
CHAPTER 6

Input/Output Streams

EVEN WITH THE GRAPHICAL user interface, command-line console applications are
still important, especially when mass repetitive changes are required that
would take a great amount of time to perform through the graphical user inter-
face or when scripts are designed to perform operations that do not require
user interaction.

Windows Script Host (WSH) 1.0 allowed the processing of command-line
parameters. WSH version 2.0 introduces the ability to process standard input and
output streams (StdIn and StdOut). This new feature is of great importance for
the creation of flexible console applications.

The command-line environment has always supported the capability of
“piping” streams from one console application to another, but it has never pro-
vided a great number of built-in commands to use this ability, apart from the
MORE and SORT commands.

This capability has always been an important feature in the UNIX environ-
ment, and most native UNIX shell commands allow (or require) input to be
provided via standard input, allowing complex sequences of operations to
be executed within a single command line.

153

NOTE You can download StdIn, StdOut, and StdErr property documentation
and WSH documentation from http://msdn.microsoft.com/scripting.

6.1 Using Regular Expressions to Filter the
Contents of an Input Stream

Problem

You require a routine that filters supplied information and then outputs any
results that meet the criteria to the standard output (StdOut). The resulting out-
put can be used by other console applications.

674ch06 10/19/01 9:44 AM Page 153

Solution

The following script reads input from standard input using the WScript.StdIn
object, and then it filters the line against a regular expression. Only lines that
match the expression are written to standard output:

<?xml version=”1.0” ?>

<job>

<!--comment

Script:wshgrep.wsf

performs regular expression filtering against standard input

-->

<script language=”VBScript” src=”fsolib.vbs”>

<![CDATA[

Option Explicit

Dim nF, objFSO, strLine

Dim objRegExp, strFilter

On Error Resume Next

If Not IsCscript Then ExitScript _

“This script must be run from command line using cscript.exe”, True

If WScript.Arguments.Count <> 1 Then

ShowUsage

WScript.Quit

End If

strFilter= WScript.Arguments(0)

Set objRegExp = New RegExp

objRegExp.Pattern = strFilter objRegExp.IgnoreCase = True

Do While Not WScript.StdIn.AtEndOfStream

strLine = WScript.StdIn.ReadLine

If objRegExp.Test(strLine) Then

WScript.StdOut.WriteLine(strLine)

End If

Loop

154

Chapter 6

674ch06 10/19/01 9:44 AM Page 154

Sub ShowUsage()

WScript.Echo _

WScript.ScriptName & “ filters standard input against a regular

expression.” _

& vbCrLf & “Syntax:” & vbCrLf & _

WScript.ScriptName & “ regexp” & vbCrLf & _

“regexp regular expression”

End Sub

]]>

</script>

</job>

Discussion

WSH version 2.0 provides access to the standard input and outputs (StdIn and
StdOut) from the Windows console. This allows scripts to “pipe” information
between console applications.

Piping allows for information to be passed from one console application to
another. Using the vertical bar (|) pipes information between one or more con-
sole applications. For example:

dir /b | sort | more

To access the StdIn or StdOut stream, use the StdIn and StdOut property of
the WScript object. These properties return TextStream objects that can be read
and written to as if they were text files. For example, the following WSH script
reads a line from the standard input and writes its uppercase equivalent to the
standard output by using the StdIn and StdOut properties:

‘ucasein.vbs

‘converts standard Input stream to uppercase

‘and redirects to stdout

Dim strText

strText = WScript.StdIn.ReadAll

WScript.StdOut.Write Ucase(strText)

To use the ucasein script, pipe output to it from other applications. The fol-
lowing command-line snippet pipes the file users.txt to the script:

cscript ucasein.vbs < users.txt > ucusers.txt

155

Input/Output Streams

674ch06 10/19/01 9:44 AM Page 155

The contents of the input stream (in this case, users.txt) is converted to
uppercase and written to standard output. The standard output in this case is
redirected to a new file: ucusers.txt. Information can be piped to a WSH script
from any existing console application or other scripts that write information to
the StdOut stream.

If you execute a console script that reads StdIn but does not have infor-
mation piped from another application or from a file, the application will take
input from the user’s standard input device, the keyboard. In this case, the script
will pause to accept keyboard input. The following command line starts the
ucasein script and accepts input from the keyboard because no other source is
redirected/piped to the script:

cscript ucasein.vbs

Press Ctrl-Z to end the processing of keyboard input from StdIn. This key-
stroke combination sends an end of file (EOF) sequence to the stream. Pressing
Ctrl-Break when reading keyboard input from StdIn will force an EOF.

