4. Primary Decomposition and Related Topics

4.1 The Theory of Primary Decomposition

It is well-known that every integer is a product of prime numbers, for instance
10 = 2 - 5. This equation can also be written as an equality of ideals, (10) =
(2) N (5) in the ring Z. The aim of this section is to generalize this fact to
ideals in arbitrary Noetherian rings.

Ideals generated by prime elements are prime ideals. Therefore, (10) is
the intersection of finitely many prime ideals. In Proposition 3.3.5 this is
generalized to radical ideals: in a Noetherian ring every radical ideal I, that
is, I =+/I, is the intersection of finitely many prime ideals. However, what
can we expect if the ideal is not radical? For example, 20 = 22 - 5, respectively
(20) = (2)? N (5); in the ring of integers Z every ideal is the intersection of
finitely many ideals which are powers of prime ideals. This is, for arbitrary
Noetherian rings, no longer true. A generalization of the powers of prime
ideals are the so—called primary ideals. We shall prove in this section that,
in a Noetherian ring, every ideal is the intersection of finitely many primary
ideals.

Definition 4.1.1. Let A be a Noetherian ring, and let I C A be an ideal.

(1) The set of associated primes of I, denoted by Ass(I), is defined as
Ass(I) = {P C A| P prime, P =1 : (b) for some b € A} .

Elements of Ass({(0)) are also called associated primes of A.

(2) Let P,Q € Ass(I) and @ C P, then P is called an embedded prime ideal
of I. We define Ass(I, P) :={Q | Q € Ass(I),Q C P}.

(3) I is called equidimensional or pure dimensional if all associated primes
of I have the same dimension.

(4) I is a primary ideal if, for any a,b € A, ab € I and a & I imply b € V1.
Let P be a prime ideal, then a primary ideal I is called P—primary if
P=+I

(5) A primary decomposition of I, that is, a decomposition I = Q1 N---NQ;
with @; primary ideals, is called irredundant if no @); can be omitted in

the decomposition and if \/@Q); # /Q; for all i # j.
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Ezample 4.1.2.

(1) Let A be a ring, and let I C A be an ideal such that v/T is a maximal
ideal, then I is primary (cf. Exercise 4.1.4).

(2) Let A= K]Jz,y] and I = (2?,zy) = (z) N (z,y)? = (z) N (z?,y). Then
(z), (w,y)?, (2, y) are primary ideals, and Ass(I) = {(x), (x,y)}. In par-
ticular, (z, y) is an embedded prime of I with Ass(I, (z,y)) = {{z), (z,y)},
while Ass(I, (z)) = {(x)}. Note that both decompositions are irredundant
primary decompositions of I, which shows that an irredundant primary
decomposition might be not unique.

(3) minAss(I) C Ass(I) and minAss(I) = Ass([) if and only if I has no em-
bedded primes (Exercise 4.1.5), showing that minAss(I) is the set of
minimal elements (with respect to inclusion) of Ass(I).

The following lemma collects the properties of primary ideals needed for the
primary decomposition.

Lemma 4.1.3. Let A be a Noetherian ring and Q@ C A a P—primary ideal.

(1) The radical of a primary ideal is a prime ideal.

(2) Let Q' be a P-primary ideal, then Q N Q" is a P—primary ideal.

(3) Letbe A, b ¢ Q, then Q : (b) is P-primary. If b € P then Q C Q : (b).
(4) Let P' > Q be a prime ideal, then QAp NA = Q.

(5) There exists d € A such that P = Q : (d). Especially, P € Ass(Q).

Proof. (1) and (2) are left as exercises. To prove (3),letbe A, b ¢ Q.Ifb & P,
then @ : (b) = @ because ab € @, a € @) implies b € P by definition of a pri-
mary ideal. If b € P then b™ € @ for a suitable n. We may assume n > 2 and
b"~ ' ¢ Q. Then b1 € Q : (b) and, therefore, @ C @ : (b). Let zy € Q : (b)
and = € @ : (b). This implies bzy € @ and bz ¢ Q. By definition of a primary
ideal, we obtain y™ € ) for a suitable n. This implies that @ : (b) is a pri-
mary ideal. Finally, \/Q : (b) D vV/Q = P. Let z € 1/Q : (b), that is, ba™ € Q
for some n but b € Q and, therefore, ™ € P. Now P is prime and we obtain
x € P which proves \/@Q : (b) = P.

To prove (4), let © € QAp N A. This means that sz € @ for a suitable
s & P'. If x € Q, then, by definition of a primary ideal, s € /@ C P’ in con-
tradiction to the choice of s. We obtain QApr N A C (. The other inclusion
is trivial.

To prove (5), we consider first the case ) = P. In this case, we can use
d =1 and are finished. If ) C P we choose g1 € P \ @ and obtain, using (3),
that @ : (g1) 2 @ is P-primary and /@ : (91) = P. Again, if Q : (¢1) C P
we can choose g2 € P N\ (Q : (91)) such that (Q : (91)) : (g2) 2 @ : (91). Now
(Q:{g1)) : (g2) = Q : {g192) (Exercise 4.1.2), and continuing in this way we
obtain an increasing chain of ideals Q@ C @ : (g1) C Q : {(g192) € - ... Thering
A is Noetherian and, therefore, this chain has to stop, that is, we find n and
J1,--+,9n € P such that Q: (g1 ---gn) = P. O



4.1 The Theory of Primary Decomposition 241

Theorem 4.1.4. Let A be a Noetherian ring and I C A be an ideal, then
there exists an irredundant decomposition I = Q1N ---NQ, of I as intersec-
tion of primary ideals Q1,...,Q .

Proof. Because of Lemma 4.1.3 (2) it is enough to prove that every ideal is
the intersection of finitely many primary ideals. Suppose this is not true,
and let 9 be the set of ideals which are not an intersection of finitely
many primary ideals. The ring A is Noetherian and, by Proposition 1.3.6,
M has a maximal element with respect to the inclusion. Let I € 9t be max-
imal. Since I is not primary, there exist a,b € A, a ¢ I, b™ ¢ I for all n and
ab € I. Now consider the chain I : (b) C I:(b?) C---. As A is Noetherian,
there exists an n with I: (b") =1 :(p"*!) =.... Using Lemma 3.3.6, we
obtain I = (I : (b™)) N(I,b™). Since b ¢ I we have I C (I,b™). Since a ¢ I
and ab™ € I we have I C I : (b™). As I is maximal in 9, I : (b™) and (I,d™)
are not in 9. This implies that both ideals are intersections of finitely many
primary ideals and, therefore, I is an intersection of finitely many primary
ideals, too, in contradiction to the assumption. O

Theorem 4.1.5. Let A be a ring and I C A be an ideal with irredundant
primary decomposition I = Q1 N+ -N Q. Then r = # Ass(I),

Ass(I) = {V/Q1,- -, VQr},
and Zf{\/Q_zlaa\/Q_ls} :ASS(Ia-P) fOT’PGASS(I) then Qilm'”ﬁQiS 18

independent of the decomposition.

Proof. Let I =Q1N---NQ, be an irredundant primary decomposition. If
P € Ass(I), P =1: (b) for a suitable b, then P = (Q1 : (b)) N---N(Qy : (b))
(Exercise 4.1.3). In particular, (,_,(Q; : (b)) C P, hence, Q; : (b) C P for a
suitable j (Lemma 1.3.12). On the other hand, since P =1 : (b) C Q); : (b), we
obtain P = Q; : (b). Now Q; : (b) C \/Q; (Lemma 4.1.3 (3)), which implies
P = ,/Q;. This proves that {y/Q1,...,v/Q; } D Ass([).

It remains to prove that 1/@Q; = I : (b;) for a suitable b;. But this is a con-
sequence of Lemma 4.1.3 (5):let J=Q1 N---NQi—1 N Qit+1 N---NQ,, then
J ¢ Q;, since the decomposition is irredundant. We can choose d € J \ Q;
and obtain, using Exercise 4.1.3, I : (d) = Q; : (d). By Lemma 4.1.3 (3), (5),
respectively Exercise 4.1.2, /Q; = /Qi : (d) = (Q; : (d)) : (9) = I : (dg) for
a suitable g. We obtain Ass(I) = {v/Q1,...,VQ@r}

Now let Ass(I, P) = {\/Q,,...,1/Qi,}, then Lemma 4.1.3 (4) gives that
Qi, ApNA=Q;,. If j&{ir,...,is} then Q; ¢ P, therefore, Q;Ap = Ap.
This implies that IAp N A = (j_,(Q;Ap N A) = Qi N---NQ;, is indepen-
dent of the decomposition, since Ass(I, P) is. O

Ezample 4.1.6.

(1) ¥1={(f)CKlzy,...,zy] is a principal ideal and f = f"* --- fI* is the
factorization of f into irreducible factors, then
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I=(f NN )

is the primary decomposition, and the (f;) are the associated prime ideals
which are all minimal.

