
CHAPTER 4

The Document Object
Model (DOM)

WE HAVE SEEN HOW AN XML document can be transformed into an HTML docu-
ment for presentation and into another XML document. What else can we do
with an XML document? The next natural thing we would like to do is to manipu-
late the data and structure in an XML document. The basic functions would
include insertion of new information, modification or deletion of existing data in
the document. In this chapter, we introduce DOM programming as a technique
for achieving this objective.

Introduction to DOM

The Document Object Model (DOM) provides an application programming
interface (API) that is platform- and language-neutral. Application developers
can access and manipulate the data in an XML document through these inter-
faces using their favorite scripting or programming languages and without
having to worry about the platform on which the scripts will run.

107

NOTE The freedom in choosing the platform and language
is, however, dependent on the parser to be used to expose the
XML DOM implementation of an XML document. We will
look at DOM parsers in a moment.

The World Wide Web Consortium (W3C) releases the DOM specifications
according to levels:

• The DOM Level 1 specification was released as W3C Recommendation
in October 1998. The working draft of the second edition is submitted in
September 2000 to incorporate errata changes of the earlier version.

• The DOM Level 2 modules were released as W3C Recommendations in
November 2000.

429ch04.qxp 1/11/02 3:18 PM Page 107

• The DOM Level 3 working drafts were submitted in the first half of 2001.
The latest working draft available at the point of this writing is dated
September 13, 2001.

DOM-based APIs are being developed in the specifications for the
Mathematical Markup Language (MathML), Scalable Vector Graphics (SVG), and
Synchronized Multimedia Integration Language (SMIL).

DOM is a tree-based API to documents that requires the entire XML docu-
ment to be represented in memory while processing it. An alternative to DOM is
the event-based Simple API for XML (SAX), which can be used to process large
XML documents with limited memory available for processing.

108

Chapter 4

NOTE SAX is discussed in Chapter 7.

XML DOM Parsers

XML DOM parsers are software that are able to interpret an XML document as
a DOM instance, typically representing it as a tree of nodes in memory. We shall
call this tree the document tree as used in the DOM specifications or simply
DOM tree.

Note that the DOM specifications do not specify the data structure for imple-
mentation, but typically a tree structure is most natural for representing a DOM
implementation of an XML document. A tree structure enables ease of access to
its various types of nodes by their relative position. The tree traversal order is typ-
ically top-down and left-to-right.

XML DOM parsers include the MSXML that is in the Microsoft’s Internet
Explorer, Oracle’s XML Parser for Java v2, and Xerces of the Apache Software
Foundation.

All conforming implementations of DOM must fully implement the funda-
mental interfaces of the DOM specification.

Support of DOM in MSXML3

MSXML3 implements the fundamental and extended interfaces of DOM
Level 1 specification.

429ch04.qxp 1/11/02 3:18 PM Page 108

The DOM Level 1 specification consists of two parts, namely Core and
HTML. The Core DOM provides fundamental interfaces for representing any
structured document and also extended interfaces for representing an XML doc-
ument. The HTML DOM provides high-level interfaces that are used with the
fundamental Core DOM to provide a representation of an HTML document.

All conforming implementations of DOM Level 1 must fully implement the
fundamental interfaces and exception listed in Table 4-1.

Table 4-1. DOM Level 1 Fundamental Interfaces and Exception

FUNDAMENTAL INTERFACE/EXCEPTION DESCRIPTION

Interface DOMImplementation Provides methods for performing

operations that are independent of any

specific instance of the document

object model.

Interface DocumentFragment A lightweight Document that is used to

represent a portion of a document tree or

a new fragment of a document.

Interface Document Represents an entire XML document. An

entry point for accessing the entire

document is provided as the root of the

document tree. Note that this root is not

the root element of the represented XML

document. This root is above the latter in

the tree hierarchy.

Interface Node Represents a node in the document tree.

A node in a tree can represent different

valid components in an XML document

such as element, attribute, text, comment

and processing instruction, document

type, as well as DOM-specific components

such as a document instance and

document fragment.

Interface NodeList An ordered (based on the document tree)

collection of nodes, where the individual

nodes may be addressed by an index,

starting from 0 for the first node in

the collection.

(continued)

109

The Document Object Model (DOM)

429ch04.qxp 1/11/02 3:18 PM Page 109

Table 4-1. DOM Level 1 Fundamental Interfaces and Exceptions (continued)

FUNDAMENTAL INTERFACE/EXCEPTION DESCRIPTION

Interface NamedNodeMap As in NodeList, NamedNodeMap refers to

a collection of nodes. However, in this

case, the nodes may be addressed by an

index as well as by name. It is typically

used for attribute nodes.

Interface CharacterData This is an extension of the Node interface,

specifically for handling any character

data.

Interface Attr This is another extension of the Node

interface, specifically for handling an

attribute.

Interface Element This is an extension of the Node interface,

specifically for handling an element.

Interface Text This is an extension of the CharacterData

interface, specifically for handling a text

node.

Interface Comment This is an extension of the CharacterData

interface, specifically for handling

a comment node.

Exception DOMException An instance of DOMException is used to

raise an exception when an undesirable or

exceptional circumstance occurs. An

example of such exceptional circumstance

is an unsuccessful attempt to access

a nonexistent node in a given context.

In addition, MSXML3 also implements extended interfaces, which are shown
in Table 4-2.

110

Chapter 4

429ch04.qxp 1/11/02 3:18 PM Page 110

Table 4-2. DOM Level 1 Extended Interfaces

EXTENDED INTERFACE DESCRIPTION

Interface CDATASection This is an extension of the Text interface,

specifically for handling a CDATA section.

Interface DocumentType This is an extension of the Node interface,

specifically for handling the document type

(through the <!DOCTYPE> element) of an XML

document.

Interface Entity This is for representing a parsed or unparsed

entity.

Interface EntityReference This is for representing an XML entity

reference such as and ".

Interface Notation This is an extension of the Node interface,

specifically for handling a notation.

Interface ProcessingInstruction This is an extension of the Node interface,

specifically for handling a processing

instruction.

Each interface and exception may consist of one or more of the following
types of components:

• Predefined constants

• Properties, also called attributes (which should not be confused with the
attributes used in an XML document that are associated with elements)

• Methods, also called functions

Refer to Appendix B for a complete list of properties and methods that are
associated with each interface and exception in Table 4-1 and Table 4-2.

Representing XML Document as a Tree

As mentioned earlier, the MSXML parser represents an XML document as a tree
of nodes in memory when the document is loaded. The DOM library provides
programmers with APIs to manipulate the tree that is built in the memory.

Figure 4-1 depicts the role of the parser in facilitating the programming that can
be incorporated into an application to access and edit data in an XML document.

