
A Programmer’s Guide
to ADO.NET in C#

MAHESH CHAND

933FM  3/20/02  4:09 PM  Page i



A Programmer’s Guide to ADO.NET in C#
Copyright ©2002 by Mahesh Chand

All rights reserved. No part of this work may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval system, without the prior written permission of the copy-
right owner and the publisher.

ISBN (pbk): 1-893115-39-9

Printed and bound in the United States of America 12345678910
Trademarked names may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, we use the names only in an editorial fashion and
to the benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Ildiko Blackburn, Boost Data Limited
Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, 

Karen Watterson, John Zukowski
Managing Editor: Grace Wong
Project Manager and Developmental Editor: Tracy Brown Collins
Copy Editor: Kim Wimpsett
Production Editor: Kari Brooks
Composition: Impressions Book and Journal Services, Inc.
Artist: Cara Brunk, Blue Mud Productions
Indexer: Valerie Perry
Cover Designer: Tom Debolski
Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175
Fifth Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH
& Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.
In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author nor
Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in 
this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section. You will need to answer questions pertaining to this book in order to
successfully download the code.

933FM  3/20/02  4:09 PM  Page ii



CHAPTER 4

Data Components in
Visual Studio .NET

IN PREVIOUS CHAPTERS, YOU’VE SEEN the basics of the ADO.NET model and its compo-
nents. Visual Studio (VS) .NET provides design-time support to work with
data components. In this chapter, you’ll learn how to use these data components
in VS .NET at design-time to create database applications. Using these compo-
nents is similar to using any Windows control. You just drag the component to
a form, set its properties and methods, and you’re up and running.

In this chapter I’ll start with the Server Explorer, a useful tool for database
applications. I’ll focus on developing database applications quickly, using
data components in VS .NET without writing a lot of code. I’ll also show you
a step-by-step tutorial to help you develop and run a project. After that, I’ll dis-
cuss data connection, data adapter, data command, dataset, and data view
components in more detail. After finishing this chapter, you’ll have a good under-
standing of data components and how to work with them in VS .NET.

Creating Your ADO.NET Project

Begin your project by launching VS .NET and choosing New ➢ Project from 
the Project menu. Choose Visual C# Projects from Project Types and then 
pick the Windows Application template. If you like, type an appropriate 
name into the Name field for your first ADO.NET application and click OK 
(see Figure 4-1).

153

933ch4  3/20/02  11:03 AM  Page 153



Using the Server Explorer

The Server Explorer is new to Visual Studio .NET. You can open the Server
Explorer by clicking the View ➢ Server Explorer menu item, as shown in 
Figure 4-2.

154

Chapter 4

Figure 4-1. Creating a new project

933ch4  3/20/02  11:03 AM  Page 154



The Server Explorer enables you to manage your database servers and con-
nections. If you’ve ever used ODBC in your applications, then you’re probably
familiar with the traditional Windows ODBC Administration where you created
data source names (DSNs) using ODBC drivers for a data source and then con-
nected your application using this DSN.

Well, now you don’t have to worry about it. You can use the Server Explorer to
add a new server or a data connection to your list.

155

Data Components in Visual Studio .NET

Figure 4-2. Opening the Server Explorer

933ch4  3/20/02  11:03 AM  Page 155



As you see in Figure 4-3, the Server Explorer has two root nodes: Data
Connections and Servers. By right-clicking on these nodes you can add a new
data connection or a new server to your list.

Specifically, to add a new server to the Server Explorer, you right-click on the
Servers node, select the Add Server menu option, and enter the server name.

Adding a New Connection

Adding a new connection is the next step after adding a server (if you’re using
a server) to the Server Explorer. You add a new connection to your list by right-
clicking on the Data Connections tree item and choosing the Add Connection
option. This brings up a Data Link Properties Wizard. The first tab of this wizard,
Provider, displays all the data source providers installed on your machine; this is

156

Chapter 4

Figure 4-3. Adding a server through the Server Explorer

933ch4  3/20/02  11:03 AM  Page 156



where you select your database provider. The list could contain any OLE-DB
provider, Jet OLD-DB, or other data driver available on your computer. Figure 4-4
shows you a list of providers on my machine.

The second tab of this wizard, Connection, lets you pick your server and cor-
responding data source. The drop-down list displays all the available servers. My
server is a SQL Server with the default name localhost. After selecting a server,
the database drop-down list displays all the available databases on the server. I’ll
select the Northwind database in this example. By clicking the Test Connection
button, you can make sure your database connection is working. If you’ve pro-
vided a wrong user ID or password, the test will throw an error (see Figure 4-5).

157

Data Components in Visual Studio .NET

Figure 4-4. Choosing a data provider

933ch4  3/20/02  11:03 AM  Page 157



The third tab, Advanced, is for setting connection timeout and access per-
missions. You can give this connection read, write, or other permissions using the
Advanced tab (see Figure 4-6).

158

Chapter 4

Figure 4-5. Selecting a database from SQL Server

933ch4  3/20/02  11:03 AM  Page 158



Managing and Viewing Data

The Server Explorer not only lets you add server and database connections, it
also lets you manage and view data. You can add, update, and delete data from
a database. The Server Explorer also provides options to create new databases
and objects, including tables, views, stored procedures, and so on.

The Server Explorer manages database objects in a tree structure. Each data-
base is a tree node of the server. As you expand the Northwind database node, you
can see its children listed as tables, stored procedures, and views (see Figure 4-7).

159

Data Components in Visual Studio .NET

Figure 4-6. Additional options such as permissions and the connection 
timeout period

933ch4  3/20/02  11:03 AM  Page 159



If you expand this connection by double-clicking on it, you’ll notice it shows
tables, views, and stored procedures. You can further expand these to see them in
more detail.

Besides showing a list of database objects such as tables, views, stored proce-
dures, and functions, the Server Explorer also lets you view, add, edit, and delete
data from a data source. Figure 4-8 shows the Employees table of the Northwind
database in the Server Explorer. In Figure 4-8, you see the data in a grid. You can
edit this data at any time. For example, to delete a row or a collection of rows,
select the rows and hit Delete, or right-click on the selected rows and hit the
Delete option. The right-click option of the grid also provides you options to
move to the grid’s first, next, previous, and last records.

160

Chapter 4

Figure 4-7. The Server Explorer with database tables

933ch4  3/20/02  11:03 AM  Page 160



You can also right-click on a table and choose Retrieve Data from Table to
retrieve data of that table, as shown in Figure 4-9.

161

Data Components in Visual Studio .NET

Figure 4-8. The Employee table in the Server Explorer

Figure 4-9. Retrieving data from a table in the Server Explorer

933ch4  3/20/02  11:03 AM  Page 161



Using Visual Data Components

As mentioned in Chapter 2, “Introduction to Windows Forms,” Microsoft .NET
provides many data providers to work with different types of data sources. The
class hierarchy model of these data providers remains the same, so programmers
won’t have any problem switching between data providers. Some of these
data providers are OleDb, Sql, and Odbc. The Odbc data provider was a new 
addition to the .NET Framework (added after .NET Beta 2). If you don’t have
Odbc data providers available in your namespaces, you can install the Odbc data
provider by installing Odbc .NET Software Development Kit (SDK) from the
Microsoft site (http://msdn.microsoft.com/data/).

162

Chapter 4

NOTE  This location may change. You can always find the updated URL in
the downloads section (http://www.c-sharpcorner.com/downloads.asp) of
C# Corner.

If you’re not sure, you can check the toolbox to see if you have an Odbc
data provider already installed. The toolbox’s Data tab shows you the avail-
able data controls in Visual Studio. These components are DataSet, DataView,
SqlConnection, SqlCommand, SqlDataAdapter, OleDbConnection, OleDbCommand, and
OleDbDataAdapter (see Figure 4-10).

Figure 4-10. Data components

933ch4  3/20/02  11:03 AM  Page 162



With the OleDb and Sql data components, if you also see ODBC components,
then you already have the Odbc data provider installed. Otherwise, you have to
install the Odbc data provider. After installing ODBC .NET SDK, you need to go
your toolbox to see the ODBC data components. After installing the ODBC .NET
SDK, right-click on the toolbox and select Customize Toolbox (see Figure 4-11).

Now, you’ll notice a list of Component Object Model (COM) components and
.NET Framework components (see Figure 4-12). Click on the .NET Framework
Components tab and select the OdbcCommand, OdbcConnection,
OdbcCommandBuilder, and OdbcDataAdapter components. If these components
don’t show up in the tab, then you need to browse for the component using the
Browse button. You can usually find the ODBC components stored as 
\Program Files\Microsoft.NET\Odbc.NET\Microsoft.Data.Odbc.dll.

163

Data Components in Visual Studio .NET

Figure 4-11. The Customize Toolbox option

933ch4  3/20/02  11:03 AM  Page 163



After clicking the OK button, use the Toolbox ➢ Data option to see your
ODBC data components (see Figure 4-13).

164

Chapter 4

Figure 4-12. ODBC data components

NOTE  If you don’t see this file in your Microsoft .Net directory, the
ODBC.NET SDK may not have installed on your machine. Try reinstalling it.

933ch4  3/20/02  11:03 AM  Page 164



As mentioned briefly in Chapter 3, “Overview of ADO.NET,” the .NET
Framework Library contains many ADO.NET data providers, including OleDb,
Sql, and Odbc. The OleDb data provider wraps up native OLE-DB COM API to
work with OLE-DB data sources. To access an OLE-DB data source, you need 
to install an OLE-DB data provider for that database. Sql data providers work
with SQL Server 7 or later databases. Odbc data providers wrap up the ODBC
API to work with ODBC data sources (with the help of ODBC Admin and
ODBC drivers). Chapter 5 discusses these data providers in more detail. You 
can even create your own custom data providers. Microsoft and other vendors
might add more data providers, which can be added to the library later.

In the .NET Framework, each of these data providers has its own name-
spaces. For instance, the System.Data.OleDb namespace consists of classes
belonging to the OleDb data providers. All of these namespace classes start with
OleDb. The System.Data.ODBC and System.Data.SqlClient namespaces consist of
classes belonging to the Odbc and Sql data providers, respectively. Similar to
OleDb, classes in Odbc start with Odbc, and classes in SqlClient start with Sql.

In Visual C#, some of these classes (or objects) are available from the toolbox;
you can add them to a form using drag-drop operation as any other Windows
control in the toolbox. These controls are data components.

All of these types of components work in pretty much the same way except
for the Connection component, whose connection string will vary based on the
data source to which you’re connecting.

165

Data Components in Visual Studio .NET

Figure 4-13. Viewing your ODBC data components in the toolbox

933ch4  3/20/02  11:03 AM  Page 165



166

Chapter 4

NOTE  In the next section, I’ll discuss how you can add these components
to your Window Forms applications and set their properties and methods
at design-time with the help of the .NET wizards.

VS .NET also provides a set of data-bound controls. DataGrid, ListBox, and
DataList are good examples of some of these data-bound controls. It’s fairly easy
to work with these controls. You just set a few properties, and they’re ready to dis-
play your data. For example, setting a DataGrid control’s DataSource property
displays data from a DataSet object. You’ll see these controls in the examples
throughout this chapter.

Understanding Data Connections

To connect to a data source, the first thing you need to learn about is a
data connection.

Each data provider has a connection class, and if you’re using VS .NET, you
can see these class objects as components in the Toolbox ➢ Data tab. For exam-
ple, the SqlConnection, OdbcConnection, and OleDbConnection class objects
represent a connection for the Sql, Odbc, and OleDb data providers, respectively.
See the following:

• SqlConnection creates and manages SQL Server database connections.

• OdbcConnection creates and manages connections to ODBC data sources.

• OleDbConnection creates and manages connections to an OLE-DB 
data sources.

In VS .NET, you can create a connection component in many ways. You can
use the IDE to add a connection object to a project, create it programmatically, 
or use data adapters that automatically create a connection object for you. In this
chapter, we’ll be concentrating on adding a connection through VS .NET.

The easiest way to add a connection to a project in VS .NET is to drag a con-
nection component (SqlConnection, OleDbConnection, or OdbcConnection) from
the toolbox’s Data tab. This action adds a connection object to your project. After
that, you can set the connection’s properties using the Properties windows. For
this demonstration, I’ll drop a SqlConnection from the toolbox onto the form.
Figure 4-14 shows the Properties window displayed after creating the
SqlConnection. Note that the default connection name is the class name with

933ch4  3/20/02  11:03 AM  Page 166



a unique number appended to it. Because this is the first Connection object, the
connection is sqlConnection1.

As you can see from the Properties window in Figure 4-14, a connection’s
properties include Database, ConnectionTimeout, DataSource, PacketSize,
WorkstationId, Name, and ConnectionString.

167

Data Components in Visual Studio .NET

Figure 4-14. The SqlConnection component’s properties

NOTE  The connection properties depend on the data provider. Some
properties may not be available for other data providers. For example, the
WorkstationId property is available in Sql data providers but not in
OleDb or ODBC data providers.

Understanding Connection Strings

The ConnectionString property is the main property of a connection. By clicking
the drop-down list of the ConnectionString property, you can see all the available
data connections. If you don’t have a data connection, you can use its New
Connection option (see Figure 4-15), which launches the Data Link Properties
Wizard. Refer to the previous “Using the Server Explorer” section.

933ch4  3/20/02  11:03 AM  Page 167



After choosing the New Connection option and launching the Data Link
Properties Wizard, you choose a server in the Connection tab. On my machine,
the SQL Server’s name is G61LS, the user ID and password aren’t entered because
I’m using Windows NT Integrated Security. You need to enter your server name
(or select from the drop-down list), and enter your user ID and password if you’re
not using Windows NT Integrated Security option (see Figure 4-16).

168

Chapter 4

Figure 4-15. ConnectionString property options

933ch4  3/20/02  11:03 AM  Page 168



The SQLConnection string looks like following:

“data source=MCB;initial catalog=Northwind;persist security info=False;”+

“user id=sa;workstation id=MCB;packet size=4096”

169

Data Components in Visual Studio .NET

Figure 4-16. Data Link Properties Wizard

NOTE  In Chapter 5, I’ll discuss a connection and its properties in more
detail and show how to set them programmatically.

Working with SQL Data Adapters

A data adapter is another important component of a data provider. Similar to the
connection, each data provider has a corresponding data adapter class. All
data adapters in ADO.NET work in the same way, which means if you know how
to work with Sql data adapters, you can use OleDb, ODBC, and other data
adapters easily. The SqlDataAdapter, OleDbDataAdapter, and OdbcDataAdaper
classes represent data adapter components in Sql, OleDb, and ODBC data

933ch4  3/20/02  11:03 AM  Page 169



providers, respectively. Besides creating a data adapter programmatically (see
Chapter 5 for more details), VS .NET provides you with various ways to create
data adapters. Two common ways are by using the Server Explorer and by using
the Data Adapter Configuration Wizard.

