,

28

Chapter 1

Figure 1-12. Default content of a Web Service file

ch1 3/15/02 4:47 PM Page 28

ASP.NET helps out by creating a browser-based interface that you can use
for testing. Figure 1-13 shows how this appears in the browser window.

7. Click the GetUKWeather hyperlink to display the next page, and then
click the Invoke button to test the Web Service. A separate browser win-
dow opens to show the result, as shown in Figure 1-14.

Notice that the results display in XML notation, which is the format in which
all Web Service information is transferred. The reason Web Services return infor-
mation in the form of XML is that XML is a completely language- and platform-
independent way of representing data that can be passed across the Internet, so

29

Introducing ASP.NET

Figure 1-13. Testing the Web Service

Figure 1-14. Results from the Web Service

ch1 3/15/02 4:47 PM Page 29

virtually every developer in the world can call your Web Service. Typically, devel-
opers will use client tools to call Web Services, which completely hide the fact
that the Web Service uses XML at all. For example, a .NET client program can cre-
ate a Web reference to your Web Service, after which it can call the GetUKWeather
method simply using code such as the following:

Dim objSvc As New MyServerName.Forecast()

lblWeather.Text = objSvc.GetUKWeather

This example assumes that the machine hosting the Web Service is called
MyServerName.

30

Chapter 1

NOTE You should remember that Web Services are simply
components that can be placed into a Web Application and
that they’re created, executed, and managed in a similar way
to Web Forms. There are some major differences in terms of
their design and planning, but the features available to
these two component types are almost identical.

Chapter 14 examines the specific details of creating Web Service applications
and Web Service clients. However, remember that there’s a lot of shared technol-
ogy between Web Form applications and Web Service applications, so the
content of most other chapters in the book is equally applicable.

Introducing ASP.NET Intrinsic Objects

Visual elements and components, such as Web Forms and server controls, pro-
vide many powerful features, and you’ll use at least some of them in almost every
application. They play a similar role to that of Windows Forms and controls in
desktop applications, but as with desktop applications it’s also often necessary to
get “under the surface” of Web Applications.

In the case of ASP.NET, under the surface means using the classes provided
within the .NET Framework, most of which are common to all .NET application
types. However, ASP.NET has a set of specialized objects you use for interacting
with a Web server, as well as manipulating the information received from and
sent to the client browser. These are known as ASP.NET intrinsic objects and are
available to every Web Form and Web Service element in a project.

Strictly speaking, the intrinsic objects are exposed as properties of a number
of classes, including the System.Web.UI.Page and the
System.Web.Services.WebService classes, which are the base classes for Web

ch1 3/15/02 4:47 PM Page 30

Forms and Web Services, respectively. Because your Web Form or Web Service
derives from one of these classes, it inherits all of the class properties, methods,
and events. We’ll see more about this inheritance relationship in Chapter 2.
(If the concept of inheritance is new to you, you may find it useful to review
Appendix C first.)

There are many intrinsic objects, of which the following sections describe
only the most commonly used. We’ve included these objects in this introductory
chapter to make you aware of their presence, as we’ll be using some of them in
examples and code fragments throughout the book. In fact, you’ve already used
the Server object when you called the Server.Transfer method in the earlier
exercise. This emphasizes the fact that even for the most trivial of ASP.NET appli-
cations, there’s a good chance you’ll need to use some of this functionality.

Application

The Application object is an instance of the HTTPApplicationState class, and its
main purpose is to allow you to store state (information) in a Web Application
such that it:

• Is persistent across page requests and user sessions

• Is shared between all concurrent users of a Web Application

Chapter 12 discusses state management in detail, including a thorough cov-
erage of how you use and control the Application object.

Cache

The Cache object is an instance of the Cache class. It’s also provided to allow state
management; however, it works differently than the Application object:

• Cache state is persistent across page requests and user sessions but can
be associated with dependencies that cause the data to become invali-
dated under certain circumstances, such as when a time period elapses
or a file on disk changes.

• The Cache object is automatically thread-safe, whereas the Application
object requires that your code make explicit calls to the Lock and
Unlock methods.

31

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 31

We’ll leave further discussion of the Cache object to Chapter 12, where we’ll
compare and contrast the different options available for state management.

Error

The Error object is an instance of the Exception class, and it represents the first
error that occurred (if any) during the processing of the current request. As we
will see in Chapter 10, there are multiple phases to the request processing cycle,
many of which occur before any of your code can run. The Error object provides
a way for you to determine if those phases were error-free, or if some problem
occurred that you now have to handle.

The Error object is not exposed directly as a property of the Page or
WebService classes, but instead must be referenced through the page’s Context
property. For example:

strFirstExcep = “Exception caused by “ + Context.Error.Source

Request

The Request object is an instance of the HTTPRequest class and is created by
ASP.NET to enable your code to read information passed from the client browser
to the server when the page request was made. This enables you to do a number
of key things:

• Read data entered by the user into an HTML form on the page that gen-
erated the request.

• Read data from the querystring defined for the request. The querystring
is the sequence of characters that is appended to the URL part of the
requested page address, and the querystring and URL are separated with
a ? character.

• Read cookie values from the information passed by the browser. Note
that if the browser does not pass the cookie values to the server, your
code cannot read them; you have access only to the information sent
from the browser.

• Read the value of server variables sent with the request or generated
from it. Server variables provide additional information about a request,
such as what browser is in use, what the user’s IP and hostname are.

32

Chapter 1

ch1 3/15/02 4:47 PM Page 32

Note that ASP.NET performs some of these tasks automatically. For example,
the browser type and version is automatically identified and used to determine
what client features are rendered, and the content of form data is read automati-
cally during the postback process. However, the Request object is still
extremely important.

Response

The Response object is an instance of the HTTPResponse class, and it performs
a complementary process to the Request object. Where Request enables your
code to obtain information from the client browser, Response enables you to
send information back. There are many tasks where the Response object will be
used, including the following:

• Sending textual and binary data to the browser

• Controlling how page content is transmitted and defining whether
buffering is enabled to prevent pages being drawn piecemeal in
the browser

• Controlling page caching, at the server and browser levels

• Specifying additional HTTP headers

• Controlling navigation

The Response object is used extensively in most ASP.NET applications, as it
allows fine control as well as dynamic content generation.

Server

The Server object is an instance of the HttpServerUtility class. This class provides
properties and methods that assist in processing page requests. Typical tasks the
Server object can perform include:

• Application-wide exception handling.

• Encoding of strings into valid HTML and URL notations. This includes
substitution of special characters with their HTML equivalents.

33

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 33

• Controlling page execution, processing, and navigation.

• Mapping logical file names to physical locations.

Although not used as much as Request and Response, Server is still an
important object and allows code to interact more readily with Web clients with-
out the need for custom translations and mappings.

Session

The Session object is an instance of the HTTPSessionState class, and it’s used for
session and state management. If Session state is enabled (see Chapter 12), each
user is allocated a session ID when they first access the application. This session
ID is usually stored in a transient cookie and passed to the server with each
request. The server uses the session ID to track each individual user and to allow
storage of user-specific state. ASP.NET also uses the session ID to track which
users are continuing to use the application and therefore to timeout or expire the
sessions of inactive users.

Transient cookies are typically stored in-memory within the browser process,
so when the browser is closed the session ID is lost. If the user subsequently
opens another browser and views the same application, they’ll receive a different
session ID. Also, if a user opens two browsers on the same computer and navi-
gates to the same application in each, each browser will be allocated a different
session ID, and so the application believes there are two distinct users.

If cookies are disabled on the client browser, ASP.NET instead inserts the
session ID into the URL of the response sent to the browser—this is known as
munging the URL. When subsequent requests are made from this page, the
munged URL is passed back to the server and the session ID retrieved. In this
way, ASP.NET is not dependent on cookies for session support, although the
cookie-based approach is neater.

As with the Application object, the main purpose of Session is to allow you to
store state in a Web Application such that it:

• Is persistent across page requests

• Is correctly released and destroyed when the session terminates

• Is unique to a single user session within a Web Application

Chapter 12 discusses state management in detail, including a thorough cov-
erage of how the Session object is used and controlled.