111

The Document Object Model (DOM)

429ch04.qxp 1/11/02 3:18 PM Page 111

Each of the components in an XML document can be mapped onto a node.
Hence we would find different types of nodes such as element node, attribute
node, comment node, and processing-instruction node. On top of that, there is
an additional node, which alludes to the entire document and is called the
Document node of the tree structure.

Consider the following XML document, Bestpicks.xml:

<?xml version=”1.0”?>

<BOOKS xmlns:apress=”http://www.apress.com”>

<apress:BOOK ISBN=”1893115860” Pages=”357” Type=”SOFT”>

<!--This is the first book-->

<TITLE>A Programmer’s Introduction to C#</TITLE>

<AUTHOR>Eric Gunnerson</AUTHOR>

<PRICE>34.95</PRICE>

</apress:BOOK>

<BOOK ISBN=”189311595X” Pages=”380” Type=”HARD”>

<TITLE>Cryptography in C & C++</TITLE>

<AUTHOR>Michael Welschenbach</AUTHOR>

<PRICE>49.95</PRICE>

</BOOK>

<BOOK ISBN=”1893115763” Pages=”400” Type=”SOFT”>

<TITLE>C++ for VB Programmers</TITLE>

<AUTHOR>Jonathan Morrison</AUTHOR>

<PRICE>49.95</PRICE>

</BOOK>

</BOOKS>

The Bestpicks.xml document can be depicted as a tree as shown in Figure 4-2,
which for the sake of simplicity, shows only the first two <BOOK> elements due to
space. The attribute nodes are represented as ellipses with dotted lines and the
text nodes are represented as rectangles.

112

Chapter 4

Figure 4-1. Transforming an XML document into a DOM tree for read/write access
by an application

429ch04.qxp 1/11/02 3:18 PM Page 112

113

The Document Object Model (DOM)

Figure 4-2. Partial tree representation of Bestpicks.xml

429ch04.qxp 1/11/02 3:18 PM Page 113

Creating a DOM Tree of an XML Document in Memory

The creation of a DOM representation of an XML document in the memory
before further manipulating it through the DOM API involves three basic steps:

1. Create an instance of the Document interface, i.e., a DOM instance or
DOM object

2. Specify the asynchronization requirement

3. Load content into the instance of DOM created in the first step

As shown in the following example, the basic steps can be coded in VBScript
where data is loaded from the document, Bestpicks.xml, using the MSXML parser
at the client:

<script language=”VBScript”>

<!--

Dim docObj

Set docObj = CreateObject (MSXML2.DOMDocument)

docObj.async = false

docObj.load (“Bestpicks.xml”)

//-->

</script>

To load data from the same XML document at the server using ASP and
VBScript, do the following:

<%

Dim docObj

Set docObj = Server.CreateObject (MSXML2.DOMDocument)

docObj.async = false

docObj.load (Server.MapPath(“Bestpicks.xml”))

%>

The client-side script allows us to easily add a display statement after the
loading statement to check the loaded contents of the DOM instance:

msgbox docObj.xml

The content of the document, to which docObj points, appears as shown in
Figure 4-3.

114

Chapter 4

429ch04.qxp 1/11/02 3:18 PM Page 114

We next look at each of the three steps in greater detail.

Creating an Instance of DOM

The DOM Level 1 does not provide a way to create a Document instance. That is,
the creation of a Document instance is an implementation-specific operation.
The Microsoft-specific APIs that are used for creating Document instances are
shown in the following code snippet; the first is used in client-side script while
the second is used in server-side script:

Set docObj = CCrreeaatteeOObbjjeecctt (MSXML2.DOMDocument)

and

Set docObj = SSeerrvveerr..CCrreeaatteeOObbjjeecctt (MSXML2.DOMDocument)

115

The Document Object Model (DOM)

Figure 4-3. Display of the DOM object for Bestpicks.xml using a message box

429ch04.qxp 1/11/02 3:18 PM Page 115

Setting Asynchronization Flag

The asynchronization requirement is specified either as true (default value) or
false before the document object just created is populated with content. A false
value indicates that the next call for loading content into the document object is
a blocked operation. That is, loading must be completed before the script that
follows is processed.

On the other hand, a true value to the async property allows processing of
the script that follows to continue after the load operation is set to action.

For the latter case, MSXML3 provides properties for use with a document
object to check its loading state before processing the DOM tree. This can be
done using the event handler onDataAvailable or through explicitly testing the
readyState property of the Document instance.

For example, the following causes the function processData() to be executed
when data becomes available:

docObj.onDataAvailable = processData()

There are several constant values defined for the readyState property to indi-
cate the current loading state of the XML document (DOM) object. They are as
listed in Table 4-3.

Table 4-3. Possible Values of readyState

VALUE OF READYSTATE DESCRIPTION

1 Loading of data is in progress.

2 Data has been loaded. Reading and parsing of data are

in progress.

3 Some data has been read and parsed, which is

available for read-only access.

4 The entire loading of the document is completed.

The result may be a success or failure. Further check

is needed to ensure successful loading.

The parseError object holds error information regarding a DOM object (e.g.,
docObj) and checks if the error code is 0, which indicates successful loading,
or otherwise:

if docObj.readystate = 4 then

set loadingErr = docObj.parseError

if loadingErr.errorCode = 0 then

116

Chapter 4

429ch04.qxp 1/11/02 3:18 PM Page 116

msgbox “successful loading”

else

msgbox “loading failed”

end if

end if

Loading XML Data into a DOM Instance

In our example, the load() method is used to load the XML data or content into
the DOM instance, docObj. Specifically, the XML content is loaded from an XML
document named Bestpicks.xml. A DOM instance loaded from an XML docu-
ment would have a non-null URL name that can be accessed using the URL
property of the DOM instance. The following code:

msgbox (docObj.uurrll)

will display a message box that is similar to the one that appears in Figure 4-4.

If the source of XML data is a string, the loadXML() method is used for both
client- and server-side scripts, as illustrated in the following example:

docObj.llooaaddXXMMLL (“<?xml version=’1.0’?>” &_

“<BOOKS><BOOK>” &_

“<TITLE>A Programmer’s Introduction to C#</TITLE>” &_

“</BOOK></BOOKS>”)

If the source of XML data for loading is passed to an ASP script through
a request, we should load the data from the Request object as defined in the ASP
programming model:

docObj.load RReeqquueesstt

117

The Document Object Model (DOM)

Figure 4-4. Displaying URL of data source for a DOM object

429ch04.qxp 1/11/02 3:18 PM Page 117

Saving a DOM Tree

You can save a DOM representation residing in the memory into an XML docu-
ment as a text file with extension .xml, which is in turn stored in some
permanent storage. This is appropriate only in server-side processing for obvious
security reasons; no client would freely let a script create a file locally.