Let I = (xy,zz,yz) = (x,y)N{x, 2)N{y, z) C K[z,y, z]. Then the zero—set
V(I) (cf. A.1) is the union of the coordinate axes (cf. Figure 4.1).

i

Fig. 4.1. The zero-set of (zy,zz,yz).

Let I = ((y*>— zz) - (22— 2%y), (y*— 22) - 2) C K[z, Then we obtain

Y, 2.
the irredundant primary decomposition I = (y?— zz) ﬂ (x?,2) N {y, 22),
Ass(0) = (- 22), (&, 2. (9. 2} and minAss(T) = ({4 ~ 22}, (. )},
(y,z) is an embedded prime Wlth Ass(I, (y,2)) = {{(y*— z2),(y,2)}. The

zero-set of I (cf. A.1) is displayed in Figure 4.2.

Fig. 4.2. The zero—set of I = (y>— zz) N (x?,2) N (y, 2°).
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Remark 4.1.7.

(1) Primary decomposition does not hold, in general, in non—-Noetherian
rings, even if we allow infinite intersections.

(2) There exists a concept of primary decomposition for finitely gener-
ated modules over Noetherian rings (Exercise 4.1.13). Primary decom-
position of modules has been implemented in the SINGULAR library
mprimdec.lib.

Exercises

For these exercises let A be a Noetherian ring, K a field and I, J ideals in A.
4.1.1. Prove that /I is prime if I is primary.

4.1.2. Prove that, for a,b € A, (I : (a)) : (b) = I : (ab).

4.1.3. Prove that, for any b€ A, (INJ):{(b) = (I : (b)) N (J : (b)).

4.1.4. Prove that I is primary if v/T is a maximal ideal.

4.1.5. Prove that minAss(I) C Ass(I) with equality if and only if I has no
embedded primes.

4.1.6. Let P C A be a prime ideal, and let 1, Q2 C A be P—primary. Prove
that Q1 N Q2 is a P—primary ideal.

4.1.7. Let fi, fo € A such that f = f; - fo € [ and (f1, f2) = A. Prove that
I= <Iaf1> N (Iaf2>

4.1.8. Let I C Klz1,...,zy] be a homogeneous ideal (that is, generated by
homogeneous polynomials). Prove that the ideals in Ass([) are homogeneous.

4.1.9. Let w = (wy,...,w,) € Z", w; # 0 for all i, and let I C KJz1,...,zy,]
be an ideal. Moreover, let I" C K[zy,...,xy,t] be the ideal generated by the
weighted homogenizations of the elements of I with respect to t (see Exercise
1.7.5). Prove the following statements:

(1) I" is primary (prime) if and only if I is primary (prime).
(2) Let I=Q1N...NQ, be an irredundant primary decomposition, then
I"=Q"N...Nn Q" is an irredundant primary decomposition, too.

(Hint: to show (1), first prove the analogue of Exercise 2.2.5 for primary
instead of prime ideals. For (2), prove that (I; N I)" = I N I})

4.1.10. Let Ass((0)) = {Py, ..., Ps}. Prove that |JI_, P; is the set of zerodi-
visors of A.

4.1.11. Let I=Q1N---NQy, be an irredundant primary decomposition,
and let J := QN -+ N Q. Prove that dim(A/(Q + J)) < dim(A4/J).
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4.1.12. Use SINGULAR to show the following equality of ideals in K|z, y, 2]:

(y?—z2) N (2*,2) N (y, 2°) = ((* — 22)(2* = 2°y), (y*—x2) - 2) .
4.1.13. Let M be a finitely generated A—module and N C M a submodule.

Then N is called primary in M if N # M and for every zerodivisor x of M /N
there exists p such that ¥ € Ann(M/N). Prove the following statements:

(1) If N C M is primary then N : M is a primary ideal (VN : M is called
the associated prime to N).

(2) N has an irredundant primary decomposition and the associated primes
are uniquely determined.

(3) If P is an associated prime of N, then P = N : (m) for some m € M.

(4) Let Py,..., P; be the set of associated primes of N, then the zerodivisors
of M/N are |J;_, P;.

(Hint: recall that VN : M = \/Ann(M/N) = /N, see Exercise 2.8.6.)

4.1.14. Let M be a finitely generated A-module. Let Ass(M) be the set of
associated prime ideals to (0) C M in the sense of Exercise 4.1.13, that is,

Ass(M) := {P C A prime | P = Ann(m), m € M ~ {0}}.

Let M := {Ann(m) | 0 # m € M}. Prove that the maximal elements in M
are associated prime ideals.

4.1.15. Let A be a Noetherian ring and M # (0) a finitely generated A—
module. Prove that there exists a chain M = My D> M; D - - D M, = (0)
of submodules of M such that M;/M;; = A/P; for a suitable prime ideal
PCAi=0,..,n—1

(Hint: choose an associated prime P; € Ass(M), and let P, = Ann(m;). If
M = (m,) then M = A/P;, otherwise continue with M/(m1).)

4.2 Zero—dimensional Primary Decomposition

In this section we shall give an algorithm to compute a primary decomposition
for zero—dimensional ideals in a polynomial ring over a field of characteris-
tic 0. This algorithm was published by Gianni, Trager, and Zacharias ([72]).
Let K be a field of characteristic 0. In the case of one variable z, any ideal
I C K|[x] is a principal ideal and the primary decomposition is given by the
factorization of a generator of I: let I = (f), f = fi"* ... fF with f; irre-
ducible and (f;, f;) = K[z] for i # j, then I = (fi)™ N---N{fr)" is the
primary decomposition of . In the case of n variables, the univariate poly-
nomial factorization is also an essential ingredient. We shall see that, after a
generic coordinate change, the factorization of a polynomial in one variable
leads to a primary decomposition. By definition, all associated prime ideals
of a zero—dimensional ideal are maximal. We need the concept for an ideal in
general position.
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Definition 4.2.1.

(1) A maximal ideal M C Klzi,...,2,] is called in general position with
respect to the lexicographical ordering with z; > --- > z,, if there exist
gi,---39n € K[mn] with M = <£I?1 +gl(mn)7 sy Tp—1 +gn71(mn)7 gn(xn»

(2) A zero—dimensional ideal I C KJz1,...,zy] is called in general position
with respect to the lexicographical ordering with z; > --- > x,, if all
associated primes Pi,..., Py are in general position and if P; N K[z,] #
PN K[z,] for i # j.

Proposition 4.2.2. Let K be a field of characteristic 0, and let I C Klx],
x = (z1,...,Zn), be a zero—dimensional ideal. Then there exists a non—empty,
Zariski open subset U C K™% such that for all a = (a1,...,a,_1) € U, the
coordinate change @g @ K[v] = K[z] defined by pq(x;) = ; if i <n, and

n—1
0o (Tn) = T + Z ;T
i=1

has the property that ¢, (I) is in general position with respect to the lexico-
graphical ordering defined by x1 > -+ > .

Proof. We consider first the case that I C K[zy,...,x,] is a maximal ideal.
The field K[x1,...,2,]/ is afinite extension of K (Theorem 3.5.1), and there
exists a dense, Zariski open subset U C K™ ! such that for @ € U the element
z=x,+ Z;’:’f a;z; is a primitive element for the field extension (Primitive
Element Theorem, cf. [190], here it is necessary that K is a perfect, infinite
field).

Since @q4p = Pp © Yq, we may assume that 0 € U, that is,

K[xla e ;xn]/l = K[xn]/<fn($n)>

for some irreducible polynomial f,(z,). Via this isomorphism z; mod I cor-
responds to some f;(z,) mod {f,(z,)) and we obtain

<£I?1 - fl(mn);---;mnfl - fnfl(mn)a fn(mn» =1I.

The set of these generators is obviously a Grébner basis with the required
properties.