Creating Data Adapters with the Server Explorer

It’s easy to create a data adapter using the Server Explorer. You just drag and drop
database objects to a form, and the IDE takes care of everything for you. The IDE
writes code that you can use programmatically or bind data controls at design-
time. To add a new connection to a project, expand your database in the Server
Explorer and drag a table from the Server Explorer to your form (see Figure 4-17).

170

Chapter 4

Figure 4-17. Creating an adapter using the Server Explorer

933ch4  3/20/02  11:03 AM  Page 170



This action creates a connection and a data adapter. You can even drag
selected columns or stored procedures on the form. VS .NET takes care of the
rest. Right-click on the form and choose View Code to examine the code gener-
ated by the wizard; in this example, you’ll see one SqlConnection component and
one SqlDataAdapter component along with a set of SqlCommand components:

private System.Data.SqlClient.SqlConnection sqlConnection1;

private System.Data.SqlClient.SqlDataAdapter sqlDataAdapter1;

private System.Data.SqlClient.SqlCommand sqlSelectCommand1;

private System.Data.SqlClient.SqlCommand sqlInsertCommand1;

private System.Data.SqlClient.SqlCommand sqlUpdateCommand1;

private System.Data.SqlClient.SqlCommand sqlDeleteCommand1;

Once you have a DataAdapter, you can use it to populate datasets and work
with its properties. We’ll discuss DataSet basics and how to construct them man-
ually in Chapter 5 in more detail. With VS .NET, you can even generate datasets
using the visual representation of the DataAdapter. We’ll discuss how to populate
a DataSet using VS .NET IDE wizards in the “Generating Typed DataSets Using
Data Adapter” section of this chapter.

Creating Data Adapters with the Data Adapter 
Configuration Wizard

The Data Adapter Configuration Wizard is a powerful tool to develop database
applications. To see how you can create data adapters using the this wizard, you’ll
create a new Window Forms–based sample project.

In this first sample project, I’ll show you how to create SQL data adapters,
read data from a SQL Server data source, and display the data from a data
adapter to a DataGrid control. Just follow the following simple steps in the next
several sections. After completing these steps, you’ll see how easy it is to develop
database applications using the Data Adapter Configuration Wizard.

Step 1: Selecting a Project Template

First, create a Windows Application template as you did at the beginning of the
chapter (see Figure 4-18).

171

Data Components in Visual Studio .NET

933ch4  3/20/02  11:03 AM  Page 171



Step 2: Adding a DataGrid Control to the Form

Now add a DataGrid control to the form by dragging a DataGrid control from the
Toolbox ➢ Windows Forms category to the form.

Step 3: Adding a Data Adapter Component

Next, drag a SqlDataAdapter control from the Toolbox ➢ Data category to the
form. As you drop the data adapter (Sql, OleDb, or ODBC), the Data Adapter
Configuration Wizard pops up.

Welcome Page

The first page of this wizard is just a welcome screen (see Figure 4-19).

172

Chapter 4

Figure 4-18. Creating a Windows Application project

933ch4  3/20/02  11:03 AM  Page 172



Choose Your Data Connection Page

The second page of the wizard lets you create a new connection or pick from
a list of available connections on your machine. In this example, I’m using the
default Northwind SQL Server database that comes with Visual Studio. As you
can see in Figure 4-20, the Northwind connection is available in the list. Don’t
confuse it with G61LS, which is specific to my machine name. This name will be
different for different machines. If you don’t have any connection listed, you can
use the New Connection button, which launches the Data Link Properties Wizard
(discussed in the “Connection Strings” section).

173

Data Components in Visual Studio .NET

Figure 4-19. The Data Adapter Configuration Wizard welcome screen

933ch4  3/20/02  11:03 AM  Page 173



Choose a Query Type

The next page of the wizard is for command set types. A command set could con-
sist of a SQL statement or a new or already existing stored procedure (see 
Figure 4-21).

174

Chapter 4

Figure 4-20. Choosing the Northwind SQL Server database in the Data Adapter
Configuration Wizard

933ch4  3/20/02  11:03 AM  Page 174



Generate the SQL Statement

The next page of the Data Adapter Configuration Wizard lets you build a SQL
statement or a stored procedure (see Figure 4-22).

175

Data Components in Visual Studio .NET

Figure 4-21. Choosing a query type in the Data Adapter Configuration Wizard

933ch4  3/20/02  11:03 AM  Page 175



Query Builder

The Query Builder option lets you pick tables from your data source. First, select
the Employees table to read in the Employee data. You actually have the option of
selecting as many tables as you want, but for now select only one table (see
Figure 4-23) and click the Add button.

176

Chapter 4

Figure 4-22. Creating a Select statement through the Data Adapter 
Configuration Wizard

933ch4  3/20/02  11:03 AM  Page 176



If you’ve ever used Microsoft Access, you’ll find that the Query Builder is sim-
ilar to it. In Access, you can create queries by dragging tables and their columns
to the grid (or checking the columns), and the Query Builder builds a SQL query
for your action. In this sample, I’ll select EmployeeID, FirstName, and LastName
from the Employees table to build our SQL statements (see Figure 4-24).

177

Data Components in Visual Studio .NET

Figure 4-23. The Query Builder

933ch4  3/20/02  11:03 AM  Page 177



Now, I’ll select three columns from the Employees table. The result looks like
Figure 4-25.

178

Chapter 4

Figure 4-24. Building columns in the query

Figure 4-25. The Query Builder selection

933ch4  3/20/02  11:03 AM  Page 178



View Wizard Results

The View Wizard Results page shows you the action being taken by the wizard; in
this example, it was successful. The Details section shows that the wizard has
generated SQL Select, Insert, Update, and Delete statements and mappings (see
Figure 4-26).

Now you can click the Finish button to complete the process.
Now, if you examine the form in Figure 4-27, you’ll see two components:

sqlConnection1 and sqlDataAdapter1. The wizard sets the properties of these
components for you. Now you can use the data adapter to populate your
datasets. Don’t forget to resize the DataGrid you added to the project.

179

Data Components in Visual Studio .NET

NOTE  You can even write your own SQL statement if you don’t want to
use the Query Builder. For performance reasons, if you only want a few
columns, then use column names instead of using SELECT * statements.

Figure 4-26. The View Wizard Results page

933ch4  3/20/02  11:03 AM  Page 179



Step 4: Setting and Reviewing Data Adapter Properties

OK, now that you have a DataAdapter on your form, let’s take a look at the
SqlDataAdapter component properties. You can see its properties by right-
clicking on the adapter and selecting the Properties menu item. The Properties
window looks like Figure 4-28.

The wizard also shows the available command properties, including
InsertCommand, DeleteCommand, SelectCommand, and UpdateCommand (see 
Figure 4-28).

180

Chapter 4

Figure 4-27. SqlConnection and SqlDataAdapter shown in the form designer

933ch4  3/20/02  11:03 AM  Page 180



You can set DataAdapter properties by clicking on these properties.
SqlCommand and TableMappings, for example, are important properties. 
A data adapter has four SqlCommand properties—SelectCommand, DeleteCommand,
InsertCommand, and UpdateCommand—that all execute SQL commands on the
data source. For example, if you look at the SelectCommand property in 
Figure 4-29, you’ll see the SQL Select statement.

181

Data Components in Visual Studio .NET

Figure 4-28. The data adapter in the Properties window

NOTE  Chapter 5 covers SelectCommand, InsertCommand, UpdateCommand,
and DeleteCommand in more detail.

933ch4  3/20/02  11:03 AM  Page 181



As you also see in Figure 4-29, you can set CommandText, CommandType,
Connection, and so on using the Properties dialog box. If you double-click on
CommandText, it pops up the Query Builder where you can rebuild your query (see
Figure 4-30).

182

Chapter 4

Figure 4-29. Setting the SQL SelectCommand in the data adapter

933ch4  3/20/02  11:03 AM  Page 182



The TableMapping class represents a mapping of DataColumns in the
data source to DataColumns in the DataSet. I’ll discuss DataTables and table map-
pings in more detail in Chapter 5. If you click on the TableMappings property
(which is a collection of TableMapping objects), it brings up the Table Mappings
dialog box.

As you can see from Figure 4-31, the Table Mapping dialog box has two
columns: Source Table and Dataset Table. The Source Table column is a list of
actual columns, and the Dataset Table column is a list of the column names used
in the dataset. By default, dataset columns names are the same as the source
table. This is useful when you want to use different names in a program. You can
change dataset columns by editing the column itself. Of course, you can’t change
source columns, but you can reorder them by using the column drop-down list.

183

Data Components in Visual Studio .NET

Figure 4-30. Relaunching the Query Builder from the CommandText property

933ch4  3/20/02  11:03 AM  Page 183



By using this dialog box, you can even delete columns from your mapping
using the Delete button.

Step 4: Reviewing Other Options

If you look closely at data adapter properties, you’ll see three links: Configure
Data Adapter, Generate Dataset, and Preview Data (see Figure 4-32).

The Configure Data Adapter option calls the Data Adapter Configuration
Wizard, discussed earlier in this chapter. If you want to reset the wizard to change
your options, you can use this link.

The Generate Dataset option lets you generate a dataset for this data adapter.
I’ll discuss how to generate datasets using data adapter properties in the
“Working with OleDb Data Adapters” section of this chapter.

184

Chapter 4

Figure 4-31. Table Mappings dialog box

933ch4  3/20/02  11:03 AM  Page 184



The Preview Data option enables you to view the DataSet schema. You can
even preview the data in the DataSet by clicking the Fill button. The Data Adapter
Preview dialog box looks like Figure 4-33.

185

Data Components in Visual Studio .NET

Figure 4-32. Data Adapter option links

933ch4  3/20/02  11:03 AM  Page 185



The Fill Dataset button in Figure 4-33 fills data into a grid based upon the
current state of the SelectCommand in the DataAdapter.

Step 5: Reviewing the Source Code

Now it’s time to examine the code and see what the wizard has done for you auto-
matically. You can see the source code by right-clicking on the form and selecting
the View Source option.

186

Chapter 4

Figure 4-33. Previewing data for the data adapter

NOTE  If you don’t want to know what the wizard has automatically done
for you, you can skip this step.

933ch4  3/20/02  11:03 AM  Page 186



All source code generated by the Windows form designer is defined in the
InitializeComponent method of the file . Right-click on your form and choose
View Code. Upon examining the source code, you’ll see where the wizard has
added two components, sqlConnection1 and sqlDataAdapter1, to your source file
as well as four SqlCommand components. Scroll down to the Windows Designer
Generated Code option and expand it. This will reveal the contents of the
InitializeComponent routine (see Listing 4-1).

Listing 4-1. Added Sql Server provider components
namespace DataAdapterSamp1

{

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.DataGrid dataGrid1;

private System.Data.SqlClient.SqlDataAdapter sqlDataAdapter1;

private System.Data.SqlClient.SqlCommand sqlSelectCommand1;

private System.Data.SqlClient.SqlCommand sqlInsertCommand1;

private System.Data.SqlClient.SqlCommand sqlUpdateCommand1;

private System.Data.SqlClient.SqlCommand sqlDeleteCommand1;

private System.Data.SqlClient.SqlConnection sqlConnection1;

// more Source code

private void InitializeComponent()

{

this.dataGrid1 = new System.Windows.Forms.DataGrid();

this.sqlDataAdapter1 = new System.Data.SqlClient.SqlDataAdapter();

this.sqlSelectCommand1 = new System.Data.SqlClient.SqlCommand();

this.sqlInsertCommand1 = new System.Data.SqlClient.SqlCommand();

this.sqlUpdateCommand1 = new System.Data.SqlClient.SqlCommand();

this.sqlDeleteCommand1 = new System.Data.SqlClient.SqlCommand();

this.sqlConnection1 = new System.Data.SqlClient.SqlConnection();

. . .

// more code

. . .

}

}

Do a search for the ConnectionString by hitting Ctrl+F to bring up the search
dialog box. If you examine the InitializeComponent() method, you’ll see that the
wizard sets SqlConnection’s ConnectionString property to the following:

187

Data Components in Visual Studio .NET

933ch4  3/20/02  11:03 AM  Page 187



this.sqlConnection1.ConnectionString = “data source=(local);initial catalog” +

“=Northwind;persist security info=False;user id” +

“=mahesh;workstation id=7LJML01;packet size=4096”;

It also sets the CommandText property of the SqlCommand with the corre-
sponding SELECT, INSERT, UPDATE, and DELETE SQL statements. The Connection
property of SqlCommand is set to SqlConnection:

this.sqlSelectCommand1.CommandText = “SELECT LastName, “ +

“EmployeeID, FirstName FROM Employees”;

this.sqlSelectCommand1.Connection = this.sqlConnection1;

If you examine the Listing 4-2, you’ll see that DataAdapter is connected to
a Connection through data commands, and the TableMapping property is respon-
sible for mapping tables and their columns. Note that the TableMappings between
DataSet columns and DataSource columns generated by the wizard have exactly
the same column names.

Listing 4-2. DataAdapter connection through TableMapping
private void InitializeComponent()

{

//

// some code here

//

this.sqlDataAdapter1.DeleteCommand = this.sqlDeleteCommand1;

this.sqlDataAdapter1.InsertCommand = this.sqlInsertCommand1;

this.sqlDataAdapter1.SelectCommand = this.sqlSelectCommand1;

Please break up code.

this.sqlDataAdapter1.TableMappings.AddRange

(new System.Data.Common.DataTableMapping[]

{new System.Data.Common.DataTableMapping

(“Table”, “Employees”, new System.Data.Common.DataColumnMapping[]

{

new System.Data.Common.DataColumnMapping(“LastName”, “LastName”),

new System.Data.Common.DataColumnMapping(“EmployeeID”, “EmployeeID”),

new System.Data.Common.DataColumnMapping(“FirstName”, “FirstName”)})

}

);

// . . ...

//. . .. . ...

}

188

Chapter 4

933ch4  3/20/02  11:03 AM  Page 188



It looks like the wizard did a lot of the work for you!

Step 6: Filling the DataGrid Control with Data

Until now, you didn’t have to write a single line of code. Now, though, you’ll add 
a few lines of code and then you’ll be all set to see the data from your data source.
First, you’ll create a method, FillDBGrid, which fills a DataSet object. Then you’ll
read data from a DataSet object and populate the DataGrid control.

The Fill method of SqlDataAdapter fills data from a data adapter to the
DataSet. You call Fill method in FillDBGrid method. Once you have a DataSet
containing data, you can do anything with it including creating views for that
data. (I discussed multiple views of a DataSet object in the previous chapter.) In
this example, you set a DataGrid control’s DataSource property to the
DataSet.DefaultViewManager, which binds the DataSet object to the DataGrid
control (see Listing 4-3).