34

Chapter 1

ch1 3/15/02 4:47 PM Page 34

Trace

The Trace object is an instance of the TraceContext class, and it provides meth-
ods and properties that enable you to write custom entries to the trace log that
ASP.NET can generate for your application.

As you’ll see in Chapter 10, you can enable tracing for the entire application
or for specific pages, and by default it’ll record details relating to request details,
server events, form and query string content, cookies, and much more. By using
the Trace object you’re able to supplement this default output with your own
messages, including details of any exceptions that have occurred in your code.

User

The User object is an instance of either a GenericPrincipal or WindowsPrincipal
class, depending on the current security configuration of the Web Application.
The main purpose of the User object is to provide a mechanism for determining
the security permissions and privileges of the user making the request.

If you make use of the User object for checking security, you’re said to be
implementing a programmatic security policy; it’s a technique that provides great
flexibility and control, as you can perform security checks at any level in the
application—when displaying a page, when rendering a control, or when
responding to a server event.

The alternative to programmatic security is to implement declarative
security, where the security settings are defined in the Web.config file. This
approach is more granular, or coarse, because declarative security settings can
be applied only at the folder or file level, rather than on a method-specific basis.

Chapter 11 deals with the topic of security and examines how declarative and
programmatic techniques can be applied to ASP.NET applications.

Summary

Right now, ASP.NET has to be the reason for switching to the .NET environment.
ASP.NET applications are by definition centralized onto a single Web server or
Web farm, and if you plan it properly, you can install the .NET Framework and
components with minimal disruption and interruption.

Developers of ASP.NET applications have the most to gain, with a much sim-
plified event-driven programming model, powerful server controls, practical
data binding, and comprehensive full-featured languages such as VB .NET and
C#. System administrators and tech-support personnel are catered to with easy
text-based configuration and management, no-touch deployment and upgrades,
and an independence from the registry and COM.

35

Introducing ASP.NET

ch1 3/15/02 4:47 PM Page 35

ch1 3/15/02 4:47 PM Page 36

Index

719

Symbols
@ Assembly directive, 76
@ Implements directive, 76
@ Import directive, 76
@ OutputCache directive, 76, 536–537
@ Page directive, 40, 76, 77–79
@ Reference directive, 76
@ Register directive, 76

A
AbortTransaction events, 60
Active Server Pages. See ASP
ActiveX Data Objects. See ADO
AdCreatedEventArgs class, 140
AddHandler statement, 186–187
ADO (ActiveX Data Objects)

ADO.NET vs., 249–250
connection pooling in, 681–682
processing relational data before

ADO.NET, 679–682
server-side and client-side

Recordsets, 681
ADO.NET, 677–694. See also databases;

DataSets; .NET Data Providers
ASP.NET and SQLServer security,

678–679
DataSets, 250, 684

object model, 682
overview, 689–690
programming with DataSet

objects, 693–694
programming with DataTable

objects, 690–693
.NET Data Providers, 683–684,

685–688
overview of, 249–251

need for connection pooling,
681–682

need for disconnected data,
680–681

AdRotator control, 138–139
AdCreated event, 140

Advapi32.dll library, 457
anonymous access, 450
Application Logon Form, 461–464
Application object, 31, 483

application server, three-tier application
systems and, 477

Application state, 523–525, 544, 563
Cache state vs., 525, 535
considerations for using,

524–525
defined, 514
making values persist beyond appli-

cation termination, 525
overview, 523
using, 524

applications, 45–51. See also mobile Web
applications; Web
Applications

adding
code, 48–50
controls, 47–48

application domains, 372–374
application partitioning, 560–561
application-level error management,

490–492
configuration files for, 404–405
creating project in Visual Studio .NET,

45–46
design guidelines for Web

Application, 478–479
fat client, 478
three-tier systems, 477

Application_Start and Application_End
events for Global.asax file,
482–483

application-wide error pages, 495
architecture. See also designing Web

Applications
of classic ASP, 2–3
mobile Web applications, 213–214
Web Application, 361–426

ASP.NET processing model,
380–386

client browsers and platforms,
364–366

configuring ASP.NET, 400–407
creating custom modules and

handlers, 396–400
HTTP Runtime, Modules, and

Handlers, 370–379

090index 3/15/02 7:03 PM Page 719

architecture (continued)
processing page requests, 386–396
working with IIS and ISAPI,

366–370
.ascx files, 173–188, 240–241, 508
.asmx files. See Web Services.
.asp files, 21
ASP (Active Server Pages). See also

ASP.NET
ASP.NET and, 6–7
overview, 2–3

ASP.DLL ISAPI extension, 369
ASP.NET, 1–35. See also data binding;

Web Application architecture
architectural overview of, 362–364
authentication, 457–465

disabling, 458
Forms Authentication, 460–463
Passport Authentication, 459–460
Windows Authentication, 458–459

authorization, 465–471
declarative authorization, 465–468
programmatic authorization,

470–471
configuring, 400–407

application configuration files,
404–405

case-sensitivity of configuration
system, 424

configuration file settings,
406–407

IIS and .NET, 401
IIS metabase, 401–402
machine configuration file, 404
manipulating configuration files,

402–404
security configuration files, 405

Custom Web Controls, 118
data binding in, 293–294
event sequence in, 60
exchanging program data in Web

Services, 579–580
features and improvements in, 3–5
HTML Control classes in, 84, 101–102
HTTP Runtime, 371–372
IIS and, 367
impersonation, 455–457

about, 455–456
declarative impersonation, 456
programmatic impersonation,

456–457
intrinsic objects, 30–35

Application, 31
Cache, 31–32
Error, 32
Request, 32–33

Response, 33
Server, 33–34
Session, 34
Trace, 35
User, 35

limitations of Web Controls, 119–120
page processing model, 163
postbacks

about, 15
creating, 63
postback requests, 166–168

processing model, 380–386
code-behind classes and Visual

Studio .NET, 382–386
processing page requests, 386–394
System.Web.UI.Page class,

381–382
Web Application behavior,

380–381
Web Form structure, 381–382

security
interactions with IIS, 446–447
model for, 430–431
process in, 447
SQLServer security with, 678–679

sequence of Web Form events, 58–60
server controls, 13–14
server event, 15–16
support for mobile Web applications,

213
techniques for code-based navi-

gation, 64–65
Web Applications, 17–27

about, 10
adding content files, 20–22
creating content with editors,

24–27
creating projects, 17–20
tracing in, 417–425
virtual directories, 22–24
Web vs. desktop development,

7–10
XML’s role in, 343–344

Web Forms, 11–13
Web Services, 27–30

ASPNET_ISAPI.DLL ISAPI extension,
369–370

aspnet_wp.exe. See HTTP Runtime
.aspx files. See also specific files by name

about, 21
inheritance relationship with .vb

class, 39
structure of, 66
where to locate Web Form code in, 80

.aspx.resx files, 66

.aspx.vb files, 66–67

720

Index

090index 3/15/02 7:03 PM Page 720

assemblies, 703–706
namespaces and, 657–660
using private, 704–705
using shared, 705–706

attributes
@ Page directive, 77–79
@ OutputCache, 76, 536–537
for application-level tracing, 423
for HTML tags, 83, 632

authentication
ASP.NET

disabling, 458
Forms Authentication, 460–463
overview, 457
Passport Authentication,

459–460
Windows Authentication, 458–459

authentication providers, 457
defined, 429, 430
IIS, 449–454

anonymous access, 450
Basic Authentication, 450–451
choosing Authentication model,

454
Client certificate Authentication,

452–453
Digest Authentication, 451
Integrated Windows

Authentication, 451–452
overview, 449–450

Authentication Methods dialog box, 449
authorization

ASP.NET, 465–471
declarative, 465–468
programmatic, 470–471

defined, 429–430
AutoPostBack

enabling, 169–170
round trips and, 547
setting input control for, 124

availability
about, 544
improving with Message Queue, 552

B
Base Class Library, 655, 656
Basic Authentication, 450–451
batch updating databases, 715–718
bin directory, 21
binding expressions, 298–299. See also

data binding
data binding and, 294
defined, 298–299
page-level error management and,