To pipe information to a WSH script, execute a console application and pipe
the output to the WSH script. The following script pipes the contents of a dir
command to the ucasein script:

dir | cscript ucasein.vbs | more

The output of the dir command is converted to uppercase. This result is then
piped to the more command, which displays one screen of text at a time.

When you chain commands together on non–Windows 2000/XP machines,
the script must be prefixed by Cscript or Wscript. The following command line
is the equivalent of the previous sample:

dir | ucasein.vbs | more

This generates an error when run on Windows NT 4.0/9x/ME computers. On
Windows 2000/XP, it will use the default script host, either Cscript or Wscript. If
a script writes to StdOut, you should use Cscript because if the result of the out-
put is not piped to another process, an error will occur. The following example
will not work:

dir | wscript ucasein.vbs

The preceding example doesn’t work because the results are not piped to
another process and the Wscript script host does use the results. Replacing
Cscript with Wscript in the example would result in the output being displayed

156

Chapter 6

674ch06 10/19/01 9:44 AM Page 156

in the console. The earlier example in which the results were piped to the more
command would work using Wscript.

Even though you can use Wscript to execute scripts that use StdIn, you
should avoid using it to write to StdOut.

The Solution script evaluates each line on the StdIn against a regular
expression. Any resulting matches are written to StdOut. For example, say you
want to output the routing tables to a file without any of the additional headings:

route print | cscript //NoLogo wshgrep.wsf (\d+\.\d+\.\d+\.\d.+){4} > rt.txt

The Route Print command pipes the routing information to the wshgrep.wsf
script. WshGrep filters out all lines that meet the criteria and outputs them to
StdOut. This output is redirected to the file rt.txt.

The //Nologo switch ensures that no “logo” information from the execution
of the script appears with the output. This includes the Microsoft WSH version
and copyright information.

If you want to prevent the display of the Microsoft logo and copyright infor-
mation by default, use the //S switch to save the command-line settings as
the default:

wscript //NoLogo //S

This saves the //NoLogo switch as a default switch.
The wshgrep.wsf script and other scripts in this section include an

fsolib.vbs script library to implement repetitive functions. The fsolib.vbs
script library is shown here:

‘fsolib.vbs

‘Description: Contains routines used by FSO scripts

‘check if script is being run interactively

‘Returns:True if run from command line, otherwise false

Function IsCscript()

IsCScript = (StrComp(Right(WScript.Fullname,11),”cscript.exe”,1) = 0)

End Function

‘display an error message and exist script

‘Parameters:

‘strMsg Message to display

‘strUseWscript Use Wscript.Echo to display message.

‘ By default StdErr is used, but this cannot be used in

‘ interactive (wscript) mode unless redirected to somewhere else.

Sub ExitScript(strMsg, bUseWscript)

157

Input/Output Streams

674ch06 10/19/01 9:44 AM Page 157

If bUseWscript Then

WScript.Echo strMsg

Else

‘get the standard error stream

WScript.StdErr.WriteLine strMsg

End If

WScript.Quit -1

End Sub

‘returns contents of specified file. If file doesn’t exist

‘terminates script and displays error message

‘Parameters:

‘strFile Path to file to return

‘Returns

‘contents of specified file

Function GetFile(strFile)

On Error Resume Next

Dim objFSO, objFile

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objFile = objFSO.OpenTextFile(strFile)

If Err Then ExitScript _

“Error “ & Err.Description & “ opening file “ & _

strFile, False

GetFile = objFile.ReadAll

objFile.Close

End Function

‘terminates script with message if script not run using cscript.ext

‘Parameters:None

Sub CheckCScript()

If Not IsCscript Then ExitScript _

“This script must be run from command line using cscript.exe”, True

End Sub

‘checks if specified number of arguments have been passed and exits script

‘displaying usage information if not

‘Parameters:

‘nCount Number of arguments expected

Sub CheckArguments(nCount)

If WScript.Arguments.Count <> nCount Then

WScript.Arguments.ShowUsage

WScript.Quit

End If

End Sub

158

Chapter 6

674ch06 10/19/01 9:44 AM Page 158

See Also

Solution 3.1 and Solution 8.1.

6.2 Reading Keyboard Input

Problem

You want to create a simple text-based menu.

