
CHAPTER 9

Programming Your Own
Spreadsheets

IN THIS CHAPTER, YOU’LL LEARN how to code the spreadsheet-type interfaces that are
common to so many scientific applications. These interfaces are extremely useful
when dealing with matrix math or other scenarios that require a large amount of
data. To develop such an advanced interface, this chapter introduces a new con-
trol along with some user events you haven’t yet encountered. The examples
require you to use almost everything you’ve seen so far, so make sure that you
have the basics covered.

The MSFlexGrid Control

The MSFlexGrid control, when it’s displayed on a form, appears like any spread-
sheet grid. It consists of a number of intersecting rows and columns, and the
points where the rows and columns intersect are known as cells. If you add
such a control to your form and click Run, you’ll see that it behaves almost like
a spreadsheet program’s worksheet. For example, you can move between cells
with the arrow keys and mouse. The only real difference between this control and
an actual spreadsheet is that you can’t enter (type) data directly into a grid cell.
Thus, this chapter will concentrate on coding a way to allow direct user data
entry. But first, take some time to examine the important properties and events
associated with this control. The MSFlexGrid control isn’t a part of the standard
VB toolbox. In VB 6.0, you must go to the Project menu and select the
Components option. You then select the MSFlexGrid control from
the Components list. In VB .NET you have to go to the Tools menu and select the
Customize Toolbox option. You next select the MSFlexGrid control from the COM
controls list. The control icon then appears in the toolbox, where you can drag
and drop it onto a form as with any other control.

MSFlexGrid Properties

The following sections outline the properties for the MSFlexGrid control.

199

550ch09.qxp 1/14/02 3:13 PM Page 199

The AllowBigSelection Property

This property determines whether or not a whole row or column will be selected
if the user clicks a row or column header. If it’s set to the default of True, such
whole row/column selections are allowed. If the property is set to False, only
single cell selections are allowed.

The AllowUserResizing Property

This property works pretty much as you’d expect from its name. Its settings deter-
mine if neither rows nor columns can be resized (flexResizeNone) by the user, if
just columns can be resized (flexResizeColumns), if just rows can be resized
(flexResizeRows), or if both rows and columns can be resized (flexResizeBoth).

The Cols and Rows Properties

These properties are integer values, which determine the grid’s number of
columns and rows. The default for each property is 2, but you can easily adjust
this through code (i.e., MSFlexGrid1.Cols = Number of Columns) or through the
Properties window.

The Col and Row Properties

Be careful not to confuse these two properties with the Cols and Rows properties
because they have a different function. These properties don’t set the number of
rows and columns, but rather store the numbers that represent the row and col-
umn containing the active cell. Also keep in mind that this property starts
counting columns (left to right) and rows (top to bottom) from 0 and not 1. Thus,
if the Cols property is set to 5, you’ll find that Col property can equal any integer
between 0 and 4, depending on which column contains the active cell. Please
note that the Col and Row properties are available only at runtime.

The ColWidth and RowHeight Properties

You only can manipulate these properties at runtime. Nevertheless, they can be
useful because they let you set a specified row’s height as well as a specified col-
umn’s width. You’ll often find yourself needing to do this if default row or column
dimensions are too large for the data to be displayed. The height and width is
measured in twips.

200

Chapter 9

550ch09.qxp 1/14/02 3:13 PM Page 200

The ColAlignment Property

This property’s value determines whether or not the data displayed in a particu-
lar column is centered or justified. Setting it equal to 0 results in left justification
while setting it to 1 right justifies the data. If the property is set equal to 2, the
information displayed will be centered. This property isn’t available at design
time (except indirectly through the FormatString property).

The CellLeft, CellWidth, CellTop, and CellHeight Properties

Just like with the control-level Left, Width, Top, and Height properties (now
referred to as Location.X, Size.Width, Location.Y, and Size.Height in VB .NET),
these properties return the size and position of the current cell in twips. The only
difference is that the cell properties refer to the frame that encloses the grid and
not the form. These properties aren’t available at design time and are read-only
at runtime.

