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Primes, Arithmetic
Functions,
and the Zeta Function

In this chapter we will discuss properties of primes and prime decomposition
in the ring A = F[T ]. Much of this discussion will be facilitated by the use
of the zeta function associated to A. This zeta function is an analogue of
the classical zeta function which was first introduced by L. Euler and whose
study was immeasurably enriched by the contributions of B. Riemann. In
the case of polynomial rings the zeta function is a much simpler object and
its use rapidly leads to a sharp version of the prime number theorem for
polynomials without the need for any complicated analytic investigations.
Later we will see that this situation is a bit deceptive. When we investigate
arithmetic in more general function fields than F(T ), the corresponding
zeta function will turn out to be a much more subtle invariant.

Definition. The zeta function of A, denoted ζA(s), is defined by the infinite
series

ζA(s) =
∑
f∈A

f monic

1
|f |s .

There are exactly qd monic polynomials of degree d in A, so one has

∑
deg(f)≤d

|f |−s = 1 +
q

qs
+

q2

q2s
+ · · · +

qd

qds
,

and consequently

ζA(s) =
1

1 − q1−s (1)
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for all complex numbers s with �(s) > 1. In the classical case of the Rie-
mann zeta function, ζ(s) =

∑∞
n=1 n

−s, it is easy to show the defining
series converges for �(s) > 1, but it is more difficult to provide an analytic
continuation. Riemann showed that it can be analytically continued to a
meromorphic function on the whole complex plane with the only pole be-
ing a simple pole of residue 1 at s = 1. Moreover, if Γ(s) is the classical
gamma function and ξ(s) = π− s

2 Γ( s2 )ζ(s), Riemann showed the functional
equation ξ(1 − s) = ξ(s). What can be said about ζA(s)?

By Equation 1 above, we see clearly that ζA(s), which is initially defined
for �(s) > 1, can be continued to a meromorphic function on the whole
complex plane with a simple pole at s = 1. A simple computation shows
that the residue at s = 1 is 1

log(q) . Now define ξA(s) = q−s(1−q−s)−1ζA(s).
It is easy to check that ξA(1−s) = ξA(s) so that a functional equation holds
in this situation as well. As opposed to case of the classical zeta-function,
the proofs are very easy for ζA(s). Later we will consider generalizations of
ζA(s) in the context of function fields over finite fields. Similar statements
will hold, but the proofs will be more difficult and will be based on the
Riemann-Roch theorem for algebraic curves.

Euler noted that the unique decomposition of integers into products of
primes leads to the following identity for the Riemann zeta-function:

ζ(s) =
∏

p prime
p>0

(1 − 1
ps

)−1.

This is valid for �(s) > 1. The exact same reasoning (which we won’t
repeat here) leads to the following identity:

ζA(s) =
∏

P irreducible
P monic

(1 − 1
|P |s )−1. (2)

This is also valid for all �(s) > 1.
One can immediately put Equation 2 to use. Suppose there were only

finitely many irreducible polynomials in A. The right-hand side of the equa-
tion would then be defined at s = 1 and even have a non-zero value there.
On the other hand, the left hand side has a pole at s = 1. This shows there
are infinitely many irreducibles in A. One doesn’t need the zeta-function
to show this. Euclid’s proof that there are infinitely many prime integers
works equally well in polynomial rings. Suppose S is a finite set of irre-
ducibles. Multiply the elements of S together and add one. The result is
a polynomial of positive degree not divisible by any element of S. Thus,
S cannot contain all irreducible polynomials. It follows, once more, that
there are infinitely many irreducibles.

Let x be a real number and π(x) be the number of positive prime numbers
less than or equal to x. The classical prime number theorem states that
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π(x) is asymptotic to x/ log(x). Let d be a positive integer and x = qd. We
will show that the number of monic irreducibles P such that |P | = x is
asymptotic to x/ logq(x) which is clearly in the spirit of the classical result.

Define ad to be the number of monic irreducibles of degree d. Then, from
Equation 2 we find

ζA(s) =
∞∏
d=1

(1 − q−ds)−ad .

If we recall that ζA(s) = 1/(1 − q1−s) and substitute u = q−s (note that
|u| < 1 if and only if �(s) > 1) we obtain the identity

1
1 − qu

=
∞∏
d=1

(1 − ud)−ad .