489–490

support from Repeater, DataList, and
DataGrid controls for,
317–319

using, 299
bookmarking, 435–436
browser security, 431–440

bookmarking, 435–436
concealed navigation, 436–438
cookies, 432–433
overview, 431–432
ticketing schemes, 439–440
ViewState, 433–434

browser-based applications
Web Services vs., 596–599
Windows Application as alternative

to, 598
browsers

ASP.NET and, 4
browser-based applications vs. Web

Services, 596–599
browsing

with MME emulator, 222–224
Web Forms, 42

client, 364–366
ASP.NET adaptive controls and,

364–365
ClientTarget property, 365–366
processing page requests, 387,

390–391, 393–395
Web Application behavior with,

380–381
detecting capabilities, 205–207
output for ASP code in, 646, 647
security, 431–440

for bookmarking, 435–436
concealed navigation, 436–438
cookies, 432–433
overview, 431–432
ticketing schemes, 439–440, 504
ViewState, 433–434

support for cookies in, 513
testing

mobile Web applications with, 225
Web Service, 28–29

up-level, 598–599
building Web services, 581–582
Button column, 341
Button controls, 122–123, 185

C
CA (Certification Agency), 442–443
Cache object, 31–32, 483
Cache state, 525–535, 563–564

Application State vs., 525, 535
cache callbacks, 532–533

721

Index

090index 3/15/02 7:03 PM Page 721

Cache state (continued)
cache dependencies, 527–530

file-based, 527–528
key-based, 528–529
time-based, 529–530

cache priorities, 531–532
caching dynamic data, 534
defined, 514
designing for, 526–527
evaluating when and what to cache,

533–534
overview, 525

CacheItemPriority enumeration mem-
bers, 532

caching
@ OutputCache directive, 536–537
DataSets, 329–330
designing for Cache state, 526–527
dynamic data, 534
evaluating when to cache, 533–534
fragment caching, 540
Output Cache, 535–540
request for cached page, 393–395
scalability and, 549
using cached DataTables in Session

state, 285–286
Calendar control, 141–142, 156–157
canceling validation, 156
Cascading Style Sheets. See CSS
categories of Web Controls, 120
centralizing error management, 487–495

application level, 490–492
creating custom error pages, 492–495
error management hierarchy,

487–488
page level, 489–490
procedure level, 489

certificates
Client certificate Authentication and,

453
installing, 443–444
obtaining, 442–443

Certification Agency (CA), 442–443
CheckBox control, 126
CheckBoxList control, 127–130

methods, 128
populating, 129–130
properties, 127–128

classes
code-behind, 41, 382–386
converting controls and elements to

.NET, 382
exposing intrinsic objects as proper-

ties of, 30–31
HTML Control

in ASP.NET, 101–102

common members, 103
HtmlContainerControl class,

104–106
HtmlControl class, 102–103
HtmlInputControl class, 104
HtmlImage class, 106

HttpCachePolicy, 540
Visual Basic .NET, 669–672
Web Control, 120
in Web Forms, 39–41
XML, 345

client browsers, 364–366
ASP.NET adaptive controls and,

364–365
ASP.NET architecture and, 363
ClientTarget property, 365–366
compatibility with MMIT, 364
processing page requests, 387,

390–391, 393–395
User-Agent string, 364–365
Web Application architecture and,

364–366
Web Application behavior with,

380–381
Client certificate Authentication,

452–453
client/server system design, 476
client-side code

in direct navigation, 61–62
function of, 74–75

client-side processing
building Web Service client, 584–588
client-side HTML controls, 87–89
controlling navigation for, 498–500
design guidelines for Web

Application code, 480
determining client-side or server-

side validation, 142–143
implementing secure transmission,

441–442
IP address and domain authori-

zation, 448–449
minimizing round trips with, 548
traditional design for client/server

systems, 476
validation with CustomValidator,

152–153
writing VB 6.0 Web Service client,

599–600
ClientTarget property, 56, 365–366
CLR (Common Language Runtime),

695–706
function of in VB .NET, 695–696
Intermediate Language and meta-

data, 700–703
locating assemblies, 703–706

722

Index

090index 3/15/02 7:03 PM Page 722

using private assemblies, 704–705
using shared assemblies, 705–706

managing memory in .NET, 696–700
in .NET Framework schema, 655

CLS (Common Language Specification),
656

code-based navigation, 64–65,
500–503

Codebehind attribute of Page directive, 40
code-behind classes, 41, 382–386

compiled, 384–385
naming, 383–384
uncompiled, 385–386

COM+
Enterprise Services and, 569–571
features of distributed transactions

in, 570–571
comments, 79
CommitTransaction events, 60
Common Language Runtime. See CLR
Common Language Specification (CLS),

656
CompareValidator control, 149–150
composite controls, 173
concealed navigation

about, 436–438
bypassing, 439–440

concurrency management for data-
bases, 263–267

implementing, 265–267
reason for, 263–264
tasks of adding, 264–265

.config files, 21
configuring ASP.NET, 400–407

application configuration files,
404–405

caution editing configurations on live
server, 403

configuration file settings, 406–407
configuring IIS and .NET, 401
IIS metabase, 401–402
machine configuration file, 404
manipulating configuration files,

402–404
security configuration files, 405

connection string, 255
constructors, 670, 671
containers, 132–135

container element for Web Custom
Controls, 196–197

Panel, 132–133
PlaceHolder, 133–134
Table, TableRow, and TableCell, 135

content-specific caching, 537–540
Control Change events, 59
Control Passing events, 59

controlling navigation. See also navi-
gation

client-side navigation, 498–500
code-based navigation, 500–503
custom navigation controls, 499–500
default pages, 496–498
direct navigation, 499
framesets, 502–508
indirect navigation, 499
overview, 496
Response object, 500–501
Server object, 501–502
ticketing schemes, 439–440, 504

controls
adding to application, 47–48
data binding and transfer of infor-

mation to, 295–296
positioning Web Form, 51–52

flow layout, 52
grid layout, 52

cookieless session tracking, 520–521
cookies

browser security and, 432–433
cookie state, 515–516
reading and writing, 512–513
session, 281, 432, 513–514
support for mobile Web applications,

245
tracking sessions with and without,

520–521
Web Service clients and, 605

Cookies collection, 509
Copyright control, 176
cross-platform technology, 579–580. See

also Web Services
CSS (Cascading Style Sheets), 97–100

applying styles, 99–100
creating, 98–99
.css files, 21
overview, 97–98
Web Control CSS classes, 160–161

custom error pages, 492–495. See also
error handling

application-wide error pages, 495
displaying on local machine, 494–495
enabling page-specific error pages,

492–494
illustrated, 493

custom HTTP Handlers, 399–400
custom HTTP Modules, 396–398
custom navigation bar, 180–188

custom navigation controls, 499–500
dynamically loading user controls,

188
exposing properties and methods,

180–183

723

Index

090index 3/15/02 7:03 PM Page 723

724

Index

custom navigation bar (continued)
handling and raising events, 185–188
NavBar.ascx, 180

custom tracing, 420–422
custom Web Controls. See Web Custom

Controls; Web User Controls
CustomValidator control, 151–153

D
data. See also data binding; databases

connected data programming,
251–254

data integrity, 429
data privacy, 429
data types in Visual Basic .NET,

664–667
passing in QueryString() collection,

511–512
data binding, 293–342. See also DataGrid

control
about, 293–294
benefits of, 342
binding expressions, 294,

298–299
caching DataSets, 329–330
data bound lists, 295–297
DataGrid control, 316–317

editing and updating, 330–336
sorting and paging, 326–329
using templates with, 336–338

DataList control, 312–315, 316–317
example with ItemTemplate, 313
functionality of, 314–315
support for templates, 312

event bubbling, 340–342
implementing data bound input con-

trols, 299–319
activating binding, 303–306
adding binding expression within

static HTML, 303
binding controls, 301–302
failure during data binding,

305–306
issuing database updates, 306–307
retrieving data, 300–301

limitations in approaches to, 308
multirow binding, 317–319
not compatible with HTML Controls,