The FixedCols and FixedRows Properties

These properties control the grid’s number of fixed rows and columns. The fixed
rows and columns always appear at the grid’s top and left sides (non-scrollable)
and in gray instead of white. These types of cells generally provide some type of
header for the rows and columns.

The FixedAlignment Property

This property works exactly like the ColAlignment property. The only difference is
that it controls the alignment in fixed cells and not normal cells.

The GridLines Property

This property controls whether or not grid lines are within your grid control. The
default displays the grid lines, which generally makes it much easier for the end
user to distinguish the different cells.

201

Programming Your Own Spreadsheets

550ch09.qxp 1/14/02 3:13 PM Page 201

The Sort Property

This property allows you to sort the contents of selected columns according to
selected criteria. For example, the user could choose to sort in ascending or
descending orders, or not sort the data at all. This property isn’t available at
design time and is write-only at runtime. When set at the code level, the sorting
takes place immediately after the line of code executes.

The Text Property

You’re very familiar with the Text property by now, but keep in mind that property
stores only the text of the active cell, and not the text in any other cell. Thus,
this property continually changes as you switch from cell to cell. Reading the Text
property returns the current cell’s contents as defined by the Row and Col prop-
erties. Writing to the Text property sets the contents of the current cell or
selection (a range of cells) depending on the FillStyle property.

MSFlexGrid Events

MSFlexGrid controls respond to many of the events you’ve already seen, such as
the Click and DoubleClick events. However, several useful events are unique to
this control, and are covered in this section.

The EnterCell Event

This event occurs when the program user clicks on or keys into a new cell that is
different from the cell that is currently selected. The EnterCell event works like
the GotFocus event, only it deals with single cells instead of a control.

The LeaveCell Event

This event is the opposite of the EnterCell event: it occurs when the focus is
shifted away from the active cell to a new cell. Thus, this event is always
triggered just prior to the EnterCell event. You can use this event to validate
a cell’s contents.

202

Chapter 9

550ch09.qxp 1/14/02 3:13 PM Page 202

The RowColChange Event

This event is triggered when either the current row or column is changed, which
is essentially whenever the user changes cells. It always follows both the
LeaveCell and EnterCell events.

MSFlexGrid Methods

The two methods discussed in this section are important to MSFlexGrid controls.
These methods allow you to insert or delete rows at specific locations within the
grid. However, because these methods involve the syntax of AddItem and
RemoveItem, don’t confuse them with the ones used in conjunction with list and
combo boxes.

The RemoveItem Method

You’ll begin with the RemoveItem method because its syntax is slightly simpler
than the AddItem method. To invoke the RemoveItem method, you only need the
control’s name and the row number you want to remove. Remember that the first
row begins with zero and not one, however. For example, the code

MSFlexGrid1.RemoveItem(5)

would remove the sixth row and not the fifth row in the MSFlexGrid named
MSFlexGrid1. In VB .NET the default name for MSFlexGrid is AxMSFlexGrid1.

The AddItem Method

This method works like the RemoveItem method; however, you gain the addi-
tional ability to specify the contents of cells within the row you’re going to add.
For example, say that you want to add the values contained in String1 and
String2 to cells 1 and 2 of the new row. In VB 6.0, you’d accomplish this with the
following code:

Dim Strings As String

Strings = “String1” & vbTab & “String2”

MSFlexGrid1.AddItem Strings, 5

203

Programming Your Own Spreadsheets

550ch09.qxp 1/14/02 3:13 PM Page 203

In VB .NET, you’d use the code:

Dim Strings As String

Strings = “String1” & Microsoft.VisualBasic.ControlChars.Tab & “String2”

AxMSFlexGrid1.AddItem(Strings, 5)

This code adds the strings found in the Strings variable into the new row you cre-
ated. If you look closely, a Tab separates the two substrings within Strings. This is
how VB distinguishes the information going to each cell. In essence, the Tab is the
factor that tells VB that one column ended and a new column began. The number
5 that follows the String argument is an optional argument that tells VB to add the
new row in the sixth position.