Listing 4-3. FillDBGrid method
private void FillDBGrid()

{

DataSet ds = new DataSet();

sqlDataAdapter1.Fill(ds);

dataGrid1.DataSource = ds.DefaultViewManager;

}

Now you simply call FillDBGrid from the Form1 constructor or the Form_Load
event or from a button-click handler. In this example I’ll call it from the form
constructor just after the InitializeComponent() call, as you can see in 
Listing 4-4.

Listing 4-4. Calling the FillDBGrid method from the Form1 constructor
public Form1()

{

//

// Required for Windows Form Designer support

//

InitializeComponent();

FFiillllDDBBGGrriidd(());;

//

// TODO: Add any constructor code after InitializeComponent call

//

}

189

Data Components in Visual Studio .NET

933ch4  3/20/02  11:03 AM  Page 189



Now build and run the project. The result looks like Figure 4-34. Easy, huh?

Working with OleDb Data Adapters

In the previous section, I discussed Sql data adapters. Now, let’s take a quick look
at OleDb data adapters. Actually, all data adapters (Sql, OleDb, and ODBC) work
exactly the same way. I’ll take you through a quick step-by-step tutorial on how to
use OldDb data adapters. To give you more of a variety, you’re going to use OleDb
with an Access 2000 database.

As you already know, the first step in working with ADO.NET is to add a new
connection using the Server Explorer. For the purposes of consistency, I’ve used
the Northwind Microsoft Access 2000 database for these examples. Feel free,
however, to use any data source that has an OLE DB provider available on 
your machine.

In the Data Link Properties dialog box, choose the Microsoft Jet 4.0 OLD DB
Provider (see Figure 4-35).

190

Chapter 4

Figure 4-34. Output of the Employee data to a DataGrid control

933ch4  3/20/02  11:03 AM  Page 190



And the database is C:\Northwind.mdb, as you can see in Figure 4-36.

191

Data Components in Visual Studio .NET

Figure 4-35. Choosing the OLE DB driver for Access

Figure 4-36. Choosing the database in Server Explorer

933ch4  3/20/02  11:03 AM  Page 191



Adding an OleDbDataAdapter

Working with either an OleDbDataAdapter or an ODBCDataAdapter is the same as
working with the SqlDataAdapter. You can use either the Server Explorer or the
Data Adapter Configuration Wizard to create an OleDb data adapter. In this
example, I’ll use the Data Adapter Configuration Wizard. Drop an
OleDbDataAdapter control from Toolbox ➢ Data to your application form. This
action will bring up the Data Adapter Configuration Wizard.

On the second page of the wizard, Choose Your Data Connection, you can
either create a new connection or pick an existing connection (see Figure 4-37).

On the next page, select the Use SQL Statement option and click the Next
button (see Figure 4-38).

192

Chapter 4

Figure 4-37. Configuring an OleDb data adapter for Access

933ch4  3/20/02  11:03 AM  Page 192



This will bring you to the Add Table selection page. As you can see from
Figure 4-39, I’m picking the Orders table. Then, click the Add button.

193

Data Components in Visual Studio .NET

Figure 4-38. Choosing the query type in the Data Adapter Configuration Wizard

Figure 4-39. Adding a table to the query in the Data Adapter 
Configuration Wizard

933ch4  3/20/02  11:03 AM  Page 193



After clicking Add, the Query Builder brings up a table column selector, as
shown in Figure 4.40.

I chose OrderID, OrderDate, ShipAddress, ShipCity, and RequiredDate for my
query by checking the columns in the Orders window. This builds the query
shown in the third pane of the Query Builder. Clicking OK displays the final
query, as shown in Figure 4-41.

194

Chapter 4

Figure 4-40. Choosing columns for the query in the Data Adapter 
Configuration Wizard

933ch4  3/20/02  11:03 AM  Page 194



Clicking on the Advanced Options button brings up the Advanced SQL
Generation Options dialog box, as shown in Figure 4-42.

195

Data Components in Visual Studio .NET

Figure 4-41. Generating the SQL statements in the Data Adapter 
Configuration Wizard

Figure 4-42. Advanced options in the Data Adapter Configuration Wizard

933ch4  3/20/02  11:03 AM  Page 195



In this dialog box you can opt not to generate INSERT, UPDATE, or DELETE state-
ments by turning off the first option. This is useful if you’re planning on only
reading the database and don’t want all this extraneous code generated.

The second option, Use Optimistic Concurrency, causes the wizard to use
optimistic concurrency. Optimistic concurrency checks to see if the row being
updated in the database has already been changed by someone else during 
the update process. The data provider manages this by using a WHERE clause in the
UPDATE statement that checks for the original data in the dataset. If it doesn’t find
the original data, it won’t update the data source. A data provider maintains two
sets of parameters: one with the original data and one with the current data. The
current data parameters work in the UPDATE statement (this is the data you’re try-
ing to update the database with), and the original data parameters work in the
WHERE clause (these parameters are the check to make sure the database hasn’t
been updated). If you turn off the Use Optimistic Concurrency option, the WHERE
clause only contains the primary key and no original parameter data is gener-
ated. You can probably turn this off to speed things up if the application is only
for a single user. Below are the differences between the Select statements gener-
ated with optimistic concurrency on and off.

This is the code with optimistic concurrency turned off:

dateCommand1.CommandText = @”UPDATE Orders SET OrderDate = ?,”+

“RequiredDate = ?, ShipAddress = ?, ShipCity = ? WHERE (OrderID = ?)”+

“AND (OrderDate = ? OR ? IS NULL AND OrderDate IS NULL) AND “+

“(RequiredDate = ? OR ? IS NULL AND RequiredDate IS NULL) AND “+

“(ShipAddress = ? OR ? IS NULL AND ShipAddress IS NULL) AND “+

“(ShipCity = ? OR ? IS NULL AND ShipCity IS NULL)”;

This is the code with optimistic concurrency on:

this.oleDbUpdateCommand1.CommandText = @”UPDATE Orders SET OrderID = ?,”+

“OrderDate = ?, RequiredDate = ?, ShipAddress = ?, ShipCity = ?”+

“WHERE (OrderID = ?) AND (OrderDate = ?) AND (RequiredDate = ?)”+

“AND (ShipAddress = ?) AND (ShipCity = ?)” ;

“SELECT OrderID, OrderDate, RequiredDate, ShipAddress,”+

“ShipCity FROM Orders WHERE (OrderID = ?)”;

You may also notice the SQL Select statement tacked onto the end of the
SQL UPDATE statement. The Refresh the DataSet option adds this statement.
Turning this option off will remove the Select statement. You had to uncheck this
for the OleDb adapter or else Insert and Update don’t work. This isn’t true, how-
ever, for the SqlServer adapter.

196

Chapter 4

933ch4  3/20/02  11:03 AM  Page 196



Clicking Next brings up the results screen. As you can see in Figure 4-43, the
Data Adapter Configuration Wizard has done quite a bit of work! It’s generated all
of the commands for the adapter, all of the mappings, and, although not indi-
cated, all of the parameters.

If you examine the form designer, you’ll see the wizard added two compo-
nents to your form: oleDbConnection1 and oleDbDataAdapter1. The source code
generated by the wizard is similar to the source generated for the SqlDataAdapter.
You’ll notice differences, though, in the ConnectionString and the parameters if
you were to go through the same process with a SqlDataAdapter. The
OdbcDataAdapter will also generate similar code.

Populating DataSet and Filling the DataGrid

Now, to test whether everything went fine, create a Windows Forms application
and add an OleDataAdapter using the previous steps. Then, add a DataGrid con-
trol to the form, as well as all the code listed in Listing 4-5 on the Form_Load event
or a button-click handler.

197

Data Components in Visual Studio .NET

Figure 4-43. View Wizard Results page of the Data Adapter Configuration Wizard

933ch4  3/20/02  11:03 AM  Page 197



Listing 4-5. Adding the code on the Form_Load event
private void Form1_Load(object sender, System.EventArgs e)

{

DataSet ds = new DataSet();

// Populate DataSet by calling Fill method

oleDbDataAdapter1.Fill(ds);

// Set DataGrid’s DataSource property

dataGrid1.DataSource = ds.DefaultViewManager;

}

If you remember the SqlDataAdapter example, you know that it contained
almost the same code. As you can see from Listing 4-5, you create a DataSet
object and call OleDbDataAdapter’s Fill method to fill data from the data adapter
to the dataset. After that you use the DataGrid control’s DataSource property and
set it as DataSet’s DefaultViewManager.

Now build and run the project. Your output should look like Figure 4-44.

198

Chapter 4

Figure 4-44. Filling a DataGrid with the Orders table

933ch4  3/20/02  11:03 AM  Page 198



Using DataSet and DataView Components

After discussing data adapters and data connections, you got a pretty good
idea of how to take advantage of VS .NET design-time support to develop data-
bound Windows Form database applications.

The DataSet and DataView components are two powerful and easy-to-use
components of the ADO.NET model. In this section, you’ll see how to utilize
DataSet and DataView components at design-time. In Chapter 5, I’ll discuss their
properties and methods in more detail and show how to use them programmati-
cally. The DataSet and DataView components fall in the disconnected components
category, which means you can use these components with or without
data providers. I’ll discuss connected and disconnected data components in
Chapter 5 in more detail. These components work in the same way for all
data providers, including Sql, OleDb, and Odbc.

Understanding Typed DataSets in Visual Studio .NET

There are two types of datasets: typed datasets and untyped datasets. As dis-
cussed in Chapter 3 (and in more detail in Chapter 5), a typed dataset has an
XML schema attached to it. The XML schema defines members for a dataset cor-
responding to database table columns, and you can access data through these
columns. Untyped datasets are ones that are created at run-time and don’t have
an schema attached to them. I’ll now show you how you can generate typed
datasets using a VS .NET wizard.

Generating Typed DataSets Using Data Adapters

You can generate typed datasets by using any of the data adapters. You can either
generate a dataset by right-clicking on a data adapter and selecting the Generate
Dataset menu option or by using the data adapter Properties windows. To gener-
ate a dataset from data adapter’s Properties window, choose the Generate
Dataset hyperlink, which generates a DataSet object, and the wizard writes the
code for you (see Figure 4-45).

199

Data Components in Visual Studio .NET

933ch4  3/20/02  11:03 AM  Page 199



This action pops up a dialog box, which generates a dataset. Type your
dataset name and click OK (see Figure 4-46).

200

Chapter 4

Figure 4-45. Generating a typed dataset from the Properties window

933ch4  3/20/02  11:03 AM  Page 200



This action adds a dataset (if you check Add This Dataset to the Designer
check box) and pops up the dataset Properties dialog box (see Figure 4-47).

201

Data Components in Visual Studio .NET

Figure 4-46. Dialog box for generating a dataset

933ch4  3/20/02  11:03 AM  Page 201



Every dataset generated by the IDE creates an XML schema for the dataset.
Figure 4-47 provides you with two hyperlinks at the bottom of the dialog: View
Schema and DataSet Properties. View Schema lets you view the DataSet schema,
and the DataSet Properties hyperlink lets you set the DataSet properties. By fol-
lowing these links you can set the DataSet’s column names and other properties
(see Figure 4-48).

202

Chapter 4

Figure 4-47. A dataset’s Properties window showing a typed dataset

933ch4  3/20/02  11:03 AM  Page 202



This action also adds one class inherited from a DataSet and one XML
schema (DataSet1.xsd). The Class View of the DataSet is a derived class and looks
like Figure 4-49.

203

Data Components in Visual Studio .NET

Figure 4-48. Setting DataSet names and additional properties

Figure 4-49. A VS .NET–generated typed DataSet class

933ch4  3/20/02  11:03 AM  Page 203



You can now create an instance of this class instead of creating a DataSet
programmatically. This class has a member corresponding to each column of the
table to which it’s attached:

MyDataSet ds = new MyDataSet();

The beauty of typed datasets is that you can access the data in the columns
using MyDataSet object members.

Besides creating a DataSet using the Data Adapter Configuration Wizard,
there is another good way to do so. I’ll discuss this alternate solution in the fol-
lowing section.

Adding Typed DataSets

In the previous discussion, you saw how you can generate DataSet objects from
a data adapter. There are other ways to create a typed DataSet object.

You can click on the Project menu and choose Add New Item (or click
Ctrl+D). This brings up the Add New Item window where you’ll find the Data Set
template (see Figure 4-50).

204

Chapter 4

Figure 4-50. Creating a typed DataSet from the Add New Item window

933ch4  3/20/02  11:03 AM  Page 204



After adding the DataSet, the designer creates an XSD (XML schema) file and
adds it to your project area. As you can see from Figure 4-51, myDS.xsd is empty.

Next, drop a table (or multiple tables) from the Server Explorer to the form
(see Figure 4-52).

205

Data Components in Visual Studio .NET

Figure 4-51. myDS.xsd in VS .NET

933ch4  3/20/02  11:03 AM  Page 205



This action adds one XML schema (MyDS.xsd), which looks like Figure 4-53.

206

Chapter 4

Figure 4-52. Drag and drop tables from the Server Explorer to the form to create
a typed DataSet

Figure 4-53. Design View of the XML schema of the DataSet

933ch4  3/20/02  11:03 AM  Page 206



It also automatically adds the typed DataSet class that inherits from DataSet.
As you can see in Figure 4-54, the myDS class contains members used to access
data from the database.

Once you have this class, you can create an instance of this class and work
with its property fields directly:

MyDSet ds = new MyDSet();

207

Data Components in Visual Studio .NET

Figure 4-54. Wrapper class generated for the typed DataSet

NOTE  See Chapter 5 for a more extensive example on using datasets.

Understanding DataView

A DataView represents a view of a DataSet object. You can set filters on the data or
sort on data in the DataSet through different DataViews and produce different
views of the data. For example, you can create a DataSet with three tables and
create three different DataView objects for each table. Once you have a DataView
object, you can attach it with any data-bound control, such as a DataGrid or
a ComboBox control using data-bound control’s DataSource property.

933ch4  3/20/02  11:03 AM  Page 207



To create a DataView at design-time, drag the DataView from Toolbox ➢
Data onto your form. Then create a DataSet object and set the DataView’s Table
property to a table in the typed DataSet (see Figure 4-55).

Using the Data Form Wizard

At the end of this chapter, I’d like to discuss Data Form Wizard, one more useful
tool to develop database applications. You can use the Data Form Wizard to
develop your database application with viewing, updating, and deleting capabili-
ties. This is probably the fastest way to develop database applications in .NET
(unless you’re an extremely fast typist).

