
CHAPTER 1

Jakarta Tomcat

IN THIS CHAPTER, we

• Introduce the Jakarta Tomcat server

• Describe the Jakarta Tomcat architecture

• Define Java Web applications

• Discuss the requirements for installing and configuring Tomcat

• Describe the steps of installing and configuring Tomcat

• Test your Tomcat installation

The Jakarta Tomcat Server

The Jakarta Tomcat server is an open source, Java-based Web application con-
tainer that was created to run servlet and JavaServer Page Web applications. It
exists under the Apache-Jakarta subproject, where it is supported and enhanced
by a group of volunteers from the open source Java community.

The Tomcat server has become the reference implementation for both the
servlet and JSP specifications. It is very stable and has all of the features of a com-
mercial Web application container. Tomcat also provides additional functionality
that makes it a great choice for developing a complete Web application solution.
Some of the additional features provided by Tomcat—other than being open
source and free—include the Tomcat Manager application, specialized realm
implementations, and Tomcat valves.

The Tomcat Manager Web Application

The Tomcat Manager Web application is packaged with the Tomcat server. It
is installed in the context path of /manager and provides the basic functionality
to manage Web applications running in the Tomcat server. Some of the provided

1

364ch01 10/19/01 9:22 AM Page 1

functionality includes the ability to install, start, stop, remove, and report on
Web applications.

Specialized Realm Implementations

Tomcat provides two methods for protecting resources. The first authentication
implementation provided with Tomcat is a memory realm. The class that imple-
ments the memory realm is org.apache.catalina.realm.MemoryRealm. The
MemoryRealm class uses a simple XML file as a container of users.

The second authentication implementation included with Tomcat is a JDBC
realm. A JDBCRealm class is much like the MemoryRealm, with the exception of
where it stores its collection of users. A JDBCRealm stores all of its users in a user-
defined, JDBC-compliant database.

Tomcat Valves

Tomcat valves are a new technology introduced with Tomcat 4. They allow you
to associate an instance of a Java class with a particular Catalina container.
Valves are proprietary to Tomcat and cannot, at this time, be used in a different
servlet/JSP container.

Further Information

Throughout this text, we discuss all of these Tomcat-specific features and
some other features that are common to all Web application containers. More
information about Tomcat can be found on its homepage:

http://jakarta.apache.org/tomcat/index.html

Figure 1-1 shows the Tomcat homepage.

2

Chapter 1

364ch01 10/19/01 9:22 AM Page 2

You can also subscribe to the Tomcat mailing lists, which can be found at the
following URL:

http://jakarta.apache.org/site/mail2.html

This page contains all of the mailing lists controlled by the Apache
Jakarta project. Once you are on the mailing lists page, scroll down until you find
the Tomcat lists and select the list that you would like to subscribe to. Figure 1-2
shows the mailing list options for Tomcat.

3

Jakarta Tomcat

Figure 1-1. The Tomcat homepage

364ch01 10/19/01 9:22 AM Page 3

The Architecture of Tomcat

Tomcat 4 is a complete rewrite of its ancestors. At the core of this rewrite is
the Catalina servlet engine, which acts as the top-level container for all
Tomcat instances.

With this rewrite of Tomcat comes an entirely new architecture composed
of a grouping of application containers, each with a specific role. The sum of
all of these containers makes up an instance of a Catalina engine. The following
code snippet provides an XML representation of the relationships between the
different Tomcat containers:

<Server>

<Service>

<Connector />

<Engine>

4

Chapter 1

Figure 1-2. The Tomcat mailing lists

364ch01 10/19/01 9:22 AM Page 4

<Host>

<Context>

</Context>

</Host>

</Engine>

</Service>

</Server>

This instance can be broken down into a set of containers including a server,
a service, a connector, an engine, a host, and a context. By default, each of these
containers is configured using the server.xml file, which we describe later in
more detail.

The Server

The first container element referenced in this snippet is the <Server> element. It
represents the entire Catalina servlet engine and is used as a top-level element
for a single Tomcat instance. The <Server> element may contain one or more
<Service> containers.

The Service

The next container element is the <Service> element, which holds a collection of
one or more <Connector> elements that share a single <Engine> element. N-number
of <Service> elements may be nested inside a single <Server> element.

The Connector

The next type of element is the <Connector> element, which defines the class
that does the actual handling requests and responses to and from a calling
client application.