Entering Text into MSFlexGrid Cells

Now that you’re familiar with the different MSFlexGrids events, properties, and
methods, you can apply this knowledge by coding a method of allowing typed-in
text to be entered into the grid cells. As mentioned before, the grid itself doesn’t
support direct user data entry, so you must type the text into the text box and set
the Text property of the desired cell equal to the text in the text box. The trick, how-
ever, is in integrating this text box with the active grid cells so well that it seems
part of the cell itself. You also need to enable the text box to move around on the
grid in response to the arrow and return keys, as if it were part of the grid itself.

This process requires many different event procedures, as well as a custom
procedure, so begin the process by coding a simple application. This application
calculates a compound’s number of moles based on the supplied total number
of moles and mole fraction. You want to perform this calculation on a listing of
different compounds typed into grid cells. To begin this application, add
a MSFlexGrid control named AxMSFlexGrid1 along with three text boxes named
TextBox1, TextBox2, and TextBox3 to the form. TextBox1 is the text box that floats
around the grid cells, while TextBox2 reads in the total number of compounds in
the solution. TextBox3 reads in the solution’s total number of moles.

After placing your controls on the form, format the MSFlexGrid by adding the

following code to the form’s Load event. Private Sub Form1_Load(ByVal

eventSender As System.Object, ByVal eventArgs _

As System.EventArgs) Handles MyBase.Load

TextBox1.Visible = False

TextBox1.Font = AxMSFlexGrid1.Font

With AxMSFlexGrid1

.Cols = 3

.Rows = 25

204

Chapter 9

550ch09.qxp 1/14/02 3:13 PM Page 204

Show()

.Col = 0

.Row = 0

.Text = “Name”

.Col = 1

.Text = “X”

.Col = 2

.Text = “Moles”

.Row = 1

.Col = 0

End With

DimTextBox()

End Sub

As you can see, this procedure first sets the Visible property of TextBox1 equal
to False. In order for the text box to integrate seamlessly with the grid cells, you
want the text box to appear only after it’s properly formatted. Next, set the text
box’s font equal to the grid control’s font. The Set keyword ensures that the fonts
stay in sync even if the MSFlexGrid font is later modified. Next, establish the
grid’s size by setting the number of rows equal to 25 and the number of columns
equal to 3. Then, make the cell present in row zero, column zero the active cell
and enter the text “Name” into the cell. Remember, the grid control’s Text prop-
erty stores only the text present in the active cell. Then, move the active cell over
and enter “X” and “Moles” in the corresponding cells. These columns store the
mole fraction (X) and the calculated number of moles. Finally, move the active
cell to the grid’s top leftmost cell, excluding the header titles just added. Now that
your grid setup is complete, call the custom procedure DimTextBox to properly
position TextBox1 in this cell.

This section presents both VB 6.0 and VB .NET versions of this procedure
because of their significant differences. The code for the DimTextBox routine in
VB 6.0 is as follows:

Private Sub DimTextBox()

With AxMSFlexGrid1

TextBox1.Left = .CellLeft + .Left

TextBox1.Top = .CellTop + .Top

TextBox1.Width = .CellWidth

TextBox1.Height = .CellHeight

TextBox1.Visible = True

TextBox1.SetFocus

End With

End Sub

205

Programming Your Own Spreadsheets

550ch09.qxp 1/14/02 3:13 PM Page 205

The VB .NET code for the DimTextBox routine is as follows:

Private Sub DimTextBox()

With AxMSFlexGrid1

TextBox1.Location = New Point(TwipsToPixelsX(.CellLeft) _

+ .Location.X, TwipsToPixelsX(.CellTop) + .Location.Y)

TextBox1.Size = New Size(TwipsToPixelsY(.CellWidth), _

TwipsToPixelsY(.CellHeight))

TextBox1.Visible = True

TextBox1.Focus()

End With

End Sub

This code functions the same way as the VB 6.0 procedure, only it makes use
of the newer Location X and Y properties as well as the Size property, rather than
the older syntax of Left, Top, Height, and Width.