89
Repeater control, 308–312

data bound lists, 295–297
Data Link Properties window, 254, 255
DataAdapter

batch updating with, 716
building graphically, 278, 279–280
sending changes to DataSet via, 707

updating DataTable with changes,
710–715

DataAdapter Configuration Wizard, 278,
279, 713, 714

databases, 249–291. See also ADO.NET;
DataSets

DataSets, 274–290
illustrated, 276
read-only DataSet, 286–290
read-only DataTable, 277–285
updating, 290

performing updates, 261–270
adding code for update, 261–263
concurrency management,

263–267
using transactions, 267–270

preventing bottlenecks, 560
processing relational data, 679–682

in ADO, 679–680
need for disconnected data,

680–681
reading multiple rows, 258–261
reading single row, 251–258

connected data programming,
251–254

visual programming in Visual
Studio, 254–258

stored procedures, 270–274
creating in Visual Studio .NET,

271–274
defined, 270

updating
batch, 715–718
one row at a time, 710–715

Web Services and, 615–619
XML alternative to relational,

343–344
DataBind method, 295
DataBinding events, 60
DataGrid control, 316–317

binding XML data to, 355–356
DataList control vs., 314, 332
editing and updating, 330–336
event bubbling in, 340–342
rendered output from, 136, 137
Repeaters vs., 342
setting SelectedIndex property, 333
sorting and paging, 326–329
with style settings, 137
templates, 336–338

converting bound column to tem-
plate, 334–339

graphical creation of, 339–340
XML Transforms vs., 355

DataGridCommandEventArgs, 334
DataList control, 312–315, 316–317

090index 3/15/02 7:03 PM Page 724

DataGrid vs., 332
example with ItemTemplate, 313
functionality of, 314–315
support for templates, 312
supporting editing, 331

DataMember, 295
DataSets, 274–290

about, 250, 274–277
caching, 329–330
illustrated, 276
object model for, 689–690
populating, 320–322
programming with, 693–694
read-only DataTable, 277–285
retrieving data with, 280–281,

286–290
returned by Web Service, 617
role in Web Applications, 274–275
updating, 290, 707–718

batch updating database, 715–718
database row at a time, 710–715
as two-stage process, 707–708
writing changes to DataTable,

708–710
working with disconnected data,

689–690
XML schemas, 355–358

about schemas, 356–360
loading XML data into DataSet,

355–356
DataSource, 295
DataTables

about, 278
DataSets, DataAdapters and, 277–285
filling DataSet with multiple, 693
programming with, 690–693
read-only, 277–285
using cached in Session state,

285–286
using in future requests, 281
within DataSet, 287
writing DataSet changes to, 708–710

DataTextField property, 295
DataTextFormatString, 295
DataValueField, 295
DCOM (Distributed Component Object

Model), 578
(DataBinding) Property Builder dialog,

302
debugging application, 50
declarative authorization, 465–468

Forms Authentication and, 466–469
location-specific authorization,

469–470
overview, 465–466
Windows Authentication and, 466

declarative impersonation, 456
deep links, 435
Default.aspx

HTML rendered to browser from, 69
HTML view of, 69
Web Form Design View for, 68

default pages, 496–498
default styles for mobile controls, 242
deferred processing

Message Queue and, 551–557
scalability and, 549

delegation, 430
deploying Web Applications, 407–416

ASP.NET support, 5
using Xcopy deployment, 407–408
Web Setup projects, 408–415

adding content, 410–412
building and deploying, 415
creating, 409–410
overview, 409
setting properties of, 413–414

design-time creation of HTML Controls,
85–87

desktop computing
declining importance of, 653
desktop vs. Web development skills,

7–10
device adapters, 214–215
devices. See mobile devices
DHTML Web Service client, 600–605
Digest Authentication, 451
direct navigation, 499

about, 61–62
postbacks, 62–64

directives, 75–79
about, 75–76
HTML tags, 83
page directive attributes, 77–79

disabling ASP.NET authentication, 458
disconnected data

DataSets and working with, 689–690
need for, 680–681
programming with DataTable,

690–693
Dispose phase, 194
Disposed events, 59, 60
Distributed Component Object Model

(DCOM), 578
distributed transactions

defined, 570
features in COM+, 570–571
implementing for transactions

involving two or more data-
bases, 571–574

document objects, 350–351
downloading emulators, 216

725

Index

090index 3/15/02 7:03 PM Page 725

Dropdown control, 87
DropdownList control, 130
dynamic IP addresses, 638

E
editing

ASP.NET configuration files on live
server, 403

DataGrid controls, 330–333
stored procedures, 272

emulators
downloading, 216
MME, 216, 222–224
Nokia SimApp, 216, 224,

230–231, 241
PocketPC Emulator, 216, 242
testing mobile Web application with,

221–224
EnableViewState and

EnableViewStateMac
properties, 57–58

encryption, 433, 442
Enterprise Services, 569–574

features of, 569–571
performing distributed transactions

in, 570
Error events, 60
error handling

centralizing, 487–495
application level, 490–492
error management hierarchy,

487–488
page level, 489–490
procedure level, 489

custom error pages, 492–495
application-wide error pages, 495
displaying on local machine,

494–495
enabling page-specific error

pages, 492–494
illustrated, 493

illustrated, 488
in Visual Basic .NET, 668–669

event bubbling, 340–342
event handlers, 168–169
events. See also page processing

event processing and autopostback,
161–170

AutoPostBack property, 169–170
event handlers, 168–169
overview, 161–162
page processing, 162–168

Global.asax
Application_Start and

Application_End events,
482–483

events raised during page-pro-
cessing cycle, 480–481

HTTP module-generated events,
484–485

at runtime, 487
Session_Start and Session_End,

483–484
synchronous application events,

481–482
handling

dynamic events at runtime with
HTML Controls, 93–95

and raising for custom navigation
bar, 185–188

HTML Control, 106–109
receiving and raising for Web Custom

Control, 207–209
Web Form, 59–61

ASP.NET and sequence of, 58–60
handling, 61
task-specific, 60

extensibility, 117–118
Extensible Markup Language. See XML

F
fat client, 478
File System editor, 409–410
file-based cache dependencies, 527–528
files. See also specific files by name

ASP.NET configuration
live editing, 403
settings, 406–407

content files in Web Applications,
20–22

.css, 21
default storage locations for solution,

project, and content, 46
Global.asax, 480–487

about, 21
Application_Start and

Application_End events,
482–483

events raised during page-pro-
cessing cycle, 480–481

HTTP module-generated events,
484–485

object tag declarations, 485–486
at runtime, 487
Session_Start and Session_End,

483–484
synchronous application events,

481–482
include and .ascx, 240
Machine.config, 378, 403, 404
security configuration, 405
Web.config, 404–405

726

Index

090index 3/15/02 7:03 PM Page 726

Web Form, 65–67
.aspx files, 66
.aspx.resx files, 66
.aspx.vb files, 66–67
associated with, 38–39

Flow Layout
defined, 45
positioning controls, 52

Flow Layout Panel control, 86
folders

backing up project, 20
GAC, 410

Form() collection, 509–511
formatting and style

HTML Controls, 96–100
Cascading Style Sheets, 97–100
Style Builder dialog box, 96–97

Web Controls, 158–161
CSS classes, 160–161
style attribute values, 159–160
style properties, 158–159

forms
direct navigation of, 61–62
in mobile Web applications, 219–221

Forms Authentication, 460–463
authorization and, 466–469
creating logon form, 461–464
enabling, 460–461
overview, 460
testing security, 464–465

fragment caching, 540
framesets, 504–508

adding to project, 504–505
alternatives to, 508
illustrated, 503
navigating with, 502–503