Now let I be an arbitrary zero—dimensional ideal and let Py, ..., Ps be the
associated primes of I, then ¢, (P;) are in general position with respect to the
lexicographical ordering ; > --- > x, for almost all @ € K™~ '. It remains
to prove that g (P;) N K[z,] # ¢ (Pj) N K[zy] for i # j and almost all a.
We may assume that the P;’s are already in general position with respect
to the lexicographical ordering x; > --- > z,. We study the behaviour of
a maximal ideal P = (z; — ¢1(zn),.. ., Tn—1 — gn—1(Zsn), gn(x,)) under the
automorphism ¢,.
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If ¢4 (P) is again in general position with respect to the lexicographical
ordering z; > --- > &, then o, (P)N K[z,] = (h{?)) for a monic polynomial
h(®) of degree

= dimg K[z,]/(h'?) = dimg K[z]/¢.(P) = dimg K[z]/P = deg(gn) -

To compute h(@) | we consider the algebraic closure K of K. Let oy, ..., 0 € K
be the roots of g, (z,). Because of Exercise 4.2.1 (b), g,(x,) is squarefree in
Kl[z,]. Then g,(z,) = c¢(z, —a1) - ... (z, — a;), ¢ € K and, because of Ex-
ercise 4.1.7,

”

PE[z] = ({1 = 91(ci), - -, Zn1 = gn1(%), T — i) .

i=1

Now

901((:5'1 —gi(@i), T — g (i), on — ai>)
n—1

= <:r;1 —gi(a;), .. Tp—1 — gn-1(@;), Tn — ; + Z a,,g,,(ozl-)> .

v=1

This implies that ¢ (PK[z]) N K[z,]) D (TTi; (zn — i + 2,7,:11 avgv(y)))-

Since (h(®) = p,(P) N K[z,] = p.(PK[z]) N K[z,] (Exercise 4.2.1 (a)),
and since h@, as well as [;_, (z, — a; + Sl avgy(e;)), are monic poly-
nomials in K[z,]" of degree r, it follows that

r n—1
pla) — H (xn — o + Z a,,g,,(ai)> :

i=1 v=1

Now let oq(Py) N K[za] = (B), ..., 0a(Ps) N K[z,] = (BS”) with monic
polynomials hﬁﬂ) € KJz,], and assume that the prime ideals ¢,(P;) are in
general position with respect to the lexicographical ordering x1 > --- > .
The condition ¢, (P;) N K[z,] = @a(P;) N K[z,], that is, hl(-g) = h;g) leads,
because of P; # P;, to a non-trivial polynomial system of equations for a.
This implies that for almost all a, @4 (P;) N K[zy] # @a(Pj) N Kz,] if i # 5.

O

Proposition 4.2.3. Let I C K[z1,...,x,] be a zero—dimensional ideal. Let

(9) =INK[zy], g=97*-..9%, gi monic and prime and g; # g; for i # j.
Then

" (zn — i + X021 avgu(ai)) € K[z, is a consequence of Galois theory,
since the product is invariant under the action of the Galois group (the
K-automorphisms of K(ai,...,ar) are given by permutations of the roots
Qly .., 0).
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(1) T ==y (L, 97")-

If T is in general position with respect to the lexicographical ordering with
Ty > - > Ty, then

(2) (I,g7") is a primary ideal for all i.

Proof. To prove (1) note that, obviously, I C (;_,(Z, g/*). To prove the other
inclusion let g(*) := g/g¥* for i =1,...,s. Then the univariate polynomials
g, ..., g € K[z,] have the greatest common divisor 1. Hence, we can find
ai,...,as € K[z,) with 3°7_, a;g9 = 1. Now let f € N;_,(I,g*), in partic-
ular, there exist f; € I, & € R such that f = f; + &g/, i =1,...,s. Hence,

S

F=Y agW(fi+&gl) = (aig? fi+ aibig) €1,
i=1

i=1

which proves (1).

(2) First note that (I, ¢;*) C K[z] and Ass({I, g;*)) C Ass(I). This can be
seen as follows: if we could write 1 = f + ag;* for some f € I, a € K|x], then
9/9;" € (f,g) C I, contradicting the assumption I N K[z,] = (g). Moreover,
I C (I,9;") and the uniqueness of associated primes implies that each asso-
ciated prime of (I, g;*) has to contain some associated prime of I. But, since
I is zero—dimensional, its associated primes are maximal ideals.

Now, let Py, ..., P, be the associated primes of I and let P; N K[z,,] = (p;).
Then, by assumption, the polynomials pi,...,py are pairwise coprime and,
therefore, ﬂle(Pi NK[z,]) = ﬂle (pi) = (Hle pi). On the other hand, we
have Ny (PN K[z,a]) = (Ni—, P;) N K[2,] = VI N K[z,]. Hence, the as-
sumption I N K[z,] = (g) implies that Hle p; divides g and ¢ divides a
power of Hle p;. The latter implies £ = s, and we may assume g; = p; for

i=1,...,s. It follows that P; is the unique associated prime of I containing
g;*, and, by the above, we can conclude that Ass((7,g;*)) = {P;}. Hence,
(I,9;") is a primary ideal. O

Proposition 4.2.3 shows how to obtain a primary decomposition of a zero—
dimensional ideal in general position by using the factorization of g. In the
algorithm for the zero—dimensional decomposition we try to put I in general
position via a map ¢4, a € K" ! chosen randomly. But we cannot be sure,
in practice, that for a random choice of @ made by the computer, ¢, (I) is in
general position. We need a test to decide whether (I, g;") is primary and in
general position. Using Definition 4.2.1 we obtain the following criterion:

Criterion 4.2.4. Let I C K[z1,...,xy,] be a proper ideal. Then the following
conditions are equivalent:

(1) I is zero—dimensional, primary and in general position with respect to
the lexicographical ordering with x1 > --- > x,.
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(2) There exist g1,...,9n € K[zy] and positive integers v, ... ,v, such that
a) INK[z,] = (glr), gn irreducible;
b) for each j <n, I contains the element (:Uj + gj)uj.

(8) Let S be a reduced Grobner basis of I with respect to the lexicographi-
cal ordering with x1 > ... > x,. Then there exist g1, ..., g, € K[x,] and
positive integers vy, ...,vy, such that

a) gv~ € S and gy, is irreducible;
b) (x; +g;)" is congruent to an element in SN K[zj,...,x,] modulo
(9n>Trn—1+ Gn-1,--.,%jy1 + gj+1) C Klz] for j=1,...,n—1.

Proof. To prove (3) = (2), let M :=+/I. Then g,, € M, and, inductively, we
obtain z; 4+ g; € M for all j. This implies

M = (ml +91,--,Tn-1 +gn71;gn>,

because gy, is irreducible and, therefore, (x1 — g1,...,Zn—1 — gn—1, gn) C K[z]
is a maximal ideal. Finally, M = /I implies now a) and b) in (2).

(2) = (1) is clear because M = (z1 + g1,---,Tn—1 + Gn—1,9n) C VT is a
maximal ideal and, by definition, in general position with respect to the
lexicographical ordering with xy > --- > x,,.

To prove (1) = (3), let M :=+/I. Since I is in general position and pri-
mary, M ={x1 +91,.+,Tn—1 + gn—1, gn) with g, € K[z,] irreducible and
91, +,9n—1 € K[z,]. We may assume that g, is monic. Now, let S be a
reduced Grobner basis of I (in particular, all elements are supposed to be
monic, t00). Then, due to the elimination property of >,, SN K[z,] = {g}
generates I N K[z,], which is a primary ideal with \/I N K[z,] = (g»). This
implies g = gy~ for a suitable v,,.

Now let j € {1,...,n — 1}. Since I is zero-dimensional and S is a reduced
Grobuner basis of I, there exists a unique h € S such that LM(h) is a power of
zj, LM(h) = 27" (Theorem 3.5.1 (7)). Note that the latter implies, in particu-
lar, that h € K[z;,...,zy] (again due to the elimination property of >;,). We
set M':=MNK[zjt1,...,¢5], K':= K[.rj_,_l,...,.rn]/M' = K[.rn]/(gn>,
and consider the canonical projection

b Klzy,...,x) = (K[xjs1,...,zp))[@1,. .., 05] — K'[z1,...,7j].

Step 1. We show (S N K{zj,...,z,]) = {®#(h),0}. Since S N K[z, ..., z,] is
a standard basis (w.r.t. >;;,) of I N Klxj,..., ], this implies

INK[zj,...,zn] = (W Kle;,....z,) mod M Klzj,...,z,].
Let K[z'] :== K[2j41,...,2,] and consider

3 fo,.-., fs_1 € K[2'],s < m, such that Zfzx; EI> .

i=0

L= <fs € K[2']
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Then, clearly, I N K[z'] C L C K[z']. Since I N K[z'] is primary and zero-
dimensional, \/I N K[z'] is the unique associated prime of I N K[z'] (The-
orem 4.1.5) and a maximal ideal in K[z']. Hence, L C \/I NK[z'] ¢ K[z'],
and there exists some a € K[z'] \ I such that \/I N K[z (INK]J ’] (a).

Now, let f € SN K|[zj,...,z,) C I, f #h. Wewrltef E Ofl:z: with
fi € K[z']. Since S is reduced and LM(h) = z}', we have s <m, hence
fs € L. Moreover, f':=z7""°f — fsh € I, and, writing f' = Z?:Ol ﬂ/’;a we
obtain f} _; € L and f] = fits—m mod L, i =m —s,...,m — 1. Therefore,
fs—1 € L, and proceeding inductively we obtain f; € L, i =0,...,s

The above implies now af; € I N K[z'], and, since I N K[z'] is primary, it
follows that f; € \/INK[z'] = M' for i =0,...,s. Thus, &(f) = 0.

