
CHAPTER 3

Introduction to
AppForge

WHEN I STARTED WRITING code for the Palm platform a while ago, I found it to almost
be a step backwards for me at first. I say this for a number of reasons, not the
least of which is the step back from using SQL to using flat files. Perhaps it was
because I had lost touch with my C programming side, but I think the real reason
it took so long to get my software running on the Palm was because I found the
resources (books, example code, documentation) available for developers either
confusing, contradictory, or just plain poor.

AppForge

AppForge is a whole new way of programming for the Palm. Okay, maybe it’s not
entirely new in some respects (I’ll cover what those points are later), but it’s
a darn good start. What is AppForge? Well, AppForge is a compiler written for
Visual Basic that integrates into the VB IDE and allows you to compile from
within the Visual Basic environment directly to a Palm device program file (or
PRC file).

At last, VB programmers now have a compiler that (in some fashion) works
using a familiar language. AppForge offers a great way to get up to speed on Palm
application development.

That’s not to say that AppForge is the perfect solution, but it brings the term
Rapid Application Development (RAD) screaming into the Palm world. Before
I jump right in and start talking about using AppForge in conjunction with Visual
Basic to develop software for the Palm operating system, let me be clear on
something. Doing development with Visual Basic for a different platform (in this
case, the Palm OS) simply gives you the ease of a language you are familiar with,
but in no way does this indicate that you can continue to write programs in the
same manner that you do for Windows applications.

For example, consider that you have memory constraints within the Palm
models themselves. Some Palm devices come with 2MB of memory, and some
come with up to 8MB of memory. So the development (and what you can or can-
not do) can be limited by the memory in the device. With these limitations of the

37

496ch03 12/21/01 2:48 PM Page 37

environment also come some limitations of the compiler. Make no mistake,
AppForge is not an add-in or a library—it is a compiler (more on this later). Most
of the supported functions are listed in the documentation, but there are a few
hiccups you should be aware of (see the sidebar “AppForge Limitations”).

AppForge Limitations

Here are a few of the limitations (and the reasons for some of them) that I’ve
found with using AppForge:

• Standard API calls don’t work, and if you think about it, this makes complete

sense. API calls are direct programming interface calls to an underlying sub-

system (in this example, I’m referring to Windows), so API calls to such

functions as GetPrivateProfileString won’t work, simply because the func-

tions don’t exist.

• The AppForge MsgBox function does not support the Title parameter. This

parameter is determined by the severity of the message box displayed, and

is set to either Error, Warning, Information, or Confirm. If a severity level is

not specified via the Buttons parameter, the message box defaults to

Information, unlike VB, which defaults to no icon.

• There are currently no pop-up forms. You can only have one window visible

at a time.

• Use of the With clause is not supported. So you cannot use With [object] and

End With.

• Use of For Each [object in collection] Next is not supported. This is most

likely due to the fact that collections are not supported.

• Dynamic arrays are unsupported.

• Optional parameters are not supported. Presumably this is because the

AppForge compiler tries to resolve all parameters and their types at

compile time.

• The use of the vbModal parameter with Show is not supported. In this case,

it appears that the use of vbModal would halt program execution until such

time as the new form is unloaded, which would require maintaining a state

within the calling form.

• The Format function is not supported. You instead have all the individual

functions, such as FormatCurrency.

• The use of variant data types is not supported.

• Automatic data conversions are not supported by the compiler. By this

I mean that when you assign an integer value to a string variable type, the

AppForge compiler complains conversions of <type1> to <type2> may be

potentially unsafe. Note the use of the word potentially. The compiler

doesn’t say, “Don’t do this”—it says it’s potentially unsafe, and then it pre-

38

Chapter 3

496ch03 12/21/01 2:48 PM Page 38

vents you from compiling until you do explicit conversions using CStr(),

CBool(), CLng(), and so on.

• When using the Palm Database (PDB) files, I could not find a method for fil-

tering. You must search for records that match your condition, and then you

must process the records and compare each one.

• Only ascending indexes are supported.

Check out the “Supported Visual Basic Functions” and “Unsupported
Visual Basic Functions” documents in the online AppForge User’s Guide
(http://www.appforge.com/dev/usersguide.html). These documents give you
a complete list of the functions that are supported and unsupported.

Okay, I know there will be some limitations, but this is not surprising. After
all, this is a compiler for a different operating system (which has limited mem-
ory and uses flat files), so many of the restrictions imposed are there to help
improve performance.

AppForge supports a very large subset of VB.1 You will find that most of the
more common Visual Basic functions are available and work identically to their
desktop PC counterparts. Differences in language support are generally a result
of limitations imposed by the Palm OS and represent decisions made by the
AppForge compiler team when designing the AppForge compiler.

You will find that, for the most part, AppForge attempts to mirror Visual
Basic, so much so that AppForge even has a comparable equivalent to the
IntelliSense feature within Visual Basic.

39

Introduction to AppForge

NOTE For most up-to-date articles about specifics of Visual
Basic support, including techniques for optimizing your
software using AppForge, you should visit the Developer
Sector at http://www.appforge.com.