Looking closely at this procedure, notice that the text box’s Left, Top, Height,
and Width properties adjust to correspond to the active cell’s equivalent positions.
This places a text box of equal size as the cell directly on top of the active cell. In
fact, the text box should blend in so well that the program user won’t even know
it’s separate from the grid control. Now that the text box is so well concealed, you
can make it visible and set the focus on it. This lets users type in the text box
while thinking they are entering data directly into the grid control.

To have the same effect in VB .NET, you must first address some MSFlexGrid
compatibility issues. As the chapter on graphics describes, the VB .NET’s default
graphical display unit is pixels. However, MSFlexGrid’s CellLeft, CellWidth,
CellTop, and CellHeight properties are all in twips. To get the text box into the
correct dimensions, access the TwipsToPixelsX and TwipsToPixelsY conversion
functions by selecting Add Reference from the Project menu. Scroll down the list
of choices and add the Microsoft Visual Basic .NET Compatibility dll. You should
see it appear under the reference heading of the Solution Explorer window. Next,
import the previously unavailable Microsoft.VisualBasic.Compatibility.VB6
namespace by adding the following line of code to the declarations section:

Imports Microsoft.VisualBasic.Compatibility.VB6

206

Chapter 9

NOTE This compatibility issue exists with the current MSFlexGrid 6.0 con-
trol. If a newer version comes out, it may address this incompatibility, and
the conversion functions may no longer be required.

550ch09.qxp 1/14/02 3:13 PM Page 206

It isn’t enough, however, to just call this routine for that starting cell. Instead,
you must accomplish this for every cell in the grid when it becomes the active
cell. The EnterCell event discussed earlier can address this by offering a way to
redimension your text box every time a new cell is entered (i.e., made active).
Therefore, proceed by adding the following code:

Private Sub AxMSFlexGrid1_EnterCell(ByVal eventSender As System.Object, ByVal _

eventArgs As System.EventArgs) Handles AxMSFlexGrid1.EnterCell

TextBox1.Text = AxMSFlexGrid1.Text

DimTextBox()

End Sub

As you can see, this code will reposition your text box by calling the
DimTextBox procedure every time a new cell is entered. Before calling on this
procedure, however, set the text box’s text equal to the MSFlexGrid cell’s text. This
ensures that users can view the text when the text box is placed on top of the
grid cell.

Now that you’ve developed a way to reposition the text box over any active
cell, you must get text entered into the text box also entered into the underlying
grid cell. You accomplish this by taking advantage of the text box’s Change event,
so let’s add the following code.

Private Sub TextBox1_TextChanged(ByVal eventSender As System.Object, ByVal _

eventArgs As System.EventArgs) Handles TextBox1.TextChanged

AxMSFlexGrid1.Text = TextBox1.Text

End Sub

This code sets the text in the active grid cell equal to any text entered into or
modified in the text box. Thus, this procedure keeps the text box in sync with its
underlying cell.

However, your data entry code isn’t complete. You still need to activate the
arrow keys so the grid’s rows and columns change even when the text box has
the focus. To do this, you’ll use two text box events not yet discussed, the
KeyDown event and the KeyPress event.

The KeyDown Event

This event is used most often with arrow keys and function keys and is invoked
when a key is pressed down. Releasing the key invokes a KeyUp event. While
these events work with most keys, they can’t be used in conjunction with the

207

Programming Your Own Spreadsheets

550ch09.qxp 1/14/02 3:13 PM Page 207

Enter key, the Esc key, and the Tab key. For your purposes, you want to use the
KeyDown event to activate the arrow keys by utilizing the following code:

Private Sub TextBox1_KeyDown(ByVal eventSender As System.Object, ByVal _

eventArgs As System.Windows.Forms.KeyEventArgs) Handles TextBox1.KeyDown

Dim KeyCode As Short = eventArgs.KeyCode

Dim Shift As Short = eventArgs.KeyData \ &H10000

With AxMSFlexGrid1

Select Case KeyCode

Case Keys.Down

If .Row < .Rows - 1 Then .Row = .Row + 1

Case Keys.Up

If .Row > 1 Then .Row = .Row - 1

Case Keys.Right

If .Col < .Cols - 1 Then .Col = .Col + 1

Case Keys.Left

If .Col > 0 Then .Col = .Col - 1

End Select

End With

End Sub

First, notice that this event involves Text1 and not the grid control. This is
because after you enter a cell, the called-upon DimTextBox routine sets the focus
on the text box, and only controls with the focus can respond to key events. This
procedure’s arguments describe the key that was pressed (KeyCode) and the state
of the Shift key. Thus, when a key is pressed, this procedure checks to see if it was
an arrow key by comparing the value of KeyCode to VB constants that describe
the arrow keys (i.e., vbKeyDown). If an arrow key was pressed, it adjusts the active
cell of the flex grid control appropriately. Before it makes an adjustment, how-
ever, the active cell’s row/column number is compared to the values of the border
rows and columns to ensure these values aren’t exceeded. This eliminates possi-
ble program errors by preventing users from keying off the grid.

208

Chapter 9

550ch09.qxp 1/14/02 3:13 PM Page 208

The KeyPress Event

Although enabling arrow keys is a great feature, most spreadsheet interfaces also
allow you to move down columns by hitting the Enter key. As mentioned earlier,
though, the KeyDown event won’t work in conjunction with the Enter key. Thus,
you must use the alternate KeyPress event as follows:

Private Sub TextBox1_KeyPress(ByVal eventSender As System.Object, ByVal _

eventArgs As System.Windows.Forms.KeyPressEventArgs) Handles _

TextBox1.KeyPress

Dim KeyAscii As Short = Asc(eventArgs.KeyChar)

With AxMSFlexGrid1

If KeyAscii = Keys.Return And .Row < .Rows - 1 Then

.Row = .Row + 1

End If

End With

If KeyAscii = 0 Then

eventArgs.Handled = True

End If

End Sub

In this procedure, KeyAscii stores the value of the ANSI character that was
just typed. Thus, to detect the depression of the Enter key, you examine when the
value of KeyAscii equals the ANSI value that the return (Enter) key generates
when pressed. When this is the case, the value of the MSFlexGrid.Row property
increases by one. As with the KeyDown events, a conditional ensures that users
can’t key past the grid’s boundaries.

The Mole Fraction Calculation

Now that the flex grid is fully set up with the ability to allow user data entry, let’s
move on to actual mole fraction calculation. A mole fraction (X) simply equals
the number of a solution component’s moles divided by the total number of
moles present within the solution. Thus, if 1 mole of compound A is in a solution
that contains ten moles of material, A’s mole fraction is equal to 0.1.

209

Programming Your Own Spreadsheets

550ch09.qxp 1/14/02 3:13 PM Page 209

In your program the user enters the total number of moles along with the
mole fraction of each component and calculates each component’s total number
of moles. To perform this calculation, add a command button to the form and
place the following code in its Click event:

Private Sub Button1_Click(ByVal eventSender As System.Object, ByVal eventArgs As _

System.EventArgs) Handles Button1.Click

Dim Num As Integer

Dim I as Integer

Dim TotMoles As Single

Dim Moles As Single

Num = CInt(TextBox2.Text)

TotMoles = CSng(TextBox3.Text)

With AxMSFlexGrid1

For I = 1 To Num

.Col = 1

.Row = I

Moles = CSng(.Text) * TotMoles

.Col = 2

.Text = Moles

Next I

.Row = 1

.Col = 0

DimTextBox()

End With

End Sub

As you can see, this event first reads in the number of components and the
total number of moles. It then iterates through the column of the grid that con-
tains the values of X and multiplies these values by the total number of moles.
This resulting value, equal to the number of moles of a particular component, is
then entered into the “Moles” column.

210

Chapter 9

550ch09.qxp 1/14/02 3:13 PM Page 210

If you think carefully about this routine, one small improvement could make
this routine more error-proof. A mole fraction is equal to the number of moles of
a certain component divided by the total number of moles. It’s impossible to
have mole fractions that add up to a value greater than 1. Thus, it would be great
to add up the values of X and make sure they are 1 or less before proceeding with
the calculation. If they are greater than 1 an error message should alert users of
their mistake. A truly well-done program takes as many precautions as possible
to ensure the validity of the data generated. By this point, you should be familiar
enough with the workings of the MSFlexGrid and the required VB structures. So
try adding in this safeguard before moving on to the final section of this chapter.