Step 2. On the other hand, \/®(I) = &(\/I + Ker(®) ) = &(M). It follows
that \/@(I) N K'[x;] = (z; + g]>K/[z 1, where g; := g; mod M', and we con-

cludethat ¢(IOK[:1;],.. zp]) N K'[z;] = @(I)ﬁK[xj]—<(x]+g]) )k K'la)]
for a positive integer £. Together with the result of Step 1, this implies that
h=(z; +g;)¢ mod M'-K[xj,...,z,], in particular, £ = m =: v;. O

Criterion 4.2.4 is the basis of the following algorithm to test whether a zero—
dimensional ideal is primary and in general position.

Algorithm 4.2.5 (PRIMARYTEST(I)).

Input: A zero—dimensional ideal I := (fi,..., fr) C K[z], z = (z1,...,Z,).
Output: (0) if I is either not primary or not in general position, or v/T if I is
primary and in general position.

e compute a reduced Grobner basis S of I with respect to the lexicographical
ordering with z1 > -+ > xy;
e factorize g € S, the element with smallest leading monomial;
o if (g = g with g, irreducible)
prim := (g,,)
else
return (0).
® |:=mn;
while (i > 1)
1:=1—1;
choose f € S with LM(f) =
b := the coeflicient of :z:;-nfl in f considered as polynomial in z;;
q:=x; + b/m;
if (¢™ = f mod prim)
prim := prim + (g);
else
return (0);
e return prim.
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SINGULAR Example 4.2.6 (primary test).

option(redSB);

ring R=0, (x,y),1p;

ideal I=y4-4y3-10y2+28y+49,x3-6x2y+3x2+12xy2-12xy+3x-8y3
+13y2-8y-6;

//the generators are a Groebner basis

We want to check whether the ideal I is primary and in general position.

factorize(I[1]); //to test if Criterion 4.2.4 (3) a) holds
//-> [1]:

//-> _[11=1

//-> _[2]=y2-2y-7

//-> [2]:

//-> 1,2 //I[1] is the square of an irreducible element

ideal prim=std(y2-2y-7);
poly g=3x-6y+3;

poly f2=I[2];
reduce(q~3-27*f2,prim) ;

//->0

The ideal is primary and in general position and (y?> — 2y — 7, © — 2y + 1) is
the associated prime ideal.

Now we are ready to give the procedure for the zero—dimensional decompo-
sition. We describe first the main steps:

Algorithm 4.2.7 (zeroDECOMP(I)).

Input:  a zero-dimensional ideal I := (fi,..., fr) C K[z], z = (z1,...,T,).

Output: a set of pairs (Q;, P;) of ideals in K[z],i=1,...,r, such that
—I=Q.N---NQ, is a primary decomposition of I, and
—P=yOi,i=1,...,r

e result := ()

e choose a random a € K" !, and apply the coordinate change I' := ¢, (I)
(cf. Proposition 4.2.2);

e compute a Grobner basis G of I' with respect to the lexicographical order-
ing with 1 > -+ > z,, and let g € G be the element with smallest leading
monomial.

o factorize g = g7* - ... g% € K[z,];

e fori =1to s do

set Q) == (I',g¥*) and Q; == (I,0;"(9:)");
set P/ := PRIMARYTEST(Q?);
if P/ # (0)
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set Py := ¢, ' (P));
result := result U{(Q;, P;)};
else
result := result U ZERODECOMP (Q););
e return result.

In the programming language of SINGULAR the procedure can be found in
Section 4.6.

SINGULAR Example 4.2.8 (zero—dim primary decomposition).
We give an example for a zero-dimensional primary decomposition.

option(redSB);
ring R=0, (x,y),1p;
ideal I=(y2-1)~2,x2-(y+1)"3;

The ideal I is not in general position with respect to 1p as y* — 1 is reducible.

map phi=R,x,x+y; //we choose a generic coordinate change
map psi=R,x,-x+y; //and the inverse map

I=std(phi(I));

I;

//-> I[1]=y7-y6-19y5-13y4+99y3+221y2+175y+49

//-> 1[2]=112xy+112x-27y6+64y5+431y4-264y3-2277y2-2520y-847
//-> 1[3]=56x2+65y6-159y5-1014y4+662y3+5505y2+6153y+2100
factorize(I[1]);

//-> [1]:

//=-> _[1]1=1

//->  _[2]=y2-2y-7

//-> _[3]1=y+1

//-> [2]:

//=> 1,2,3

ideal Q1=std(I, (y2-2y-7)~2); //the candidates for the
//primary ideals

ideal Q2=std(I, (y+1)°3); //in general position

Q1; Q2;

//-> Q1[1]=y4-4y3-10y2+28y+49  Q2[1]=y3+3y2+3y+1

//-> Q1[2]=56x+y3-9y2+63y-7 Q2[2]=2xy+2x+y2+2y+1

Q2[3]1=x2

factorize(Q1[1]); //primary and general position test
//for Q1

//-> [1]:

//-> _[11=1
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//->  _[2]1=y2-2y-7

//-> [2]:

//-> 1,2

factorize(Q2[1]); //primary and general position test
//for Q2

//-> [1]:

//->  _[1]1=1

//=-> _[2]=y+1

//-> [2]:

//=-> 1,3

Both ideals are primary and in general position.

Ql=std(psi(Q1)); //the inverse coordinate change
Q2=std(psi(Q2)); //the result
Q1; Q2;

//-> Q1[1]=y2-2y+1  Q2[1]=y2+2y+1
//-> Q1[2]=x2-12y+4 Q2[2]=x2

We obtain that I is the intersection of the primary ideals @; and Q- with
associated prime ideals (y — 1,22~ 8) and (y + 1,z).

Exercises

4.2.1. Let K be a field of characteristic 0, K the algebraic closure of K and
I C KJz] an ideal. Prove that

(1) IK[z]N K[z] = I;
(2) if f € K[x] is squarefree, then f € K|[z] is squarefree.

Condition (1) says that K|[z] is a flat K[z]-module (cf. Chapter 7).

4.2.2. Let I C K[z] = K[z1,...,zy] be a zero-dimensional, and J C K[z] a
homogeneous ideal with I C J C V1. Prove that VT = (21,...,2,).

4.2.3. Let I C K[zy,...,z,] be a zero-dimensional ideal, and let f € K|[xzy]
be irreducible such that I N K[z,] = (f). Let dimg K[x1,...,z,]/] = deg(f).
Prove that I is a prime ideal in general position with respect to the lexico-
graphical ordering with z; > --- > z,,.

4.2.4. Compute a primary decomposition of (z2+ 1,y?+ 1) C Q[z,y], by fol-
lowing Algorithm 4.2.7 (without using SINGULAR).

4.2.5. Let K be a field of characteristic 0 and M C KJz1,...,z,] a maximal
ideal. Prove that K[zi,...,zn)mr = K[21,. .., Zn)(ay,...0,_1,5) fOr a suitable
f € K[zy].



4.3 Higher Dimensional Primary Decomposition 253

4.2.6. Give an example for a zero—dimensional ideal in Fs [z, y] which is not
in general position with respect to the lexicographical ordering with = > y.

4.3 Higher Dimensional Primary Decomposition

In this section we show how to reduce the primary decomposition of an arbi-
trary ideal in K[z] to the zero-dimensional case. We use the following idea:

Let K be a field and I C K[z] an ideal. Let v C 2 = {z1,...,2,} be a
maximal independent set with respect to the ideal I (cf. Definition 3.5.3) then
§ C N u is a maximal independent set with respect to IK (u)[z \ u] and,
therefore, I K (u)[x \ u] C K (u)[z \ u] is a zero—dimensional ideal (Theorem
3.5.1 (6)). Now, let Q1 N---NQs = [K(u)[z \ u] be an irredundant primary
decomposition (which we can compute as we are in the zero—dimensional
case), then also I K (u)[z N~ u]N K[z] = (Q1 N K[z])N--- N (Qs N K[z]) is an
irredundant primary decomposition. It turns out that IK (u)[z \ u] N K[z]
is equal to the saturation I : (h>°) = |, I : (h™) for some h € K[u] which
can be read from an appropriate Grobner basis of IK (u)[z \ u]. Assume
that I:(h*®) =1:(h™) for a suitable m (the ring is Noetherian). Then,
using Lemma 3.3.6, we have I = (I : (h"™)) N (I, h™). Because we computed
already the primary decomposition for I : (h™) (an equidimensional ideal of
dimension dim(7)) we can use induction, that is, apply the procedure again
to (I,h™).

This approach terminates because either dim((Z,h™)) < dim(I) or the
number of maximal independent sets with respect to (I, h"™) is smaller than
the number of maximal independent sets with respect to I (since u is not an
independent set with respect to (I, h"™)). The basis of this reduction proce-
dure to the zero—dimensional case is the following proposition:

Proposition 4.3.1. Let I C K[z] be an ideal and v C & = {z1,...,z,} be
a mazimal independent set of variables with respect to I.