AppForge was designed specifically to meet the special programming needs
of the mobile devices. Speed, efficiency, and reliability are critical when writing
software for these types of devices.

1 For a complete list of the supported commands, you should take the time to review the
“Supported Commands” section of the AppForge help file. It should be noted that with
each release, AppForge adds new supported functions. In some cases, you will find
function libraries on the AppForge Web site (http://www.appforge.com) under the
Developer Sector Knowledge Base, such as the Format function library (the use of
the Format function is not currently supported).

496ch03 12/21/01 2:48 PM Page 39

Beware!

There are a few things about AppForge that you need to be aware of, and I have
listed them here.

• Limited RAM: Reading and writing to RAM requires power, which reduces
battery life. As a general rule, it is advisable to reduce RAM usage wherever
possible. Programming styles that are less RAM intensive will translate well
to the mobile software environment. For example, the use of Public vari-
ables when not needed should be minimized; instead, include local
variables to reduce the amount of memory in constant use.

• Slower execution: To minimize per-unit costs and maximize the life of small
batteries, low-speed processors are often used (the current Palm proces-
sors are running at between 16 and 33 MHz). Because of this, certain more
CPU-intensive features may not be available.

• In-the-field updates are difficult: Hence, mobile applications should be as
reliable as possible. Preventable errors, such as those related to type safety,
should be identified at compile time, rather than after deployment to
a mobile device. For this reason, AppForge does not do some things at
compile time that you might be used to getting away with. For an example,
see Listing 3-1.

Listing 3-1. Code That Will Generate an AppForge Compiler Error

Dim cCharString As String

Dim nValue As Integer

cCharString = “12”

‘ Assign this value to a numeric, this thows an error in AppForge

‘ This works fine in VB because at runtime VB will resolve the

‘ value to an Integer doing an “on the fly” conversion.

nValue = cCharString

‘ To make it work in AppForge

nValue = Cint(cCharString)

All of AppForge’s design decisions were made in an attempt to balance the issues
in such a way as to present a useful and efficient subset of Visual Basic.

40

Chapter 3

496ch03 12/21/01 2:48 PM Page 40

Virtual Machines

Now, I said I’d tell you a bit more about the AppForge compiler, so I’ll do that
here. AppForge is a compiler, but it also requires a virtual machine. This is similar
to Java in that you need a runtime interpreter (or virtual machine) to execute
your code. In older compilers such as Clipper (a DBase compiler), the runtime
interpreter was actually compiled into the final EXE. You will also discover that
several of the compilers available for the Palm (but not necessarily reviewed or
explained in this book) also use this technique.

So what exactly is a virtual machine? The term virtual machine has been used
to mean either an operating system or any program that runs on a computer.

A running program is often referred to as a virtual machine—a machine that
doesn’t exist as a matter of physical reality. The idea of a virtual machine is itself
one of the most elegant in the history of technology, and is a crucial step in the
evolution of ideas about software. In order to come up with it, scientists and
technologists had to recognize that a computer running a program isn’t merely
a washing machine doing some dirty laundry. On the contrary, a washing
machine is a washing machine no matter what kind of clothes you put inside, but
when you put a new program in a computer, presto, by virtue of the new program
it is also a new virtual machine.2

In the most recent computer usage, virtual machine is a term that was first
used by Sun Microsystems (the developers of the Java programming language
and runtime environment), to describe software that acts as an interface
between compiled Java bytecode and the microprocessor (or hardware platform)
that actually performs the program’s instructions.

Once a virtual machine has been written for a particular platform, any pro-
gram written to run within the specifications of that virtual machine will now run
on that platform. Java was designed to allow application programs to be built
that could be run on many platforms without having to be rewritten or recom-
piled by the programmer for each separate platform.

For example, take the Windows OS and Macintosh OS. Both are operating
systems with their own very specific instruction sets. The goal behind Java is that
a program written and compiled with the Java compiler could be ported from the
Windows OS to the MAC OS by simply moving the code.3

Virtual machines are what make all this possible. The Java virtual machine
has a specification, which is defined as an abstract, rather than a real machine (or
processor), which specifies an instruction set, a set of registers, a stack, a garbage

41

Introduction to AppForge

2 This discussion on virtual machines is based on the David Gelernter article, “Truth, Beauty,
and the Virtual Machine,” Discover Magazine, September 1997.

3 Of course, this is the scenario played out as the ideal. In reality, there are so many steps to
port an application written in Java for the Windows OS to the Macintosh OS, it would take
another book to explain them all.

496ch03 12/21/01 2:48 PM Page 41

heap, and a method area. The real implementation of this abstract (or logically
defined processor) is done in other code that is recognized by the real processor.
The output of “compiling” a Java source program is called bytecode. A Java virtual
machine can either interpret the bytecode one instruction at a time (mapping it
to a real microprocessor instruction) or the bytecode can be compiled further for
the real microprocessor using what is called a just-in-time compiler.