5

Jakarta Tomcat

364ch01 10/19/01 9:22 AM Page 5

The Engine

The third container element is the <Engine> element. Each defined <Service> can
have only one <Engine> element, and this single <Engine> component handles all
requests received by all of the defined <Connector> components defined by a par-
ent service.

The Host

The <Host> element defines the virtual hosts that are contained in each instance
of a Catalina <Engine>. Each <Host> can be a parent to one or more Web appli-
cations, with each being represented by a <Context> component.

The Context

The <Context> element is the most commonly used container in a Tomcat
instance. Each <Context> element represents an individual Web application that
is running within a defined <Host>. There is no limit to the number of contexts
that can be defined within a <Host>.

Java Web Applications

The main function of the Tomcat server is to act as a container for Java Web appli-
cations. Therefore, before we can begin our Tomcat-specific discussions, a brief
introduction as to exactly what Web applications are is in order. The concept of
a Web application was introduced with the release of the Java servlet specification
2.2. According to this specification, “a Web Application is a collection of servlets,
html pages, classes, and other resources that can be bundled and run on multiple
containers from multiple vendors.” What this really means is that a Web appli-
cation is a container that can hold any combination of the following list of objects:

• servlets

• JavaServer pages (JSPs)

• utility classes

• static documents including HTML, images, and so on

6

Chapter 1

364ch01 10/19/01 9:22 AM Page 6

• client-side classes

• meta-information describing the Web application

One of the main characteristics of a Web application is its relationship to the
ServletContext. Each Web application has one and only one ServletContext.
This relationship is controlled by the servlet container and guarantees that no
two Web applications will clash when accessing objects in the ServletContext.
We discuss this relationship in much more detail in Chapter 3 (“Servlets, JSPs,
and the ServletContext”).

The Directory Structure

The container that holds the components of a Web application is the directory
structure in which it exists. The first step in creating a Web application is creating
this directory structure. Table 1-1 contains a sample Web application, named
/apress, and a description of what each of its directories should contain. Each
one of these directories should be created from the <SERVER_ROOT> of the Web
application container. An example of a <SERVER_ROOT> using Tomcat would be
/jakarta-tomcat/webapps.

Table 1-1. The Directories of a Web Application

DIRECTORY DESCRIPTION

/apress The root directory of the Web application. All JSP and

HTML files should be stored here.

/apress/WEB-INF Contains all resources related to the application that

are not in the document root of the application. This is

where your Web application deployment descriptor

is located (defined in the next section). Note that the

WEB-INF directory is not part of the public document.

No files contained in this directory can be requested

directly by a client.

/apress/WEB-INF/classes Where servlet and utility classes are located

/apress/WEB-INF/lib Contains Java Archive files that the Web application is

dependent upon. For example, this is where you would

place a JAR file that contained a JDBC driver or JSP

tag library.

As you look over the contents of the Web application’s directory structure,
notice that Web applications allow for compiled objects to be stored in both the

7

Jakarta Tomcat

364ch01 10/19/01 9:22 AM Page 7

/WEB-INF/classes and /WEB-INF/lib directories. Of these two, the class loader
loads classes from the /classes directory first, followed by the JARs that are
stored in the /lib directory. If duplicate objects in both the /classes and /lib
directories exist, the objects in the /classes directory take precedence.

The Deployment Descriptor

At the heart of all Web applications is a deployment descriptor that is an
XML file named web.xml. The deployment descriptor is located in the
/<SERVER_ROOT>/applicationname/WEB-INF/ directory. It describes configuration
information for the entire Web application. For our application, the web.xml file is
in the /<SERVER_ROOT>/apress /WEB-INF/ directory. The information that is con-
tained in the deployment descriptor includes the following elements:

• servlet definitions

• servlet initialization parameters

• session configuration parameters

• servlet/JSP Mappings

• MIME type mappings

• security configuration parameters

• a welcome file list

• a list of error pages

• resource and environment variable definitions

The following code snippet contains a limited example of a Web application
deployment descriptor. As we move through this book, we will be looking at the
web.xml file and its elements in much more detail.

<web-app>

<display-name>The APress App</display-name>

<session-timeout>30</session-timeout>

<servlet>

<servlet-name>TestServlet</servlet-name>

<servlet-class>com.apress.TestServlet</servlet-class>

8

Chapter 1

364ch01 10/19/01 9:22 AM Page 8

<load-on-startup>1</load-on-startup>

<init-param>

<param-name>name</param-name>

<param-value>value</param-value>

</init-param>

</servlet>

</web-app>

In this example, we are setting three application-level elements, the first of
which is the <display-name>. This element simply describes the name of the Web
application. It is functionally ineffective.