(1) TK (u)[z \ u] C K(u)[z \ u] is a zero—dimensional ideal.
(2) Let S ={g1,-..,9s} CI C K[z] be a Grobner basis of I K (u)[z \ u], and
let h:=1em(LC(g1),...,LC(gs)) € Ku], then

IK(u)z~u]NK[z]=1:(h™),

and this ideal is equidimensional of dimension dim(T).

(3) Let IK(u)[z ~u]=Q1N---NQs be an irredundant primary decomposi-
tion, then also IK (u)[x ~u]NK[z] = (Q: N K[z])N---N(Qs N K[x]) is
an irredundant primary decomposition.

Proof. (1) is obvious by definition of u and Theorem 3.5.1 (6).
(2) Obviously, I : (h*°) C IK (u)[z \ u]. To prove the inverse inclusion, let
f € IK(u)[z ~ u] N K[z]. S being a Grobner basis, we obtain NF(f | S) =0,
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where NF denotes the Buchberger normal form in K (u)[z \ u]. But the Buch-
berger normal form algorithm requires only to divide by the leading coeffi-
cients LC(g;) of the g;, i = 1,...,s. Hence, we obtain a standard representa-
tion f =37, &g; with & € K|[z],. Therefore, b f € K[z] for some N. This
proves I K (u)[z ~u] N K[z] C I : (h*>).

To show that I : (h*°) C K|[z] is an equidimensional ideal, suppose that
I=QiN---NQ, is a primary decomposition of I with @; N K[u] = (0) for
i=1,...,sand Q;NK[u] #(0) for i=s+1,...,r. Then IK(u)[x \u] =
Ni_; QiK (u)[z\u] is a primary decomposition (Exercise 4.3.3). Since u is an
independent set w.r.t. the ideals \/Q; K (u)[z \u],i =1,...,s, it follows that
all associated primes of I K (u)[z \ u] have at least dimension dim(I) = #u
(cf. Theorem 3.5.1 (6)).

(3) Obviously Q; N K[z] is primary and /Q; N K[z] # \/Q; N K[z] for
i # j. Namely, f € v/Q; implies f™ € Q; for a suitable m. It follows that
hf™ € Q; N KJz] for a suitable h € K[u], in particular, (hf)™ € Q; N K[x].
This implies hf € \/Q; N K[z]. Assuming /Q; N K[z] = \/Q; N K[z], we
would obtain (hf)* € Q; N K[z] for a suitable ¢, that is, f € \/Q;. This,
together with the same reasoning applied to (j,4) in place of (i,7), would
give /Q; = 1/Q;, contradicting the irredundance assumption. Similarly, we
obtain a contradiction if we assume that ; N K[z] can be omitted in the
decomposition. O

Now we are prepared to give the algorithms. We start with a “universal”
algorithm to compute all the ingredients we need for the reduction to the
zero—dimensional case, as described above. We need this procedure for the
primary decomposition and also for the computation of the equidimensional
decomposition and the radical.

Algorithm 4.3.2 (REDUCTIONTOZERO(I)).

Input:  I:={(f1,...,fr) C K[z], x = (21, ...,2p).
Output: A list (u,G, h), where
— u C z is a maximal independent set with respect to I,
- G={g1,-.-,9s} CIis a Grobner basis of IK (u)[z \ u],
— h € KJu] such that IK (u)[z N u]N K[z]=1:(h) =1 : (h*).

e compute a maximal independent set u C = with respect to I; 2

e compute a Grobner basis G = {g1,...,gs} of I with respect to the lexico-
graphical ordering with = \ u > u;

e h:=T[];_,LC(g;) € K[u], where the g; are considered as polynomials in
x N u with coefficients in K (u);

e compute m such that {gi,...,gs) : (h™) = (g1,...,9gs) : (R7F1); 3

e return u, {g1,...,9s}, h™.

% For the computation of a maximal independent set, cf. Exercises 3.5.1 and 3.5.2.
3 For the computation of the saturation exponent m, cf. Section 1.8.9.



4.3 Higher Dimensional Primary Decomposition 255

Note that G is, indeed, a Grobner basis of IK (u)[z \ u] (with respect to
the induced lexicographical ordering), since, for each f € IK(u)[z \ u], we
obtain LM(f) € L(I) - K (u).

SINGULAR Example 4.3.3 (reduction to zero—dimensional case).

option(redSB);

ring R=0, (x,y),1p;

ideal al=x; //preparation of the example
ideal a2=y2+2y+1,x-1;

ideal a3=y2-2y+1,x-1;

ideal I=intersect(al,a2,a3);

I;

//-> I[1]=xy4-2xy2+x

//-> I[2]=x2-x

ideal G=std(I);

indepSet(G);

//-> 0,1 //the independent set is u={y}
ring S=(0,y),(x),1lp; //the ring K(u) [x\u]

ideal G=imap(R,G);

G;

//-> G[1]=(y4-2y2+1) *x
//-> G[2]=x2-x

This ideal in K (y)[z] is obviously the prime ideal generated by .

setring R;
poly h=y4-2y2+1; //the lcm of the leading coefficients

ideal Il=quotient(I,h);
I1;
//-> I1[1]=x

Therefore, we obtain I : (h) = I : (h*°) = G N K[z,y] = (x), as predicted by
Proposition 4.3.1 (2).

Combining everything so far, we obtain the following algorithm to compute
a higher dimensional primary decomposition:

Algorithm 4.3.4 (DeECcOMP(I)).

Input: I :={(f1,...,fr) C K[z], z = (z1,...,Tn).

Output: a set of pairs (Q;, P;) of ideals in K[z],i=1,...,r, such that
—I=Q1N---NQ, is a primary decomposition of I, and
- Pi=(Q),i=1,...,r.
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(u,G, h) := REDUCTIONTOZERO (I);
change ring to K (u)[z \ u] and compute
gprimary := ZERODECOMP ((G) i (u)[z~u])}
e change ring to K[z] and compute
primary == {(Q' N K[z}, P' N K[z]) | (Q', P') € qprimary};
e primary := primary U DECOMP ({1, h"™});
e return primary.

The intersection @' N K[z] may be computed by saturation: let Q' be given
by a Grébner basis {g],...,g,,} C K[z], and let ¢’ := [\, LC(g}) € K|u],
then Q' N K[z] = (¢}, ..., 95, : (¢'*) C K[z] (Exercise 4.3.4).

The procedure in the SINGULAR programming language can be found in Sec-
tion 4.6.*

SINGULAR Example 4.3.5 (primary decomposition).
Use the results of Example 4.3.3.

ideal I2=std(I+ideal(h));

//we compute now the decomposition of I2

indepSet (I2);

//-> 0,0 // we are in the zero-dimensional case now

list fac=factorize(I2[1]);

fac;

//-> [1]:

//=-> _[11=1

//=-> _[2]=y+1

//-> _[31=y-1

//-> [2]:

//-> 1,2,2

ideal J1=std(I2, (y+1)"2); // the two candidates
ideal J2=std(I2,(y-1)"2); // for primary ideals
J1; J2;

//-> J1[1]=y2+2y+1 J2[1]=y2-2y+1

//-> J1[2]=x2-x J2[2]=x2-x

J1 and J2 are not in general position with respect to 1p. We choose a generic
coordinate change.

map phi=R,x,x+y; // coordinate change
map psi=R,x,-x+y; // and the inverse map

4 Note that the algorithm described above computes a primary decomposition
which is not necessarily irredundant. Check this using Example 4.1.6 (3).
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ideal Ki=std(phi(J1));
ideal K2=std(phi(J2));
factorize(K1[1]);

//-> [1]:

//-> _[11=1

//-> _[2]=y+2

//-> _[3]=y+1

//-> [2]:

//-> 1,2,2

ideal Ki1i=std (K1, (y+1)°2); // the new candidates
// for primary ideals

ideal K12=std (K1, (y+2)"2); // coming from K1

factorize(K2[1]);

//-> [1]:

//=> _[11=1

//=> _[2]=y

//-> _[31=y-1

//-> [2]:

//=> 1,2,2

ideal K21=std (K2, (y-1)"2); // the new candidates
// for primary ideals
ideal K22=std(K2,y2); // coming from K2
Kill=std(psi(K11)); // the inverse coordinate
// transformation
K12=std(psi(K12));
K21=std(psi(K21));
K22=std(psi(K22));

K11; K12; K21; K22; // the result
//-> K11[1]=y2+2y+1 K12[1]=y2+2y+1
//-> K11[2]=x K12[2]=x-1

//-> K21[1]=y2-2y+1 K22[1]=y2-2y+1
//-> K21[2]=x K22[2]=x-1

Ki1,...,Ky are now primary and in general position with respect to 1p.
K1 and K»; are redundant, because they contain I;. We obtain a; = I,
az = Ki2, ag = Ko, for the primary decomposition of I, as it should be, from
the definition of I in Example 4.3.3.
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Exercises

4.3.1. Compute the primary decomposition of the ideals (zy, zz) and (z?, zy)
in Q[z,y] using the algorithm decomp.

4.3.2. Let I C K[xy,...,zy] be an ideal, and let v C & = {z1,...,2,} be
an independent set with respect to I. Prove that IK (u)[z \ u] is primary
(respectively prime) if I is primary (respectively prime).