G
GAC (global assembly cache)

placing shared assemblies in, 706
requirements for placing assembly in

GAC folder, 410
garbage collection

memory management and, 696–700
overview of, 662

.gif files, 21, 471
Global.asax file, 480–487

about, 21
Application_Start and

Application_End events,
482–483

events raised during page-processing
cycle, 480–481

HTTP module-generated events,
484–485

object tag declarations, 485–486

at runtime, 487
Session_Start and Session_End,

483–484
synchronous application events,

481–482
Global Assembly Cache (GAC) folder,

410
Grid Layout

defined, 45
positioning controls, 52

Grid Layout Panel control, 86
group membership and programmatic

authorization, 471

H
Handles statement, 107
HiFlyerControls project, 191
HiFlyers database, 250
.htm files, 21
.html files, 21
HTML (HyperText Markup Language)

as content
in Web Forms, 68–70
for Web User Control, 176

elements
creating HTML Controls as client-

side, 86
defined, 84
of direct navigation, 61–62

graphical view and code listing for
HTML table, 90

overview, 630–637
interacting with animation and

scripts, 637
interacting with Web page,

634–637
structure of, 630–634

rendering Web Custom Control in,
195–196

source showing ViewState control, 57
structure of, 630–634
tags, 83, 631
transforming XML document into,

353–355
XML alternatives for generating out-

put, 344
HTML Control events, 106–109

overview, 106
ServerChange event, 106–108
ServerClick event, 108–109

HTML Controls, 83–112
about tags, elements, and, 83–84
creating, 84–96

design-time creation, 85–87
handling dynamic events at run-

time, 93–95

727

Index

090index 3/15/02 7:03 PM Page 727

HTML Controls (continued)
at runtime, 89–93
server-side or client-side, 87–89

determining formatting and style,
96–100

Cascading Style Sheets, 97–100
in Style Builder dialog box, 96–97

function of, 84–85
maintaining page state, 109–111

about, 109
ViewState for, 109–111

maximizing performance with, 132
properties, methods, and events,

100–109
classes in ASP.NET, 101–102
common members shared by all

classes, 103
HTML Control events, 106–109
HtmlImage class, 106
overview, 100–101

Web controls vs., 73–74, 84, 111–112,
114–115

in Web Forms, 70–73
HTML elements

creating HTML Controls as client-
side, 86

defined, 84
HTML View of Web Form designer, 44,

45
HtmlContainerControl class, 104–106
HtmlControl class, 102–103
HtmlImage class, 106
HtmlInputControl class, 104
HTTP (HyperText Transfer Protocol)

about, 638–640
client browser User-Agent string,

364–365
creating

custom HTTP Handlers, 399–400
custom HTTP Modules, 396–398

secure transmissions and, 441
as standard in Web Services, 588

HTTP Handlers
about, 378–379
creating custom, 399–400
requests processed within HTTP

Runtime by, 374–375
HTTP Modules, 377–379

creating custom, 396–398
disabling, 378
events in Global.asax file, 484–485
pipeline organization of, 375, 377
requests processed within HTTP

Runtime by, 374–375
HTTP Runtime, 370–379

application domains, 372–374

architecture of, 374–376
ASP.NET architecture and, 363
ASPNET_ISAPI.DLL mappings and,

369–370
HTTP Handlers

about, 378–379
creating custom, 399–400

HTTP Modules, 377–379
creating custom, 396–398
disabling, 378
events in Global.asax file, 484–485
pipeline organization of, 375, 377

processing page requests, 387–395
requests processed by HTTP Modules

and HTTP Handlers within,
374–375

HttpApplication instances, 372–373, 374
HttpCachePolicy class, 540
HTTPODBC.DLL ISAPI extension, 369
HttpResponse Class, 500–501
HttpServerUtility Class, 501–502
HyperLink control, 124
hyperlinks

deep links, 435
direct navigation and, 62
in HTML, 634–637
limitations of validation controls

with, 156

I
identity and programmatic authori-

zation, 470–471
IIS (Internet Information Server),

366–370. See also IIS user
authentication

about, 640–643
ASP.NET architecture and, 363
configuring Metabase settings for

ASP.NET, 401–402
function of, 366–367
implementing ASP.NET ISAPI

extensions, 369–370
interaction of HTTP Runtime with,

374–375
isolating failures in ASP.NET from,

371–372
processing page requests, 387–395
reduced chances of crashes with

ASP.NET, 376
security, 448–455

IIS machine authorization,
448–449

process isolation, 455
processes in, 446
user authentication, 449–454

IIS user authentication, 449–454

728

Index

090index 3/15/02 7:03 PM Page 728

anonymous access, 450
Basic Authentication, 450–451
choosing Authentication model, 454
Client certificate Authentication,

452–453
Digest Authentication, 451
Integrated Windows Authentication,

451–452
overview, 449–450

ILDASM.EXE, 701
Image control, 131
ImageButton control, 122–123
impersonation

ASP.NET, 455–457
about, 455–456
declarative impersonation, 456
programmatic impersonation,

456–457
defined, 430
with integrated security in SQLServer

and ASP.NET, 678–679
include files, 240
indirect navigation, 499
inheritance

Visual Studio .NET and, 672–674
in Web Forms, 39–41
for Web User Controls, 175

Init events, 59
initial page requests, 163–166, 168
Initialize phase, 193
InitialValue property, 149
Integrated Windows Authentication,

451–452
Intermediate Language, 700, 702
Internet

basic programming model underly-
ing, 629–630

public Internet Web Services security,
623–627

Internet Explorer
Add Favorite dialog box, 438
as client for Web Service, 600–605

Internet Information Server. See IIS
Internet Server Application

Programming Interface. See
ISAPI

Internet Services Manager
displaying project contents in, 23
organization of, 642

intranet-based Web Service security,
622–623

intrinsic controls, 121–135
AutoPostBack from input controls,

124
defined, 120

intrinsic objects, 30–35

unable to access during
Application_Start event, 483

IP Address and Domain Name
Restrictions dialog box (IIS),
448

IP addresses, 638
ISAPI (Internet Server Application

Programming Interface)
about, 367–369
filters and extensions in ASP.NET

architecture, 363, 367
mapping file extensions to ISAPI

extensions, 368
processing model for, 368

IsPostback property, 58, 63
IUSR_<Machine name> account, 450

J
JavaScript, Web Custom Control and

client-side, 190
JIT (Just In Time) compilation, 703
.jpeg files, 21, 471

K
Kerberos Authentication, 451
key-based cache dependencies, 528–529

L
Label control, 86, 131
language constructs in VB .NET, 663–664
late binding, 667
LinkButton control, 122–123
List controls, 135–137

defined, 120
enabling editing for DataGrid,

330–331
icons for, 135
Repeater, 308–312
using, 135–137

Listbox control, 87, 131
ListItem Editor dialog box, 129
Literal control, 132
load balancing

hardware solutions for, 557–558
Network Load Balancing, 558–560

Load events sequence in Web Form
event, 59

Load phase, 193
location-specific authorization, 469–470
logging application-level errors, 491
Logon.aspx file

browser-side HTML for, 14
code for click event in, 15–16
HTML view of, 12
Web Form view of, 11

729

Index

090index 3/15/02 7:03 PM Page 729

730

Index

M
Machine.config file

about, 404
disabling unused HTTP Modules, 378
modifying, 403

maintenance for Web Applications, 416
Message Queue, 551–557
metadata, 700–703
Microsoft Active Server Pages. See ASP
Microsoft DCOM (Distributed

Component Object Model),
578

Microsoft Internet Information Server.
See IIS

Microsoft Message Queue, 551–557
Microsoft Mobile Emulator. See MME

emulator
Microsoft Mobile Internet Toolkit. See

MMIT
Microsoft PocketPC Emulator

about, 216
effective styles rendered in, 242

migrating from ASP to ASP.NET, 6–7
MME (Microsoft Mobile Explorer) emu-

lator
about, 216
browsing with, 222–224

MMIT (Microsoft Mobile Internet
Toolkit)

architectural support for, 213–214
client browser compatibility with, 364
device adapters, 214–215

mobile controls, 225–242
adding style sheet, 239–242
default styles, 242
improving validation, 228–232
for Mobile Web Application, 219

mobile custom validator properties, 229
mobile devices. See also emulators

Response.Redirect navigation
technique and, 246

testing mobile Web applications on
real, 217

using mobile Web applications, 211
Web Services for, 599

Mobile Page Designer, 220
mobile ValidationSummary, 231
Mobile Web Application project,