211

Programming Your Own Spreadsheets

Figure 9-1. A sample output of the Mole Fraction routine

550ch09.qxp 1/14/02 3:13 PM Page 211

Working with Excel Data

Microsoft Excel is a commonly used spreadsheet application, thus it is not a rar-
ity to find that data you may want to work with in your application is stored in an
Excel workbook (.xls). This is especially true since many data acquisition pro-
grams can even output Excel sheets directly. Luckily, there is a way for you to read
in data from an Excel workbook and write your changes and additions back to
that workbook. You can accomplish this through use of an API called Open
Database Connectivity, or ODBC. What this API does is it allows you to link your
program to the worksheet data, and through Structured Query Language (SQL)
calls access and manipulates the data found in the worksheet. Unfortunately, at
the time of this writing, ODBC .NET is not yet a completed project, and thus this
book cannot delve further into this topic. ODBC .NET is due out sometime in
2002, however, and can be quite a useful tool because it can also be used for data-
base connectivity as well as spreadsheets. To stay posted on the progress of
ODBC .NET you should check with the MSDN Web site.

212

Chapter 9

TIP Although not nearly as powerful or flexible, the techniques covered
in Chapter 8 allow you to access your Excel data with VB code. All you
need to do is save your spreadsheet as a .txt file.

Getting Your Grids to Dynamically Respond

Now that you understand the basics of coding with MSFlexGrids, you can move
past a simple mole fraction calculation and develop a more powerful routine.
Think back to Chapter 5, where you looked at an iterative technique called
Gauss-Siedel iteration. Engineers often use this technique to calculate 2-D tem-
perature distributions at discrete points along a surface. To use this technique,
each point’s temperature is described by an energy balance equation and the
equation coefficients entered into a matrix. Consecutive iterations perform
on the elements of this matrix until the resultant values differ by no more than
the set convergence criterion. To make this routine especially powerful, you’ll
get your grid and program to behave dynamically to handle any size
coefficient matrix.

Begin by adding three text boxes named Text1, Text2, and Text3 and an
MSFlexGrid named MSFlexGrid1 to your form. Text1 acts as the floating text box,
which facilitates data entry into the grid. Text2 allows the user to input the num-
ber of nodes (points) and, hence, the number of equations to be entered into
your matrix. Last, Text3 allows the application users to specify their required con-
vergence criterion. You’ll now add two command buttons named Command1

550ch09.qxp 1/14/02 3:13 PM Page 212

and Command2 to the form. The first command button (Command1) reformats
the grid layout to enable the user to enter the correct number of matrix elements.
The second command button initiates the actual iteration once all of the
required data is entered.

Now that all of the required elements are on the form, add the code needed
to accomplish your goals:

Public NumNodes As Short

Public MaxRow As Short

Private Sub Command1_Click(ByVal eventSender As System.Object, ByVal _

eventArgs As System.EventArgs) Handles Command1.Click

Dim y As Short

Dim x As Short

With MSFlexGrid1

For x = 0 To NumNodes + 3

For y = 0 To MaxRow + 1

.Col = x

.Row = y

.Text = “”

Next y

Next x

.Row = 0

NumNodes = CShort(Text2.Text)

For x = 1 To NumNodes

.Col = x

.Text = “ai” & x

Next x

.Col = NumNodes + 1

.Text = “Ci”

.Col = NumNodes + 2

.Text = “Estimations”

.Col = 0

For x = 1 To NumNodes

.Row = x

.Text = CStr(x)

Next x

MaxRow = .Row

.Row = 1

.Col = 1

End With

End Sub

213

Programming Your Own Spreadsheets

550ch09.qxp 1/14/02 3:13 PM Page 213

Private Sub Command2_Click(ByVal eventSender As System.Object, ByVal _

eventArgs As System.EventArgs) Handles Command2.Click

Dim K As Short

Dim J As Short

Dim I As Short

Dim z As Short

Dim y As Short

Dim x As Short

Dim a(,) As Double

Dim C() As Double

Dim T1() As Double

Dim T2() As Double

Dim T3() As Double

Dim N As Integer

N = CShort(Text2.Text)