The following server-side ASP script fragment shows how a DOM tree that is
referred to as docObj is saved as a text stream into a file named mysample.xml
through the save() method:

docObj.ssaavvee (Server.MapPath(“mysample.xml”))

After this line is executed, check the server directory and you should see the
file, mysample.xml, created in the same folder as the current ASP script. If you
want to save the data into a subdirectory, named samples, of the folder contain-
ing the current ASP script, simply modify the path as shown here:

docObj.ssaavvee (Server.MapPath(“samples/mysample.xml”))

Alternatively, you may retrieve and save the DOM tree into a temporary
string variable in an application using the xml property of the document object.
To accomplish this either on the client or server side, simply incorporate the fol-
lowing VBScript statement:

tempString = docObj.xxmmll

In addition, we may want to display the string in a message box by incorpo-
rating the following VBScript statement into a client-side script:

msgbox docObj.xxmmll

We have seen how a DOM object defined in the DOM Level 1 specification,
also known as a DOMDocument object as used in MSXML3, is created and
loaded with data. We are now ready to manipulate the DOM tree that is built by
the MSXML3 parser. The rest of the chapter demonstrates the use of some of the
DOM Level 1 interfaces to access and manipulate the DOM tree.

118

Chapter 4

NOTE We look at an example on loading from the Request
object later in this chapter.

429ch04.qxp 1/11/02 3:18 PM Page 118

Fundamental APIs for Processing a DOM Tree

In this section, we introduce the properties and methods of some of the core
interfaces implemented by the MSXML parser. The interfaces discussed include
the Document, Node, NodeList, Element, and Attr interfaces.

Reference to the DOM Tree

When the DOM tree is first created, the reference to the DOM tree is the root node
of the tree, which is a Document node, or sometimes also called a DOM node. In
the previous section, we saw how a DOM tree is created to represent the docu-
ment Bestpicks.xml through the loading method:

docObj.load (“Bestpicks.xml”)

In this example, the reference to the DOM tree is the Document node named
docObj.

Reference to the Document Root Element

To start traversing to the next level after the root of the DOM tree for
Bestpicks.xml, we need to reference the node representing the document root
element, <BOOKS>, which can easily be accomplished by using the
documentElement property of the Document node, docObj:

Set BOOKSnode = docObj.documentElement

The variable BOOKSnode now references the <BOOKS> element of the DOM
tree that is shown in Figure 4-5.

119

The Document Object Model (DOM)

429ch04.qxp 1/11/02 3:18 PM Page 119

Fundamentals of a Node

Every node in the DOM tree is an instance of the Node interface. Each node has
properties and methods as defined in DOM Level 1.

In addition, each specific type of node, such as an element node, may further
extend the Node interface with additional properties and methods that pertain to
that node type.

What Do We Know about a Node?

Each node of the DOM tree has a name, type, and value. We can find out the
name, type, and value of a node, such as BOOKSnode, using the following properties:

BOOKSnode.nodeName

BOOKSnode.nodeType

BOOKSnode.nodeValue

The values of the properties nodeName, nodeType, and nodeValue of a node
depend on the type of the node as described in Table 4-4.

120

Chapter 4

Figure 4-5. References to root node and document element

429ch04.qxp 1/11/02 3:18 PM Page 120

Table 4-4. Name, Type, and Value of a Node

TYPE OF NODE VALUE OF NODENAME CONSTANT AND NUMERIC VALUE OF

VALUES OF NODETYPE NODEVALUE

Element Name of the ELEMENT_NODE(1) null

element tag

Attr Name of the ATTRIBUTE_NODE (2) Value of the

attribute attribute

Text #text TEXT_NODE (3) Text value of

the node

CDATA Section #cdata-section CDATA_SECTION_NODE (4) CDATA content

Entity-Reference Name of the ENTITY_REFERENCE_NODE (5) null

referenced entity

Entity Entity name ENTITY_NODE (6) null

Processing- target PROCESSING_INSTRUCTION_NODE (7) Value of the in-

Instruction struction portion

Comment #comment COMMENT_NODE (8) Value of the

comment node

Document #document DOCUMENT_NODE (9) null

Document Type Name of DOCUMENT_TYPE_NODE (10) null

document type

Document #document- DOCUMENT_FRAGMENT_NODE (11) null

Fragment fragment

Notation Notation name NOTATION_NODE (12) null

121

The Document Object Model (DOM)

The following is a list of other properties of a Node object as defined by DOM
Level 1. More detailed descriptions of the properties are given in Appendix B.

• parentNode

• childNodes

• firstChild

• lastChild

429ch04.qxp 1/11/02 3:18 PM Page 121

• previousSibling

• nextSibling

• attributes

• ownerDocument

MSXML extends the property set defined in DOM Level 1 with several other
useful properties such as the nodeTypeString and xml properties. In fact, we have
seen the latter earlier in this chapter when we discussed the saving of a DOM
tree. The nodeTypeString property refers to the type of node by character string,
e.g., “element” instead of the value 1.

Consider Listing 4.1 (NodeProperties.html), which contains a script to access
some of the properties of some nodes in the DOM tree representing the XML
document Bestpicks.xml:

Listing 4-1. NodeProperties.html
<html>

<script language=”vbscript”>

<!--

‘Initializing and loading a DOM object

Dim docObj

Set docObj = CreateObject(“Msxml2.DOMDocument”)

docObj.async = false

docObj.load “Bestpicks.xml”

‘Initializing 2 Node objects

Set BOOKSnode = docObj.documentElement

Set firstBOOK = BOOKSnode.ffiirrssttCChhiilldd

‘Displaying name, type and value properties of docObj

document.write “<h2>Name, type and value of docObj</h2>”

document.write “<p>nodeName: ” & docObj.nnooddeeNNaammee & “”

document.write “
nodeType: ” & docObj.nnooddeeTTyyppee &_

“ (“ & docObj.nnooddeeTTyyppeeSSttrriinngg & “)”

document.write “
nodeValue: ” & docObj.nnooddeeVVaalluuee & “”

‘Displaying name, type and value properties of BOOKSnode

document.write “<h2>Name, type and value of BOOKSnode</h2>”

document.write “<p>nodeName: ” & BOOKSnode.nnooddeeNNaammee & “”

document.write “
nodeType: ” & BOOKSnode.nnooddeeTTyyppee &_

“ (“ & BOOKSnode.nnooddeeTTyyppeeSSttrriinngg & “)”

document.write “
nodeValue: ” & BOOKSnode.nnooddeeVVaalluuee & “”

122

Chapter 4

429ch04.qxp 1/11/02 3:18 PM Page 122

‘Displaying XML content of the first BOOK

msgbox firstBOOK.xxmmll

//-->

</script>

</html>

Figure 4-6 displays a page of contents and a message box that is produced by
NodeProperties.html when it is loaded using Internet Explorer 5.0.

What Can We Do with a Node?

We have seen earlier how you can access the first child node of a given node by
using the firstChild property. There are occasions when you would like to test if
the node in question has any child node before addressing a specific child node.
The hasChildNodes() method provides a way to check if a node contains any
child node. It returns true if the answer is positive.