In this section, you’ll use a Data Form Wizard to write a fully functioning
database application including features such as inserting, updating, and deleting
data without writing a single line of code. In this simple example, I’ve used the
familiar Northwind database. I’ll use both the Customers and Orders tables to
show you a data relationship between table data.

208

Chapter 4

Figure 4-55. DataView Properties window

933ch4  3/20/02  11:03 AM  Page 208



Like many parts of this book, this topic is in the form of tutorial. Just follow
the simple steps, and in a few minutes you’ll be able to run a wonderful appli-
cation. In this section, you’re going to create a Windows application. After that
you’ll add a Data Form Wizard to it and call the Data Form Wizard from the 
main application.

Step 1: Selecting a Project Template

Create a new Windows project by selecting New Project ➢ Visual C# Projects ➢
Windows Application and typing your application name (see Figure 4-56).

Step 2: Adding a Data Form Wizard Item

Now add a Data Form Wizard by selecting Project ➢ Add New Item ➢ Data Form
Wizard from the available templates. You can type the name of your DataForm
class in the Name field of the dialog box (see Figure 4-57).

209

Data Components in Visual Studio .NET

Figure 4-56. Creating a Windows Application project

933ch4  3/20/02  11:03 AM  Page 209



Now click Open, which calls the Data Form Wizard.

Step 3: Walking through the Data Form Wizard

The first page of the wizard is a welcome page telling you what the wizard is
about to do (see Figure 4-58).

210

Chapter 4

Figure 4-57. Using the Data Form Wizard

Figure 4-58. Welcome page of the Data Form Wizard

933ch4  3/20/02  11:03 AM  Page 210



Step 4: Choosing the Dataset You Want

On the second page of the wizard, you can choose a dataset name that will later
be used to access the data. You can either create a new dataset name or select an
existing one. In this example, I’ll choose MyDS as the dataset name (see in 
Figure 4-59).

Step 5: Choosing a Data Connection

The next page of the wizard asks you to provide a connection. The combo box
displays your available connection. If you didn’t create a connection, use the New
Connection button, which launches the Server Explorer discussed earlier in this
chapter. I’ll select the usual database, Northwind (see Figure 4-60).

211

Data Components in Visual Studio .NET

Figure 4-59. Choosing a DataSet in the Data Form Wizard

933ch4  3/20/02  11:03 AM  Page 211



Step 6: Choosing Tables or Views

The next page of the wizard lets you pick the tables and views you want to con-
nect to the dataset. As you can see in Figure 4-61, I select the Customers and
Orders tables in the Available Items list on this page and use the > button to add
these tables to the Selected Items list.

212

Chapter 4

Figure 4-60. Choosing a data connection in the Data Form Wizard

933ch4  3/20/02  11:03 AM  Page 212



Now you’re ready to create a relationship between these two tables.

Step 7: Creating a Relationship between Tables

The next page lets you define a relationship between the Customers and Orders
tables. It’s useful to provide a relationship between tables when you have a master-
detail relationship database. In other words, a customer may have many orders
associated with it, so there is a relationship through the CustomerID in the
Orders table joined to information about the customer in the Customers table.
Now, say you want to see all the orders of a customer based on the CustomerID. If
you do this manually, you need to write code to select data from the Orders table
to correspond to a CustomerID and then fill data to the form. If you use
Data Form Wizard instead, it does everything for you. Neat, huh?

This is the same step you’re going to see on the Create a Relationship
between Tables page of the wizard. You’re going to create a relationship between
the Customers and Orders tables based on the CustomerID. I named the relation-
ship between Customers and Orders table CustOrderRelation. You also need to
pick the associated primary key and foreign key that links the parent to the child
table. Once you’ve chosen the joining key (CustomerID), you have to click the 
> button to tell the wizard that you want to add it.

213

Data Components in Visual Studio .NET

Figure 4-61. Choosing a DataTable or DataView in the Data Form Wizard

933ch4  3/20/02  11:03 AM  Page 213



When you run the final program, you’ll see how you can filter all orders for
a customer based on the CustomerID. As you can see from Figure 4-62, you need
to pick one table as parent and another table as a child based on the relationship
between them. In this example, the Customers table is the parent table, and the
Orders table is the child table.

After adding the relationship to the Relations list, the wizard looks like 
Figure 4-63.

214

Chapter 4

Figure 4-62. Selecting Customers as the parent and Orders as the child table to
create the CustOrderRelation relationship

933ch4  3/20/02  11:03 AM  Page 214



Step 8: Choosing Tables and Columns to Display on the Form

The next page of the wizard lets you select which tables and columns you want to
show on the form. For this example, select all the columns from both of the tables
(this is the default selection). As you can see in Figure 4-64, the Customers table
is the master, and the Orders table is the detail table.

215

Data Components in Visual Studio .NET

Figure 4-63. CustOrderRelation listed in the Relations list

933ch4  3/20/02  11:03 AM  Page 215



Step 9: Choosing the Display Style

This page is an important part of creating your form. Actually, the Data Form
Wizard adds a Windows form with some controls on it and writes code to fill,
update, delete, and navigate data. There are two ways to view the data, and you
choose your option on this page. These two options are:

• All Records in a Grid

• Single Record in Individual Controls

Figure 4-65 displays these options.

216

Chapter 4

Figure 4-64. Choosing columns to display on the Data Form Wizard

933ch4  3/20/02  11:03 AM  Page 216



The output of All Records in a Grid looks like Figure 4-66. After that you can
resize controls on the form.

217

Data Components in Visual Studio .NET

Figure 4-65. Choosing between a grid and individual controls on the Data
Form Wizard

933ch4  3/20/02  11:03 AM  Page 217



The second option, Single Record in Individual Controls, shows data in text
boxes and provides you with navigation controls. As you can see from Figure 4-67,
the Single Record in Individual Controls option activates Add, Delete, Cancel, and
Navigation controls check boxes. You can uncheck the check boxes if you don’t
want to add that feature in your project.

218

Chapter 4

Figure 4-66. Grid DataForm output

933ch4  3/20/02  11:03 AM  Page 218



The form generated by this option looks like Figure 4-68. As you can see from
Figure 4-68, each column of the table has a field on the form.

219

Data Components in Visual Studio .NET

Figure 4-67. The Single Record in Individual Controls option

933ch4  3/20/02  11:03 AM  Page 219



After your selection of data display style, you click Finish button. The
Data Form Wizard adds the Windows form DataForm1 and the class DataForm1.cs
corresponding to it.

Step 10: Calling the Data Form Wizard Form from the
Application

Now you need to change one more thing. You need to call DataForm1 when 
you start your application. By default, your application calls the Form1 form on
start up.

220

Chapter 4

Figure 4-68. Data Form Wizard–generated form for the Single Record in Individual
Control option

933ch4  3/20/02  11:03 AM  Page 220



static void Main()

{

Application.Run(new Form1());

}

So, you need to replace Form1 with your Data Form Wizard’s form name. In
this example, Listing 4-6 replaces Form1 with DataForm1 in the Main method.

Listing 4-6. Calling DataForm1 from the application
static void Main()

{

Application.Run(new DataForm1());

}

221

Data Components in Visual Studio .NET

NOTE  If you’ve modified the name of your Data Form Wizard–generated
form, you need to call that form instead of DataForm1.

Step 11: Viewing the Output

Now you should see the output shown in Figure 4-69 when you run your 
application (if you selected the grid view option).

The Load and Update buttons load and update the data, respectively, and
Cancel All cancels all the operations. The neat thing is if you move into the top
grid, corresponding information changes in the bottom grid. Neat, huh?

933ch4  3/20/02  11:03 AM  Page 221



Figure 4-70 shows the output when you select the Single Record in Individual
Control option. By using this view option, you can add, edit, delete, and navigate
records easily.

222

Chapter 4

Figure 4-69. Data Form Wizard with all records in a grid option

933ch4  3/20/02  11:03 AM  Page 222



Finally, compile and run your application. Without writing a single line of
code, you just created a fully functional database application.

The Load button on the individual control form loads the data, and the Add,
Update, and Delete buttons on the form inserts, updates, and deletes 
records, respectively.

Data Form Wizard: Looking under the Hood

You just saw how you can develop fully functional database applications in no
time with the help of the Data Form Wizard. Now let’s see what the wizard does
for you in the actual code. (The inherent beauty of VS .NET is that it magically
hides all the messy code for you.) The wizard adds two items to your project:
MyDS.xsd and DataForm1.cs.

223

Data Components in Visual Studio .NET

Figure 4-70. Textbox output with navigational controls

933ch4  3/20/02  11:03 AM  Page 223



Understanding MyDS.xsd

MyDS.xsd is an XML schema for the dataset you’ve added to the project. It’s simi-
lar to the one discussed in the “Understanding Typed DataSets in Visual Studio
.NET” section of this chapter.

Understanding DataForm1.cs

The second item added by the wizard is the DataForm1 class, a class derived from
System.Windows.Forms.Form. The DataForm1 class defines its entire functionality.
The InitializeComponent method creates the data connection, the data 
command, the data adapter, the dataset, and other data components.

The LoadDataSet method loads the data from the data source into the 
controls by calling FillDataSet (see Listing 4-7).

Listing 4-7. LoadDataSet method generated by the Data Form Wizard
public void LoadDataSet()

{

// Create a new dataset to hold the records

//returned from the call to FillDataSet.

// A temporary dataset is used because filling

//the existing dataset would

// require the databindings to be rebound.

MyDataFormWizardSamp.MyDS objDataSetTemp;

objDataSetTemp = new MyDataFormWizardSamp.MyDS();

try

{

// Attempt to fill the temporary dataset.

this.FillDataSet(objDataSetTemp);

}

catch (System.Exception eFillDataSet)

{

// Add your error handling code here.

throw eFillDataSet;

}

try

{

// Empty the old records from the dataset.

objMyDS.Clear();

// Merge the records into the main dataset.

objMyDS.Merge(objDataSetTemp);

}

224

Chapter 4

933ch4  3/20/02  11:03 AM  Page 224



catch (System.Exception eLoadMerge)

{

// Add your error handling code here.

throw eLoadMerge;

}

}

FillDataSet fills the dataset from the data adapter by calling the Fill
method on each data adapter. Note that with the Data Form Wizard,
a DataAdapter is created for each table, one DataAdapter for the Customers table
and one DataAdapter for the Orders table. Both DataAdapters fill the same
DataSet. Listing 4-8 shows the FillDataSet method.

Listing 4-8. The FillDataSet method generated by the Data Form Wizard
public void FillDataSet(MyDataFormWizardSamp.MyDS dataSet)

{

// Turn off constraint checking before the dataset is filled.

// This allows the adapters to fill the dataset without concern

// for dependencies between the tables.

dataSet.EnforceConstraints = false;

try

{

// Open the connection.

this.oleDbConnection1.Open();

// Attempt to fill the dataset through the OleDbDataAdapter1.

this.oleDbDataAdapter1.Fill(dataSet);

this.oleDbDataAdapter2.Fill(dataSet);

}

catch (System.Exception fillException)

{

// Add your error handling code here.

throw fillException;

}

finally

{

// Turn constraint checking back on.

dataSet.EnforceConstraints = true;

// Close the connection whether or not the exception was thrown.

this.oleDbConnection1.Close();

}

}

225

Data Components in Visual Studio .NET

933ch4  3/20/02  11:03 AM  Page 225



The UpdateDataSource method updates the data source from the DataSet.
The UpdateDataSet method calls UpdateDataSource, which utilizes the Update
method of the data adapters. Listing 4-9 shows the UpdateDataSource method.

Listing 4-9. The UpdateDataSource and UpdateDataSet methods generated by the
Data Form Wizard
public void UpdateDataSource(MyDataFormWizardSamp.MyDS ChangedRows)

{

try

{

// The data source only needs to be updated if there

//are changes pending.

if ((ChangedRows != null))

{

// Open the connection.

this.oleDbConnection1.Open();

// Attempt to update the data source.

oleDbDataAdapter1.Update(ChangedRows);

oleDbDataAdapter2.Update(ChangedRows);

}

}

catch (System.Exception updateException)

{

// Add your error handling code here.

throw updateException;

}

finally

{

// Close the connection whether or not the exception

//was thrown.

this.oleDbConnection1.Close();

}

}

226

Chapter 4

933ch4  3/20/02  11:03 AM  Page 226



Summary

Congratulations! Now you have completed one more step toward understanding
ADO.NET and its components. After completing this chapter, you should have
a pretty good idea of how to write database applications using VS .NET.

In this chapter, you learned about visual data components in Visual Studio
.NET. The Server Explorer is a handy utility added to VS .NET IDE to help you
manage your database connections.

Data adapters let you connect to a data source a design-time and can be
used to populate DataSet objects. Data adapters also allow you to add, update,
and delete data through data command objects. VS .NET also lets you generate
typed datasets, which create a DataSet with properties of tables and columns
specific to a data source.

DataView is a bindable view of a DataSet. You can sort and filter a DataSet
with a DataView and use it to bind to a graphical component in many of the
Windows form controls.

Finally, the Data Form Wizard is a useful tool in which you can generate full-
fledged database applications with features such as insert, delete, update in no
time. In the next chapter, I’ll discuss ADO.NET data providers and other
ADO.NET components and show how to work with them programmatically.
Chapter 5 will also cover data component’s methods and properties.