ReDim a(N, N)

ReDim C(N)

ReDim T1(N)

ReDim T2(N)

ReDim T3(N)

Dim Conv As Boolean

Dim E As Double ‘convergence criterion

Dim Count As Short

Dim S1 As Double

Dim S2 As Double

E = CDbl(Text3.Text)

For x = 1 To N

For y = 1 To N

MSFlexGrid1.Row = x

MSFlexGrid1.Col = y

a(x, y) = CDbl(MSFlexGrid1.Text)

Next y

Next x

For z = 1 To N

MSFlexGrid1.Col = NumNodes + 1

MSFlexGrid1.Row = z

C(z) = CDbl(MSFlexGrid1.Text)

MSFlexGrid1.Col = NumNodes + 2

T2(z) = CDbl(MSFlexGrid1.Text)

Next z

MSFlexGrid1.Row = NumNodes + 2

MSFlexGrid1.Col = 0

MSFlexGrid1.Text = “Iteration”

214

Chapter 9

550ch09.qxp 1/14/02 3:13 PM Page 214

For I = 1 To NumNodes

MSFlexGrid1.Col = I

MSFlexGrid1.Text = “T” & I

Next I

Count = 1

Do Until Conv = True

Conv = True

MSFlexGrid1.Row = MSFlexGrid1.Row + 1

MSFlexGrid1.Col = 0

MSFlexGrid1.Text = CStr(Count)

For I = 1 To N

S1 = 0

S2 = 0

T1(I) = (C(I) / a(I, I))

If I - 1 > 0 Then

For J = 1 To I - 1

S1 = S1 + (a(I, J) / a(I, I)) * T2(J)

Next J

T1(I) = T1(I) - S1

End If

If I + 1 <= N Then
For K = I + 1 To N

S2 = S2 + (a(I, K) / a(I, I)) * T2(K)

Next K

T1(I) = T1(I) - S2

End If

MSFlexGrid1.Col = MSFlexGrid1.Col + 1

MSFlexGrid1.Text = (System.Math.Round(T1(I)*10000)/10000)

‘The Round Function trims extra decimal places and allows easier viewing in cell

If T1(I) - T2(I) > E Then

Conv = False

End If

T3(I) = T2(I)

T2(I) = T1(I)

Next I

Count = Count + 1

Loop

MaxRow = MSFlexGrid1.Row

End Sub

215

Programming Your Own Spreadsheets

550ch09.qxp 1/14/02 3:13 PM Page 215

Private Sub Form1_Load(ByVal eventSender As System.Object, ByVal eventArgs As _

System.EventArgs) Handles MyBase.Load

Text1.Visible = False

Text1.Font = MSFlexGrid1.Font

Dim x As Short

With MSFlexGrid1

.Cols = 100

.Rows = 2000

Show()

.Col = 0

.Row = 0

.Text = “Equation #”

For x = 1 To 4

.Col = x

.Text = “ai” & x

Next x

.Col = 5

.Text = “Ci”

.Col = 6

.Text = “Estimations”

.Col = 0

For x = 1 To 4

.Row = x

.Text = CStr(x)

Next x

.Row = 1

.Col = 1

End With

NumNodes = 4

MaxRow = 4

DimTextBox()

End Sub

Private Sub DimTextBox()

With MSFlexGrid1

Text1.Location = New Point(TwipsToPixelsX(.CellLeft) _

+ .Location.X, TwipsToPixelsX(.CellTop) + .Location.Y)

Text1.Size = New Size(TwipsToPixelsY(.CellWidth), _

TwipsToPixelsY(.CellHeight))

Text1.Visible = True

Text1.Focus()