Solution

You can read a character from standard input using the Read method:

<?xml version=”1.0” ?>

<job>

<!--comment

Script:menu.wsf

demonstrate a simple text-based menu

-->

<script language=”VBScript” src=”fsolib.vbs”>

<![CDATA[

‘menu.wsf

Dim strOption

CheckCScript

WScript.Echo “-------Menu Options-------------”

WScript.Echo “1 - Copy Information”

WScript.Echo “2 - Move Information”

WScript.Echo “3 - Quit”

WScript.Echo “Select option and press the Enter key to continue”

‘read the standard input

strOption = WScript.StdIn.Read(1)

Select Case strOption

Case “1”

WScript.Echo “option 1 selected”

Case “2”

WScript.Echo “option 2 selected”

159

Input/Output Streams

674ch06 10/19/01 9:44 AM Page 159

Case “3”

WScript.Quit -1

Case Else

WScript.Echo “Invalid option selected”

End Select

WScript.StdIn.Close

]]>

</script>

</job>

Discussion

Even though Windows provides an advanced graphical user interface, it can still
be useful to provide text-based menus for console applications. StdIn provides
a method of reading input from the console.

If no stream is redirected to StdIn, the keyboard is used to read StdIn. StdIn
returns a TextStream object and supports the methods provided through this
object to read input (Read, ReadLine, and ReadAll methods).

Using the Read method, you can specify the number of characters you
want to read. The method does not terminate once the number of characters
specified has been entered; you must press the Enter key or the EOF key combi-
nation (Ctrl-Z). Only the number of characters specified by the Read method is
actually returned.

See Also

Solution 3.2.

6.3 Generating Template-Based Data

Problem

You want to be able to search and replace values from standard input.

Solution

You can read the standard input stream using WScript.StdIn and then use the
results to populate templates that are provided through a command-line param-
eter or external file:

160

Chapter 6

674ch06 10/19/01 9:44 AM Page 160

<?xml version=”1.0” ?>

<job>

<runtime>

<description>

<![CDATA[

This script demonstrates use of WScript.StdIn/Out/Err by

doing some template processing. A comma-separated list

of replacement strings is read in from stdin, merged into

a template file and the result is dumped out to stdout.

The process is repeated for each line of replacement strings.

]]>

</description>

<unnamed name=”TemplateFile” many=”false” required=”true”

helpstring=”File containing template text.” />

<example>

<![CDATA[

CScript sar.wsf Template.txt < Replacements.txt > Out.txt

Suppose Replacements.txt contained

Bob,*.doc

Sue,*.txt

and Template.txt contained

net use \\odin\</1/> /user:admin /password:bigsecret

copy \\odin\</1/>\backmeup\</2/> \\loki\backups\</1/>\

net use /d \\odin\</1/>

then Out.txt would contain

net use \\odin\bob /user:admin /password:bigsecret

copy \\odin\bob\backmeup*.doc \\loki\backups\bob\

net use /d \\odin\bob

net use \\odin\sue /user:admin /password:bigsecret

copy \\odin\sue\backmeup*.txt \\loki\backups\sue\

net use /d \\odin\sue

]]>

</example>

</runtime>

<script language=”VBScript” src=”fsolib.vbs”>

<![CDATA[

Dim strTemplate

161

Input/Output Streams

674ch06 10/19/01 9:44 AM Page 161

Sub ReplaceText

Dim strRepls, aRepls, strOut, objRegExp

Set objRegExp = New RegExp

objRegExp.Pattern = “<\/\d+\/>”

‘loop through each line of standard input

Do While Not WScript.StdIn.AtEndOfStream

strRepls = WScript.StdIn.ReadLine

aRepls = Split(strRepls, “,”)

strOut = strTemplate

‘replace each element in template

For nF = 0 To Ubound(aRepls)

strOut = Replace(strOut , “</” & nF+1 & “/>” , aRepls(nF))

Next

‘check if all elements were replaced

If objRegExp.Test(strOut) Then _

ExitScript “Replacement file has too few values.”, False

WScript.StdOut.Write strOut

Loop

End Sub

CheckCScript

CheckArguments 1

strTemplate = GetFile(WScript.Arguments(0))

ReplaceText

]]>

</script>

</job>

Discussion

The search and replace script creates output in which tags in a template string
are replaced by elements from standard input.

Each line of the standard input must consist of data elements delimited by
a comma. These elements are identified by their ordinal position in the line, so
the first element is 1, the second element is 2, and so on.

The following users.txt text file contains information that can be piped to
the script. In this example, there are three elements for each line:

Freds,Fred Smith,Accounting Manager

Joeb,Joe Blow,Computer Operator

162

Chapter 6

674ch06 10/19/01 9:44 AM Page 162

The template string can either be a text file or a command-line parameter.
In the template, any instance of an element number surrounded by </ and /> is
replaced with the corresponding element from standard input.