227

Data Components in Visual Studio .NET

933ch4  3/20/02  11:03 AM  Page 227



933ch4  3/20/02  11:03 AM  Page 228



Symbols and Numbers
/// (three slashes), using with comments in

source code, 67
<!-- > tag, description of, 357, 362
- (unary) operators, using with for loop state-

ments, 42
& (ampersand), role XML-document refer-

ences, 370
, (comma), using with UPDATE statement in

SQL, 676
&& (conditional and) operator, using with if

. . . else statement, 40–41
“ (double quote) entity in XML, representing,

370
; (semicolon)

advisory about, 46
role in XML-document references, 370

‘ (single quote) entity in XML, representing,
370

# (hash symbol), role in XML-document char-
acter references, 370

++ (unary) operators, using with for loop
statements, 42

<-- and --> pairs, role in XML comments, 369
< and > characters in XML documents, advi-

sory about, 369
< (less than)

entity in XML, 370
operator in SQL, 673

<> (not equal to) operator in SQL, 673
= (equal to) operator in SQL, 673
> (greater than)

entity in XML, 370
operator in SQL, 673

@ (at) sign, appearance in SQL Server Insert
commands, 339

|| (conditional or) operators, using with if . . .
else statements, 40–41

0-3 isolation levels, details of, 663
1-4 values for locking types, descriptions of,

664
1NF (first normal form), explanation of,

654–656
2NF (second normal form), explanation of,

656–658
3NF (third normal form), explanation of,

658–659
4NF (fourth normal form), explanation of,

659
5NF (fifth normal form), explanation of,

659–660

A
AcceptChanges method

of ADO.NET DataRow class, 252
of ADO.NET DataSet class, 276
of ADO.NET DataTable class, 259

Access connection string for ODBC, display-
ing, 291

Access tables, exporting to text files, 633–637
accessibility modifiers

example of, 32
functionality of, 33–35

Action property of
XmlNodeChangedEventsArgs,
description of, 566

AddCat1 stored procedure, code for, 588
Added member of ADO.NET DataRowState

enumeration, 257
additive operators, examples of, 38
AddNew method of ADO.NET DataView class,

description of, 278
AddNews property of ADO.NET DataView

class, description of, 277
AddRange method of Form class, code for, 89
AddRow_Click method, code for, 270
ADO (ActiveX Data Objects)

versus ADO.NET, 128–129
recordset cursor types and values in, 661

ADO recordsets, using in ADO.NET, 595–598
ADODB namespace

accessing databases with, 597–598
adding references to, 603
including in projects, 596–597
viewing, 596

ADOMD (ActiveX Data Objects Multi-
Dimensional Library)

adding references to, 603
functionality of, 601
testing, 603

ADOMD namespaces, adding to projects, 602
ADO.NET (ActiveX Data Objects .NET)

accessing OLAP server data with, 600–611
adding database support to Web services

with, 516–517
adding parameters to stored procedures

with, 585–587
versus ADO, 128–129
advantages of, 126–128
and COM interoperability, 594–595
CommandBuilder utility in, 135–136
concurrency control in, 343–347
creating Command objects for, 140–141

685

Index

933Index  3/20/02  2:56 PM  Page 685



creating DataAdapter objects for, 140–141
creating OleDb Command objects for,

301–303
creating stored procedures with, 573–580,

576–577
DataViewManager class, 278–279
deployment of, 127
editing, deleting, and executing stored

procedures with, 575–578
executing and reading results of stored

procedures in, 307–308
executing stored procedures with pro-

grammatically, 583–589
explanation of, 123–124
filling data to DataSets or DataReader

objects in, 141
getting database schemas from, 607–610
introduction to, 123
and ODBC, 125–126
and OLE-DB, 125–126
overview of namespaces and classes in,

129–132
performance and scalability of, 128
pessimistic concurrency in, 346–347
purpose of, 125–126
and relational databases, 660–661
returning data from stored procedures

with, 578
returning values from stored procedures

with, 586
role of Command components in,

230–231
role of Command object in, 133–135
role of Command objects in, 300–301
role of Connection components in,

230–231
role of Connection object in, 133–134
role of DataAdapter components in,

230–231
role of DataSet class in, 273
role of DataSet components in, 231–232
role of DataSets in, 124, 274–277
role of DataTable components in, 232
role of DataView class in, 273
role of DataViews in, 277–278
role of managed class in, 127
role of managed code in, 127
role of parameters in, 337–339
role of XML in, 124
saving SELECT statements as stored 

procedures with, 578–579
selecting records with, 610–611
support for XML, 127
System.Data namespace class, 237–238
transactions in, 342–343
typed and untyped DataSets in, 276–277
using ADO recordsets in, 595–598
using ADOX with, 598–600
using DataReaders with, 313–314
using output parameters and stored 

procedures with, 588

using views with, 588–594
viewing stored procedures with, 574
visual data components of, 127

ADO.NET applications
adding namespace references to, 139–140
choosing .NET data providers for, 138–139
closing connections to, 142
constructing SQL Server Connection

objects for, 148
creating in VS .NET, 153–154
displaying data in, 141
establishing connections in, 140
writing, 138–145
writing with Visual Studio .NET IDE,

145–151
ADO.NET architecture, examining, 230–232
ADO.NET class hierarchy, exploring, 232–237
ADO.NET components, understanding,

132–138
ADO.NET data provider namespace references,

adding to projects, 283
ADO.NET data providers

choosing, 282–283
connecting to databases, 283–285
explanation of, 229
introduction to, 279–283
opening and closing connections for,

285–289
ADO.NET disconnected classes

DataRelation, 257–258
DataRows, 251–256
DataRowState, 256–257
DataTable, DataColumn, and DataRow,

241–243
DataTables, 258–273
explanation of, 229
introduction to, 237
role of DataColumns in, 241–243
System.Data namespaces, 237
System.Data.Common namespaces,

239–240
ADO.NET events

calling Fill and Update methods of
DataAdapter for, 557–558

introduction to, 545–546
role of FillError property of data adapters

in, 553
testing data adapter events used with,

554–559
using connection events with, 547–553
using DataAdapter events with, 553–559
using DataSet events with, 559–560
using DataTable events with, 560–565
using DataView and DataViewManager

events with, 568–570
using XmlDataDocument events with,

565–568
ADO.NET objects, transferring XML names

to, 393
AdoNetApp1.cs application, code for,

143–144

686

Index

933Index  3/20/02  2:56 PM  Page 686



ADOX (ActiveX Data Objects Extensions for
Data Definition Language and
Security)

using from managed code, 600
using with ADO.NET, 598–600

aliases, using with SQL, 679–680
AllowCustomPaging property of ASP.NET

DataGrid control, description of,
465

AllowDBNull property of ADO.NET
DataColumn disconnected class,
description of, 244

AllowDelete property of ADO.NET DataView
class, description of, 277

AllowEdit property of ADO.NET DataView
class, description of, 277

AllowPaging property
of ASP.NET DataGrid control, 465
example of, 495
setting, 495

AllowSorting property
of ASP.NET DataGrid control, 465
setting, 495

amp XML built-in entities and references,
description of, 370

ampersand (&), role XML-document refer-
ences, 370

apos XML built-in entities and references,
description of, 370

AppendChild XML method, functionality of,
398–399

Application class of System.Windows.Forms,
description of, 101–102

array elements, iterating with foreach loop
statement, 43–44

array types, explanation of, 25–29
arrays

imitating with indexer class members, 63
sorting, searching, and copying, 26–29

ASP.NET
adding even handlers to button-click

events with, 448–449
adding server-side controls with, 460–462
advantages of, 437
binding Web Forms controls at design-

time with, 472–478
creating data views and connecting to

datasets with, 475–476
creating guest books with, 478–490
creating tables at design-time with,

504–507
creating tables programmatically with,

507–509
creating Web applications with, 438–442
data binding in, 462
installing, 436
introduction to, 435
platform requirements of, 436
setting control properties for, 444–448
setting page properties for, 441–442
table controls for, 504

using data-bound controls with, 462–464
using DataGrid and DataList controls

with, 464–469
viewing data in DataGrid controls with,

452–455
viewing page options for, 441

ASP.NET applications
adding, editing, and deleting data in,

496–503
adding new records to, 499–500
developing with VS .NET, 450–455
enabling automatic paging in, 494–495
enabling paging at design-time in,

491–494
executing SQL queries in, 497–499
filling data to ListBox controls with,

451–452
MyGuestBook example, 479–490
updating data in, 501
using ExecuteNonQuery method with,498
using ExecuteSQL method with, 499
using SQL SELECT statements with, 498

ASP.NET server-side controls
explanation of, 455
and .NET Framework library, 457–459
types of, 455–457

assemblies
definition of, 594
understanding, 8–10

assignment operators, examples of, 38
asynchronous Web services, executing,

539–542
at (@) sign, appearance in SQL Server Insert

commands, 339
atomic columns, role in 1NF, 654
Attr node in XML, description of, 374
Attribute member of XmlNodeType 

enumeration, description of, 384
AttributeCount property of XmlReader class,

description of, 387
attributes

adding to XML nodes, 402
explanation of, 31
returning for XML nodes, 385–386
role in XML documents, 371
in XML, 361–362

AutoGenerateColumns property of ASP.NET
DataGrid control, description of,
465

AutoIncrement property of ADO.NET
DataColumn disconnected class,
description of, 244

AutoIncrementSeed property of ADO.NET
DataColumn disconnected class,
description of, 244

AutoIncrementStep property of ADO.NET
DataColumn disconnected class,
description of, 244

automatic memory management feature of
C#, explanation of, 4

AVG function, using in SQL, 673

687

Index

933Index  3/20/02  2:56 PM  Page 687



B
<b> tag, description of, 357
BackColor property of ASP.NET DataGrid

control, description of, 465
BackImageUrl property of ASP.NET DataGrid

control, description of, 465
BaseURI property of XmlReader class,

description of, 387
BCNF (Boyce-Codd normal form), explana-

tion of, 659
BCNI (Boyce-Codd normal form), explana-

tion of, 654
BeginEdit method of ADO.NET DataRow

class, description of, 252
BeginInit method

of ADO.NET DataSet class, 276
of ADO.NET DataView class, 278

Begin(IsolationLevel) method
of Transaction class, description of, 342
in Sql data providers, 347

BeginTransaction method of ADO.NET
Connection class, description of,
285

binary compatibility with base classes, C#
support for, 4–5

binary operators, definition of, 37
BinarySearch property of array class, 

description of, 27
BindData method, example of, 260–264
<body> tag, description of, 357
Boiler.cs class example, implementing events

and event handlers with, 58–60
bookstore elements, adding to XML schemas,

423–424
books.xml

deleting all items in, 400–401
loading from strings, 394–395
output of, 360–361

bool C# type alias, details of, 18
BorderColor property of ASP.NET DataGrid

control, description of, 465
BorderStyle property of ASP.NET DataGrid

control, description of, 465
BorderWidth property of ASP.NET DataGrid

control, description of, 465
boxing, definition of, 30
<br> tag, description of, 357
break statement, functionality of, 44
Broken member of ADO.NET

ConnectionType enumerations,
description of, 285

Broken property of ConnectionState 
enumeration, description of, 549

Button class of System.Windows.Forms,
description of, 101

button-click handlers, creating ASP.NET
tables with programmatically,
508–509

button event handlers, writing code for, 269
byte C# type alias, details of, 18

C
C#

automatic memory management feature
of, 4

background of, 1
case-sensitivity of, 1
characteristics and features of, 2–5
compiling from command line, 144–145
and DLLs, 4
evolution of, 2
exception types in, 65
garbage collection in, 4
lack of support for inheritance, 3
language and cross-platform interoper-

ability in, 5
as modern language, 3
as object-oriented language, 3
and open source, 1–2
operators in, 38
performing type conversions in, 29–31
role of manifests in, 5
role of namespaces in, 4, 7
role of object types in, 3–4
scalability of, 4–5
simplicity and flexibility of, 3
standard input and output streams in,

10–11
support for binary compatibility with base

classes, 4–5
support for function overloading, 52–54
typesafety of, 3–4
versioning control in, 4–5

C# code, compiling from command 
line, 6

C# components, understanding, 7–10
C# Corner Web site, 3
C# editors, availability of, 5
C# types

explanation of, 4
introduction to, 17–18

CancelEdit method of ADO.NET DataRow
class, description of, 252

candidate key, role in BCNF, 659
Caption property of ADO.NET DataColumn

disconnected class, description
of, 244

CarRec struct type example, 19–20
Catalog object of ADOX, functionality of, 599
CDATA member of XmlNodeType 

enumeration, description of, 384
CDATA sections, role in XML documents, 369
CellPadding property of ASP.NET DataGrid

control, description of, 465
cells, adding to rows of ASP.NET tables at

design-time, 506–507
CellSpacing property of ASP.NET DataGrid

control, description of, 465
ChangeDatabase method of ADO.NET

Connection class, description of,
285

688

Index

933Index  3/20/02  2:56 PM  Page 688



Chaos isolation level for transactions,
descriptions, 343

char C# type alias, details of, 18
character and entity references, role in XML

documents, 370
CheckBox ASP.NET data-bound control,

description of, 464
CheckBox class of System.Windows.Forms,

description of, 101
CheckBoxList ASP.NET data-bound control,

description of, 464
checked operators, explanation of, 38–39
child nodes, moving to, 417–418
ChildNodes property of XmlNode class, 

functionality of, 394
ChildRelation property of ADO.NET

DataTable class, description of,
259

class constructors, calling, 50–51
class events, using delegate reference types

with, 24
class keyword, definition of, 7
class members, elements of, 46
class method example, 52
class objects, using indexer class members

with, 63
class property member example, 56–58
class reference types, explanation of, 21–22
Class View window, displaying Windows

Forms classes in, 92–100
classes

adding to VS .NET IDE Windows Forms
application, 92–96

in ADO.NET, 129–132
functionality of, 46
implementing multiple interfaces with,

22–23
for ODBC .NET data providers, 618

Clear method
of ADO.NET DataSet class, 276
of ADO.NET DataTable class, 259

Clear property of array class, description of,
27

CLI (Common Language Infrastructure) and
C#, 1–2

clients, creating for Web services, 525–539
Clone method

of ADO.NET DataSet class, 276
of ADO.NET DataTable class, 259

Clone property of array class, 
description of, 27

Close method
of ADO.NET Connection class, 285
of ADO.NET DataReaders, 315
using with XML documents, 392

Close property of XmlReader class, descrip-
tion of, 388

Closed member of ADO.NET ConnectionType
enumerations, description of,
285

Closed property of ConnectionState 
enumeration, description of, 549

CLR (Common Language Runtime)
handling stack overflow with, 38–39
incorporation into Mono Project, 2

CLR types, converting to XSD types, 393
code segments, using goto statement with,

43–44
ColorDialog class, functionality of, 101,

120–121
ColumnChanged event of DataTable event,

description of, 560, 562
ColumnChanging event of DataTable event,

description of, 560, 562
ColumnMapping property of ADO.NET

DataColumn disconnected class,
description of, 244

ColumnName property of ADO.NET
DataColumn disconnected class,
description of, 244

columns, displaying with Data Form Wizard,
215–216

Columns object of ADOX, functionality of,
599

Columns property
of ADO.NET DataTable class, 259
of ASP.NET DataGrid control, 465