4.3.3. Let I C K[zy,...,z,] be an ideal, and let I = Q1 N---NQ, be an
irredundant primary decomposition. Moreover, let w C = {z1,...,z,} be
an independent set with respect to I. Assume that @; N K[u] = (0) for
i=1,...,sand Q;NK[u] #(0) fori=s+1,...,r.

Prove that I K (u)[z \ u] = N}, Q:K (u)[z \ u] is an irredundant primary
decomposition.

4.3.4. Let w C z = {x1,...,x,} be a subset, J C K(u)[z \ u] an ideal, and
let {g1,...,9s} C K[z1,...,x,] be a Grobner basis of J with respect to any
global monomial ordering on K (u)[z \ u]. Let h € K[u] be the least common

multiple of the leading coefficients of the g; and h the squarefree part of h.
Prove that I N K[z] = (g1,.-.,9s) : (h>).

4.3.5. Follow Examples 4.3.3 and 4.3.5 to compute an irredundant primary
decomposition of the intersection of the Clebsch cubic (Figure A.1) and the
Cayley cubic (Figure A.2).

4.4 The Equidimensional Part of an Ideal

In this section we shall compute the equidimensional part of an ideal and an
equidimensional decomposition.

Definition 4.4.1. Let A be a Noetherian ring, let I C A be an ideal,
and let 7 =01 N---NEs be an irredundant primary decomposition. The
equidimensional part E(I) is the intersection of all primary ideals (); with
dim(Q;) = dim(I).% The ideal I (respectively the ring A/I) is called equidi-
mensional or pure dimensional if E(I) = I. In particular, the ring A is called
equidimensional if E((0)) = (0).

Ezample 4.4.2.

(1) Let I = (2%, zy) = (z) N (z,y)*> C K[z,y], K any field. Then E(I) = (z).

(2) Let A= Klx,y,z] and I = (zy,xz) = () N (y, z) then E(I) = (z). The
zero—set of I is shown in Figure 4.3, the plane being the zero—set of the
equidimensional part.

% Note that because of Theorem 4.1.5 the definition is independent of the choice
of the irredundant primary decomposition.
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Fig. 4.3. The zero—set of (vy,zz) C K[z, y, 2]

Using Proposition 4.3.1 (2) we obtain the following algorithm to compute the
equidimensional part of an ideal:

Algorithm 4.4.3 (EQUIDIMENSIONAL(I)).

Input:  I:={(f1,...,fr) C K[z], x = (21, ...,2p).
Output: E(I) C KJz], the equidimensional part of I.

e set (u,G,h) := REDUCTIONTOZERO (I);
o if (dim((I,h)) < dim(I))
1 return ((G) : (h));
return (((G) : (h)) N EQUIDIMENSIONAL ({1, h})).

SINGULAR Example 4.4.4 (equidimensional part).

We compute E(I) for I = (zy*— 2zy* + z, 22— ) C K|x,y] (cf. SINGULAR
Example 4.3.3). As seen above, REDUCTIONTOZERO(I) returns u = {y},
G = {zy* - 2zy* + x, 2* — 2} and h = y*— 2y?+ 1. Using the results of Ex-
ample 4.3.3, we compute the dimension of (I, h):

dim(std(I+ideal(h)));
//->0

Since dim (/) = #u = 1 and dim({I, h)) = 0 as computed, we can stop here.
The equidimensional part is I = (x).

A little more advanced algorithm, returning the equidimensional part E(I)
and an ideal J C K[z] with I = E(I) N J, written in the SINGULAR program-
ming language, can be found in Section 4.6.

We should just like to mention another method to compute the equidi-
mensional part of an ideal (cf. [52]). Let A = K[z1,...,2,], K a field, and
I C A be an ideal. Then
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E(I) = Ann(Ext}"4(A/1,4)), d=dim(A/I)
(for the definition of Ext see Chapter 7).

Definition 4.4.5. Let A be a Noetherian ring, and let I C A be an ideal
without embedded prime ideals. Moreover, let I =(1;_; @; be an irredun-
dant primary decomposition. For v < d = dim(I) we define the v—th equidi-
mensional part E,(I) to be the intersection of all @; with dim(Q;) = v.%

Ezample 4.4.6. Let I = (xy,xz) = (x) N ({y,z) C K[z,y, 2], then Ex(I) = (x)
and Ey(I) = (y, 2).

Lemma 4.4.7. Let A be a Noetherian ring and I C A be an ideal without
embedded prime ideals. Let I = ﬂle Q; be an irredundant primary decompo-

sition such that E(I) = ﬂle Q. Then

In particular, I = E(I) N (I : E(I)).

Proof. I :E(I) =N_,(Qi: E(I)) = ﬂ::k+1 (Qi : E(I)). Now E(I) ¢ VQ;
fori = k+1,...,s, because the primary decomposition is irredundant and all
associated primes are minimal by assumption. This implies Q; : E(I) = Q;,
since otherwise E(I) C Q; : (f) for some f ¢ @); and, by Lemma 4.1.3 (3),

E(I) C Qi : (f) = VQ:. O

Remark 4.4.8. Let A be a Noetherian ring, let I C A be an ideal, and let
I =;_; Qi be an irredundant primary decomposition with E(I) = ﬂle Q;.-
Then I : E(I) = ﬂf:kH Qvl- for some primary ideals @i with Q; C @i C VQi,
but I = E(I)N (I : E(I)) need not be true. Just consider the following ex-
ample: I = (2%, zy) = (z) N (z2,y), E(I) = (z) and I : E(I) = (z,y).

The following algorithm, based on Lemma 4.4.7, computes, for a given ideal
I without embedded primes, all equidimensional parts.”

Algorithm 4.4.9 (EQUIDIMENSIONALDECOMP(I)).

Input:  I:={(f1,...,fr) C K[z], x = (21, ...,2p).
Output: Alist ofideals I,...,I, C K[z]suchthat [, = E(I), I, = E(I : I),
oy In=E(Ih 2 : I, 1), and VT = }_, \/T;. If I is radical then
the I; are radical, too. for all j.

5 The E, (I) are well-defined, because, under the above assumptions, the primary
decomposition is uniquely determined (Theorem 4.1.5).

" If we apply the algorithm to an arbitrary ideal then we obtain a set of equidi-
mensional ideals such that the intersection of their radicals is the radical of the
given ideal. In case of (x?,zy) we obtain (z), (z,y).
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e FE := EQUIDIMENSIONAL ([);
e return {E£} U EQUIDIMENSIONALDECOMP (I : E).

SINGULAR Example 4.4.10 (equidimensional decomposition).
We use the results of SINGULAR Example 4.3.3:

ideal I2=quotient(I,I1);
I12;

//-> I2[1]=y4-2y2+1
//-> I2[2]=x-1

I, = E(I,), because I, is zero-dimensional (SINGULAR Example 4.4.4). There-
fore, we obtain Ey(I) =1, = () and Ey(I) =L, = (y*— 29>+ 1,2 — 1) as
the equidimensional components of I.

Exercises

4.4.1. Write a SINGULAR procedure to compute the equidimensional decom-
position using Procedure 4.6.6.

4.4.2. Use the algorithm EQUIDIMENSIONAL to compute the equidimensional
part of (zy,zz) C K[z,y, z].

4.4.3. Let I C K|z1,...,zy,] be an ideal and assume that K[zq,...,2,] C
K[z1,...,2,]/I is a Noether normalization. Prove that I is equidimen-
sional if and only if every non—zero f € KJz1,...,z,] is a non—zerodivisor
in K[zy,...,z,]/1I.

4.4.4. Use Exercise 4.4.3 to check whether (z%+ zy,zz) is equidimensional.
4.4.5. Follow the SINGULAR Examples of this section to compute an equidi-
mensional decomposition of the ideal
(a:3+ :132y + 2%z —2t—2z— Yz — 22+ Z, z2rz + :132y - yz2— Yz,
By — oty -y’ +yz)

and verify it by using the procedure EQUIDIMENSIONAL.

4.5 The Radical

In this section we describe the algorithm of Krick and Logar (cf. [110]) to
compute the radical of an ideal. Similarly to the algorithm for primary de-
composition, using maximal independent sets, the computation of the radical
is reduced to the zero—dimensional case.
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Proposition 4.5.1. Let I C K[z1,...,x,] be a zero—dimensional ideal and
INKz;] = (fi) fori=1,...,n. Moreover, let g; be the squarefree part of f;,
then VI =14 (g1,...,n).