AppForge has taken the virtual machine approach and applied it to hand-
held devices. AppForge already exists for Palm OS and Pocket PC devices. In the
case of AppForge, the virtual machine is called Booster. Before any AppForge
application can run, Booster must be installed on the target device.

Using the Palm OS Emulator with AppForge

In a small aside here, I figured I should explain a few simple things about
the Palm OS Emulator (POSE). First, Booster is required in order for any
AppForge Palm application to run. Booster is a virtual machine, as it runs your
compiled bytecode application. So, before you can test your application in the
emulator, you must first install and run the POSE

When POSE has been installed and configured, you can then right-click the
emulator to view a pop-up menu of choices. Once you select the Install
Application/Database option, you can locate the PRC files in the
Platforms\PalmOS\TargetImage directory under your AppForge installation and
upload them to the emulator. Now, before POSE will function properly, you
must reset it (similar to having to restart Windows after an installation). Once
you reset the emulator, you can then install your application and databases on
it. This is only required if you choose the Install option rather than using the
HotSync menu option.

Before You Start Programming

In this section, I’ll give you a small list of the things you need to start program-
ming, and some specific tips I learned as I became familiar with AppForge.

The Palm SDK

Although you do not need anything except AppForge, a copy of Visual Basic (you
can use any edition of Visual Basic 6, including Visual Basic Working Model,

42

Chapter 3

496ch03 12/21/01 2:48 PM Page 42

which is included on the CD), and either a real Palm OS device or the Palm OS
Emulator (POSE) to get started, I would suggest that you obtain a copy of the
Palm OS SDK, including the latest documentation (available from Palm Web site).
You can also download their Conduit Developers Kit 4.01 for COM, which sup-
ports any COM-compliant language, including Visual Basic. This means that you
can now develop custom conduits4 using Visual Basic.

43

Introduction to AppForge

NOTE Neither the Learning Edition or the Working Model of
Visual Basic allow you to compile a Windows EXE file. This is
not a problem, as AppForge installs itself as an add-in with
its own AppForge menu. From the AppForge menu, you can

select the Compile option, which will compile your VB code as a Palm
OS–compatible application file (PRC).

The SDK contains three important items:

• Example code: You can peruse this code (although it’s all in C/C++) to get
a feel for how POSE works.

• Documentation: Think of the documentation as a dictionary in which you
can look up all the possible system functions available for your code. The
SDK documentation is not very interesting to read, unless you find reading
a dictionary exciting.

• Palm OS Emulator: The emulator, shown in Figure 3-1, essentially
functions as a virtual Palm on your desktop. POSE allows you to debug
and run the programs you develop on your computer, instead of perform-
ing a HotSync every time you make a new build. You definitely need the
emulator, unless you enjoy resetting your Palm device several times
while writing your software. (See Chapter 2 for more information on
using the POSE.)

4 A conduit is a means of communication between a Palm OS device and a Desktop PC. For
a more detailed explanation of conduits, see Chapter 9.

496ch03 12/21/01 2:48 PM Page 43

The 1000-Foot Overview

Before you write any code, let’s take a moment to review some simple basics.
Since you are probably new to the AppForge compiler and the Palm OS, you
should consider that not everything you want to do can necessarily be done the
way you did them in VB. Let me give you an example:

In AppForge, there is currently no support for dynamic arrays. This means
that if you want to have a dynamic array, it cannot be done in the traditional
sense (that is, using Dim, ReDim. . .Preserve). However, you can easily solve this
problem. The trick is quite simple. Using an AppForge AFListBox control (or
a grid if you need multiple elements), which is hidden on a form, you place the
values you want to serve as an array in the listbox (see Listing 3-2).

Listing 3-2. Code to Simulate a Dynamic Array

Private Sub ArrayAdd(ByVal cElement As String)

‘-=

‘

‘ Sub : ArrayAdd(cElement)

‘ Params : cElement - Element to Add

‘ Returns : None

‘

‘ Author : Vivid Software Inc. - Jon Kilburn

‘ http://www.VividSoftware.com

‘

44

Chapter 3

Figure 3-1. The Palm OS Emulator

496ch03 12/21/01 2:48 PM Page 44

‘ Client : Apress

‘ Purpose : Add Array Element to hidden Listbox

‘

‘-=

‘ Array Insert

Me.lstArray.AddItem cElement

End Sub

Private Sub ArrayDel(ByVal nPos As Integer)

‘-=

‘

‘ Sub : ArrayDel(nPos)

‘ Params : nPos - Element to Delete

‘ Returns : None

‘

‘ Author : Vivid Software Inc. - Jon Kilburn

‘ http://www.VividSoftware.com

‘

‘ Client : Apress

‘ Purpose : Add Array Element to hidden Listbox

‘

‘-=

‘ Array Delete

Me.lstArray.RemoveItem nPos

End Sub

So what’s my point? Simply this: just change your thinking slightly, and you
can accomplish almost anything in AppForge for the Palm OS that you can do in
Windows. The code just won’t look exactly the same.