COM (Component Object Model) and
ADO.NET, 594–595

COM libraries, adding references to, 595–596
ComboBox class of System.Windows.Forms,

description of, 101
comma (,), using with UPDATE statement in

SQL, 676
Command components, role in ADO.NET,

230–231
command line, compiling C# from, 144–145
command-line Windows forms applications,

writing, 70–78
Command object, role in ADO.NET, 134–135
Command objects

calling stored procedures with, 306–309
creating for ADO.NET applications,

140–141
functionality of, 300–301
role in ADO.NET, 133–134

Command property of
OleDbRowUpdatedEventArgs,
description of, 554

CommandBuilder objects
creating, 335–336
functionality of, 334–335

CommandBuilder utility, using with
ADO.NET, 135–136

CommandText property of
OledDbCommand, 
description of, 301

CommandType item
functionality of, 305
of OledDbCommand, 301

689

Index

933Index  3/20/02  2:56 PM  Page 689



Comment member of XmlNodeType 
enumeration, description of, 384

Comment node in XML, description of, 375
comments

role in XML, 369
using /// (three slashes) with, 67

Commit method of Transaction class,
description of, 342

CommitTransaction, functionality of, 340
common dialogs, creating with

Windows.Forms namespace,
118–121

CommonAppDataPath method of
Windows.Forms.Application
class, description of, 102

CommonDialog class of
System.Windows.Forms, 
description of, 101

Compare objects, sample output of, 15
CompareValidator ASP.NET server-side 

control, description of, 457
complexType items, adding to XML schemas,

424–425
concurrency control

in ADO.NET, 343–347
definition of, 341
Web site for, 665

conditional and (&&) operators, using with if
. . . else statements, 40–41

Conditional built-in attribute, description 
of, 31

conditional operators, examples of, 38
conditional or (||) operators, using with if . . .

else statements, 40–41
Configure Data Adapter option, using with

SQL data adapters, 184
Connecting member of ADO.NET

ConnectionType enumerations,
description of, 285

Connecting property of ConnectionState
enumer-ation, description 
of, 549

Connection class, using with ADO.NET data
providers, 283–285

Connection components, role in ADO.NET,
230–231

connection events
adding programmatically at design-time,

549
testing, 549
writing code for execution of, 551–552

connection events, using with ADO.NET
events, 547–553

Connection Lifetime connection pooling set-
ting, description of, 299

Connection objects
creating for ADO.NET applications, 140
creating with different constructors, 286
role in ADO.NET, 133–134

connection pooling, understanding, 297–300
Connection property of OledDbCommand, 

description of, 301

Connection Reset connection pooling setting,
description of, 299

connection strings
for ODBC with various databases, 291
for Ole Db with various databases, 290
role in VS .NET, 167–169

connections
adding with Server Explorer, 156–159
creating with different strings, 298–299
establishing for ADO.NET data providers,

283–285
establishing in ADO.NET applications, 140
opening and closing for ADO.NET data

providers, 285–289
connections and disconnected data, manage-

ment by ADO.NET versus ADO,
128

ConnectionState enumeration properties, list
of, 548–549

ConnectionString class, searching, 187
ConnectionString property of ADO.NET

Connection objects, 
description of, 284

ConnectionTimeOut property of ADO.NET
Connection objects, description
of, 284

console-based ADO.NET applications, 
creating, 142–145

Console class and members
accessing, 7
displaying, 11

constant class member
functionality of, 49
and inheritance, 46

constants, definition of, 36
Constraint class in ADO.NET System.Data

namespaces, description of, 237
ConstraintCollection class in ADO.NET

System.Data namespaces,
description of, 237

constraints, definition of, 242
Constraints property of ADO.NET DataTable

class, description of, 259
constructors, overloading, 50
ContextMenu class of

System.Windows.Forms, descrip-
tion of, 101

Continue property of FillErrorEventArgs,
description of, 553

continue statement, functionality of, 45
Control class of Windows.Forms namespace,

functionality of, 102
Control classes of System.Windows.Forms,

description of, 101
control flow, explanation of, 40
controls

adding to VS .NET IDE Windows Forms
application, 79–82

adding to Windows Forms, 73–74
Copy method

of ADO.NET DataSet class, 276
of ADO.NET DataTable class, 259

690

Index

933Index  3/20/02  2:56 PM  Page 690



Copy property of array class, description of,
27

CopyTo property of array class, 
description of

of array class, 27
Count property of ADO.NET DataView class,

description of, 277
CREATE TABLE statement, using with SQL,

676–677
CREATE VIEW statement, using with SQL, 681
CreateCommand method of ADO.NET

Connection class, description of,
285

CreateCustomersTable, calling with form’s
constructor, 260

CreateCustomersTable method, code for,
268–269

CreateCustomerTable method, example of,
260–265

CreateInstance property of array class,
description of, 27

CreateNavigator method of XmlNode class,
functionality of, 394

CreateOrdersTable method, example of,
260–264

CROSS JOINs, using with SQL, 680
.cs extension, adding to Windows Forms

applications, 70
Ctrl+F keyboard shortcut, searching

ConnectionString class with, 187
Ctrl+F5 keyboard shortcut, running VS .NET

IDE Windows Forms application
with, 91

cubes
getting dimensions of, 605–607
getting from FoodMart 2000 database,

604–605
role in OLAP, 600

CurrentPageIndex property of ASP.NET
DataGrid control, description of,
465

Cursor classes of System.Windows.Forms,
description of, 101

cursors, role in relational databases, 660–661
CustEmpView, displaying, 592–593
custom ASP.NET server-side controls, 

explanation of, 457
customer/order relationship

example of, 260–264
explanation of, 257–258

CustomValidator ASP.NET server-side con-
trol, description of, 457

CustOrderRelation relationship, creating with
Data Form Wizard, 214–215

CustOrdersDetail stored procedure, display-
ing output of, 582–583

D
data

displaying in ADO.NET applications, 141
managing and viewing with Server

Explorer, 159–161

reading and storing, 313–314
retrieving from views programmatically,

593–594
Data Adapter Configuration Wizard

binding ASP.NET Web Forms controls at
design-time with, 472–478

binding DataGrid controls with, 476–477
filling datasets with, 477–478

Data Adapter Configuration Wizard, creating
SQL adapters with, 171

data adapters, generating DataSet objects
from, 474–475

data-bound controls, using with ASP.NET,
462–464

data columns, understanding, 243–244
data components, using with VS .NET,

162–166
data connection pages, choosing for SQL data

adapters, 173
data connections

choosing with Data Form Wizard, 211–212
role in VS .NET, 166–169

Data Form Wizard
adding items to, 209–210
calling from applications, 220–221
choosing data connections with, 211–212
choosing DataSet objects with, 211
choosing display style for, 216–220
choosing project templates for, 209
choosing tables and columns to display

with, 215–216
choosing tables with, 212
choosing views with, 212
creating relationships between tables

with, 213–215
examining functionality of, 223–226
generating FillDataSet method with, 225
generating LoadDataSet method with,

224–225
generating UpdateDataSet method with,

226
generating UpdateDataSource method

with, 226
Grid DataForm sample output in, 218
role of DataForm1.cs class in, 224–226
role of MyDS.xsd in, 224
viewing output from, 221–223
walking through, 210

data providers
choosing for ADO.NET applications,

138–139
choosing with Server Explorer, 157
Connection class for, 134

data sources, connecting through ODBC
DSN, 294–296

data synchronization, definition of, 410
DataAdapter class

description of, 240
methods of, 323

DataAdapter components
adding for SQL data adapters, 172–173
role in ADO.NET, 230–231

691

Index

933Index  3/20/02  2:56 PM  Page 691



DataAdapter constructors, overloaded forms
of, 320

DataAdapter events
adding from Properties Window of Query

Builder, 554–555
using with ADO.NET events, 553–559

DataAdapter objects
connecting through TableMapping prop-

erty, 188
constructing, 320–321
constructing for SqlDataAdapter objects,

148
creating for ADO.NET applications,

140–141
example of, 323–326
functionality of, 319–320
generating typed DataSets with, 199–204
inserting, updating, and deleting data

with, 327
performing table and column mapping

with, 332–334
properties of, 322
relationship to Command objects in

ADO.NET, 134–135
relationship to DataSet and DataView

objects, 275
role in ADO.NET, 136
using FillError event handlers with, 556

DataAdapter properties, setting and review-
ing for SQL data adapters,
180–184

DataBase property of ADO.NET Connection
objects, description of, 284

database schemas
explanation of, 653
getting from ADO.NET, 607–610

database table columns versus fields, 242
database tables. See tables
DataColumn class

in ADO.NET System.Data namespaces,
237

creating for ADO.NET applications,
245–247

properties of, 244
relationship to DataRow and DataTable

classes, 241
DataColumn constructors, creating columns

with, 246–247
DataColumn properties, setting, 247–248
DataColumnChangeEventHandler ADO.NET

event, functionality of, 546
DataColumnCollection class in ADO.NET

System.Data namespaces,
description of, 237

DataColumnMapping class in ADO.NET
System.Data.Common name-
spaces, description of, 240

DataColumnMapping example, 333–334
DataColumnMappingCollection class in

ADO.NET System.Data.Common
namespaces, description of, 240

DataColumns, adding to DataTables, 248–251

DataForm1.cs class, role in Data Form
Wizard, 224–226

DataGrid ASP.NET data-bound control,
description of, 463

DataGrid control properties, setting at
design-time, 466–467

DataGrid controls
adding to forms for SQL data adapters,

172
creating with Data Adapter Configuration

Wizard, 476–477
displaying HTML view of, 494–495
displaying Orders table data in, 325
filling in VS .NET, 197–198
filling with data, 189–190
paging in, 490–493
setting images as next and previous page

text for, 495
using AutoFormat option with, 467–468
using Borders property page with,

471–472
using Columns property page with, 469
using Format property page with, 

470–471
using Paging property page with, 469–470
using Property Builder with, 468
using with ASP.NET, 464–469
viewing ASP.NET data in, 452–455

DataKeyField property of ASP.NET DataGrid
control, description of, 465

DataList ASP.NET data-bound control,
description of, 463

DataList controls, using with ASP.NET, 464–466
DataReaders

filling data to, 141
functionality of, 313–314
initializing and closing, 314–315
properties and methods of, 315
reading with, 315–317
using with SQL Server databases, 316–317

DataRelation class in ADO.NET System.Data
namespaces, description of, 237

DataRelation constructor, functionality of,
257–258

DataRelationCollection class in ADO.NET
System.Data namespaces,
description of, 237

DataRow class
in ADO.NET System.Data namespaces,

237
explanation of, 251–256
relationship to DataColumn and

DataTable classes, 241
DataRow objects

adding rows to DataTables with, 253–255
adding to DataTables, 328
functionality of, 241

DataRowChangeEventHandler ADO.NET
event, functionality of, 546

DataRowCollection class in ADO.NET
System.Data namespaces,
description of, 237

692

Index

933Index  3/20/02  2:56 PM  Page 692



DataRowState enumeration, functionality of,
256–257

DataRowView class in ADO.NET System.Data
namespaces, description of, 238

DataSet class
in ADO.NET System.Data namespaces,

238
reading XML documents with, 405–406
relationship to DataTable and DataView

classes, 274
role in ADO.NET, 273
writing XML documents with, 406–409

DataSet components
role in ADO.NET, 231–232
using with VS .NET, 199–208

dataset data, saving to XML documents, 414
DataSet events, using with ADO.NET events,

559–560
DataSet format, displaying XML data in,

411–413
DataSet objects

adding DataTables to, 265
choosing with Data Form Wizard, 211
connecting to data views in ASP.NET,

475–476
constructing and filling for ADO.NET

applications, 149
in DataView objects in, 138
filling data to, 141, 323, 477–478
functionality of, 137, 274–276
generating from data adapters, 474–475
generating from existing XML schemas,

430–432
loading XML data with, 411
populating in VS .NET, 197–198
relationship to DataAdapter and

DataView objects, 275
role in ADO.NET, 124
using Server Explorer with, 427–429
using with DataAdapter objects in

ADO.NET, 136
DataSet property

of ADO.NET DataSetView class, 279
of ADO.NET DataTable class, 259

DataSet1 class, generating with Data Adapter
Configuration Wizard, 474–475

DataSetName property of ADO.NET DataSet
class, description of, 275

DataSource property
of ADO.NET Connection objects, 284
of ASP.NET DataGrid control, 465

DataTable class
in ADO.NET System.Data namespaces,

238
properties of, 259
relationship to DataColumn and DataRow

classes, 241
relationship to DataSet and DataView

classes, 274
DataTable components, role in ADO.NET, 232
DataTable events, using with ADO.NET

events, 560–565

DataTable objects, functionality of, 241
DataTable property of FillErrorEventArgs, 

description of, 553
DataTableCollection class in ADO.NET

System.Data namespaces,
description of, 238

DataTableMapping class in ADO.NET
System.Data.Common name-
space, description of, 240

DataTableMapping objects, using with
DataAdapters, 332–333

DataTableMappingCollection class in
ADO.NET System.Data.Common
namespaces, description of, 240

DataTable objects
adding DataColumns to, 248–251
adding DataRows to, 328
adding rows to, 253–255, 270

DataType property of ADO.NET DataColumn
disconnected class, description
of, 244

DataView and DataViewManager events,
using with ADO.NET events,
568–570

DataView class
in ADO.NET System.Data namespaces,

238
relationship to DataSet and DataTable

classes, 274
role in ADO.NET, 273

DataView components, using with VS .NET,
199–208

DataView objects
adding, updating, and deleting rows of,

569–570
DataSet objects in, 138
relationship to DataAdapter and DataSet

objects, 275
role in ADO.NET, 277–278
role in VS .NET, 207–208

DataViewManager class
in ADO.NET System.Data namespaces,

238
role in ADO.NET, 278–279

DataViewManager property of ADO.NET
DataView class, description of,
277

DataViewSettings property of ADO.NET
DataSetView class, 
description of, 279

DbDataAdapter class in ADO.NET
System.Data.Common name-
spaces, description of, 240

DBDataPermission class in ADO.NET
System.Data.Common name-
spaces, description of, 240

DBTools
importing Access Northwind database

with, 623–625
setting internal data connections of, 626

DbType property of OleDbParameter class,
description of, 338

693

Index

933Index  3/20/02  2:56 PM  Page 693



deadlocks, explanation of, 665
decimal C# type alias, details of, 18
DecodeName method, using with XML docu-

ments, 393
DefaultValue property of ADO.NET

DataColumn disconnected class,
description of, 244

DefaultView property of ADO.NET DataTable
class, description of, 259

DefaultViewManager property of ADO.NET
DataSet class, description of, 275

delegate reference types
explanation of, 24
using with event class members, 58

Delete method
of ADO.NET DataRow class, 252–253,

255–256
of ADO.NET DataView class, 278

DELETE statement, using with SQL, 676
DeleteCommand property

of OleDbDataAdapter Command, 322
of OleDbDataAdapters, 322

Deleted member of ADO.NET DataRowState
enumeration, 257

DeleteRow_Click method, code for, 271
delimiters, choosing with Export Text Wizard,

636
Depth property

of ADO.NET DataReaders, 315
of XmlReader class, 387

description, role in Web services, 511
design-time versus run-time development,

role in creating Windows forms,
69–70

Design View, displaying orders for Web ser-
vices in, 525–526, 535

destructor class member
advisory about, 51
functionality of, 51
and inheritance, 46