217–218, 219
mobile Web applications, 211–248. See

also emulators
adaptive behavior, 214–215
architecture, 213–214
creating, 215–225

benefits of sample application,
215–216

forms, 219–221
Mobile Web Application project,

217–218
pages or forms, 220–221
software requirements for,

216–217
testing with emulator, 221–224
testing with other browsers, 225

device capabilities of, 244–245
devices using, 211
limitations, 243–245

cookie support, 245
device capabilities, 244–245
navigation problems, 246–247
performance, 243–244
script support, 245
standards, 243
tracing, 246

mobile controls, 225–242
adding style sheet, 239–242
default styles, 242
improving validation, 228–232

overview of, 212
testing on real mobile devices, 217

mode attribute, 494
MTS (Microsoft Transaction Server), 569,

570
multiple database rows, 258–261
multirow binding, 317–319

N
namespaces

assemblies and, 657–660
defined, 658
System.Web.UI.WebControls, 659

NavBar.ascx, 180
NavBar control, 184–185
navigation

bookmarking and security, 435–440
concealed, 436–438
controlling

client-side navigation, 498–500
code-based navigation, 500–503
default pages, 496–498
direct navigation, 499
framesets, 502–508
indirect navigation, 499
overview, 496
Response object, 500–501
Server object, 501–502
ticketing schemes, 439–440, 504

custom navigation bar, 180–188
dynamically loading user controls,

188
exposing properties and methods,

180–183

090index 3/15/02 7:03 PM Page 730

handling and raising events,
185–188

NavBar.ascx, 180
using NavBar control, 184–185

mobile Web applications
linking to non-default form, 247
Response.Redirect navigation

technique, 246
Server.Transfer navigation tech-

nique, 246
Web Forms, 61–65

code-based, 64–65
direct, 61–62
postbacks, 62–64

.NET Data Providers. See also databases
about, 250, 291
types of, 683–684
using, 685–688

.NET Framework, 649–660
assemblies and namespaces, 657–660
basic elements of, 654–660
CLR, 655–656
configuring IIS for ASP.NET, 401–402
encryption technology and, 433
Enterprise Services, 569–571
HTTP Runtime and, 370
illustrated, 655
integration

of ASP.NET with, 3
of MMIT and, 213–214

Microsoft vision of, 650–654
multilanguage capability of, 653–654
.NET managed execution process,

702
overview, 649–650
Web Form structure and, 40

.NET Software Developer’s Kit (SDK),
655, 656–657

Nokia SimApp Emulator
about, 216
example of ineffective styles on, 241
testing Mobile Web Application with,

224

O
object tag declarations in Global.asax,

485–486
object-oriented approach of ASP.NET,

80–81
objects. See intrinsic objects; and spe-

cific objects
Output Cache, 535–540

OutputCache directive, 536–537
content-specific caching, 537–540
fragment caching, 540
overview, 535

using, 535–540
overloading, 670

P
packet snooping, 441
Page directive, 40
Page Handlers phase, 194
Page Initialize phase, 193
Page Load phase, 193
page processing, 162–168, 386–396

events
in Global.asax file, 480–481
raised at start of cycle, 373

illustrated, 163
initial requests, 163–166, 168,

387–390
page requests, 168
postback requests, 166–168
request for cached page, 393–395
request for page with compiled code,

391–393
second request for page, 390–391
Web Forms events raised in, 395–396

page state, 514–515
defined, 514
guidelines for ViewState, 110–111
maintaining with HTML ViewState

control, 109–111
PageLayout property, 58
paging

automatic DataGrid, 327–328
custom DataGrid, 329

Panel control, 132–133
Passport Authentication, 459–460
PDAs (Personal Digital Assistants), 211
performance

code reduction with data binding,
342

guidelines for Web Application
design, 478–479

improving database efficiency with
ADO.NET, 250

load balancing
hardware solutions for, 557–558
Network Load Balancing, 558–560

maximizing with HTML Controls, 132
minimizing round trips for improved,

546–548
mobile Web application, 243–244
SSL’s effect on, 442
storing data and, 562
Web application size and, 543–544
Web Controls and, 114

persistent cookies, 513–514
Personal Digital Assistants (PDAs), 211
PlaceHolder control, 133–134

731

Index

090index 3/15/02 7:03 PM Page 731

PocketPC Emulator
about, 216
effective styles rendered in, 242

pop-up Calendar control, 196
positioning Web Form controls, 51–52

flow layout, 52
grid layout, 52

postbacks. See also AutoPostBack
about, 15
as direct navigation, 62–64
Form() collection technique and, 510
limitations of validation controls, 156
postback requests, 166–168

PreRender phase, 59, 60, 194
private assemblies, 704–705
procedure-level error management, 489
Process Postback Data phase, 193
process security, 429
programmatic authorization, 470–471

defined, 470
group membership, 471
identity, 470–471

programmatic impersonation, 456–457
public Internet Web Services security,

623–627

Q
Query Builder

building Command string, 256, 258
editing stored procedure graphically,

272
Query Finder, 261
QueryString() collection, 509, 511–512

R
RadioButtonList control, 127–130

methods, 128
populating, 129–130
properties, 127

RangeValidator control, 150
reach

of applications, 652–653
rich vs., 8, 9

RegularExpressionValidator control,
150–151

Render phase, 194
rendered controls, 173
Repeater control, 308–312, 355
Request Details page, 425
Request object, 32–33
RequireFieldValidator control, 148–149
Response object, 33, 500–501
Response.Redirect navigation tech-

nique, 64–65
mobile devices and, 246

Rich controls, 138–142

AdRotator, 138–139
AdCreated event, 140
example of advertisement list,

139–140
bypassing validation, 156
Calendar, 141–142
defined, 120

rich vs. reach, 8, 9
round trips, 546–557

about, 546
deferred processing with Message

Queue, 551–557
HTTP and, 639
keeping short, 548–551
minimizing for improved perfor-

mance, 546–548
Web Method calls and, 608–614

row locking, 267
runtime. See also HTTP Runtime

creation of tables at, 89–93
handling dynamic table events at,

93–95
server control appearance at, 13–14

S
scalability, 543–575

application partitioning, 560–561
Enterprise Services, 569–574
guidelines for Web Application

design, 478–479
hardware solutions for load balanc-

ing, 557–558
HTTP and, 640
issues about, 543–546
Network Load Balancing, 558–560
round trips, 546–557

about, 546
deferred processing with Message

Queue, 551–557
keeping short, 548–551
minimizing for improved perfor-

mance, 546–548
state management, 562–569

distributed transactions, 571–574
storing data and performance, 562

schemas, 355–358
about, 356–360
loading XML documents into

ADO.NET DataSet, 355–356
sample code listing for XML, 359–360

<script> tag, 203–205
scripting

HTML interaction with animation
and, 637

mobile Web application support for,
245

732

Index

090index 3/15/02 7:03 PM Page 732

User-Agent string determining
browser support for, 365

Secure Communications dialog box,
444, 445, 453

security. See also Web Application secu-
rity

ASP ISAPI Extension and, 369
CLR and, 696
guidelines for designing Web

Application, 479
HTTP and, 640
retrieving database row information

using integrated, 252
security configuration files, 405
Web Application, 427–474

about, 428–431
ASP.NET authentication, 457–465
ASP.NET authorization, 465–471
ASP.NET impersonation, 455–457
browser security, 431–440
IIS security, 448–455
implementing secure trans-

mission, 441–445
securing static content, 471–474
securing Web server, 446–447

Web Services, 614, 622–627
intranet-based security, 622–623
public Internet security, 623–627