Taking the logarithmic derivative of both sides and multiplying the result
by u yields

qu

1 − qu
=

∞∑
d=1

dad u
d

1 − ud
.

Finally, expand both sides into power series using the geometric series and
compare coefficients of un. The result is the beautiful formula,

Proposition 2.1. ∑
d|n

dad = qn.

This formula is often attributed to Richard Dedekind. It is interesting to
note that it appears, with essentially the above proof, in a manuscript of
C.F. Gauss (unpublished in his lifetime), “Die Lehre von den Resten.” See
Gauss [1], pages 608–611.

Corollary

an =
1
n

∑
d|n

µ(d)q
n
d . (3)

Proof. This formula follows by applying the Möbius inversion formula to
the formula given in the proposition.

The formula in the above proposition can also be proven by means of
the algebraic theory of finite fields. In fact, most books on abstract alge-
bra contain the formula and the purely algebraic proof. The zeta-function
approach has the advantage that the same method can be used to prove
many other things as we shall see in this and later chapters.

The next task is to write an in a way which makes it easy to see how big
it is. In Equation 3 the highest power of q that occurs is qn and the next
highest power that may occur is q

n
2 (this occurs if and only if 2|n. All the

other terms have the form ±qm where m ≤ n
3 . The total number of terms is
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∑
d|n |µ(d)|, which is easily seen to be 2t, where t is the number of distinct

prime divisors of n. Let p1, p2, . . . , pt be the distinct primes dividing n.
Then, 2t ≤ p1p2 . . . pt ≤ n. Thus, we have the following estimate:∣∣∣∣an − qn

n

∣∣∣∣ ≤ q
n
2

n
+ q

n
3 .

Using the standard big O notation, we have proved the following theorem.

Theorem 2.2. (The prime number theorem for polynomials) Let an denote
the number of monic irreducible polynomials in A = F[T ] of degree n. Then,

an =
qn

n
+O

(
q

n
2

n

)
.

Note that if we set x = qn the right-hand side of this equation is
x/ logq(x) + O(

√
x/ logq(x)) which looks like the conjectured precise form

of the classical prime number theorem. This is still not proven. It depends
on the truth of the Riemann hypothesis (which will be discussed later).

We now show how to use the zeta function for other counting problems.
What is the number of square-free monics of degree n? Let this number be
bn. Consider the product

∏
P

(1 +
1

|P |s ) =
∑ δ(f)

|f |s . (4)

As usual, the product is over all monic irreducibles P and the sum is over
all monics f . We will maintain this convention unless otherwise stated.
The function δ(f) is 1 when f is square-free, and 0 otherwise. This is
an easy consequence of unique factorization in A and the definition of
square-free. Making the substitution u = q−s once again, the right-hand
side of Equation 4 becomes

∑∞
n=0 bnu

n. Consider the identity 1 + w =
(1 − w2)/(1 − w). If we substitute w = |P |−s and then take the product
over all monic irreducibles P , we see that the left-hand side of Equation 4
is equal to ζA(s)/ζA(2s) = (1 − q1−2s)/(1 − q1−s). Putting everything in
terms of u leads to the identity

1 − qu2

1 − qu
=

∞∑
n=0

bnu
n.

Finally, expand the left-hand side in a geometric series and compare the
coefficients of un on both sides. We have proven—

Proposition 2.3. Let bn be the number of square-free monics in A of
degree n. Then b1 = q and for n > 1, bn = qn(1 − q−1).

It is amusing to compare this result with what is known to be true in
Z. If Bn is the number of positive square-free integers less than or equal
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to n, then limn→∞Bn/n = 6/π2. In less precise language, the probability
that a positive integer is square-free is 6/π2. The probablity that a monic
polynomial of degree n is square-free is bn/qn, and this equals (1 − q−1)
for n > 1. Thus the probabilty that a monic polynomial in A is square-
free is (1 − q−1). Now, 6/π2 = 1/ζ(2), so it is interesting to note that
(1 − q−1) = 1/ζA(2). This is, of course, no accident and one can give good
heuristic reasons why this should occur. The interested reader may want
to find these reasons and to investigate the probablity that a polynomial
be cube-free, fourth-power-free, etc.