For example, if docObj and BOOKSnode are defined in NodeProperties.html,
adding either of the following lines of script

msgbox docObj.hhaassCChhiillddNNooddeess(())

msgbox BOOKSnode.hhaassCChhiillddNNooddeess(())

yields the message box that is shown in Figure 4-7 in which the Boolean result is
True since each of the nodes consists of at least one child node.

123

The Document Object Model (DOM)

Figure 4-6. Display produced by NodeProperties.html using Internet Explorer 5.0

429ch04.qxp 1/11/02 3:18 PM Page 123

MSXML provides the following additional methods for the Node interface as
listed in Table 4-5.

Table 4-5. MSXML Methods to the Node Interface

METHOD DESCRIPTION

selectNodes (p) This method returns a list of descendant nodes of

this context node that matches the pattern

specified by p, which is a valid XPath expression.

selectSingleNode (p) This method returns the first descendant node of

this context node that matches the pattern

specified by p, which is a valid XPath expression.

transformNode (s) This method returns the result, in string, of

transformation applied on this node and its

children using the supplied XSLT stylesheet DOM

object, s.

transformNodeToObject (s, r) This method processes this node and its children

using the supplied XSLT stylesheet DOM object, s,

and returns the resulting transformation in the

supplied object, r.

Adding the following two lines of script in NodeProperties.html

msgbox “Title of first <BOOK>: “ &_

docObj.sseelleeccttSSiinngglleeNNooddee(“//TITLE”).firstChild.nodeValue

yields the display that is shown in Figure 4-8.

124

Chapter 4

Figure 4-7. Response to hasChildNodes() for docObj or BOOKSnode

429ch04.qxp 1/11/02 3:18 PM Page 124

Since <TITLE> is an element, its node value is null. In order to display the
title, we must traverse down the tree shown in Figure 4-2 from the <TITLE> node
of the first <BOOK> node, which gives us a text node next. The content of the text
node is “A Programmer’s Introduction to C#.” Since the nodeValue of a text node
displays the content of the node, we can use this property to print out the title of
the book concerned.

We have seen how transformNode() is used in Chapter 3:

Response.write (xml.ttrraannssffoorrmmNNooddee(xsl))

The DOM object (xml) representing an XML data document was transformed
by the stylesheet represented as the DOM object, xsl. The result is a string, which
is output as a stream from the server to the client.

By using transformNodeToObject() we are able to realize the same transfor-
mation and output the result to an object such as a DOM object as follows:

Set output = CreateObject(MSXML2.DOMDocument)

xml.transformNodeToObject (xsl, output)

Fundamentals of a NodeList

The NodeList interface is different from the Node interface in that it is represent-
ing a set of nodes instead of just one single node. There is only one property and
one method defined for the NodeList interface by the World Wide Web
Consortium (W3C) DOM Level 1. They are the length property and the item()
method, and they are discussed in the next two subsections.

125

The Document Object Model (DOM)

Figure 4-8. Displaying the first title in the DOM object, docObj

429ch04.qxp 1/11/02 3:18 PM Page 125

Size of a NodeList

Assuming that BOOKSnode represents the <BOOKS> element node of the tree that
is shown in Figure 4-2, we can find out the number of <BOOK> child nodes that
the tree contains by using the following line of script:

msgbox “No. of <BOOK> nodes under <BOOKS>: “ &_

BOOKSnode.selectNodes(“BOOK”).lleennggtthh

The expression, BOOKSnode.selectNodes(“BOOK”), returns a NodeList object,
which is an ordered set of descendant nodes of the <BOOKS> node and which
has the tag name, BOOK. The length property of a node list returns the number
of nodes it contains, which is two in this case since there are two such <BOOK>
nodes under the <BOOKS> node.

Getting to the Individuals of a NodeList

The item() method takes in a parameter, say i, which is used as the index of the
requested node in a given node list. In short, it returns the (i+1)th node in the list
for the specified index parameter, i, since the index starts with 0.

Using the same reference node that is indicated by BOOKSnode, as shown in
Figure 4-5, consider the following lines of script:

Set BOOKnodes = BOOKSnode.selectNodes(“BOOK”)

msgbox BOOKnodes.iitteemm((11)).xml

The script displays the subtree that is the second <BOOK> element of
Bestpicks.xml.

126

Chapter 4

Figure 4-9. Display the number of <BOOK> nodes under the <BOOKS> node

429ch04.qxp 1/11/02 3:18 PM Page 126

The expression, BOOKnodes.item(1), can be simplified to BOOKnodes(1).

Fundamentals of an Element Node

The Element node is a special case of node that extends the Node interface with
an additional property and some other methods pertaining to elements. In ad-
dition, MSXML also defines some useful properties and methods to this interface.

Names of an Element Node

The first thing we can find out about an element node is its name.
Let’s assume that the same definition applies to firstBOOK (as we have seen

earlier), which is depicted in Figure 4-11.

127

The Document Object Model (DOM)

Figure 4-10. XML data for the second <BOOK> element in Bestpicks.xml

Figure 4-11. Reference to the first child node of the <BOOKS> node

429ch04.qxp 1/11/02 3:18 PM Page 127

Consider the following script fragment:

msgbox “nodeName: “ & firstBOOK.nodename & vbCRLF &_

“tagName: “ & firstBOOK.tagname & vbCRLF &_

“baseName: “ & firstBOOK.basename & vbCRLF &_

“prefix: “ & firstBOOK.prefix & vbCRLF &_

“namespaceURI: “ & firstBOOK.namespaceURI

The properties that are displayed in Figure 4-12 refer to naming information
of an element, in which the last three properties are MSXML extensions to the
DOM Level 1 definition.

Relating to Other Element Nodes

Let’s try to traverse the DOM tree using firstBOOK as the reference node (Table 4-6).

128

Chapter 4

Figure 4-12. Naming information of the first book in Bestpicks.xml

429ch04.qxp 1/11/02 3:18 PM Page 128

Table 4-6. Examples of Traversal to Other Element Nodes from the Node Referenced by firstBOOK

DESCRIPTION MESSAGE BOX SCRIPT & DISPLAY

Displaying the name of Msgbox firstBOOK.parentNode.nodeName

parent node of firstBOOK.

Displaying the contents of Msgbox firstBOOK.nextSibling.xml

the node that is the next sibling

(to the right) of firstBOOK.

Displaying the contents of the Msgbox firstBOOK.lastChild.xml

node that is the last child

element node of firstBOOK.

Displaying the name of Msgbox firstBOOK.ownerDocument.nodeName

the Document node that

represents the document

containing firstBOOK.

129

The Document Object Model (DOM)

429ch04.qxp 1/11/02 3:18 PM Page 129

It should be highlighted that firstBOOK.attributes returns
a NamedNodeMap object, which is an unordered list of nodes, whose individual
nodes may be retrieved by their names, such as using the getAttribute() method.