Server Certificate, 442
Server.ClearError method, 496
server events

defined, 15–16
in postback process, 15

Server Explorer (Visual Studio .NET),
271

Server object, 33–34, 501–502
Server.Transfer navigation technique,

64–65, 246–247
ServerChange event, 106–108
ServerClick event, 108–109
servers

application partitioning, 560–561
configuring SSL on, 444–445
Network Load Balancing, 558–560
restarting during installation of ser-

vice packs or system updates,
415

server-side HTML Controls, 87–88
server-side processing

avoiding Web Control labels, 132
determining client-side or server-

side validation, 142–143
function of server-side processing, 74
implementing secure transmission,

442–443
configuring SSL, 444–445

obtaining and installing certifi-
cates, 442–444

processing page requests
for initial request, 387–390
page processing model, 163
request for cached page, 393–395
request for page with compiled

code, 391–393
validation with CustomValidator,

151–152
Web and HTML controls and perfor-

mance of, 114
Service Help page, 583, 607
session cookies, 281, 432, 513–514
Session object, 34
Session state, 516–523, 564–569

cautions about using, 276, 517
configuring, 518–519
considerations for using, 522–523
defined, 514
designing for, 521–522
disabled and enabled, 620
management in Web Services, 605
overview of, 516–517
reading and writing, 517
scalability and, 545
session lifetime, 518
shared Session State Service, 566–567
storing data in single object, 568–569
tracking sessions, 520–521
using cached DataTables in, 285–286

Session_Start and Session_End events
for Global.asax file, 483–484

shared assemblies, 705–706
shared Session State Service, 566–567
Simple Object Access Protocol (SOAP),

588–591, 612
SOAP (Simple Object Access Protocol)

about, 588–591
SOAP Toolkit, 612

Solution Explorer
Show All Files view in, 26
testing emulators with other

browsers, 225
viewing project contents in, 18–19

sorting DataGrid control, 326–327
SQLServer security, 678–679
SSL (Secure Sockets Layer), 430, 431

configuring, 444–445
performance and, 442

stack and heap in Visual Basic .NET, 665
Start Page (Visual Studio .NET), 17
state management, 562–569. See also

Session state; ViewState
Application state, 563
Cache state, 563–564

733

Index

090index 3/15/02 7:03 PM Page 733

state management (continued)
concepts in, 514
design guidelines for Web

Application code, 479
distributed transactions, 571–574
Session state, 564–569

configuring, 518–519
storing in single object, 568–569
using shared Session State Service,

566–567
state and scalability with ASP.NET,

8, 9
storing data and performance, 562
in Web Services, 619–621

statelessness
HTTP as stateless protocol, 639–640
Web Service objects and, 607–608

stored procedures, 270–274
creating in Visual Studio .NET,

271–274
defined, 270
editing graphically, 272

strong names, 705
Style Builder dialog box, 96–97
Style View for CSS files, 98
styles

adding style sheets to mobile
controls, 239–242

CSS, 98–100
defining external style sheet with Web

User Control, 241
Nokia SimApp Emulator and ineffec-

tive, 241
rendering effectively in PocketPC

Emulator, 242
Style property of HTML Control

classes, 103
Web Control

CSS classes, 160–161
style attribute values, 159–160
style properties, 158–159

synchronous application events,
481–482

System.Web.UI.Page class, 39,
381–382

System.Web.UI.WebControls name-
space, 659

T
Table control, 135
TableCell control, 135
TableRow control, 135
tables

dynamically generated, 92
graphical view and code listing for

HTML, 90

handling dynamic events at runtime,
93–95

runtime creation with HTML
Controls, 89–93

TagName property of HTML Control
classes, 103

tags
HTML, 83, 631
<script>, 203–205
Web Control, 119

TargetSchema property, 58
templates

DataGrid control, 336–338
converting bound column to tem-

plate, 334–339
graphical template creation,

339–340
template column, 317

DataList control
example with ItemTemplate, 313
support for, 312

Repeater
creating in HTML View, 311
support for, 308–309

for Web Setup projects, 409
temporary cookies, 432
testing

custom error pages, 494
mobile Web applications

with emulator, 221–224
with other browsers, 225
on real devices, 217

Web Custom Control, 199–200
Web Service, 28–29

text display
Label control for, 131
Literal, 132

TextBox control, 125–126, 133–134
thin-client applications

application structure and design of
Web Applications, 476–480

ASP.NET and design of, 8, 9
Web Services as, 596

three-tier system design, 477
ticketing schemes

browser security and, 439–440
navigation and, 504

time-based cache dependencies,
529–530

Toolbox
adding controls to, 200
HTML Controls in, 85
icons for Rich controls, 138
Web Controls in, 121

Trace element, 423
Trace object, 35

734

Index

090index 3/15/02 7:03 PM Page 734

Trace property, 417
Trace.Warn statements, 425
Trace.Write statements, 425
TraceMode property, 417
tracing, 417–425

application-level, 422–425
custom, 420–422
mobile Web applications, 246
overview, 417
page-level, 417–420

tracking sessions with and without
cookies, 520–521

transaction-based security, 428–429
transactions

controlling with ASP.NET Transaction
object, 268–270

defined, 267–268
distributed, 570, 571–574

transforming XML into HTML, 353–355
transmission-based security, 429
trustworthiness of Web Applications,

428
type safety in CLR, 696

U
UDDI (Universal Description, Discovery,

and Integration), 594–595
uncompiled code-behind classes,

385–386
Unload events, 59, 60
up-level browsers, 598–599
Use Optimistic Concurrency option

(Visual Studio .NET), 714
user authentication, 449–454

anonymous access, 450
Basic Authentication, 450–451
choosing Authentication model, 454
Client certificate Authentication,

452–453
Digest Authentication, 451
Integrated Windows Authentication,

451–452
overview, 449–450

User Controls, 188
User object, 35
User-Agent string, 364
users

restricting login prior to authenti-
cation, 436

security configuration files for, 405

V
validation controls, 142–157

canceling validation, 156
CompareValidator, 149–150
CustomValidator, 151–153

defined, 120
determining client-side or server-

side validation, 142–143
examples using, 144–147
icons for, 143–144
improving for mobile controls,

228–232
limitations of, 156–157
minimizing round trips and, 547
properties and methods, 147–148
RangeValidator, 150
RegularExpressionValidator, 150–151
RequireFieldValidator, 148–149
ValidationSummary, 153–156

ValidationSummary control, 153–156
adding, 155
summary of errors, 155

.vb files and inheritance, 39–41
VBScript and classic ASP, 2
ViewState

browser security and, 433–434
disabling on controls where feasible,

548
guidelines for, 110–111
limitations of, 275
scalability and, 563
selectively enabling or

disabling, 111
using, 109–110

virtual directories
in ASP.NET, 22–24
creating, 642
IIS and, 641

Visible property of HTML Control
classes, 103

Visual Basic 6.0
creating Web Service client in,

599–600
differences between VB .NET and,

661–662
Visual Basic .NET, 661–675

classes, 669–672
CLR, 695–706

function of, 695–696
Intermediate Language and

metadata, 700–703
locating assemblies, 703–706
managing memory in .NET,

696–700
data types, 664–667
error handling, 668–669
introducing language constructs,

663–664
memory management and garbage

collection, 662, 696–700
.NET value types, 666

735

Index

090index 3/15/02 7:03 PM Page 735

Visual Basic .NET (continued)
overview, 661–662

.vb files and inheritance, 39–41
Visual Studio .NET.

adding files to projects, 22
browsing Web Forms, 42
building

Command string in, 256–257
data access functionality in,

254–258
Codebehind attribute in, 40
code-behind classes, 382–386

compiled, 384–385
naming, 383–384
uncompiled, 385–386

Use Optimistic Concurrency option,
714

Web application development in,
9–10

XML and Data views in XML Editor,
358

Visual Studio .NET XML Editor, 357–358
Visual Studio .NET XML Schema Editor,

358

W
WAP (wireless application protocol)

phones
browser compatibility with, 212
mobile Web applications for, 211

Web Application architecture, 361–426.
See also Web Application
security; Web Applications