Our next goal is to introduce analogues of some well-known number-
theoretic functions and to discuss their properties. We have already in-
troduced Φ(f). Let µ(f) be 0 if f is not square-free, and (−1)t if f is a
constant times a product of t distinct monic irreducibles. This is the poly-
nomial version of the Möbius function. Let d(f) be the number of monic
divisors of f and σ(f) =

∑
g|f |g| where the sum is over all monic divisors

of f .
These functions, like their classical counterparts, have the property of

being multiplicative. More precisely, a complex valued function λ on A−{0}
is called multiplicative if λ(fg) = λ(f)λ(g) whenever f and g are relatively
prime. We assume λ is 1 on F∗. Let

f = αP e11 P e22 . . . P et
t

be the prime decomposition of f . If λ is multiplicative,

λ(f) = λ(P e11 )λ(P e22 ) . . . λ(P et
t ).

Thus, a multiplicative function is completely determined by its values on
prime powers. Using multiplicativity, one can derive the following formulas
for these functions.

Proposition 2.4. Let the prime decomposition of f be given as above.
Then,

Φ(f) = |f |
∏
P |f

(1 − |P |−1),

d(f) = (e1 + 1)(e2 + 1) . . . (et + 1).

σ(f) =
|P1|e1+1 − 1

|P1| − 1
· |P2|e2+1 − 1

|P2| − 1
· · · |Pt|et+1 − 1

|Pt| − 1
.

Proof. The formula for Φ(n) has already been given in Proposition 1.7.
If P is a monic irreducible, the only monic divisors of P e are 1, P,

P 2, . . . , P e so d(P e) = e+ 1 and the second formula follows.
By the above paragraph, σ(P e) = 1 + |P | + |P |2 + . . . |P |e =

(|P |e+1 − 1/(|P | − 1), and the formula for σ(f) also follows.

As a final topic in this chapter we shall introduce the notion of the
average values in the context of polynomials. Suppose h(x) is a complex-
valued function on N, the set of positive integers. Suppose the following
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limit exists

lim
n→∞

1
n

n∑
k=1

h(n) = α.

We then define α to be the average value of the function h. For example,
suppose h(n) = 1 if n is square-free and 0 otherwise. Then, as noted above,
the average value of h is known to be 6/π2. The sum

∑n
k=1 h(k) sometimes

grows too fast for the average value to exist. Often though, one can show
the growth is dominated by a simple function of n. An example of this is
the Euler φ-function. One can show

n∑
k=1

φ(k) =
3
π2n

2 +O(n log(n)).

For this and other results of a similar nature, see Chapter VIII of the classic
book by G.H. Hardy and E.M. Wright, Hardy and Wright [1]. Another good
reference for this material is Chapter 3 of Apostol [1].

In the ring A the analogue of the positive integers is the set of monic
polynomials. Let h(x) be a function on the set of monic polynomials. For
n > 0 we define

Aven(h) =
1
qn

∑
f monic
deg(f)=n

h(f).

This is clearly the average value of h on the set of monic polynomials of
degree n. We define the average value of h to be limn→∞ Aven(h) provided
this limit exists. This is the natural way in which average values arise in
the context of polynomials. It is an exercise to show that if the average
value exists in the sense just given, then it is also equal to the following
limit:

lim
n→∞

1
1 + q + q2 · · · + qn

∑
f monic

deg(f)≤n

h(f).

As we pointed out above, this limit does not always exist. However, even
when it doesn’t exist, one can speak of the average rate of growth of h(f).
Define H(n) to equal the sum of h(f) over all monic polynomials of degree
n. As we will see, the function H(n) sometimes behaves in a quite regular
manner even though the values h(f) vary erratically.

Instead of approaching these problems directly we use the method of
Carlitz which uses Dirichlet series. Given a function h as above, we define
the associated Dirichlet series to be

Dh(s) =
∑

fmonic

h(f)
|f |s =

∞∑
n=0

H(n)
qns

. (5)

In what follows, we will work in a formal manner with these series. If one
wants to worry about convergence, it is useful to remark that if |h(f)| =
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O(|f |β), then Dh(s) converges for �(s) > 1 + β. The proof just uses the
comparison test and the fact that ζA(s) converges for �(s) > 1.