Proof. Obviously, I C I+ (g1,...,gn) C V1. Hence, it remains to show that
a" € I implies that a € I + (g1,...,9n). Let K be the algebraic closure of
K. Using Exercise 4.2.1 we see that each g; is the product of different linear
factors of K[z;]. Due to Exercise 4.1.7, these linear factors of the g; induce
a splitting of the ideal (I + (g1,...,9,))K|[z] into an intersection of maximal
ideals. Hence, (I + (g1, .., g,))K|[z] is radical (Exercise 4.5.7). Now consider
a € K[z] with a™ € I + (g1,...,9n)- Using Exercise 4.2.1 again, we obtain
a€(I+{g,..., g2 )K[Z]NK[z] =T+ (g1, gn)- O

This leads to the following algorithm:
Algorithm 4.5.2 (ZERORADICAL(I)).

Input:  a zero—dimensional ideal I := (f1,..., fr) C K[z], x = (z1,...,2n)-
Output: VT C K][z], the radical of I.

e fori=1,...,n, compute f; € K[z;] such that I N K[x;] = (f;);
e return [ + (SQUAREFREE (f1), ..., SQUAREFREE (f,)).

To reduce the computation of the radical for an arbitrary ideal to the zero—
dimensional case we proceed as in Section 4.3. Let u C = be a maximal inde-
pendent set, for the ideal I C K[z], x = (21,...,%y), and let h € KJu] satisfy

IK(w)z~ul|NK[z]=1T1:(h)y=1:(h*™)

(cf. Proposition 4.3.1 (2)). Then I = (I : (h)) N (I,h) (Lemma 3.3.6), which
implies that /I = /T : (h) N\/(I,h) (Exercise 4.5.7). Now IK (u)[z \ u] is
a zero—dimensional ideal (Theorem 3.5.1 (6)), hence, we may compute its
radical by applying ZERORADICAL. Clearly,

VIK W)z~ u] NK[z] = VIK(u)[z ~u] N K[z] = /T :(

and it remains to compute the radical of the ideal (I,h) C K[z]. This in-
ductive approach terminates similarly to the corresponding approach for the
primary decomposition.

We obtain the following algorithm for computing the radical of an arbitrary
ideal:

Algorithm 4.5.3 (RADICAL(I)).

Input: I :={(f1,...,fr) C K[z], z = (z1,...,Tn).
Output: VT C K|[z], the radical of I.

e (u,G,h) := REDUCTIONTOZERO (I);



4.5 The Radical 263

e change ring to K (u)[z \ u] and compute J := ZERORADICAL ({G));
e compute a Grébner basis {g1,...,g9¢} C K[z] of J;

e set p:= Hle LC(g;) € K[ul;

e change ring to K[z] and compute J N K[z] = (g1, ..., 9¢) : (p™°);

e return (J N K[z]) N RADICAL ((I, h)).

SINGULAR Example 4.5.4 (radical).
Use the results of Example 4.3.3.

ideal rad=I1;
ideal I2=std(I+ideal(h));

dim(I2);

//-> 0 //we are in the zero-dimensional case now

ideal u=finduni(I2); //finds univariate polynomials
//in each variable in I2

u;

//-> u[l]=x2-x
//-> ul[2]=y4-2y2+1

I12=12,x2-1,y2-1; //the squarefree parts of
//ul1] ,u[2] are added to I2

rad=intersect(rad,I2);

rad;

//-> rad[1]l=xy2-x

//-> rad[2]=x2-x

From the output, we read VI = (zy*— z,2°— z).

Exercises

4.5.1. Let K be a field of characteristic 0, F_its algebraic closure and P C
K[zy,...,2,] a maximal ideal. Prove that PKJz1,...,z,] is a radical ideal.

4.5.2. Let K be a field of characteristic 0, let K be its algebraic closure,

and let I C K[z1,...,z,] be a zero—dimensional radical ideal. Prove that
dims K[z1,...,2,]/I is equal to the number of associated prime ideals of
IK[x1,...,2y]. This means, geometrically, that the number of points of the

zero—set V (I) C K" is equal to the dimension of the factor ring.
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4.5.3. Let A be a ring, I C A an ideal. Prove that

(D) VAT, fg) = VL) N V(L g),

(2) VI=/T4;n AN AL f).

4.5.4 (Factorizing Grobner basis algorithm). The idea of the factoriz-
ing Grébner basis algorithm is to factorize, during Algorithm 1.7.1, a new

polynomial when it occurs and then split the computations. A simple version
is described in the following algorithm (we use the notations of Chapter 1).

Algorithm (FAcsTD(G,NF)).
Let > be a well-ordering.

Input: G € G, NF an algorithm returning a weak normal form.

Output: S1,...,Sr € G such that \/(S1) N---N+/(S;) = /(G) and S; is a
standard basis of (S;).

S =G,
if there exist non—constant polynomials g;,g> with g1g2 € S
return FACSTD(S U {g1}, NF) U FAcSTD(S U {g2}, NF);
P:={(f,9)| f,9 €S, f+# g}, the pair-set;
while (P # 0)
choose (f,g) € P;

P:=P~A{(f,9)}
h := NF(spoly(f,g) | S);
if (h # 0)

if (h = hyhy with non—constant polynomials hq, h)

return FACSTD(S U {h1},NF) U FAcsTD(S U {h2}, NF);
P=PU{(hf)|feS}
S:=SU{h};

e return S.

Prove that the output of FACSTD has the required properties. Moreover, use
the command facstd of SINGULAR to compute a decomposition of the ideal
I of Example 4.3.3.

Note that FACSTD can be used for the computation of the radical.

4.5.5. Let I; be primary and I ¢ v/T;. Prove that /I : I§ = /I fori > 1.

4.5.6. Let I be a radical ideal. Prove that, for every h € I, the ideal quotient
I: (h) is a radical ideal.

4.5.7. Prove that VINJ =VINVJ.
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4.6 Procedures

We collect the main procedures of this section as fully functioning SINGULAR
procedures. However, since they are in no way optimized, one cannot expect
them to be very fast. Each procedure has a small example to test it. This
section demonstrates that it is not too difficult to implement a full primary
decomposition, the equidimensional part and the radical.

4.6.1. We begin with a procedure to test whether a zero-dimensional ideal
is primary and in general position.

proc primaryTest (ideal i, poly p)

"USAGE: primaryTest(i,p); i standard basis with respect to
lp, p irreducible polynomial in K[var(m)],
p~a=i[1] for some a;

ASSUME: i is a zero-dimensional ideal.

RETURN: an ideal, the radical of i if i is primary and in
general position with respect to 1lp,
the zero ideal else.

int m,e;

int n=nvars(basering);
poly t;

ideal prm=p;

for (m=2;m<=size (i) ;m++)
{
if (size(ideal(leadexp(i[m])))==1)

L — i[m] has a power of var(n) as leading term
attrib(prm,"isSB",1);
//--- 77 i[m]=(c*var(n)+h)"e modulo prm for h
// in K[var(n+1),...], c in K 77
e=deg(lead(ilml]));
t=leadcoef (i[m])*e*var(n)+(ilml-lead(ilm]))
/var(n)~(e-1);
i[m]=poly(e) "exleadcoef (i[m]) "~ (e-1)*i[m];
//---if not (0) is returned, else c*var(n)+h is added to prm
if (reduce(il[m]-t~e,prm,1) !=0)
{
return(ideal(0));
}
prm = prm,cleardenom(simplify(t,1));
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3
X

return(prm) ;

ring s=(0,x),(d,e,f,g),1p;
ideal i=g~5, (xxf-g)"3,b*%e-g~2,x*d"3;
primaryTest(i,g);

4.6.2. The next procedure computes the primary decomposition of a zero—
dimensional ideal.

proc zeroDecomp (ideal 1)

"USAGE: =zeroDecomp(i); i zero-dimensional ideal

RETURN: 1list 1 of lists of two ideals such that the
intersection(1[j][1], j=1..)=i, the 1[i][1] are
primary and the 1[i] [2] their radicals

NOTE: algorithm of Gianni/Trager/Zacharias

def BAS = basering;
//----the ordering is changed to the lexicographical one
changeord ("R","1p");
ideal i=fetch(BAS,i);
int n=nvars(R);
int k;
list result,rest;
ideal primary,prim;
option(redSB);

//-=-==—= the random coordinate change and its inverse
ideal m=maxideal(l);
m[n]=0;
poly p=(random(100,1,n)*transpose(m))[1,1]+var(n);
m[n]=p;
map phi=R,m;
m[n]=2*var (n)-p;
map invphi=R,m;
ideal j=groebner(phi(i));

Y —— factorization of the first element in i
list fac=factorize(j[1],2);

Y — computation of the primaries and primes
for(k=1;k<=size(fac[1]);k++)
{

p=fa_c [1] [k] ~fac [2] [k] H
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primary=groebner (j+p) ;
prim=primaryTest (primary,fac[1] [k]);
//---test whether all ideals were primary and in general
//  position
if (prim==0)
{
rest[size(rest)+1]=i+invphi(p);
}
else
{
result[size(result)+1]=
list(std(i+invphi(p)),std(invphi(prim)));