Fundamentals of an Attr Node

We have just seen how an attribute of an element node is accessed. We look at
some of the properties and methods of an Attr (i.e., attribute) node here.

Since the Attr interface extends the Node interface, most of the properties and
methods that we discussed under the Node interface also apply to an Attr node.

Consider the following script fragment, which first sets a reference to the
Pages attribute of firstBOOK using the getAttributeNode() method of an element
node, and then displays some properties pertaining to the attribute node, as
shown in Figure 4-13 and Figure 4-14, respectively:

130

Chapter 4

Table 4-7. Retrieving Information of Attributes of the Node Referenced by firstBOOK

DESCRIPTION MESSAGE BOX SCRIPT & DISPLAY

Displaying the number of attributes Msgbox “No. of attributes:” & firstBOOK.attributes.length

associated with firstBOOK.

Displaying the value of the first Msgbox “First attribute:” & firstBOOK.attributes(0).nodeValue

attribute of firstBOOK.

Displaying the value of the ISBN Msgbox “ISBN:” & firstBOOK.getAttribute(“ISBN”)

attribute of firstBOOK.

Learning about Attributes of an Element Node

Let’s investigate the attributes of firstBOOK (Table 4-7).

429ch04.qxp 1/11/02 3:18 PM Page 130

Set PagesNode = firstBOOK.getAttributeNode(“Pages”)

msgbox “PagesNode.name: “ & PagesNode.name & vbCRLF &_

“PagesNode.nodeName: “ & PagesNode.nodeName & vbCRLF &_

“PagesNode.nodeType: “ & PagesNode.nodeType & vbCRLF &_

“PagesNode.nodeTypeString: “ & PagesNode.nodeTypeString & vbCRLF &_

“PagesNode.nodeValue: “ & PagesNode.nodeValue

The name property is an extended property to the Node interface. The rest of
the properties are not new to us, as they had been mentioned earlier when we
introduced the fundamentals of the Node interface.

Client-Side DOM Programming—Shopping Cart

In this section, we make use of a case study to demonstrate DOM programming
on the client side. We introduce the use of more properties and methods of the
various interfaces for accomplishing the functionality of the application.

131

The Document Object Model (DOM)

Figure 4-13. Reference to the Pages attribute of the node referenced by firstBOOK

Figure 4-14. Naming information of the Pages attribute of the node referenced
by firstBOOK

429ch04.qxp 1/11/02 3:18 PM Page 131

We extend the application requirements to include the server-side DOM
programming in a later section.

Client-Side Application Requirements

Let’s implement a shopping cart that keeps track of the items selected by the user
from a list of best-sellers of some bookstore. The shopping cart can expand or
shrink as the user adds or drops items from his or her shopping cart.

The following describes the client-side requirements from the
user’s perspective:

1. The user is presented with a selection list of best-sellers from
a bookstore.

2. The user can select an item and specify the quantity to add to the shop-
ping cart. The user can remove the item from the cart by specifying the
quantity to be zero.

3. The user can check out and submit the shopping cart to a backend
server through clicking on a button.

To simplify our implementation, we will not provide a mechanism for the
user to view the shopping cart since the coding techniques that are required for
this functionality are similar to some of those that are used for implementing the
three requirements specified in the preceding list. The user interface design is not
of utmost concern here and we will try to keep a simple interface to avoid clutter-
ing the essential code for manipulating the DOM objects, which is relevant to this
chapter. Also, we will skip the script necessary for validating user’s input, as that
does not add much value to illustrating programming techniques with DOM.

Initialization

At this point, we can identify a few initialization tasks:

• Declaring global variables

• Loading Bestpicks.xml as a DOM tree

• Creating initial DOM tree for the shopping cart

• Invoking the loading of a form for user to do ordering

132

Chapter 4

429ch04.qxp 1/11/02 3:18 PM Page 132

We will not show all of the global variables at once; instead we will mention
them when they are introduced as the need arises.

We will put all the initialization script in a VBScript subroutine
named initialize.

Loading an XML Document into a DOM Tree

To access the information enclosed in the XML document, Bestpicks.xml, we first
create a DOM object and load it with data from the document. We will also ini-
tialize a variable (BOOKSnode) to point to the document root (<BOOKS> element):

Dim booksDoc, BOOKSnode

Sub initialize

Set booksDoc = CreateObject(“MSXML2.DOMDocument”)

booksDoc.async = false

booksDoc.load “Bestpicks.xml”

Set BOOKSnode = booksDoc.documentElement

End Sub

Here, booksDoc and BOOKSnode are declared as global variables as they should
be accessible throughout most of the other subroutines.

Creating a DOM Tree for the Shopping Cart

We need to create the DOM tree for the shopping cart from scratch. This can be
accomplished by the following code inserted into the initialize subroutine,
where orderDoc and ORDERSnode are declared as global variables:

Set orderDoc = CreateObject(“Msxml2.DOMDocument”)

orderDoc.async = false

orderDoc.loadXML “<?xml version=’1.0’?>” &_

“<ORDERS></ORDERS>”

Set ORDERSnode = orderDoc.documentElement

After the initialization, the cart will have the following DOM tree structure, as
shown in Figure 4-15.

133

The Document Object Model (DOM)

Figure 4-15. Initial DOM structure of the shopping cart (orderDoc)

429ch04.qxp 1/11/02 3:18 PM Page 133

We can also display the XML contents (Figure 4-16) using a message box
during development, such as:

msgbox orderDoc.xml

Invoking the Loading of an Order Form

We will make use of a subroutine loadOrderForm to load an order form. To invoke
the loading, we merely include the following call statement as the last line of
code in the initialize subroutine:

Call loadOrderForm

Creating an Order Form

We will obtain the information of the best sellers from Bestpicks.xml and present
them as a selection list in an order form as shown in Figure 4-17.

134

Chapter 4

Figure 4-16. Initial XML content of the shopping cart (orderDoc)

Figure 4-17. The order form

429ch04.qxp 1/11/02 3:18 PM Page 134

Traversing All BOOK Nodes of the DOM Tree

Since we need to present all the books, we need to traverse the entire DOM tree
representing Bestpicks.xml in search of book element nodes. When the DOM
tree was first created, the reference to the tree is the root node of the tree, that is,
booksDoc, which is a Document node. To start traversing the tree, we need to ref-
erence the node representing the document root, <BOOKS>, which was
accomplished in the initialization subroutine presented earlier. The object name
used to reference the <BOOKS> node is BOOKSnode.

To iterate through each child node (which may be a <BOOK> node or an
<apress:BOOK> node) of BOOKSnode in the DOM tree and present it as an option
of a selection list, we first gather the list of child nodes using the childNodes
property.

Set bestpicks = BOOKSnode.childNodes

We can insert this statement into the initialize subroutine.