The right-hand side of 5 is simply
∑∞
n=0H(n)un, so the Dirichlet series

in s becomes a power series in u whose coefficients are the averages H(n).
To see how this is useful, recall the function d(f) which is the number of
monic divisors of f . Let D(n) be the sum of d(f) over all monics of degree
n (hopefully, this notation will not cause too much confusion). Then,

Proposition 2.5. Dd(s) = ζA(s)2 = (1 − qu)−2 . Consequently, D(n) =
(n+ 1)qn.

Proof.

ζA(s)2 =
(∑

h

1
|h|s

)(∑
g

1
|g|s

)
=

∑
f

( ∑
h,g
hg=f

1
) 1

|f |s =
∑
f

d(f)
|f |s = Dd(s) .

This proves the first assertion. To prove the second assertion, notice

Dd(s) =
∞∑
n=0

D(n)un = (1 − qu)−2 .

It is easily seen that (1 − qu)−2 =
∑∞
n=0(n + 1)qnun. Thus, the second

assertion follows by comparing the coefficients of un on both sides of this
identity.

A few remarks are in order. Notice that Aven(d) = n+ 1 so the average
value of d(f) in the way we have defined it doesn’t exist. On average, the
number of divisors of f grows with the degree. If we set x = qn then our
result reads D(n) = x logq(x) + x which resembles closely the analogous
result for the integers

∑n
k=1 d(k) = x log(x) + (2γ − 1)x + O(

√
x) (here

γ ≈ .577216 is Euler’s constant). This formula is due to Dirichlet. It is
a famous problem in elementary number theory to find the best possible
error term. In the polynomial case, there is no error term! This is because
of the very simple nature of the zeta function ζA(s). Similar sums in the
general function field context lead to more difficult problems. We shall have
more to say in this direction in Chapter 17.

It is an interesting fact that many multiplicative functions have corre-
sponding Dirichlet series which can be simply expressed in terms of the
zeta function. We have just seen this for d(f). More generallly, let h(f) be
multiplicative. The multiplicativity of h(f) leads to the identity

Dh(s) =
∏
P

( ∞∑
k=0

h(P k)
|P |ks

)
.
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As an example, consider the function µ(f). Since
∑∞
k=0

µ(Pk)
|P |ks = 1−|P |−s,

we find Dµ(s) = ζA(s)−1. The same method would enable us to determine
the Dirichlet series for Φ(f) and σ(f). However, we will follow a slightly
different path to this goal.

Let λ and ρ be two complex valued functions on the monic polynomials.
We define their Dirichlet product by the following formula (all polynomials
involved are assumed to be monic)

(λ ∗ ρ)(f) =
∑
h,g
hg=f

λ(h)ρ(g) .

This definition is exactly similar to the corresponding notion in elemen-
tary number theory. As is the case there, the Dirichlet product is closely
related to multiplication of Dirichlet series.

Proposition 2.6.
Dλ(s)Dρ(s) = Dλ∗ρ(s) .

Proof. The calculation is just like that of Proposition 2.5.

Dλ(s)Dρ(s) =
(∑

h

λ(h)
|h|s

)(∑
g

ρ(g)
|g|s

)
=

∑
f

( ∑
h,g
hg=f

λ(h)ρ(g)
) 1

|f |s = Dλ∗ρ(s) .

We now proceed to calculate the average value of Φ(f). We have seen that

Φ(f) = |f |
∏
P |f

(1 − |P |−1) .

Define λ(f) = |f |. A moment’s reflection shows that the right hand side of
the above equation can be rewritten as

∑
g|f µ(g)|f/g| = (µ ∗ λ)(f). Thus,

by Proposition 2.6 we find

DΦ(s) = Dµ∗λ(s) = Dµ(s)Dλ(s) = ζA(s)−1ζA(s− 1) . (6)

Proposition 2.7. ∑
deg f=n
f monic

Φ(f) = q2n(1 − q−1) .

Proof. Let A(n) be the left-hand side of the above equation. Then, with
the usual transformation u = q−s , Equation 6 becomes

∞∑
n=0

A(n)un =
1 − qu

1 − q2u
.
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Now, expand (1 − q2u)−1 into a power series using the geometric series,
multiply out, and equate the coefficients of un on both sides. One finds
A(n) = q2n − q2n−1. The result follows.