Detached member of ADO.NET
DataRowState enumeration, 257

dialog classes of System.Windows.Forms,
description of, 101

dialogs, creating with Windows.Forms name-
space, 118–121

Direction property of OleDbParameter class,
description of, 338

dirty reads, role in relational database isola-
tion levels, 662

*.disco files, role in Web services, 511, 529
disconnected components, definition of, 199
discovery files, using with Web services, 529
discovery, role in Web services, 511
Dispose method, functionality of, 85, 287
DllImport built-in attribute, description of, 31
DLLs (dynamic link libraries) and C#, rela-

tionship between, 4
DOCTYPE declaration, role in XML docu-

ments, 368
document classes in System.Xml namespace,

explanation of, 376

Document member of XmlNodeType enu-
meration, description of, 384

Document node in XML, description of, 374
Document Outline viewer, synchronizing

Web-page controls with, 446–448
DocumentElement XML method, functional-

ity of, 399
DocumentFragment member of

XmlNodeType enumeration,
description of, 384

documenting source code, 67
documents, loading with XmlDocument

class, 394–395
DocumentType member of XmlNodeType

enumeration, description of, 384
DocumentType node in XML, description of,

374
DOM API (application programming inter-

face), explanation of, 378
DOM (Document Object Model), overview of,

372–375
DOM implementation

role of Load methods in, 394–395
role of Save methods in, 395
role of XmlDocument class in, 394–395
role of XmlDocumentFragment class in,

395–396
role of XmlElement class in, 397–402
role of XmlNode class in, 394

double C# type alias, details of, 18
double quote (") entity in XML, representing,

370
do . . . while loop statement, functionality of,

43
drag-and-drop design-time feature in VS

.NET, advantages of, 459
DROP TABLE statement

executing with OdbcCommand, 650–651
using with SQL, 677

DropDownList ASP.NET data-bound control,
description of, 464

DSNs (Data Source Names)
connecting to data sources through,

294–296
creating, 630
defining when accessing text files, 638

DTD (Document Type Definition), explana-
tion of, 364–366

dynamic cursors, explanation of, 660

E
ECMA (European Computer Manufacturers

Association), 1–2
EditItemIndex property of ASP.NET DataGrid

control, description of, 465
EditItemStyle property of ASP.NET DataGrid

control, description of, 465
element-attributes in XSLT, definition of, 

403
Element member of XmlNodeType enumera-

tion, description of, 384
Element node in XML, description of, 374

694

Index

933Index  3/20/02  2:56 PM  Page 694



elements
in HTML, 356
in XML, 365–366, 369

Employees table, saving as Excel spreadsheet,
642

empty elements in XML documents, explana-
tion of, 370–371

EndEdit method of ADO.NET DataRow class,
description of, 252

EndElement member of XmlNodeType 
enumeration, description of, 384

EndEntity member of XmlNodeType 
enumeration, description of, 384

EndInit method of ADO.NET DataSet class,
description of, 276

entity and character references, role in XML
documents, 370

Entity member of XmlNodeType enumer-
ation, description of, 384

Entity node in XML, description of, 375
EntityReference member of XmlNodeType

enumeration, description of, 
384

enum data types, explanation of, 20–21
EOF property of XmlReader class, description

of, 387
equal to (=) operator in SQL, 673
equality operators, examples of, 38
Equals method of Object class, explanation

of, 12, 14–15
Error class, functionality of, 350–352
ErrorCode property of InfoMessageEvents, 

description of, 548
errors, catching with SqlException class,

351–352
Errors property

of FillErrorEventArgs, 553
of OleDbRowUpdatedEventArgs, 554

Errors property of InfoMessageEvents,
description of, 548

event class member
functionality of, 58–62
and inheritance, 46

event handlers
adding code to VS .NET IDE Windows

Forms application, 89–91
adding to button-click events with

ASP.NET, 448–449
adding to button controls in Windows

Forms, 74–75
adding to menu items with

Windows.Forms namespace,
116–117

defining, 58
implementing with Boiler.cs class, 58–59
writing for toolbar buttons with

Windows.Forms namespace,
113–115

event handling, example of, 61–62
event reference types, explanation of, 24–25
events

adding to Windows Forms, 74–75

implementing with Boiler.cs class, 58–59
understanding, 61

Excel connection string for ODBC, displaying,
291

Excel databases
accessing, 641–643
connecting to, 292

exception handling, functionality of, 65–67
Exception type in C#, description of, 65
Execute method, using with SQL statements

in ASP.NET applications, 498
ExecuteNonQuery method

of Command object, 311
using with ASP.NET applications, 498

ExecuteScalar method of Command object,
description of, 312–313

ExecuteSQL method, using with ASP.NET
applications, 499

Executing member of ADO.NET
ConnectionType enumerations,
description of, 285

Executing property of ConnectionState enu-
meration, description of, 549

Exit, ExitThread methods of
Windows.Forms.Application
class, description of, 102

explicit type conversions, explanation of, 30
Export Text Wizard, exporting Access tables to

text files with, 635
Expression property of ADO.NET

DataColumn disconnected class,
description of, 244

expressions, definition of, 36–39

F
Fetching property

of ADO.NET ConnectionType enumera-
tions, 285

of ConnectionState enumeration, 549
field class member and inheritance, relation-

ship between, 46
FieldCount property of ADO.NET

DataReaders, description of, 315
fields class member, functionality of, 48–49
fields versus database table columns, 242
FileDialog class of System.Windows.Forms,

description of, 101
Fill Data button, effect in ASP.NET, 454
Fill method

of DataAdapter, 557–558
of OleDbDataAdapters, 323

FillDataGrid method, example of, 496–497
FillDataSet method, generating with Data

Form Wizard, 225
FillDBGrid method, calling from Form1 con-

structor, 189
FillError event handler code, using

DataAdapter with, 556
FillError property of data adapters, role in

ADO.NET events, 553
FillErrorEventHandler ADO.NET event, func-

tionality of, 546

695

Index

933Index  3/20/02  2:56 PM  Page 695



FillSchema method of OleDbDataAdapters, 
description of, 323

Finalize method of Object class, use of, 16–17
Find method of ADO.NET DataView class,

description of, 278
FindRows method of ADO.NET DataView

class, description of, 278
firehose cursors, definition of, 313
first child nodes, moving to, 417–418
first.exe file, creation of, 6
FirstWebApplication project, creating with

ASP.NET, 439
float C# type alias, details of, 18
Font dialog box, displaying, 119–120
Font property of ASP.NET DataGrid control,

description of, 465
<font> tag, description of, 357–358
FontDialog class of System.Windows.Forms,

description of, 101
FoodMart 2000 database, getting all available

cubes from, 604–605
FooterStyle property of ASP.NET DataGrid

control, description of, 465
for loop statement, functionality of, 42
foreach loop statement, functionality of, 43
ForeColor property of ASP.NET DataGrid con-

trol, description of, 465
foreign keys, role in relational databases, 653
ForeignKeyConstraint class in ADO.NET

System.Data namespaces,
description of, 237

Form class of Windows.Forms namespace,
functionality of, 102–103

Form classes of System.Windows.Forms,
description of, 101

form controls, adding events with Windows
Forms, 74–75

Form Designer, examining code in, 84–89
form properties, adding to Windows Forms,

72–78
Form_Load event, adding code on, 198
forms, definition of, 69
forward read-only cursors, definition of, 313,

660
function overloading, C# support for, 52

G
garbage collection in C#, explanation of, 4
Generate Dataset option, using with SQL data

adapters, 184
GetAttribute method

using with XML nodes, 385–386
of XmlElement class, 398

GetAttribute property of XmlReader class,
description of, 388

GetChanges method of ADO.NET DataSet
class, description of, 276

GetChildRows method of ADO.NET DataRow
class, description of, 252

GetFillParameters method of
OleDbDataAdapters, 
description of, 323

GetHashCode method of Object class,
description of, 12, 16–17

GetLength property of array class, 
description of, 27

GetOrderFromDatabase method
adding to sample Web service, 519–520
testing in sample Web service, 523

GetParentRows method of ADO.NET
DataRow class, description of, 
252

GetType method of Object class, description
of, 12–15

GetType operator versus typeof operator, 39
GetValue property of array class, description

of, 27
GetXml method of ADO.NET DataSet class,

description of, 276
GetXmlSchema method of ADO.NET DataSet

class, description of, 276
Getxxx method of ADO.NET DataReader,

description of, 315
Global.asax files in Web services, 

explanations of, 514
goto statement, functionality of, 43–44
greater than (>)
entity in XML, 370
operator in SQL, 673
Grid DataForm sample output in Data Form

Wizard, 218
GridLines property of ASP.NET DataGrid con-

trol, description of, 465
GROUP BY clause, using with SQL, 674–675
gt XML built-in entities and references,

description of, 370
guest books, creating in ASP.NET, 478–490
GuestBook.mdb, table schema of Guest table

in, 479
GUI components, role in Web Forms, 438
GUI (Graphical User Interface), building for

DataTable operations, 266–267

H
<h1 . . . h6> tag, description of, 357
HasAttribute method of XmlElement class,

description of, 398
HasAttributes property of XmlReader class,

description of, 387
hash symbol (#), role in XML-document char-

acter references, 370
hashtables, definition of, 16
HasValue property of XmlReader class,

description of, 387
HAVING clause, using with SQL, 675
HeaderStyle property of ASP.NET DataGrid

control, description of, 465
Height property of ASP.NET DataGrid con-

trol,, 466
“Hello, C# World!” program, writing, 6–7
Hello class, creating namespace wrapper 

for, 8
HelloWorldNamespace member, calling from

MyOtherNamespace, 10

696

Index

933Index  3/20/02  2:56 PM  Page 696



<hr> tag, description of, 357
HTML ASP.NET server-side controls, list of, 455
HTML files, simple example of, 356
HTML (HyperText Markup Language)

explanation of, 356–358
versus XML, 359, 361

HTML tags
examples of, 358
explanation of, 356
list of, 357
navigating with Document Outline viewer,

448
<html> tag, description of, 357

I
<i> tag, description of, 357
ID property of ASP.NET DataGrid control,

description of, 466
IDataParameter interfaces of ADO.NET

System.Data namespaces,
description of, 238

IDataParameterCollection interfaces of
ADO.NET System.Data name-
spaces, description of, 238

IDataReader interfaces of ADO.NET
System.Data namespaces,
description of, 238

IDataRecord interfaces of ADO.NET
System.Data namespaces,
description of, 238

IDbCommand interfaces of ADO.NET
System.Data namespaces,
description of, 239

IDbConnection interfaces of ADO.NET
System.Data namespaces,
description of, 239

IdbDataAdapter interfaces of ADO.NET
System.Data namespaces,
description of, 239

IDbDataAdapters, implementing with data
provider-specific classes, 320

IDbDataParameter interfaces of ADO.NET
System.Data namespaces,
description of, 239

IDbTransaction, implementing with data
provider-specific classes, 342

IDbTransaction interfaces of ADO.NET
System.Data namespaces,
description of, 239

if . . . else statement, functionality of, 40–41
images, adding to toolbar buttons with

Windows.Forms namespace,
107–113

implicit type conversions, explanation of,
29–30

indexer class member
functionality of, 63
and inheritance, 46

IndexOutOfRangeException type in C#,
description of, 65–66

InfoMessage ADO.NET event
testing, 551, 553

using with Connection object and
ADO.NET events, 547–548

writing event handlers for, 550
InfoMessageEventHandlers, functionality of,

352–353
inheritance, functionality of, 64–65
InitializeComponent routine, code for, 187
INNER JOINs, using with SQL, 680
input and output streams in C#, explanation

of, 10–11
Input member of ParameterDirection enu-

meration, description of, 586
input parameters, accepting with stored pro-

cedures, 581–582
InputOutput member of ParameterDirection

enumeration, description of, 586
INSERT statement

adding records to tables with, 311–313
using with Oracle databases and OleDb

data providers, 646–647
using with SQL, 678–679

InsertAfter XML method, functionality of, 401
InsertCommand property

of OleDbDataAdapter Command, 322
of OleDbDataAdapters, 322

InsertOrder method of OrderRetrievalService
project, testing, 533–536

InsertOrderFromNode Web method, calling
for sample Web service, 538

instance constructor class member
functionality of, 49–51
and inheritance, 46

instance fields, definition of, 35
int C# type alias, details of, 18
interface reference types, explanation of,

22–23
internal accessibility modifier, 

description of, 33
internal accessibility type for class 

members, 47
interoperability marshaling, definition of, 

595
is operator, explanation of, 39
IsClosed property of ADO.NET DataReaders,

description of, 315
IsDefault property of XmlReader class,

description of, 387
IsEmptyTag property of XmlReader class,

description of, 387
IsFixedLength property of array class,

description of, 26
IsNullable property of OleDbParameter class,

description of, 338
isolation levels

and data consistency, 663
role in relational databases, 662–663

IsolationLevel, role in database connections,
343

IsReadOnly property of array class, 
description of, 26

IsStartElement property of XmlReader class,
description of, 388

697

Index

933Index  3/20/02  2:56 PM  Page 697



ITableMapping interfaces of ADO.NET
System.Data namespaces,
description of, 239

ITableMappingCollection interfaces of
ADO.NET System.Data name-
spaces, description of, 239

Item property
of ADO.NET DataReaders, 315
of ADO.NET DataRow disconnected class,

251
of ADO.NET DataView class, 277
role in getting XML node information,

381–382
of XmlReader class, 387

ItemArray property of ADO.NET DataRow
disconnected class, description
of, 251

J
jagged arrays, example of, 26
JIT (Just-In-Time) compiler, incorporation

into Mono Project, 2
JOIN queries, using with SQL, 679–680

K
keyset cursors, explanation of, 660–661

L
Label class of System.Windows.Forms,

description of, 101
last in wins concurrency control, definition

of, 341
Length property of array class, 

description of, 26
less than (<)

entity in XML, 370
operator in SQL, 673

LineNumber property of SqlError class,
description of, 352

ListBox ASP.NET data-bound control,
description of, 463

ListBox class of System.Windows.Forms,
description of, 101

ListBox controls, filling data to, 451–452
ListChanged event, components of, 568, 

570
ListChangedType member of

ListChangedEventArgs, descrip-
tion of, 568

ListView class of System.Windows.Forms,
description of, 101

Load methods, role in DOM implementation,
394–395

LoadDataSet method, generating with Data
Form Wizard, 224–225

local variables, explanation of, 32
LocalName property of XmlReader class,

description of, 387
locking modes, role in relational databases,

664–665
locking, role in relational databases, 

661–665

logical operators, examples of, 38
long C# type alias, details of, 18
LookupNamespace property of XmlReader

class, description of, 388
loops

exiting with break statement, 44
exiting with continue statement, 45

lt XML built-in entities and references,
description of, 370

M
MainMenu class of System.Windows.Forms,

description of, 101
managed classes, role in ADO.NET, 127
managed code

definition of, 3
role in ADO.NET, 127
using ADOX from, 600

managed code, definition of, 594
manifests, role in C#, 5
markup, definition of, 355
master/details relationship, explanation of,