135

The Document Object Model (DOM)

NOTE We cannot collect all the nodes representing
the books in the DOM tree based on a given element
tag name by using either the DOM Level 1 method,
getElementsByTagName(), or the selectNodes() method pro-
vided by MSXML. This is because not all the eligible book
elements have the same tag name.

We will now write the subroutine to load the order form. In this subroutine,
we will construct a loop to perform information presentation n times where n is
the number of books in the node list, bestpicks. We will present each title as an
option in the selection list. Also, each option is associated with a value, which is
the book’s ISBN. The following shows the construction of the selection list:

Sub loadOrderform

document.write “<p><form name=’orderForm’>”

document.write “<select name=’selectedbook’ size=’1’>”

lastBookIndex = bestpicks.length - 1

for i = 0 to lastBookIndex

document.write “<option value=’” &_

bestpicks(i).getAttribute(“ISBN”) & “‘>” &_

bestpicks(i).selectSingleNode(“TITLE”).tteexxtt

429ch04.qxp 1/11/02 3:18 PM Page 135

next

document.write “</select> “

document.write “</form> “

End Sub

Note that the text property used to display the title is an extension provided
by MSXML. Without this property, the display of the title is achieved through
a longer expression, such as the following:

bestpicks(i).selectSingleNode(“TITLE”).ffiirrssttCChhiilldd..nnooddeeVVaalluuee

Other Form Elements

To complete the form as shown previously in Figure 4-17, we need to add an
input box for the user to specify the number of copies and two buttons. The first
button is an order button to invoke the adding of the item to the shopping cart.
The second button will lead to the submission of the shopping cart to the server
for further processing.

Following is an example for coding the three items immediately after the out-
put of the end-tag of the selection list (i.e., </select>):

document.write “<p><input type=’text’ name=’num’ “ &_

“size=’3’ maxlength=’2’> copies”

document.write “<p><input type=’button’ name=’order’ value=’Order’>” &_

“ “ &_

“<input type=’button’ name=’checkout’ value=’Check Out’>”

Note that we have assigned the name, order, to the order button. Hence,
upon clicking on the button, the subroutine, order_onClick, will be invoked to
add the selected book into the shopping cart. Similarly, clicking on the check-out
button will invoke the subroutine, checkout_onClick.

Updating the Shopping Cart

This functionality is invoked through the clicking of the order button in the order
form. That is, the subroutine for handling this task is order_onClick, which we
have just introduced.

In this subroutine, we need to update the DOM object representing the shop-
ping cart, which is referenced by orderDoc, based on the input of the user through
the order form.

136

Chapter 4

429ch04.qxp 1/11/02 3:18 PM Page 136

The shopping cart referenced by orderDoc is first checked to see if the selected
item exists in the cart. If so, we merely need to update the number of copies.
However, if the user specified a quantity of 0 or less for an existing item, we will
remove the corresponding node of the selected book from the shopping cart.

If the selected book is not found in the DOM object for the shopping cart, we
need to add the necessary book element into the DOM tree unless the user speci-
fied 0 copy for the selected book.

1 Sub order_onClick

2 orderISBN = document.orderForm.selectedbook.value

3 orderQtty = document.orderForm.num.value

4

5 Set bookOrders = ORDERSnode.childNodes

6 found = 0

7 for each order in bookOrders

8 if order.selectSingleNode(“ISBN”).text = orderISBN then

9 found = 1

10 if orderQtty > 0 then

11 ‘update the number of copies ordered

12 order.selectSingleNode(“QTTY”).text = orderQtty

13 else

14 ‘remove the order

15 ORDERSnode.rreemmoovveeCChhiilldd order

16 end if

17 exit for

18 end if

19 next

20

21 if found = 0 and orderQtty > 0 then

22 ‘add in new ORDER node

23 Set newOrderElement = orderDoc.ccrreeaatteeEElleemmeenntt(“ORDER”)

24 Set newISBNElement = orderDoc.createElement(“ISBN”)

25 Set newQttyElement = orderDoc.createElement(“QTTY”)

26

27 Set newISBN = orderDoc.ccrreeaatteeTTeexxttNNooddee(orderISBN)

28 Set newQtty = orderDoc.createTextNode(orderQtty)

29

30 newISBNElement.aappppeennddCChhiilldd(newISBN) ‘create <ISBN>xxx</ISBN>

31 newQttyElement.appendChild(newQtty) ‘create <QTTY>yy</QTTY>

32

33 newOrderElement.appendChild(newISBNElement)

34 newOrderElement.appendChild(newQttyElement)

35 ORDERSnode.appendChild(newOrderElement)

36 end if

37 End Sub

137

The Document Object Model (DOM)

429ch04.qxp 1/11/02 3:18 PM Page 137

We will highlight the new features that are introduced in the preced-
ing subroutine:

• Lines 7 to 19 handle the case when the selected book has already been
added into the shopping cart. Line 12 updates the quantity ordered if the
user keys in a positive number. Line 15 uses the removeChild method to
drop the selected book from the shopping cart by removing the corre-
sponding <ORDER> node from the DOM tree.

• Lines 21 to 36 handle the case when the selected book is not found in the
existing cart and that the user specified a positive value for the quantity.

• Lines 23 to 25 use the createElement method to create three new elements:
<ORDER>, <ISBN>, and <QTTY> with no content.

• Lines 27 and 28 use the createTextNode method to create two text nodes
for holding the ISBN and quantity values captured from the order form.

• Line 30 uses the appendChild method to associate the text node created in
line 27 to the <ISBN> element created in line 24 as a child node to the lat-
ter. Hence, if the user selected the first book whose ISBN is 1893115860,
then line 30 will result in the following element:
<ISBN>1893115860</ISBN>

• Similarly, if the user input the quantity as 3, then line 31 will result in the
following element: <QTTY>3</QTTY>

Let’s insert the following line of code for displaying the new order element
immediately after line 34, as shown in Figure 4-18:

msgbox newOrderElement.xml

138

Chapter 4

Figure 4-18. Contents of the new order just created

429ch04.qxp 1/11/02 3:18 PM Page 138

• Lines 33 and 34 use the <ISBN> and <QTTY> elements that were just cre-
ated as building blocks to construct a higher-level <ORDER> element:
<ORDER><ISBN>1893115860</ISBN> <QTTY>3</QTTY></ORDER>

• Finally, the new <ORDER> element constructed was appended as the last
order under the <ORDERS> element referenced by ORDERSnode.

Checking Out

This functionality is invoked through clicking on the check out button in the order
form and it involves the following final tasks to be developed on the client side:

• Prompts user to enter a user ID, which is then inserted as an attribute
value of the <ORDERS> node in the DOM tree for the shopping cart.

• Creates an XMLHTTP object for delivering the shopping cart DOM object
over the HTTP from the client browser to the targeted ASP script residing
on an HTTP server.

• Waits for server’s response and displays it on the browser.