In the following example, </1/> is replaced by the first element from stan-
dard input, </2/> with the second, and so on:

net user password </1/> /ADD /FULLNAME:”</2/>” /COMMENT:”</3/>”

Using first line of users.txt as input, the following output is generated:

net user password Freds /ADD /FULLNAME:”Fred Smith” /COMMENT:”Accounting Manager”

net user password Joeb /ADD /FULLNAME:”Joe Blow” /COMMENT:”Computer Operator”

To run the users.txt file against a layout string and redirect the output to
a batch file called newusers.bat, use the following:

cscript sar.wsf template.txt < users.txt > newusers.bat

The sar script processes each line of the standard input for data. You can use
this ability to use the search and replace script to fill in a template with data as
a very flexible tool for creating formatted output. For example, suppose that you
want to take the list of users from a text file and generate an HTML file containing
the user list in a table. The following layout file, details.txt, contains the tem-
plate table details for each user:

<tr><td></1/></td><td></2/></td><td></3/></td></tr>

With this template, you can generate the HTML table details using the
users.txt file:

cscript sar.wsf details.txt < users.txt

However, to create a complete HTML document, you need to include the
appropriate HTML <html>, <body>, and <table> elements to surround the detail
lines. You can’t use the sar.wsf script to insert the details into the body because
it processes line by line and would generate an unusable HTML document.
You require results of the table generation to be inserted into the body of an
HTML document.

To do this, create a modified version of the sar.wsf script called sarw.wsf to
treat the standard input as one element to be replaced in a template:

<?xml version=”1.0” ?>

<job>

163

Input/Output Streams

674ch06 10/19/01 9:44 AM Page 163

<runtime>

<description>

<![CDATA[

This script demonstrates use of WScript.StdIn/Out/Err by

doing some template processing. The whole StdIn is read and

merged into a template file and the result is dumped out to stdout.

]]>

</description>

<unnamed name=”TemplateFile” many=”false” required=”true”

helpstring=”File containing template text.” />

<example>

<![CDATA[

CScript sarw.wsf Template.txt < Replacement.txt > Out.txt

Suppose Replacements.txt contained

Fred Smith 555-1234

Joe Blow 555-2432

and Template.txt contained

Phone List

Name Phone

</1/>

then Out.txt would contain:

Phone List

Name Phone

Fred Smith 555-1234

Joe Blow 555-2432

]]>

</example>

</runtime>

<script language=”VBScript” src=”fsolib.vbs”>

<![CDATA[

Dim strTemplate

Sub ReplaceText

Dim strRepls, strOut

‘check if replacement element exists

If Instr(strTemplate,”</1/>”) = 0 Then _

ExitScript “Template file missing replacement element “, False

‘read the body from standard input and replace template layout

strRepls = WScript.StdIn.ReadAll

164

Chapter 6

674ch06 10/19/01 9:44 AM Page 164

strOut = Replace(strTemplate , “</1/>” , strRepls)

WScript.StdOut.Write strOut

End Sub

CheckCScript

CheckArguments 1

strTemplate = GetFile(WScript.Arguments(0))

ReplaceText

]]>

</script>

</job>

The sarw.wsf script replaces the element </1/> in a template file with the
StdIn contents and writes the results to StdOut. The following template file,
body.txt, is used to generate the body of the HTML file:

<html>

<head></head>

<body>

<table border=”1” width=”100%”>

</1/>

</table>

</body>

</html>

The following command sequence generates the HTML file usrs.htm using
the details.txt and body.txt templates:

cscript sar.wsf details.txt < users.txt | cscript sarw.wsf body.txt > usrs.htm

The resulting output is similar to this:

<html>

<head></head>

<body>

<table border=”1” width=”100%”>

<tr><td>Freds</td><td>Fred Smith</td><td> Accounting Manager</td></tr>

<tr><td>Joeb</td><td>Joe Blow</td><td>Computer Operator</td></tr>

</table>

</body>

</html>

165

Input/Output Streams

674ch06 10/19/01 9:44 AM Page 165

The first step redirects the users.txt file to sar.wsf, which generates the
HTML table details. The result of this operation is piped to sarw.wsf, which
inserts it into the body.txt template. The result of this operation is redirected to
the usrs.htm file.

6.4 Creating Multiple-User Prompts

Problem

Existing data files usually provide the standard input that scripts read. This is use-
ful when processing multiple items, but it can be a bit impractical for single pieces
of information. You want to be able to query the user with one or more predefined
prompts and then take the results and send them to the standard output.