The second Web application-level element is the <session-timeout>
element, which controls the lifetime of the application’s HttpSession object. The
<session-timeout> value that we have used above tells the JSP/servlet container
that the HttpSession object will become invalid after 30 minutes of inactivity.

The last application-level element that we have defined is the <servlet>
element, which defines a servlet and its properties. We will further define the
<servlet> elements when we discuss deploying servlets and JSPs to Tomcat in
Chapter 2 (“Deploying Web Applications to Tomcat”).

Packaging

Now that you know what a Web application is, you need to package it for deploy-
ment. The standard method for packaging Web applications is to use a Web
archive (WAR) file, which you can create by using Java’s archiving tool jar. An
example of this would be to change to the root directory of your Web application
and type the following command:

jar cvf apress.war .

This command produces an archive file named apress.war that contains
your entire Web application. Now you can deploy your Web application by simply
distributing this file, which we will cover in Chapter 2.

Requirements for Installing and Configuring Tomcat

Before we get started performing the tasks outlined by this chapter, you need to
download the items listed in Table 1-2.

9

Jakarta Tomcat

364ch01 10/19/01 9:22 AM Page 9

Table 1-2. Tomcat Requirements

NAME LOCATION

Tomcat 4 http://jakarta.apache.org/site/binindex.html

JDK 1.3 Standard Edition http://java.sun.com/j2se/1.3/

Installing and Configuring Tomcat

In this section, we install Tomcat as a standalone server, which means that
Tomcat will service all requests, including static content, JSPs, and servlets.

To install and configure Tomcat, first download the packages from the previ-
ously listed locations. You should choose the appropriate downloads based on
your operating system. (We cover the steps involved in installing to both NT/2000
and Linux.)

10

Chapter 1

NOTE With the release of Tomcat 4, there is a Window instal-
lation application. If you choose to install Tomcat from this
executable, you can skip the following section and pick up
your reading at the section, “Testing Your Tomcat Installation.”

Manually Installing to Windows NT/2000

The first installation we will be performing is for Windows NT/2000. The first
thing you need to do is install the JDK. For this example, I am installing the JDK
to drive D:, so therefore my JAVA_HOME directory is D:\jdk1.3.

NOTE Make sure you follow the instructions included with
your OS-appropriate JDK.

Now you need to extract the Tomcat server to the directory where you want it
to run. Again, I am installing to drive D:, which makes my TOMCAT_HOME directory
D:\jakarta-tomcat.

364ch01 10/19/01 9:22 AM Page 10

After you have extracted Tomcat, you need to add two environment variables
to the NT/2000 system: JAVA_HOME, which is the root directory of your JDK instal-
lation, and TOMCAT_HOME, which is the root directory of your Tomcat installation.
To do this under NT/2000, perform the following steps:

1. Open the NT/2000 control panel. You should see an image similar to that
shown in Figure 1-3.

11

Jakarta Tomcat

NOTE Tomcat does not come packaged with any install
scripts. Therefore, extraction equals installation.

Figure 1-3. NT/2000 control panel

364ch01 10/19/01 9:22 AM Page 11

2. Now start the NT/2000 system application and click on the Advanced
tab. You should see a screen similar to that shown in Figure 1-4.

3. Next, click on the Environment Variables button. You will see a screen
similar to that shown in Figure 1-5.

12

Chapter 1

Figure 1-4. NT/2000 system application

364ch01 10/19/01 9:22 AM Page 12

4. Now, click on the New button on the System Variables section of the
Environment Variables dialog box. Add a variable named JAVA_HOME and
set its value to the location of your JDK installation. Figure 1-6 shows the
settings associated with my installation.

13

Jakarta Tomcat

Figure 1-5. Environment variables dialog box

Figure 1-6. JAVA_HOME environment settings

364ch01 10/19/01 9:22 AM Page 13

5. Your final step should be to repeat Step 4, but this time using
TOMCAT_HOME for the variable name and the location of your Tomcat
installation as the value. For my installation, I am setting the value to
D:\jakarta-tomcat.

That is all there is to it. If you are not going to perform a Linux installation,
you should skip the following section “Installing to Linux” and move on to the
section “Testing Your Tomcat Installation.”