• Re-initializes the DOM object representing the shopping cart.

Prompting for User ID

When the user chooses to check out, we would like the application to prompt the
user for his user ID and insert into the DOM tree of the shopping cart as an attri-
bute of the document root, which is <ORDERS> in our case.

We can make use of the inputBox() function to capture the user ID, as shown
in Figure 4-19:

userID = inputBox (“Key in user ID:”, “Check out”)

139

The Document Object Model (DOM)

429ch04.qxp 1/11/02 3:18 PM Page 139

We will then create an attribute node with the userID value and associate
that value with the <ORDERS> node that is referenced by the variable
ORDERSnode, as shown in the following line:

ORDERSnode.setAttribute “userID”, userID

If the user keys in the user ID Cust0001, the preceding will result in changing
the start-tag to <ORDERS userID=“Cust0001”>, as shown in Figure 4-20.

Passing DOM Object to HTTP Server

First, we will create an XMLHTTP object to communicate with the backend HTTP
server where the server script for processing the shopping cart can be reached.

140

Chapter 4

Figure 4-19. Input box prompting for user ID

Figure 4-20. Adding the userID attribute to the root element ORDERS

429ch04.qxp 1/11/02 3:18 PM Page 140

This will enable us to pass an XML packet to the server using the HTTP con-
nection between the client and the server.

The XMLHTTP object can request to open a connection with an HTTP server,
specifying the HTTP request method, such as GET or POST, the resource it is
looking for, such as an ASP script for processing the shopping cart, the asynchro-
nization flag, as well as optional user id and password. If the asynchronization
flag is set to false, then further execution will not occur at the client side until
a response from the server is received. The final step is to send the XML packet
out to the server using the send method.

An example of the corresponding code that is used for doing the tasks that
were just described is shown in the following lines of script:

Set postObj = CreateObject (“MSXML2.XMLHTTP”)

postObj.open “POST”, “process.asp”, false

postObj.send orderDoc

Displaying the Server’s Response

If the response from the server is expected to be a text string, then we can retrieve
the response through the responseText property of the XMLHTTP object. If we
are expecting the response to be parsed XML content, we should use the
responseXML property instead.

For example, if we want to display the server’s text string response in a mes-
sage box, we can achieve that through the following line of code:

msgbox postObj.responseText

Alternatively, we may want to receive the response as XML content and
assign it to a newly created DOM object as shown here:

Set responseDoc = CreateObject (“MSXML2.DOMDocument”)

Set responseDoc = postObj.responseXML

Re-initializing the Shopping Cart

After sending the shopping cart to the server, the content of the cart at the client
side was not changed. If a different user would like to start ordering from the
same ordering page left behind by the previous user, we need to make sure that
the new user starts with an empty cart. To ensure that the cart is empty, we can
include the following lines to re-initialize the shopping cart to its original state:

141

The Document Object Model (DOM)

429ch04.qxp 1/11/02 3:18 PM Page 141

orderDoc.loadXML “<?xml version=’1.0’?>” &_

“<ORDERS></ORDERS>”

Set ORDERSnode = orderDoc.documentElement

Complete Listing of the Client-Side Script

Now that we have completed the “bottom-up” discussion of the various function-
alities that are performed on the client side, we present in Listing 4-2 the complete
listing of the source code for the client. We have also included appropriate inline
comments to help you understand the code as you glance through it:

Listing 4-2. Client-side script for shopping cart example
<html>

<head>

<script language=”vbscript”>

<!--

Dim booksdoc, BOOKSnode, orderDoc, ORDERSnode

Dim bestpicks

sub iinniittiiaalliizzee

‘Loading Bestpicks.xml

Set booksDoc = CreateObject(“Msxml2.DOMDocument”)

booksDoc.async = false

booksDoc.load “Bestpicks.xml”

‘Setting references to document root and list of books

Set BOOKSnode = booksDoc.documentElement

Set bestpicks = BOOKSnode.childNodes

‘Creating new DOM tree for a shopping cart

Set orderDoc = CreateObject(“Msxml2.DOMDocument”)

orderDoc.async = false

orderDoc.loadXML “<?xml version=’1.0’?>” &_

“<ORDERS></ORDERS>”

Set ORDERSnode = orderDoc.documentElement

‘Loading the form for ordering

call loadOrderForm

end sub

142

Chapter 4

429ch04.qxp 1/11/02 3:18 PM Page 142

sub llooaaddOOrrddeerrFFoorrmm

document.write “<h3>Choose a book to add to your shopping cart:</h3>”

document.write “<p><form name=’orderForm’>”

document.write “<select name=’selectedbook’ size=’1’>”

lastBookIndex = bestpicks.length - 1

for i = 0 to lastBookIndex

document.write “<option value=’” & bestpicks(i).getAttribute(“ISBN”) &_

“‘>” & bestpicks(i).selectSingleNode(“TITLE”).text

next

document.write “</select> “

document.write “<p><input type=’text’ name=’num’ &_

“size=’3’ maxlength=’2’> copies”

document.write “<p><input type=’button’ name=’order’ value=’Order’>” &_

“ “ &_

“<input type=’button’ name=’checkout’ value=’Check Out’>”

document.write “</form>”

end sub

sub oorrddeerr__oonnCClliicckk

orderISBN = document.orderForm.selectedbook.value

orderQtty = document.orderForm.num.value

Set bookOrders = ORDERSnode.childNodes

found = 0

for each order in bookOrders

if order.selectSingleNode(“ISBN”).text = orderISBN then

found = 1

if orderQtty > 0 then

‘update the number of copies ordered

order.selectSingleNode(“QTTY”).text = orderQtty

else

‘remove the order

ORDERSnode.removeChild order

end if

‘ break

end if

next

if found = 0 and orderQtty <> 0 then

‘add in new node

Set newOrderElement = orderDoc.createElement(“ORDER”)

Set newISBNElement = orderDoc.createElement(“ISBN”)

Set newQttyElement = orderDoc.createElement(“QTTY”)

143

The Document Object Model (DOM)

429ch04.qxp 1/11/02 3:18 PM Page 143

Set newISBN = orderDoc.createTextNode(orderISBN)

Set newQtty = orderDoc.createTextNode(orderQtty)

newISBNElement.appendChild(newISBN)

newQttyElement.appendChild(newQtty)

newOrderElement.appendChild(newISBNElement)

newOrderElement.appendChild(newQttyElement)

ORDERSnode.appendChild(newOrderElement)

end if

end sub

sub cchheecckkoouutt__oonnCClliicckk

‘Prompting for user ID

userID = InputBox(“Key in user ID:- “, “Check out”)

ORDERSnode.setAttribute “userID”, userID

msgbox orderDoc.xml

‘Posting an XML packet to server and displaying server’s string response

Set postObj = CreateObject(“Microsoft.XMLHTTP”)

postObj.open “POST”, “process.asp”, false

postObj.send orderDoc

msgbox postObj.responseText

‘Reinitializing orderDoc and ORDERSnode

orderDoc.loadXML “<?xml version=’1.0’?>” &_

“<ORDERS></ORDERS>”

Set ORDERSnode = orderDoc.documentElement

end sub

//-->

</script>

</head>

<body>

<h1>Welcome to BookPick!</h1>

<script language=”VBScript”>

initialize

</script>

</body>

</html>

144

Chapter 4

429ch04.qxp 1/11/02 3:18 PM Page 144

Server-Side DOM Programming—Shopping Cart

We will now move over to the server side to illustrate how the shopping cart is
received and how the information is extracted from the XML packet sent to it
through the HTTP protocol. We will then generate a string as a response to the
client. We will name our ASP script, process.asp.