Basically there are three steps to building an AppForge Palm application:

1. Create the application in Visual Basic and compile it using AppForge to
a PRC file.

2. Install Booster onto the Palm device.

3. Upload your AppForge application.

45

Introduction to AppForge

496ch03 12/21/01 2:48 PM Page 45

There will be some additional steps, such as creating a device package or
converting Access files to Palm Database files and the like, but overall this is the
way it works. Now let’s get to it.

Getting Started

Once you have completed the installation of the AppForge compiler (by running
the Install program), you will notice that when you start Visual Basic, you may
now select a new type of application, an AppForge application (see Figure 3-2).

46

Chapter 3

Figure 3-2. The AppForge project

496ch03 12/21/01 2:48 PM Page 46

You have two ways to create an AppForge project. The first way is by selecting
Start | Programs | AppForge and then clicking the Start AppForge option. This will
open the AppForge Project Manager window, which prompts you to edit an exist-
ing project or to create a new one (see Figure 3-3). The other way is to open Visual
Basic and choose to create a new project. You then select AppForge Project from
the New Project window. Once you have opened the new project, a single form is
added to the project. The form properties are set according to the size of the Palm
window. Changing the form size will result in an AppForge compiler error.

Once you have started to create a new AppForge project, if you are using the
Professional Edition of AppForge, you will be prompted to choose the type of
AppForge project (see Figure 3-4).

47

Introduction to AppForge

Figure 3-3. The AppForge form

496ch03 12/21/01 2:48 PM Page 47

It is important to note that although you may still see the standard list of
events and properties, not all of the displayed events or properties are supported
by AppForge. This is not because AppForge has not made an effort to do so, but
rather because the Palm OS is different from Windows. A classic example of this is
the MsgBox() function.

The standard Visual Basic MsgBox function consists of the following
parameters:

MsgBox(Prompt, [Buttons], [Title], [Helpfile], [Context])

The AppForge compiler supports the MsgBox() function, but the parame-
ters are different. The AppForge version of the MsgBox() function has the
following form:

MsgBox(Prompt, [Buttons])

Notice that there is no support for the Title, Helpfile, or Context parameters.
Neither the Helpfile or Context parameter is supported, and the Title value is
determined by the severity of the message box displayed, and is set to Error,
Warning, Information, or Confirm. However, the Visual Basic IntelliSense feature
will not display only those parameters that AppForge supports. This is true of all

48

Chapter 3

Figure 3-4. The AppForge Select Target Platform dialog box

496ch03 12/21/01 2:48 PM Page 48

the AppForge functions, which do not have all the same corresponding parame-
ters that exist in their Windows counterparts.

If a severity level is not specified via the Buttons parameter, the message
box defaults to Information, unlike with Visual Basic, in which the message box
defaults to no icon. The AppForge MsgBox does not support the following
constants:

VbApplicationModal

VbSystemModal

vbMsgBoxSetForeground

The reason for the lack of support is that all of these values are meaningless
under Palm OS. Along those same lines, none of the vbDefaultButtonX parame-
ters are supported—after all, there are no default buttons on a handheld device
since there is no Enter key (unless you’re using an attached Palm keyboard).
There are several differences like this one that run throughout the AppForge
compiler. As I mentioned earlier, you should study the “Supported Visual Basic
Functions” document of the online AppForge User’s Guide so that you can famil-
iarize yourself with AppForge’s flavor of the Visual Basic functions.

49

Introduction to AppForge

NOTE In AppForge, only one form can be shown at a time.
Therefore, before showing a new form, the old form must
be hidden first. (Otherwise, an “overlapping” form error
will occur.)

Generally, you should use the Hide method when a form is no longer needed
(setting the Visible property to false and then showing the form by setting Visible
= True can cause weird behaviors on the actual Palm device). This prevents the
overlapping error and allows for access to values on the hidden form. If no forms
are shown, the screen will be blank. Be aware that you should try to keep from
going too deep when hiding forms, as most Palm devices have less than 256KB
(yes, that’s kilobytes) of memory for the application to work with. Although I have
successfully managed to go as many as five forms deep (using a Symbol 1500
with 8MB of RAM), the practical limit is probably around three forms. I say this
because the limit can vary based on the number of controls you have on a form.

496ch03 12/21/01 2:48 PM Page 49

Also, another trick I’ve used is to create an Owner property in the called
form. By setting an Owner property you can create a “stack” which allows you to
return to the previous form. Why do I do that instead of just using the form
name? Two reasons:

First of all, since there is no support for vbModal when a form is shown, you
cannot keep it visible or halt your code until the called form is unloaded. Usually
you would perform a search lookup like so:

Sub cmdLookup_Click()

frmLookup.Show vbModal

End Sub

In an application I developed, the same lookup form could be called from
a couple of different places (that is, from different forms). So I had to figure out
how to get around this problem—I solved it by creating an Owner variable in the
frmLookup form.

Public Owner As Form

There is a caveat to doing this. You can only reference the functions and val-
ues of a Form object. You cannot call any specific Public subs or functions you
may have designed for your form, unless you declare the Owner with the explicit
name of your form. This has to do with the AppForge compiler resolving data types
at compile time to prevent errors at runtime.