Finally, we want to do a similar analysis for the function σ(f). Let 1(f)
denote the function which is identically equal to 1 on all monics f . For any
complex valued function λ on monics, we see immediately that (1∗λ)(f) =∑
g|f λ(g). In particular, if λ(f) = |f |, then (1 ∗ λ)(f) = σ(f). Thus,

Dσ(s) = D1∗λ(s) = D1(s)Dλ(s) = ζA(s)ζA(s− 1) . (7)

Proposition 2.8.

∑
deg(f)=n
f monic

σ(f) = q2n · 1 − q−n−1

1 − q−1 .

Proof. Define S(n) to be the sum on the left hand side of the above
equation. Then, making the substitution u = q−s in Equation 7 we find

∞∑
n=0

S(n)un = (1 − qu)−1(1 − q2u)−1 .

Expanding the two terms on the right using the geometric series, multiply-
ing out, and collecting terms, we deduce

S(n) =
∑
k+l=n

qkq2l .

The result follows after applying a little algebra.

The method of obtaining average value results via the zeta function has
now been amply demonstrated. The reader who wants to pursue this fur-
ther can consult the original article of Carlitz [1]. Alternatively, it is an
interesting exercise to look at Chapter VII of Hardy and Wright [1] or
Chapter 3 of Apostol [1] , formulate the results given there for Z in the
context of the polynomial ring A = F[T ], and prove them by the methods
developed above.

In Chapter 17, we will return to the subject of average value results, but
in the broader context of global function fields.

Exercises
1. Let f ∈ A be a polynomial of degree at least m ≥ 1. For each N ≥
m show that the number of polynomials of degree N divisible by
f divided by the number of polynomials of degree N is just |f |−1.
Thus, it makes sense to say that the probability that an arbitrary
polynomial is divisible by f is |f |−1.
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2. Let P1, P2, . . . , Pt ∈ A be distinct monic irreducibles. Give a proba-
bilistic argument that the probability that a polynomial not be divis-
ible by any P 2

i for 1 = 1, 2, . . . , t is give by
∏t
i=1(1 − |Pi|−2).

3. Based on Exercise 2, give a heuristic argument to show that the prob-
ability that a polynomial in A is square-free is given by ζA(2)−1.

4. Generalize Exercise 3 to give a heuristic argument to show that the
probability that a polynomial in A be k-th power free is given by
ζA(k)−1.

5. Show
∑

|m|−1 diverges, where the sum is over all monic polynomials
m ∈ A.

6. Use the fact that every monic m can be written uniquely in the form
m = m0m

2
1 where m0 and m1 are monic and m0 is square-free to

show
∑

|m0|−1 diverges where the sum is over all square-free monics
m0.

7. Use Exercise 6 to show∏
P irreducible

degP≤d

(1 + |P |−1) → ∞ as d → ∞ .

8. Use the obvious inequality 1+x ≤ ex and Exercise 7 to show
∑

|P |−1

diverges where the sum is over all monic irreducibles P ∈ A.

9. Use Theorem 2.2 to give another proof that
∑

|P |−1 diverges.

10. Suppose there were only finitely many monic irreducibles in A . De-
note them by {P1, P2, . . . , Pn}. Let m = P1P2 . . . Pn be their product.
Show Φ(m) = 1 and derive a contradiction.

11. Suppose h is a complex valued function on monics in A and that the
limit as n tends to infinity of Aven(h) is equal to α. Show

lim
n→∞(1 + q + · · · + qn)−1

∑
f monic
deg f≤n

h(f) = α .

12. Let µ(m) be the Möbius function on monic polynomials which we
introduced in the text. Consider the sum

∑
degm=n µ(m) over monic

polynomials of degree n. Show the value of this sum is 1 if n = 0, −q
if n = 1, and 0 if n > 1.

13. For each integer k ≥ 1 define σk(m) =
∑
f |m |f |k. Calculate Aven(σk).
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14. Define Λ(m) to be log |P | if m = P t, a prime power, and zero other-
wise. Show ∑

f |m
Λ(f) = log |m| .

15. Show that
DΛ(s) = −ζ ′

A(s)/ζA(s).

Use this to evaluate
∑

degm=n Λ(m).

16. Recall that d(m) is the number of monic divisors of m. Show

∑
m monic

d(m)2

|m|s =
ζA(s)4

ζA(2s)
.

Use this to evaluate
∑

degm=n d(m)2.