//-=—==== treat the bad cases collected in the rest again
for (k=1;k<=size(rest) ;k++)
{
result=result+zeroDecomp (rest[k]);
}
option(noredSB);
setring BAS;
list result=imap(R,result);

kill R;
return(result);
}
ring r = 32003, (x,y,z),dp;
poly p = z2+1;
poly q = z4+2;
ideal i = p~2%q~3,(y-z3) 73, (x~yz+z4) “4;

list pr = zeroDecomp(i);
pr;

4.6.3. Procedure to define for an independent set u C « the ring K (u)[z \ u].

proc prepareQuotientring(ideal i)

"USAGE: prepareQuotientring(i); i standard basis

RETURN: a list 1 of two strings:
1[1] to define K[x\u,u ], u a maximal independent
set for i
1[2] to define K(u) [x\u ], u a maximal independent
set for i
both rings with lexicographical ordering
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string va,pa;
//v describes the independent set u: var(j) is in
//u iff v[j1!=0

intvec v=indepSet(i);

int k;

for (k=1;k<=size(v) ;k++)

{
if (v[k]!=0)
{
pa=pat+"var ("+string(k)+"),";
}
else
{
va=va+"var ("+string(k)+"),";
}
}

pa=pall..size(pa)-1];
va=vall..size(va)-1];

string newring="

ring nring=("+charstr(basering)+"), ("+va+","+pa+"),1lp;";
string quotring="

ring quring=("+charstr(basering)+","+pat+"),("+va+"),lp;";
return(newring,quotring);

ring s=(0,x),(a,b,c,d,e,f,g),dp;
ideal i=x*bxc,d"2,f-g;
i=std(i);

def Q=basering;

list 1= prepareQuotientring(i);
1;

execute (1[1]);

basering;

execute (1[2]1);

basering;

setring Q;

4.6.4. A procedure to collect the leading coefficients of a standard basis of
an ideal in K (u)[z \ u]. They are needed to compute I K (u)[z \ u] N K[z]
via saturation.
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proc prepareSat(ideal i)

{
int k;
poly p=leadcoef (i[1]);
for(k=2;k<=size(i);k++)
{
p=p*leadcoef (i[k]);
}
return(p) ;

}

4.6.5. Using the above procedures, we can now present our procedure to
compute a primary decomposition of an ideal.

proc decomp (ideal i)

"USAGE: decomp(i); i ideal

RETURN: 1list 1 of lists of two ideals such that the
intersection(1[j]1[1], j=1..)=i, the 1[i][1] are
primary and the 1[i] [2] their radicals

NOTE: algorithm of Gianni/Trager/Zacharias
{

if (i==0)

{

return(list(i,i));

}

def BAS = basering;

ideal j;

int n=nvars(BAS);

int k;

ideal SBi=std(i);

int d=dim(SBi);
//---the trivial case and the zero-dimensional case

if ((d==0)|[(d==-1))

{

return(zeroDecomp(i));

}
//---prepare the quotient ring with respect to a maximal
//  independent set

list quotring=prepareQuotientring(SBi);

execute (quotringli1]);
//---used to compute a standard basis of ixquring
//  which is in i
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ideal i=std(imap(BAS,i));
//---pass to the quotient ring with respect to a maximal
//  independent set
execute (quotring[2]);
ideal i=imap(nring,i);
kill nring;
//---computation of the zero-dimensional decomposition
list ra=zeroDecomp(i);
//---preparation for saturation

list p;
for (k=1;k<=size(ra) ;k++)
{
plk]=list (prepareSat(ra[k] [1]),prepareSat(ralk][2]));
}

poly g=prepareSat(i);
//---back to the original ring

setring BAS;

list p=imap(quring,p);

list ra=imap(quring,ra);

poly g=imap(quring,q);

kill quring;
//---compute the intersection of ra with BAS

for (k=1;k<=size(ra) ;k++)

{

ralk]l=list(sat(ralk] [1],p[k]1[1]) [1],
sat(ralk] [2],p[k][2]) [1]);

}

gq=q"sat(i,q) [2];
//---i=intersection((i:q),(i,q)) and ra is the primary
//  decomposition of i:q

if (deg(q)>0)

{

ra=ra+decomp (i+q) ;
}

return(ra);

ring r = 0,(x,y,2),dp;

ideal i = intersect(ideal(x,y,z)"3,ideal(x-y-z)"2,
ideal (x-y,x-2)"2);

list pr = decomp(i);

pT;
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4.6.6. We pass to the computation of the equidimensional part of an ideal.

proc equidimensional (ideal i)

"USAGE: equidimensional(i); i ideal

RETURN: 1list 1 of two ideals such that intersection(1[1],
1[2])=1i if there are no embedded primes
1[1] is equidimensional and dim(1[1])>dim(1[2])

{

def BAS = basering;

ideal SBi=std(i);

int d=dim(SBi);

int n=nvars(BAS);

int k;

list result;
//----the trivial cases

if ((d==-1) || (n==d) || (n==1)|](d==0))

{

result=i,ideal(1);
return(result) ;

}
//----prepare the quotient ring with respect to a maximal
// independent set

list quotring=prepareQuotientring(SBi);

execute (quotring[1]);
//----we use this ring to compute a standard basis of
// i*quring which is in i

ideal eq=std(imap(BAS,i));
//----pass to the quotient ring with respect to a maximal
// independent set

execute (quotring[2]);

ideal eq=imap(nring,eq);

kill nring;
//----preparation for saturation

poly p=prepareSat(eq);
//----back to the original ring
setring BAS;
poly p=imap(quring,p);
ideal eq=imap(quring,eq);
kill quring;
//----compute the intersection of eq with BAS
eq=sat(eq,p) [1];
SBi=std(quotient(i,eq));
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if (d>dim(SBi))
{

result=eq,SBi;

return(result) ;
}
result=equidimensional(i);
result=intersect(result[1],eq) ,result[2];
return(result) ;

ring r = 0,(x,y,2),dp;

ideal i = intersect(ideal(x,y,z)"3,ideal(x-y-z)"2,
ideal (x-y,x-z)"2);

list pr = equidimensional(i);

pT;

dim(std(pr[1]));

dim(std(pr[2]));

option(redSB);

std(i);

std(intersect(pr[1],pr[2]));

4.6.7. Compute the squarefree part of a univariate polynomial f over a field
of characteristic 0, depending on the i—th variable.

proc squarefree (poly f, int i)

{
poly h=gcd(f,diff (f,var(i)));
poly g=lift(h,f) [11[1];
return(g) ;

}
4.6.8. Finally, a procedure to compute the radical of an ideal.

proc radical(ideal i)

"USAGE: radical(i); i ideal
RETURN: ideal = the radical of i

NOTE: algorithm of Krick/Logar
n
{

def BAS = basering;

ideal j;

int n=nvars(BAS);

int k;

option(redSB);
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ideal SBi=std(i);
option(noredSB);
int d=dim(SBi);

————— the trivial cases
if ((d==-1D) || (==d) || (n==1))
{
return(ideal (squarefree(SBi[1],1)));
}
————— the zero-dimensional case
if (d==0)
{
j=finduni(SBi);
for(k=1;k<=size(j) ;k++)
{
i=i,squarefree(cleardenom(j[k]) ,k);
}
return(std(i));
}

————— prepare the quotientring with respect to a maximal

independent set
list quotring=prepareQuotientring(SBi);
execute (quotring[1]);

————— we use this ring to compute a standardbasis of

i*quring which is in i
ideal i=std(imap(BAS,i));

————— pass to the quotientring with respect to a maximal

independent set

execute( quotring[2]);

ideal i=imap(nring,i);

kill nring;
————— computation of the zerodimensional radical
ideal ra=radical(i);
————— preparation for saturation

poly p=prepareSat(ra);

poly g=prepareSat(i);

————— back to the original ring

setring BAS;

poly p=imap(quring,p);

poly g=imap(quring,q);

ideal ra=imap(quring,ra);

kill quring;

————— compute the intersection of ra with BAS
ra=sat(ra,p) [1];

273
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//----now we have radical(i)=intersection(ra,radical((i,q)))
return(intersect(ra,radical(i+q)));

3

ring r = 0,(x,y,2z),dp;
ideal i
intersect(ideal(x,y,z)"3,ideal(x-y-z)"2,ideal (x~-y,x-z)"2);
ideal pr= radical(i);

pT;

The algorithms and, hence, the procedures work in characteristic 0. However,
by our experience, the procedures in the library primdec.1lib, distributed
with SINGULAR, do also work for prime fields of finite characteristic provided
that it is not too small. In fact, the procedures, although designed for charac-
teristic 0, give a correct result for finite prime field whenever they terminate.