Next, when I called the frmLookup form, I hid the current form, set the
owner of the frmLookup form, and then showed the whole thing:

Sub cmdLookup_Click()

‘ Hide this form

Me.Hide

50

Chapter 3

NOTE Hiding an application that has only one form and no
modules will also exit the application.

496ch03 12/21/01 2:48 PM Page 50

‘ Set the Owner form

Set frmLookup.Owner = Me

‘ Show the Lookup form

frmLookup.Show

End Sub

Next, in the cmdClose_Click event of the frmLookup, I simply showed the
Owner form:

Sub cmdClose_Click()

‘ Hide this form

Me.Hide

‘ Show the Owner

Me.Owner.Show

‘ Unload this form

Unload Me

End Sub

The second reason: This allows me to have a global return function, which
can be called by all forms and requires less code.

The AppForge Ingots

Now let’s move on to building some forms. In your toolbox, you will now find
a new list of controls (see Figure 3-5). These controls are called Ingots. Ingots are
AppForge ActiveX components that are similar to standard Visual Basic controls.
They provide the feel and functionality of Visual Basic controls and are pro-
grammed using properties, events, and methods. The only difference is that they
work in Windows, Windows CE, and Palm OS. Please note, these controls cur-
rently do not have the full range and functionality of Visual Basic controls.

51

Introduction to AppForge

496ch03 12/21/01 2:48 PM Page 51

There are currently 24 Ingots available for the AppForge compiler. Not all of
these Ingots are available with each version (as I note later); however, by the time
you complete the sections of this book on AppForge, you should have a good
grasp of how to use each of these Ingots.

• AFButton

• AFCheckBox

• AFClientSocket

• AFComboBox

• AFFilmstrip

• AFGraphic

52

Chapter 3

Figure 3-5. AppForge Ingots added to the Visual Basic Toolbox

NOTE The Ingots shown here are provided with AppForge
Professional Edition.

496ch03 12/21/01 2:48 PM Page 52

• AFGraphicButton

• AFGrid

• AFHScrollbar

• AFINetHTTP

• AFLabel

• AFListBox

• AFMovie

• AFRadioButton

• AFScanner

• AFSerial

• AFShape

• AFSignatureCapture

• AFSlider

• AFTextBox

• AFTimer

• AFTone

• AFVScrollbar

• Form

The AppForge Converters

AppForge provides a suite of converters and viewers that convert standard
media files to AppForge-specific files. There are currently five converters and
their associated viewers available for the AppForge compiler:

53

Introduction to AppForge

496ch03 12/21/01 2:48 PM Page 53

• Font

• Graphic

• Movie

• Project (this converter migrates prior AppForge Projects to 2.0)

• Database

Not all of these converters (like their Ingot counterparts) ship with each
version of AppForge. All AppForge software editions include a graphic converter
and viewer, project converter, and a database file converter.

AppForge Professional Edition provides additional converters and viewers
for fonts and movies. Table 2-1 summarizes the file types supported by the
AppForge file converters and viewers.

Table 3-1. File Types Supported by AppForge Converters and Viewers

MEDIA DESCRIPTION OUTPUT FILE TYPE

Database Microsoft Access databases (*.mdb) Palm Database file (*.pdb)

Graphics Standard Windows bitmap (*.bmp) AppForge graphic (*.rgx)

Font* True Type Font (*.ttf) AppForge font (*.cmf)

Movie* Windows AVI File (*.avi) AppForge movie (*.rvm)

* Denotes those converters included only in the Personal and Professional Editions

I will review the converters more in depth in the next chapter when I demon-
strate how to build a more complicated AppForge application than the one
presented later in this chapter.

The AppForge Shipping Versions

Currently there are two shipping versions of AppForge, AppForge Professional
Edition and AppForge Personal Edition. AppForge Professional Edition is avail-
able for Palm OS, Pocket PC, or both.

54

Chapter 3

496ch03 12/21/01 2:48 PM Page 54

The AppForge Personal Edition

The Personal Edition is the low-cost, entry-level development version. This is an
ideal starting point for the hobbyist programmer or the programmer who is
working on learning Palm programming at his or her own pace. It allows you to
begin programming and developing applications for the Palm OS without having
to spend a whole lot of money. This edition has some limitations, but overall is
a good value, and if you decide to upgrade, AppForge will give you 100 percent
credit towards the Professional Edition.

The AppForge Personal Edition offers the following:

• Access to several commonly used Palm Functions such as the Date Picker

• Most AppForge Ingots (see http://www.appforge.com/prod/featurelist.html
for a complete listing)

• The ability to communicate through the serial and infrared ports

• A low introductory cost

• Purchase price is applied when upgrading to AppForge Professional Edition

The AppForge Professional Edition

The AppForge Professional Edition is the heavy hitter. This high-level develop-
ment platform is geared for the serious developer who may wish to create
applications using the advanced features (such as scanner integration and wire-
less Internet support) of the Palm device. The AppForge Professional Edition
supports all the features in the Personal Edition, and adds the following power-
user enhancements:

55

Introduction to AppForge

NOTE Times change, and so do companies, versions, and
shipping editions. The current shipping information is
based on what AppForge has listed as their available
editions on both their Web site and those of their preferred
vendors (such as Handango and VBXtras).