End With

End Sub

216

Chapter 9

550ch09.qxp 1/14/02 3:13 PM Page 216

Private Sub MSFlexGrid1_EnterCell(ByVal eventSender As System.Object, ByVal _

eventArgs As System.EventArgs) Handles MSFlexGrid1.EnterCell

Text1.Text = MSFlexGrid1.Text

DimTextBox()

End Sub

Private Sub Text1_TextChanged(ByVal eventSender As System.Object, ByVal _

eventArgs As System.EventArgs) Handles Text1.TextChanged

MSFlexGrid1.Text = Text1.Text

End Sub

Private Sub Text1_KeyDown(ByVal eventSender As System.Object, ByVal _

eventArgs As System.Windows.Forms.KeyEventArgs) Handles Text1.KeyDown

Dim KeyCode As Short = eventArgs.KeyCode

Dim Shift As Short = eventArgs.KeyData \ &H10000

With MSFlexGrid1

Select Case KeyCode

Case Keys.Down

If .Row < .Rows - 1 Then .Row = .Row + 1

Case Keys.Up

If .Row > 1 Then .Row = .Row - 1

Case Keys.Right

If .Col < .Cols - 1 Then .Col = .Col + 1

Case Keys.Left

If .Col > 1 Then .Col = .Col - 1

End Select

End With

End Sub

Private Sub Text1_KeyPress(ByVal eventSender As System.Object, ByVal _

eventArgs As System.Windows.Forms.KeyPressEventArgs) Handles _

Text1.KeyPress

Dim KeyAscii As Short = Asc(eventArgs.KeyChar)

With MSFlexGrid1

If KeyAscii = Keys.Return And .Row < .Rows - 1 Then

.Row = .Row + 1

End If

End With

If KeyAscii = 0 Then

eventArgs.Handled = True

End If

End Sub

217

Programming Your Own Spreadsheets

550ch09.qxp 1/14/02 3:13 PM Page 217

Taking a good look at the code, notice that you use the same KeyDown,
KeyPress, EnterCell, and Change events as in the previous section, as these
events are fairly standard to all applications with this sort of interface. You also
use the DimTextBox procedure and the form’s Load event to set up the grid’s
default size. This Load event sets up a grid to hold all of the information needed
to perform this iteration on a surface that consists only of four nodes. At the end
of the procedure the Load event also stores this number of nodes in the Public
variable NumNodes and stores the value of the highest row number that data was
entered into in the Public variable MaxRow.

The purposes of these two Public variables is apparent when you look at the
Click event for Command1, the reformatting command button. This Click event
uses information in these variables to erase all of the grid’s information. The pro-
cedure then reformats the grid to handle another matrix of the size specified in
Text2. As you can see, all of the row and column labels change to correspond to
this newly sized grid. Once the grid is established at the correct size, the user
enters the correct data and proceeds to clicking Command2. This initiates the
Click event of Command2, which contains the code for the Gauss-Siedel iteration
discussed in Chapter 5. The procedure reads the matrix information into the
required arrays and performs the required iteration. As the procedure iterates,
it formats a portion of the grid (below the data entry region) to display the
iteration’s calculated values. Thus, if the system of equations is a solvable set of
equations (as they should be for a real system), you can watch the calculated val-
ues converge to within the specified criterion (see Figure 9-2 for an example set).
If the equations aren’t solvable, the Gauss-Siedel iteration diverges over time and
leads to an overflow error. Thus, to challenge yourself, modify the routine so it
only runs for X number of iterations and outputs an error message box saying
that the results didn’t converge in X number of iterations. It can’t be stressed
enough that good scientific and engineering applications take measures to
ensure both the application’s stability and the data’s integrity.

218

Chapter 9

550ch09.qxp 1/14/02 3:13 PM Page 218

The preceding issue aside, though, this can be a powerful and highly useful
iterative technique when used properly. Hopefully, this application also gave you
some insights into the types of powerful routines you can develop using spread-
sheet type interfaces.

219

Programming Your Own Spreadsheets

Figure 9-2. A sample Gauss-Siedel iteration

550ch09.qxp 1/14/02 3:13 PM Page 219

550ch09.qxp 1/14/02 3:13 PM Page 220