Installing to Linux

A Linux installation is a much simpler process compared to a Windows instal-
lation. The first thing you need to do is install the downloaded JDK. It is assumed
that the JDK is installed to /user/java/jdk1.3.0_02.

After the JDK has been installed, you need to set the JAVA_HOME environment
variable. To do this under Linux, find the shell that you are using in Table 1-3 and
type the matching command. You need to replace /user/java/jdk1.3.0_02 with
the root location of your JDK installation.

Table 1-3. JAVA_HOME Environment Commands

SHELL JAVA_HOME

bash JAVA_HOME=/user/java/jdk1.3.0_02;export JAVA_HOME

tsh setenv JAVA_HOME /user/java/jdk1.3.0_02

14

Chapter 1

NOTE You should also add the location of the Java inter-
preter to your PATH environment variable.

You now need to extract the Tomcat server to a directory of your choosing.
This directory will become the TOMCAT_HOME directory. For this installation, we
assume that Tomcat is installed to /var/tomcat.

The last step is to set the TOMCAT_HOME environment variable. Find the shell
that you are using in Table 1-4 and type the matching command. You need to
replace /var/tomcat with the directory of your Tomcat installation.

364ch01 10/19/01 9:22 AM Page 14

Table 1-4. TOMCAT_HOME Environment Commands

SHELL TOMCAT_HOME

bash TOMCAT_HOME=/var/tomcat;export TOMCAT_HOME

tsh setenv TOMCAT _HOME /var/tomcat

And that is all there is to the Linux installation. You should now be able to
move on to the section, “Testing Your Tomcat Installation.”

Testing Your Tomcat Installation

To test the Tomcat installation, you need to first start the Tomcat server. Table 1-5
contains the startup and shutdown commands for both operating systems.

15

Jakarta Tomcat

Table 1-5. Tomcat Startup/Shutdown Commands

OS STARTUP SHUTDOWN

Windows NT/2000 TOMCAT_HOME\bin\startup.bat TOMCAT_HOME\bin\shutdown.bat

Linux TOMCAT_HOME /bin/startup.sh TOMCAT_HOME /bin/shutdown.sh

NOTE If you have installed Tomcat on Windows, a folder was
placed in your Windows “Start” menu with shortcuts that
allow you to start and stop your Tomcat server from there.

Once Tomcat has started, open your browser to the following URL:

http://localhost:8080/

You should see a page similar to that shown in Figure 1-7.

364ch01 10/19/01 9:22 AM Page 15

If you would like to have all requests serviced on the default HTTP port
of 80 instead of port 8080, you need to make the following change to the
TOMCAT_HOME/conf/server.xml file and restart Tomcat:

From:

<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 -->

<Connector className=”org.apache.catalina.connector.http.HttpConnector”

port=”8080” minProcessors=”5” maxProcessors=”75”

acceptCount=”10” debug=”0”/>

To:

<!-- Define a non-SSL HTTP/1.1 Connector on port 80 -->

<Connector className=”org.apache.catalina.connector.http.HttpConnector”

port=”80” minProcessors=”5” maxProcessors=”75”

acceptCount=”10” debug=”0”/>

16

Chapter 1

Figure 1-7. The Tomcat default page

364ch01 10/19/01 9:22 AM Page 16

Now you should be able to open your browser to the following URL and see
results similar to those shown in Figure 1-8:

http://localhost

The next step is to verify the installation of your JDK. You do this by executing
one of the JSP examples provided with the Tomcat server. To execute an example
JSP, start from the page shown in Figure 1-7 and choose JSP Examples. You should
see a page similar to that shown in Figure 1-8.

Now choose the JSP example Date and select the Execute link. If everything
was installed properly, you should see a page similar to Figure 1-9 (with a differ-
ent date, of course).

17

Jakarta Tomcat

Figure 1-8. The JSP examples page

364ch01 10/19/01 9:22 AM Page 17

If you do not see the previous page, make sure that the location of your
JAVA_HOME environment variable matches the location of your JDK installation.

Summary

In this chapter, we introduced the Jakarta Tomcat server and discussed its
main uses. We briefly discussed Java Web applications, which are at the core of
the Tomcat server. We went on to install and configure Tomcat on both Windows
NT/2000 and Linux. We also discussed some simple steps to test your new instal-
lation. In the next chapter, “Deploying Web Applications to Tomcat,” we begin
our discussions on how to create and deploy real Web applications using the
Tomcat server.

18

Chapter 1

Figure 1-9. The JSP date page

364ch01 10/19/01 9:22 AM Page 18