496ch03 12/21/01 2:48 PM Page 55

• Palm OS Extensibility Library: This library allows developers to augment
AppForge features with code written in C/C++.

• Wireless Internet support: The AppForge Wireless Internet Ingot makes it
easy to add the Internet to your application. A stock quote sample is
included with the Professional Edition to help you get started writing
Internet-enabled Palm applications.

• AppForge AFScanner Ingot: The AFScanner Ingot can be used to provide
barcode scanning for inventory control, point-of-sale operations, and
identification, and for reading virtually anything that has a barcode. The
AFScanner Ingot supports Symbol Technologies’ SPT-1500/1700 Symbol
with Palm OS 3.5 (you must upgrade the OS from version 3.1), and the
CSM-150 Barcode Scanner for the Handspring Visor.

• The Universal Conduit: The UC is a program that allows databases to be
synchronized between AppForge-created applications5 and ODBC
data sources without writing code—that is, it creates a conduit without any
code (for more information on the Universal Conduit, see Chapter 9).

• The Font Converter/Viewer: The Font Converter will convert any TrueType
font to an AppForge font file for use on Palm OS devices (this is an exclu-
sive feature of AppForge made possible by Booster).

• The Movie Converter/Viewer: The Movie Converter will convert standard
Windows AVI files for use with the Movie Ingot. Please note that at the time
of this writing, there are some limitations as to the size of AVI files that can
be converted and stored on the Palm devices.

• The Signature Capture Ingot: The Signature Capture Ingot adds signature
input, storage, and display capabilities to your AppForge applications.

• AFScrollBar and AFSlider Ingots: The AFScrollbar and AFSlider Ingots pro-
vide a mechanism to produce a range indicator. They have a minimum and
maximum setting.

• AFClientSocket Ingot: The AFClientSocket Ingot allows TCP/IP communi-
cation on network-enabled handheld devices.

56

Chapter 3

5 The UC does not always work with applications that have been developed in other lan-
guages. This is due to the fact that AppForge writes schema information into the header of
Palm Database files, which may not be available if the PDB file has been created using
another tool.

496ch03 12/21/01 2:48 PM Page 56

Working with Menus

In Windows, it’s a common practice to use a menu for assigning and grouping
actions. Not surprisingly, AppForge 2.0 supports menus. Menus provide a way to
access multiple commands without occupying too much screen real estate. Each
menu should contain one or more menu items, to which a command should be
associated. You can visually group items using a separator bar, just like in
Windows. Menus themselves are contained within a menu bar, and there can
only be one menu bar per form. To create a new menu, select either the Menu
Editor option from the Tools menu or click the icon on the standard toolbar.

Follow these steps to create a menu test program:

1. Start by creating a new Visual Basic AppForge project.

2. Name the application MenuTest.

3. Create the main form by renaming the default Form1 form as frmMenu.

4. Select the Tools | Menu Editor option.

5. Add a Main Menu Item named Test, set the Name property to mnuMain,
and set the index property to 0 (see Figure 3-6).

6. Click the Next Button. This adds a new blank menu.

7. Press the Indent Button (the right arrow key).

8. Name the subitem Item1. Set the name property to mnuItem and the
index to 1.

9. Now save the project.

57

Introduction to AppForge

NOTE Upgrading the Symbol 1500/1700 to the 3.5 OS is
described in detail at both the AppForge Web site (in the
Developer Sector Knowledge Base) and the Symbol Web site.

496ch03 12/21/01 2:48 PM Page 57

From the AppForge menu, select Compile and Validate. This will compile the
project and validate all the referenced objects. When you choose to compile an
AppForge project for the first time, you will be prompted to enter a CreatorID
(see Figure 3-7).

58

Chapter 3

Figure 3-6. Using the Visual Basic menu editor

496ch03 12/21/01 2:48 PM Page 58

Before you can run any AppForge program, you must first install the
AppForge virtual machine, or Booster, on the target device. Once the compile
process has been completed, you can now create the Booster download. Booster
comprises a number of separate runtime files. These files are combined on the
Palm device to make up the final Booster based on what features you have
included in your AppForge application.

59

Introduction to AppForge

Figure 3-7. Entering a CreatorID

NOTE If more than one user is set up to use the Palm desk-
top software, a window will prompt you to select a user to
receive Booster. Once Booster has been copied, the Install
directory file list (see Figure 3-8) will show all of the files

to be installed on the specified handheld device during the next
HotSync operation.

496ch03 12/21/01 2:48 PM Page 59

To create the Booster package, access the AppForge menu and select the
Install Booster To Device option. From the Booster options submenu, select
the Palm OS platform. This will copy the required Booster files to the installation
directory for installation during your next HotSync.

