
Preface

The purpose of this book is to develop a generative theory of shape that has
two properties we regard as fundamental to intelligence – (1) maximization of
transfer: whenever possible, new structure should be described as the transfer
of existing structure; and (2) maximization of recoverability: the generative
operations in the theory must allow maximal inferentiability from data sets.
We shall show that, if generativity satisfies these two basic criteria of in-
telligence, then it has a powerful mathematical structure and considerable
applicability to the computational disciplines.

The requirement of intelligence is particularly important in the genera-
tion of complex shape. There are plenty of theories of shape that make the
generation of complex shape unintelligible. However, our theory takes the
opposite direction: we are concerned with the conversion of complexity into
understandability. In this, we will develop a mathematical theory of under-
standability.

The issue of understandability comes down to the two basic principles of
intelligence - maximization of transfer and maximization of recoverability. We
shall show how to formulate these conditions group-theoretically. (1) Maxi-
mization of transfer will be formulated in terms of wreath products. Wreath
products are groups in which there is an upper subgroup (which we will call
a control group) that transfers a lower subgroup (which we will call a fiber
group) onto copies of itself. (2) maximization of recoverability is insured when
the control group is symmetry-breaking with respect to the fiber group.

A major part of this book is the invention of classes of wreath-product
groups that describe, with considerable insight, the generation of complex
shape; e.g., in computer vision and computer-aided design. These new groups
will be called unfolding groups. As the name suggests, such a group works by
unfolding the complex shape from a structural core. The core will be called
an alignment kernel. We shall see that any complex object can be described
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as having an alignment kernel, and that the object can be generated from
this kernel by transferring structure from the kernel out to become the parts
of the object.

A significant aspect of all the groups to be invented in this book, is that
they express the object-oriented nature of modern geometric programming.
In this way, the book develops an object-oriented theory of geometry. For
example, we will develop an algebraic theory of object-oriented inheritance.

Our generative theory of shape is significantly different from current gen-
erative theories (such as that of Stiny and Gips) which are based on pro-
duction rules. In our theory, shape generation proceeds by group extensions.
The algebraic theory therefore has a very different character. Briefly speaking:
Features correspond to symmetry groups, and addition of features corresponds
to group extensions.

The major application areas in the book are visual perception, robotics,
and computer-aided design. In visual perception, our central principle is that
an intelligent perceptual system (e.g., the human perceptual system) is struc-
tured as an n-fold wreath product G1w©G2w©. . . w©Gn. In previous publica-
tions, we have put forward several hundred pages of empirical psychological
evidence, to demonstrate the correctness of this view for the human sys-
tem. We shall see that the fact that the visual system is structured as a
wreath product, has powerful consequences on the way in which perception
organizes the world into cohesive structures. Chapter 5 shows how the per-
ceptual groupings can be systematically predicted from the wreath product
G1w©G2w©. . . w©Gn.

Chapter six develops a group theory of robot manipulators. We require
the group theory to satisfy three fundamental constraints: (1) Perceptual and
motor systems should be representationally equivalent. (2) The group linking
base to effector cannot be SE(3) (which is rigid) but a group that we will call
semi-rigid; i.e., allowing a breakdown in rigidity at a specific set of points.
(3) The group must encode the object-oriented structure.

The theory of robotic kinematics continues in two ways: (1) within the
theory of mechanical CAD in Chapter 14; and (2) in the theory of rela-
tive motion (in visual perception, computer animation, and physics) given in
Chapter 9.

Chapter ten begins the analysis of static CAD by developing a theory of
surface primitives, showing that, in accord with the theory of recoverability,
the standard primitives of CAD (and visual perception) can be systematically
elaborated in terms of what we call iso-regular groups. Such groups are n-
fold wreath productsG1w©G2w©. . . w©Gn, in which each levelGi is an isometry
group and is cyclic or a one-parameter Lie group. To go from such structures
to non-primitive objects, one then uses either the theory of splines given
later in the book, or the theory of unfolding groups given in Chapters 11, 12
and 13.
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The basic properties of an unfolding group are that it is a wreath product
in which the control group acts (1) selectively on only part of its fiber, and
(2) by misalignment. In many significant cases, the fiber is the direct product
G1×. . .×Gn of the symmetry groups Gi of the primitives, i.e., the iso-regular
groups, and any fiber copy corresponds to a configuration of objects. The fiber
copy in which the object symmetry groups G1, . . . , Gn are maximally aligned
with each other is called the alignment kernel. The action of the control
group, in transferring fibers onto each other is to successively misalign the
symmetry groups. This gives an unfolding effect.

Chapter 14 then presents a lengthy and systematic analysis of mechan-
ical CAD using the above theory. We work through the main stages of
MCAD/CAM: part-design, assembly, and machining. For example, in part-
design, we give an extensive algebraic analysis of sketching, alignment,
dimensioning, resolution, editing, sweeping, feature-addition, and intent-
management.

Chapter 15 then carries out an equivalent analysis of the stages of archi-
tectural CAD. Then, Chapter 16 gives an advanced algebraic theory of solid
structure, Chapter 17 gives a theory of spline-deformation as automorphic
actions on groups; and Chapter 18 provides an equivalent analysis for sweep
structures.

Chapter 20 examines the conservation laws of physics, in terms of our
generative theory, although the next volume will be devoted almost entirely
to the geometric foundations of physics. Chapter 21 gives a theory of sequence
generation in music.

Finally, Chapters 2, 8, and 22, examine in detail the fundamental differ-
ences between our theory of geometry and Klein’s Erlanger program. Essen-
tially, in our theory, the recoverability of generative operations from the data
set means that the shape acts as a memory store for the operations. More
strongly, we will argue that geometry is equivalent to memory storage. This is
fundamentally opposite to the Erlanger approach in which geometric objects
are defined as invariant under actions. If an object is invariant under actions,
the actions are not recoverable from the object. We demonstrate that our
approach to geometry is the appropriate one for modern computational dis-
ciplines such as computer vision and CAD, whereas the Erlanger approach is
inadequate and leads to incorrect results.
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