For our purposes there is no need to dwell further on the processing of the
shopping cart’s content, such as updating sales database table, generating invoices,
and payment, which are no doubt essential in a real-life e-commerce transaction.

As such, we can simplify our ASP script to perform only the following:

• Sets the content type of the response to be generated to the client

• Creates a DOM instance and loads it with the shopping cart’s contents

• Retrieves userID attribute information and total number of orders—each
selected item is considered one order regardless of the quantity specified
for the same selected item

• Generates an acknowledgement string

Before we end this section, we will also mention an important issue that
involves validating XML content received by the server.

Setting the Content Type

The purpose of setting the content type is to insert a content-type field into the
header of the HTTP response message to be sent to the client, specifying the type
of content the client is receiving.

If our intention is to generate a string of plain text to be sent back to the
client, we can use the following line to set the content type:

<% Response.ContentType = “text/plain” %>

If the application may send back either plain text or HTML content, then we
should specify the following content type:

<% Response.ContentType = “text/html” %>

If we wish to send XML content back to the client, we should do the following:

<% Response.ContentType = “text/xml” %>

145

The Document Object Model (DOM)

429ch04.qxp 1/11/02 3:18 PM Page 145

The content types just described are not exhaustive. It really depends on
what you want to send back to the client as a response.

146

Chapter 4

NOTE Response is an object specified in the ASP program-
ming model for generating and sending response messages
to the client.

Receiving a DOM Object from the Client

We need to create a DOM instance and load it with the incoming XML content
from the ASP Request object as illustrated in the following code:

<%

Dim receivedDoc

Set receivedDoc = Server.CreateObject (MSXML2.DOMDocument)

receivedDoc.async = false

receivedDoc.load Request

%>

After the loading is completed, we would have created a DOM tree of the
shopping cart at the server side. We can apply the same programming techniques
used at the client side to manipulate the tree.

Retrieving the Shopping Cart’s Contents

This is a simple task as it involves only appropriate traversal of the DOM tree
(receivedDoc) to access the information we would like to have.

Based on our requirements specification, we need to get the user ID and find
out the number of orders made.

The first task is straightforward as we can simply use the selectSingleNode()
method and specify the XPath expression for the userID attribute node in the
document. To obtain the second piece of information, we must first collect a list
of <ORDER> nodes, which can easily be done using the selectNodes() method.
We can then use the length property of the node list to find out the number of
orders the user had just made.

The code for achieving the retrieval of the userID attribute node and the
<ORDER> node list is shown here:

429ch04.qxp 1/11/02 3:18 PM Page 146

<%

‘Retrieving user ID

Set idNode = receivedDoc.selectSingleNode(“//@userID”)

userid = idNode.nodeValue

‘Retrieving orders

Set orderNodes = receivedDoc.selectNodes(“//ORDER”)

%>

Next, we will generate a response that makes use of this information we have
just retrieved.

Generating a Response to the Client

For illustration purposes, we will generate an acknowledgement string, which
will be displayed at the client side using a message box (decided by the client
script), as shown in Figure 4-21.

Here is the code for generating the short string as shown in the
preceding illustration :

<%

if orderNodes.length < 2 then

Response.write orderNodes.length & “ order from “ & userID

else

Response.write orderNodes.length & “ orders from “ & userID

end if

%>

147

The Document Object Model (DOM)

Figure 4-21. Client display of sample response string generated by the server

429ch04.qxp 1/11/02 3:18 PM Page 147

Complete Listing of the Server-Side ASP Script

Listing 4-3 shows the source code of the server-side script process.asp, in which
you can see the complete listing instead of fragments:

Listing 4-3. Process.asp
<%

‘Setting content type

Response.ContentType = “text/html”

‘Creating a new DOM object and loading contents from the ASP’s Request object

Set receivedDoc = CreateObject(“MSXML2.DOMDocument”)

receivedDoc.async = false

receivedDoc.load Request

‘Retrieving userID and the orders

Set idNode = receivedDoc.selectSingleNode(“//@userID”)

userid = idNode.nodeValue

Set orderNodes = receivedDoc.selectNodes(“//ORDER”)

‘Generating acknowledgement string to user (i.e., client)

if orderNodes.length < 2 then

Response.write orderNodes.length & “ order from “ & userID

else

Response.write orderNodes.length & “ orders from “ & userID

end if

%>

Useful Web Links

• DOM Level 1 at

http://www.w3.org/TR/REC-DOM-Level-1/

• DOM Level 3 Core Specification Working Draft at

http://www.w3.org/TR/2001/WD-DOM-Level-3-Core-20010913/

• Mathematical Markup Language at

http://www.w3.org/TR/MathML2

148

Chapter 4

429ch04.qxp 1/11/02 3:18 PM Page 148

• Basic DOM interfaces for Scalable Vector Graphics at

http://www.w3.org/TR/SVG/svgdom.html

• DOM interfaces for Synchronized Multimedia Integration Language at

http://www.w3.org/TR/smil-boston-dom/

• Xerces – DOM Paser at

http://www.w3.org/TR/2000/REC-xml-20001006

• Oracle XML Parser for Java v2 at

http://technet.oracle.com/tech/xml/parser_java2/

• XML DOM Objects/Interfaces supported in MSXML 3.0 at

http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/xmlsdk30/htm/xmmscxmldomobjects.asp

Summary

In this chapter, we introduced DOM programming by illustrating the properties
and methods of the different types of interfaces that may be used to make access-
ing and manipulation of the XML data in an XML document possible. We also
presented a mini-case study in which a shopping cart was created and manipu-
lated on the client side, and illustrated how the server could receive and retrieve
an XML DOM object from the client.

The concepts that we covered in this chapter should enable you to jumpstart
an application using DOM programming. Since we are unable to examine all the
APIs for DOM programming in one chapter, we encourage you to refer to the list
in Appendix B. We also hope you find the list of links that we provided in the pre-
ceding section useful.

149

The Document Object Model (DOM)

429ch04.qxp 1/11/02 3:18 PM Page 149

429ch04.qxp 1/11/02 3:18 PM Page 150