Once Booster has been installed on the target device, you can then install
your MenuTest application. You have a couple of ways to do this. Starting from
the AppForge menu, you can choose Deploy to Palm OS | Deploy to Device. Next,
select the Palm OS option, or select the Save Project Package option, which will
generate the Palm application in the folder of your choosing. Figure 3-9 shows
the final menu working in the POSE.

60

Chapter 3

Figure 3-8. Booster files set for installation

496ch03 12/21/01 2:48 PM Page 60

Building Your First AppForge Application

Now that you’ve seen the basic components of AppForge, let’s move on to creat-
ing a simple application and syncing the application to a Palm device. For this
first program, let’s build a simple application to calculate the daily production
rate for piecework assembly. I got this idea from a program I wrote for one of my
clients, which tracks assembled inventory. Since my client uses robots for prod-
uct assembly, this program really wouldn’t do the client much good, but it would
be very useful to help a line supervisor estimate the average assembly time and
average daily production for a given product.

Creating a VB AppForge Project

This simple application will take the number of pieces that are assembled in
a minute and calculate the assembled production estimates for one hour and
for a standard eight-hour day. Start building this application by creating a new
Visual Basic AppForge project. Follow these steps:

61

Introduction to AppForge

Figure 3-9. The final menu running under POSE

496ch03 12/21/01 2:48 PM Page 61

1. Name the application ProductCalc.

2. Create the main calculation form by renaming the default Form1 form
to frmCalc.

3. Clear the form’s Caption property. If the form caption is set, AppForge
will automatically create a Palm title bar for your form.

4. Now save the project. You have to save the project before AppForge will
allow you to add any controls.

5. Next, select the AFLabel control from the Visual Basic Toolbox and drop
the label onto the AppForge form.

6. Change the name of the AFLabel to “label”.

7. Change the background color of the AFLabel to black and the fore-
ground color to white.

8. Set the Alignment of the label to 2-Center, and change the FontName
property to AFPalm Bold 12.

9. Set the caption of the label to Production Calculator.

10. Next, size the label to the width of the form and set the Height property
to 16. AppForge uses pixels for its unit of measurement.

11. Add a label and set the caption to Assembled Pieces. Make this label’s
Height property 16, and change the font to AFPalm Bold 12. Now center
the label.

12. Change the background to black and the foreground to white like the
previous label. Next, change the name of the label to “label”, and when
Visual Basic prompts you to create a control array, select Yes. The label
will automatically be renamed Label(1). Position this label slightly above
the middle of the form.

13. Now add three more labels with the captions Per Minute:, Per Hour:, and
Per Shift:.

14. Select an AFTextBox control from the Visual Basic Toolbox and place it to
the right of the Per Minute: label.

62

Chapter 3

496ch03 12/21/01 2:48 PM Page 62

15. Although it looks like you have three textboxes, you actually do not. Select
the AFLabel control again and place two labels to the right of the Per
Hour: and the Per Shift: labels. In the Properties window, change
the Border Style property to be 1- Fixed Single. Next, change the
Alignment property to 1- Right Justified. Lastly, change the Caption prop-
erty to have a value 0. Now these two labels look like AFTextBox controls.

16. Drop a couple of AFButton controls on the form and name them
cmdCalc and cmdClose. Change their captions to Calculate and Close.

17. Finally, make the form look a little more spiffy by adding a few AFShape
controls. Set the AFShape controls’ Border Width property to 1 so it
appears to be a line instead of a rectangle. Now place three of these lines
around the controls connected to the Assembled Pieces label to make
a box. Figure 3-10 shows what your final form should look like.

Writing the Code

Now comes the fun part, adding the code. First, you’ll write the code to exit the
program. When exiting the Production Calculator program, you should confirm
that the user does indeed wish to exit. Do this using the AppForge equivalent of
the MsgBox function (see Listing 3-3).

63

Introduction to AppForge

Figure 3-10. The completed Product Calculator form

496ch03 12/21/01 2:48 PM Page 63

Listing 3-3. Exit Code for Production Calculator

Private Sub cmdClose_Click()

‘-=

‘

‘ Sub : cmdClose_Click()

‘ Params : None

‘ Returns : None

‘

‘ Author : Vivid Software Inc. - Jon Kilburn

‘ http://www.VividSoftware.com

‘

‘ Client : Apress

‘ Purpose : Confirm Exit

‘

‘-=

If MsgBox(“Exit Production Calculator?”, vbQuestion + vbYesNo) = vbYes Then

‘ Quit the Program

End

End If

End Sub

Now let’s build the code to perform the piecework calculation. Assume that
there are no breaks taken in each hour so you can calculate against a true sixty
minutes. The shift workers get one full hour for lunch; however, they work eight
hours in a shift (so they are scheduled in nine-hour increments). To calculate the
pieces per hour, multiply the contents of txtPieces by a value of 60. You then take
the resulting value and multiply it by 8, which will yield the number of estimated
pieces per shift (see Listing 3-4). Write the resulting values into the Caption prop-
erty of the two labels, LabelHour and LabelShift.