ASP.NET processing model, 380–386
code-behind classes and Visual

Studio .NET, 382–386
processing page requests, 386–394
System.Web.UI.Page class,

381–382
Web Application behavior,

380–381
Web Form structure, 381–382

client browsers and platforms,
364–366

ClientTarget property, 365–366
configuring ASP.NET, 400–407
creating custom modules and han-

dlers, 396–400
deploying applications, 407–416

using Web Setup projects, 408–415
using Xcopy deployment, 407–408

HTTP Runtime, 370–379
HTTP Handlers, 378–379
HTTP Modules, 377–379

tracing, 417–425
application-level, 422–425

custom, 420–422
overview, 417
page-level, 417–420

working with IIS and ISAPI, 366–370
implementing ISAPI extensions,

369–370
Web Application security, 427–474

about, 428–431
ASP.NET security model, 430–431
terms and concepts, 428–430

ASP.NET authentication, 457–465
disabling, 458
Forms Authentication, 460–463
overview, 457
using Passport Authentication,

459–460
using Windows Authentication,

458–459
ASP.NET authorization, 465–471

declarative authorization,
465–468

programmatic authorization,
470–471

ASP.NET impersonation, 455–457
about, 455–456
declarative impersonation, 456
programmatic impersonation,

456–457
browser security, 431–440

bookmarking, 435–436
concealed navigation, 436–438
cookies, 432–433
overview, 431–432
ticketing schemes, 439–440, 504
ViewState, 433–434

IIS security, 448–455
IIS machine authorization,

448–449
IIS user authentication, 449–454

implementing secure transmission,
441–445

client-side configuration, 441–442
configuring SSL, 444–445
installing certificate, 443–444
server-side configuration, 442–443

securing
static content, 471–474
Web server, 446–447

Web Applications, 17–27. See also Web
Application architecture; Web
Application security

about, 10
adding content files, 20–22
architecture, 361–426

ASP.NET processing model,
380–386

736

Index

090index 3/15/02 7:03 PM Page 736

client browsers and platforms,
364–366

configuring ASP.NET, 400–407
creating custom modules and

handlers, 396–400
deploying applications, 407–416
HTTP Runtime, 370–379
overview of ASP.NET, 362–364
tracing, 417–425
Web Form events, 395–396

creating content with Notepad or
other editors, 24–27

creating projects, 17–20
maintaining page state with HTML

Controls, 109–111
postbacks, 15
role of DataSets in, 274–275
scalability and, 545–546
security

about, 428–431
ASP.NET authentication,

457–465
ASP.NET authorization, 465–471
ASP.NET impersonation, 455–457
browser security, 431–440
IIS security, 448–455
implementing secure trans-

mission, 441–445
static content security, 471–474
Web server security, 446–447

server controls, 13–14
server event, 15–16
size and performance of, 543–544
virtual directories, 22–24
Web Forms and, 11–13
Web Services and, 598
Web vs. desktop development, 7–10
XML’s role in, 343–344

Web browsers. See browsers
Web.config files, 404–405
Web Control Library project, 191
Web Controls, 113–172. See also Web

Custom Controls
about, 73–74, 113–114, 170–171
classes and categories of, 120
control-based navigation, 498–499
event processing and autopostback,

161–170
AutoPostBack property, 169–170
event handlers, 168–169
overview, 161–162
page processing, 162–168

extensibility, 117–118
features of, 116–117
HTML Controls vs., 73–74, 84,

111–112, 114–115

implementing formatting and style,
158–161

CSS classes, 160–161
style attribute values, 159–160
style properties, 158–159

Intrinsic controls, 121–135
key events in custom control life-

cycle, 192–195
limitations of, 119–120
List controls, 135–137
Rich controls, 138–142
server-side performance and, 114
in toolbox, 121
using, 118–119
Validation controls, 142–157
XML alternatives for generating

HTML output, 344
XML Transforms vs. DataGrid and

Repeater, 355
Web Custom Controls, 118, 173–209

building custom navigation bar,
180–188

dynamically loading user controls,
188

exposing properties and methods,
180–183

handling and raising events,
185–188

NavBar.ascx, 180
using NavBar control, 184–185

developing, 187–207
benefits of, 189–190
creating, 190–192
creating container element,

196–197
creating content, 197–199
detecting browser capabilities,

205–207
exposing properties and methods,

200–201
key events in control lifecycle,

192–195
receiving and raising events,

207–209
rendering HTML, 195–196
rendering pages efficiently,

203–205
rendering property values,

202–203
testing control, 199–200
Web User Controls vs., 189

implementing Web User Controls,
174–177

adding content, 176
applying Web User Controls,

177–179

737

Index

090index 3/15/02 7:03 PM Page 737

Web Custom Controls (continued)
creating, 175
overview, 274

overview, 173–174
Web Form designer, 44–45
Web Forms, 37–81

about, 11–13, 38
adding Web User Control to, 177
.aspx files and, 21
browser rendering, 53–55
browsing, 42
classes and inheritance in, 39–41
code-behind classes in, 382–386
creating, 42–43, 45–51
data binding and binding expressions

on, 342
designing data browsing page, 277
determining client-side features with

ClientTarget property,
365–366

disabling ViewState in, 111
events, 59–61

ASP.NET and sequence of, 58–60
handling, 61
raised in processing page requests,

395–396
task-specific, 60

example of button controls for,
122–123

file structure, 38–39, 65–67
.aspx files, 66
.aspx.resx files, 66
.aspx.vb files, 66–67

HTML Controls
as content, 70–73
creating in, 85–95
formatting on, 96–100
properties, methods, and events

of, 100–101
navigation, 61–65

code-based, 64–65
direct, 61–62
postbacks, 62–64

in .NET Framework, 655, 656
page-level error management in

binding expressions, 489–490
Panel controls vs. framesets in, 508
positioning controls, 51–52

flow layout, 52
grid layout, 52

refreshing pages
maintaining control with

ViewState, 297
methods of, 601, 602, 603

shifting to ASP.NET object-oriented
approach, 80–81

structure in ASP.NET processing
model, 381–382

Web Form designer, 44–45
Web Form view of Logon.aspx file, 11
where to locate code in .aspx, 80

Web Methods
defined, 581
passing arguments by reference,

612–613
Web server, 446–447
Web Service client, 584–588
Web Service proxy object, 584
Web Services, 577–628

about, 577–580
adding, 27–30
.asmx files and, 21
as components in Web Applications,

30
creating Web Services and Web

Service clients, 580–588
building Web Service client,

584–588
building Web services, 581–582
overview, 580
testing Web Service, 582–584

future of, 628
learning standards for, 588–596

SOAP, 588–591
UDDI, 594–595
WSDL, 591–594

objects as stateless, 607–608
Web Services Description Language. See

WSDL
Web Setup projects, 408–415

adding content, 410–412
building and deploying, 415
creating, 409–410
overview, 409
setting properties of, 413–414

Web User Controls, 174–177
adding content, 176
applying, 177–179
creating, 175
defining external style sheet with, 241
framesets vs., 508
overview, 174
Web Custom Controls vs., 189

WebControl class, 120
Windows Application, 598
Windows Authentication, 458–459, 466
wireless application protocol phones.

See WAP phones
WSDL (Web Service Description

Language)
about, 585
example of features, 591–594

738

Index

090index 3/15/02 7:03 PM Page 738

X
Xcopy deployment, 407–408
.xml files, 21
XML (Extensible Markup Language),

343–360
about ASP.NET configuration files,

402–403
DataSets and XML schemas, 355–358

about schemas, 356–360
loading XML documents into

ADO.NET DataSet, 355–356
exchanging data between programs

in, 578
learning basic, 344–355

processing XML documents,
345–348

transforming XML into HTML,
353–355

using document objects, 350–351
XPath query language, 351–353

processing with ADO.NET, 677
role of in ASP.NET Web Applications,

343–344
SOAP standards in, 588–591
XML classes in .NET Framework, 655,

656
XML DOM (Document Object Model)

processor, 345–350
XmlDocument object, 350
XmlReader

code for simple data extraction, 349
output, 346

XmlTextReader output, 348
XPath

alternatives offered by, 360
processing XML with, 351–353

XSLT (XSL Transformations)
alternatives offered by, 360
transforming XML document into

HTML, 353

739

Index

090index 3/15/02 7:03 PM Page 739