Solution

You can use the StdErr output stream to prompt users for information, which is
then piped to standard output for further processing. Using StdErr instead of
StdOut to output information ensures that the user prompts do not get piped
with the user input results.

<?xml version=”1.0” ?>

<job>

<runtime>

<description>

<![CDATA[

This script demonstrates use of WScript.StdIn/Out/Err by

prompting the user with a set of prompts read from a file

and then dumping the results of those prompts as a comma-

separated list to stdout.

]]>

</description>

<unnamed name=”PromptFile” many=”false” required=”true”

helpstring=”File containing prompts.” />

<example>

<![CDATA[

CScript prompt.wsf Prompts.txt

Suppose Prompts.txt contained

What is the user’s name?

166

Chapter 6

674ch06 10/19/01 9:44 AM Page 166

What files should be backed up? (eg, *.doc)

Then this program would ask the user for the values and

output

Bob,*.txt

]]>

</example>

</runtime>

<script language=”VBScript” src=”fsolib.vbs”>

<![CDATA[

Dim strPromptFile, strPrompts

Sub AskUser

Dim aPrompts, strPrompt, fComma

aPrompts = Split(strPrompts, vbCrLf)

fComma = False

For Each strPrompt In aPrompts

‘ The file may contain blank lines.

If Trim(strPrompt) <> “” Then

If fComma Then WScript.StdOut.Write “,”

WScript.StdErr.Write strPrompt

WScript.StdOut.Write WScript.StdIn.ReadLine

fComma = True

End If

Next

End Sub

CheckCScript

CheckArguments 1

strPrompts = GetFile(WScript.Arguments(0))

AskUser

]]>

</script>

</job>

Discussion

The prompt.wsf script queries the user for input with prompts that are defined by
a template file. This allows the script to prompt the user for information that is

167

Input/Output Streams

674ch06 10/19/01 9:44 AM Page 167

piped or redirected to another process, and it provides an alternative to building
data files to redirect to scripts.

You use the script to create a solution that builds a batch file to create a new
NT user by prompting for user details. The following nusr.txt file contains the
prompts to create a new user:

Enter user id:

Enter user full name

Enter comment:

Each prompt appears on its own line in the file. You now need a template
file to fill in the user details. Use the sar.wsf script from Solution 6.3 to insert
the prompts into a template. The following text file contains the layout for the
nuser.txt template:

rem nuser.txt

Rem create user

net user </1/> /ADD

Rem create a user directoryMd d:\users\</1/>

rem Create the share

net share </1/>$=d:\users\</1/>

rem Grant </1/> and Domain Admins full access to the share

rem shrperm is part of Backoffice resource kit

shrperm \\Odin\</1/>$ </1/>:F “Domain Admins”:F

rem Grant user </1/> full access to his or her directory

cacls d:\users\</1/> /T /E /G </1/>:F

rem Remove Everyone access from directory

cacls d:\users\</1/> /T /E /R Everyone

remPermit Domain Admins to have full access in directory.

cacls d:\users\</1/> /T /E /P “Domain admins”:F

rem set the home directory setting for user </1/>

net user </1/> /HOMEDIR:\\Odin\</1/>$

net user </1/> /FULLNAME:”</2/>”

net user </1/> /COMMENT:”</3/>”

168

Chapter 6

674ch06 10/19/01 9:44 AM Page 168

The following command line uses prompt.wsf to prompt for a user ID,
description, and comment:

cscript prompt.wsf inp.txt | cscript sar.wsf nuser.txt > nuser.bat

Next, this information is piped to the sar.wsf script, which builds the
nuser.bat batch file using the nuser.txt template file.

The prompt.wsf script generates user prompts from a file. These prompts are
displayed using the StdErr stream. The standard error (StdErr) output stream is
used to display the prompts. Functionally, StdErr appears similar to StdOut. It
returns a TextStream object and any output written to it appears on the console.

The difference is that anything written to the StdErr stream is not available
to be read by the StdIn stream. The purpose of the StdErr stream is to display
error messages in console scripts that perform StdIn/StdOut operations. This
behavior is used by prompt.wsf to display the prompts. If StdOut or WScript.Echo
had been used, the prompts would be piped with the results of user prompts.

See Also

Solution 3.8 and Solution 3.9.

169

Input/Output Streams

674ch06 10/19/01 9:44 AM Page 169

674ch06 10/19/01 9:44 AM Page 170