Listing 3-4. Calculation Code

Private Sub cmdCalc_Click()

‘-=

‘

‘ Sub : cmdCalc_Click()

‘ Params : None

‘ Returns : None

‘

64

Chapter 3

496ch03 12/21/01 2:48 PM Page 64

‘ Author : Vivid Software Inc. - Jon Kilburn

‘ http://www.VividSoftware.com

‘

‘ Client : Apress

‘ Purpose : Calculate the number of pieces per hour,

‘ and per shift.

‘

‘-=

Dim nHour As Long

Dim nShift As Long

‘ Set Trap

On Error GoTo Trap

‘ Calculate

If Me.txtPieces.Text = vbNullString Then

‘ Must have a valid value

MsgBox “Please enter the number of pieces.”, vbExclamation

Exit Sub

Else

‘ Calculate Number of Pieces assembled per hour

nHour = CInt(Me.txtPieces.Text) * 60

‘ Per Shift (8 Hours per shift)

nShift = nHour * 8

‘ Fill in the labels

Me.LabelHour.Caption = Trim(CStr(nHour))

Me.LabelShift.Caption = Trim(CStr(nShift))

End If

Exit_Rtn:

Exit Sub

Trap:

MsgBox “Sytem Error!” & vbCrLf & _

Err.Description, vbExclamation

GoTo Exit_Rtn

End Sub

65

Introduction to AppForge

496ch03 12/21/01 2:48 PM Page 65

Running Your Application

Once you have completed the code, you can now run the resulting AppForge appli-
cation from inside the Visual Basic and Windows environment by selecting the Run
menu option. This will launch a form that will look and act like a Palm form.

66

Chapter 3

CAUTION: Just because the application runs in the Windows
environment without errors does not imply that it will
function properly when uploaded to the Palm device. You
should always upload your compiled project to a Palm OS
device—at the very least the POSE—for testing.

NOTE For the POSE, you can also right-click and choose
the Install Application/Database menu option. If you in-
stall Booster using this method, you must then select the
Reset option.

Now that you have tested the basic application functionality under the
Windows environment, you should compile the Production Calculator using
the AppForge compiler. Select the AppForge menu option and choose the
Compile Project option. This will launch the AppForge compiler. When compiling
a project, AppForge analyzes the code for errors and possible conflicts that may
prevent the compiled program from functioning properly once it has been
uploaded to the Palm OS device. When the compile operation is successful, the
progress window will disappear to indicate the operation is complete.

With the application fully compiled, you must now begin the process of
installing and testing the finished application.

Once you have performed the HotSync operation, the Booster.prc appli-
cation will appear in your Palm device’s main applications area (see Figure 3-11).

496ch03 12/21/01 2:48 PM Page 66

Now that you have installed Booster on the target device, you have two
options for uploading the compiled application. Although you have compiled
the application, you have not created a device package (this is the step where the
actual .PRC file is created). If you select the AppForge menu option Upload
Project, then AppForge will create a PRC file and also copy the file into the Palm
Install directory (in the same manner as it does for Booster). Upon your next
HotSync, your application will be copied onto the target device. If you choose the
Create Device Package option, AppForge will create the PRC file, but not place it
in the Palm Install directory.

Finally, once you have selected the Deploy To Palm OS menu option (or used
the Palm Install tool to select the ProductCalc.prc file) and specified you want to
HotSync the file to the target device, the new program, Production Calculator,
will now appear in your program group. Figure 3-12 shows the final compiled and
uploaded application running.

67

Introduction to AppForge

Figure 3-11. Booster in the Palm main applications area

496ch03 12/21/01 2:48 PM Page 67

The Project Properties

The final item I would like to discuss is project preferences. From the AppForge
menu, select AppForge Settings. This will bring up the AppForge Settings dialog
box (see Figure 3-13). From this dialog box, you can control all aspects of the
AppForge project.

68

Chapter 3

Figure 3-12. The Production Calculator running in the POSE

496ch03 12/21/01 2:48 PM Page 68

The first item in the tree view is the App Name/Icon setting. Here you will see
the name of the application (as it will appear on the Palm), and you can also
assign an application icon.

The second item in the tree view is Dependencies. When you highlight this
item, the main panel to the right will change to display the dependencies of your
project (see Figure 3-14).

69

Introduction to AppForge

Figure 3-13. The AppForge Settings dialog box

496ch03 12/21/01 2:48 PM Page 69

The next two items are the Palm OS and Pocket PC Settings. The Palm OS set-
tings option simply contains the Creator ID information I mentioned earlier
when saving a project.

Conclusion

In this chapter, I’ve given you a brief overview of how the AppForge compiler
works and how to use it to build a simple application. I’ve also discussed the
basic principles behind how to compile, install, and test your final application in
the Palm environment.

70

Chapter 3

Figure 3-14. The AppForge Dependencies section of the AppForge Properties
window

496ch03 12/21/01 2:48 PM Page 70