257–258
Max Pool Size connection pooling setting,

description of, 299
MaxLength property of ADO.NET

DataColumn disconnected class,
description of, 244

MemberwiseClone method of Object class,
use of, 16–17

Menu control classes of
System.Windows.Forms, 
description of, 101

menu items, adding to Windows applications
with Windows.Forms namespace,
115–118

MenuItem class of System.Windows.Forms,
description of, 101

Merge method of ADO.NET DataSet class,
description of, 276

MergeFailed dataset event, explanation of,
559–560

MergefailedEventHandler ADO.NET event,
functionality of, 546

Message property
of InfoMessageEvents, 548
of OleDbError class, 351
of SqlError class, 352

MessageBox control classes of
System.Windows.Forms, 
description of, 101

metadata, role in relational databases, 654
method class member

functionality of, 52–56
and inheritance, 46

method overloading example, 52–54
methods

adding to VS .NET IDE Windows Forms
application, 97–100

of Windows.Forms.Application class, 102
Microsoft .NET and XML, functionality of,

375–380

698

Index

933Index  3/20/02  2:56 PM  Page 698



Microsoft.Data.Odbc namespace
displaying, 616
locating, 130

Microsoft.Data.Odbc.dll assembly, adding
references to, 615–616

Min Pool Size connection pooling setting,
description of, 299

modern language, C# as, 3
Modified member of ADO.NET DataRowState

enumeration, 257
modifiers, definition of, 32
Mono Project, explanation of, 2
Move methods of XPathNavigator class,

descriptions of, 417
MoveToAttribute property of XmlReader

class, description of, 388
MoveToContent method, navigating nodes 

in XML documents with,
384–385

MoveToContent property of XmlReader class,
description of, 388

MoveToElement property of XmlReader class,
description of, 388

MoveToFirstAttribute property of XmlReader
class, description of, 388

MoveToMethod, navigating nodes in XML
documents with, 384–385

MoveToNextAttribute property of XmlReader
class, description of, 388

msadomd.dll library
adding references to, 602
locating, 601

MSXML parser, description of, 363
multi-item data-bound controls, using with

ASP.N ET, 462–463
multiple arrays, example of, 26
multiplicative operators, examples of, 38
myClass, indexers signature of, 63
MyDS.xsd XML schema, role in Data Form

Wizard, 224
MyForm.cs example, creating with Windows

Forms, 71–72
MyGuestBook ASP.NET application

adding forms to, 483–487
compiling and running, 487–490
controls on, 480
creating, 479–482
source code for adding guest data to data-

base, 481–482
submission page for, 481

MyOtherNamespace namespace members,
calling, 9

mySP stored procedure
displaying output of, 580–581
executing using SQL data providers, 584

MySQL database
connecting through Odbc data providers,

296–297
downloading, 621
finding ODBC drivers for, 622–623
starting as service, 621–622
using, 632–633

MySQL Server, importing Northwind data-
base into, 625–630

MyTable data, viewing in DataGrid control,
650

myTestCls derived from
System.Windows.Forms.Form
example, 96

N
Name property of XmlReader class, descrip-

tion of, 387
Name property, reading XML node informa-

tion with, 381–384
namespace references, adding to ADO.NET

applications, 139–140
namespaces

in ADO.NET, 129–132
role in C#, 4, 7
understanding, 8–10

NamespaceURI property of XmlReader class,
description of, 387

NameTable property of XmlReader class,
description of, 387

NativeError property of OleDbError class,
description of, 351

nested transactions, definition of, 340
.NET base class library, terminology advisory,

123
.NET data providers, choosing for ADO.NET

applications, 138–139
.NET Framework and Web services, relation-

ship between, 512
.NET Framework library and ASP.NET server-

side controls, relationship
between, 457–459

.NET Framework, using XslTransformation
class with, 403–404

NewIndex member of ListChangedEventArgs,
description of, 568

NewParent property of
XmlNodeChangedEventsArgs,
description of, 566

NewRow method of ADO.NET DataTable
class, description of, 259

NextResult method of ADO.NET
DataReaders, description of, 315

Node property of
XmlNodeChangedEventsArgs,
description of, 566

NodeChanged event handler, code for, 567
NodeInserted event handler, code for, 567
NodeRemoved event handler, code for, 568
nodes. See XML nodes
NodeType property of XmlReader class,

description of, 387
NodeType property, role in getting XML node

information, 382
non-static methods, definition of, 52
None member of XmlNodeType enumera-

tion, description of, 384
nonrepeatable reads, role in relational data-

base isolation levels, 662

699

Index

933Index  3/20/02  2:56 PM  Page 699



normalization, role in relational databases,
654

Northwind database
choosing in Server Explorer for use with

OleDb data adapters, 191
Customers database table schema in,

241–242
displaying in Server Explorer, 288
displaying Orders table schema of, 670
importing into MySQL Server, 625–630,

625–630
importing with DBTools, 623–625
listing stored procedures for, 580
using ODBC .NET data providers to read

data from, 620–621
viewing Employee table with Server

Explorer, 160–161
viewing table schema and data in, 243

not equal to (<>) operator in SQL, 673
Notation member of XmlNodeType 

enumeration, description of, 
384

NullReferenceException type in C#, 
description of, 65–66

Number property of SqlError class, 
description of, 352

O
Object class

explanation of, 12–17
Finalize method of, 16–17
getting type of, 12–13
MemberwiseClone method of, 16–17

object types, role in C#, 3–4
objects

comparing with Equals method in Object
class, 14–15

destroying with destructor class member,
51

ODBC Command objects, creating, 303–305
ODBC data components, viewing in toolbox,

164–165
ODBC data provider for ADO.NET

Command class for, 135
connecting to Excel databases with, 292
connecting to other providers with,

290–292
connecting to SQL Server databases with,

291
connecting to text files with, 293–294
Connection class for, 134
for DataAdapter class, 136

Odbc data providers
connecting to MySQL databases through,

296–297
downloading, 162

ODBC Data Source Administrator, examining
drivers from, 290

ODBC drivers
accessing text files with, 640
finding for MySQL database, 622–623

ODBC DSNs (Data Source Names)
connecting to data sources through,

294–296
creating, 630–632

ODBC .NET data providers
accessing data from data sources with,

619–621
accessing Excel databases with, 641–643
accessing text files with, 637–641
customizing toolbox for, 613–614
finding components for, 614–615, 617
installing, 613–617
introduction to, 613
using, 617–621
using with Oracle 9i databases, 647–651
using with Oracle databases, 644–651
using with Sybase databases, 651–652
verifying presence of, 617

ODBC (Open Data Base Connectivity) and
ADO.NET, 125–126

OdbcCommand, executing DROP TABLE SQL
statement with, 650–651

OdbcConnection class object, role in VS .NET,
166

Odbc.Net folder, browsing, 615
OLAP (Online Analytical Processing) Server

data, accessing with ADO.NET,
600–611

OldIndex member of ListChangedEventArgs,
description of, 568

OldParent property of
XmlNodeChangedEventsArgs,
description of, 566

OLE-DB (Object Linking and Embedding
Data Base) and ADO.NET,
125–126

OLE DB Services settings, details of,298
OleDb Command objects, creating, 301–303
OleDb data adapters, working with, 190–191
OleDb data providers

accessing Oracle 8i databases with,
645–647

Command class for, 135
connecting to a SQL Server with, 288
connecting to other providers with,

290–292
Connection class for, 134
for DataAdapter class, 136
using with VS .NET, 165

OleDb data provider classes, list of, 281–282
OleDb data provider event handlers and

event argument classes for
ADO.NET events, diagram of,
546–547

OleDbCommand constructor, functionality
of, 141

OleDbCommand objects reading data from
databases with, 
description of, 302–303

OleDbConnection class object, role in VS
.NET, 166

700

Index

933Index  3/20/02  2:56 PM  Page 700



OleDbConnections, opening and closing,
286–287

OleDbDataAdapter class, properties of, 322
OleDbDataAdapter Command properties, list

of, 322
OleDbDataAdapters

creating for VS .NET applications, 192–197
creating for Web services with Server

Explorer, 517–519
displaying Orders table data in DataGrids

with, 325
executing SELECT statements with, 321

OleDbError class properties, list of, 351
OleDbError collection, utilizing, 350
OleDbInfoMessageEventHandler OleDb data

provider event handler for
ADO.NET events, functionality of,
547

OleDbRowUpdatedEventArgs members, list
of, 554

OleDbRowUpdatedEventHandler OleDb data
provider event handler for
ADO.NET events, functionality of,
547

OleDbRowUpdatingEventHandler OleDb
data provider event handler for
ADO.NET events, functionality of,
547

OleDbType property of OleDbParameter
class, description of, 338

OnListChanged event handler, code for,
568–569

Open method of ADO.NET Connection class,
description of, 285

Open property of ConnectionState enumera-
tion, description of, 549

OpenFileDialog class, functionality of, 119
OpenfileDialog class of

System.Windows.Forms, descrip-
tion of, 101

operands versus operators, 37
operator class member and inheritance, 

relationship between, 46
operators

definition of, 36–39
versus operands, 37
types of, 37

optimistic concurrency
in ADO.NET, 343–347
definition of, 341
role in OleDbDataAdapters and VS .NET,

196
optimistic locking, explanation of, 664–665
Oracle 8i databases, accessing with OleDb

data providers, 645–647
Oracle 9i databases, using ODBC .NET data

providers with, 647–651
Oracle connection string for ODBC, display-

ing, 291
Oracle databases, using ODBC .NET data

providers with, 644–651

Order DataSet object, displaying for sample
Web service, 524

OrderRetrievalService project
displaying proxy reference file for, 540
testing, 533

OrderRetrievalService reference, viewing for
sample Web service, 528

OrderRetrievalService.asmx.cs sample Web
service, displaying, 515–516

out parameters, using with methods, 54–56
OUTER JOINs, using with SQL, 680
Output member of ParameterDirection 

enumeration, description of, 586
output parameters, using with stored proce-

dures, 588–589

P
<p> tag, description of, 357
PacketSize property of ADO.NET Connection

objects, 
description of, 284

Page property of ASP.NET DataGrid control,
description of, 466

Page_Load event, displaying for
ViewGuestBook.aspx, 485–486

PageCount property of ASP.NET DataGrid
control, description of, 466

PageIndexChanged event handler, adding to
ASP.NET DataGrid controls,
491–492

PagerStyle modes, setting for DataGrid con-
trols, 495

PageSize property
of ASP.NET DataGrid control, 466
setting, 495

paging, enabling at design-time, 491–494
ParameterDirection enumeration, members

of, 585–586
ParameterDirection.Output, example of, 588
ParameterName property of OleDbParameter

class, description of, 338
parameters

creating, 338
role in ADO.NET, 337–339

parent/child relationship, explanation of,
257–258

ParentRelation property of ADO.NET
DataTable class, description of,
259

pessimistic concurrency
definition of, 341
example in ADO.NET, 346

pessimistic locking, explanation of,
664

phantoms, role in relational database isola-
tion levels, 662

PictureBox class of System.Windows.Forms,
description of, 101

PIs (processing instructions), role in XML
documents, 371

PJ/NF, explanation of, 659–660

701

Index

933Index  3/20/02  2:56 PM  Page 701



Precision property of OleDbParameter class,
description of, 338

Prefix property of XmlReader class, 
description of, 387

Preview Data option, using with SQL data
adapters, 185

primary keys
role in relational databases, 653
role in setting DataColumn properties,

248
primary operators, examples of, 38
PrimaryKey property of ADO.NET DataTable

class, description of, 259
printing classes of System.Windows.Forms,

description of, 101
private accessibility modifier, description of,

33
Procedure property of SqlError class, 

description of, 352
ProcessingInstruction member of

XmlNodeType enumeration,
description of, 384

ProcessingInstruction node in XML, 
description of, 374

program logic, explanation of, 40
ProgressBar class of System.Windows.Forms,

description of, 101
project templates

choosing for Data Form Wizard, 209
selecting for SQL data adapters, 

171–172
selecting for Windows Forms application

written in VS .NET IDE, 78–79
prologs, role in XML documents, 367–368
properties

adding to VS .NET IDE Windows Forms
application, 97–100

setting for Windows Forms, 72–78
setting in VS .NET IDE Windows Forms

application, 82–84
Property Builder, using with DataGrid 

controls, 468
property class member

functionality of, 56–58
and inheritance, 46

protected accessibility modifier, description
of, 33

protected accessibility type for class mem-
bers, 47

protected internal accessibility modifier,
description of, 33

protected internal accessibility type for class
members, 47

Provider property of ADO.NET Connection
objects, 
description of, 284

proxy files
using with Web services, 529
viewing contents of, 540

public accessibility modifier, description of,
33

public accessibility type for class members,
accessibility types and scopes for,
47

Q
queries, reading batches with DataReaders,

317–319
Query Builder

relaunching from CommandText prop-
erty, 183

using with SQL data adapters, 176–178
Query Editor, launching, 668–669
query types, choosing for SQL data adapters,

174
quot XML built-in entities and references,

description of, 370

R
radio buttons, adding to Windows applica-

tions with Windows.Forms
namespace, 116

RangeValidator ASP.NET server-side control,
description of, 457

Rank property of array class, description of,
26

Read Committed isolation level, definition of,
663

Read method
of ADO.NET DataReaders, 315
of System.Console class, 10

read-only variables, explanation of, 35–36
Read property of XmlReader class, 

description of, 388
Read Uncommitted isolation level, definition

of, 663
ReadAttributeValue property of XmlReader

class, description of, 388
ReadCommitted isolation level for transac-

tions, descriptions, 343
reader and writer classes, role in System.Xml

namespace, 376
ReadInnerXml property of XmlReader class,

description of, 388
ReadLine method of System.Console class,

description of, 10
ReadOnly property of ADO.NET DataColumn

disconnected class, description
of, 244

ReadState property of XmlReader class,
description of, 387

ReadUncommitted isolation level for 
transactions, descriptions, 343

ReadXml method, functionality of, 405
ReadXmlSchema method

of ADO.NET DataSet class, 276
functionality of, 406

ReadXXXX property of XmlReader class,
description of, 388

records
adding to tables with INSERT SQL state-

ment, 311–313

702

Index

933Index  3/20/02  2:56 PM  Page 702



selecting, 610–611
RecordsAffected property

of ADO.NET DataReaders, 315
of OleDbRowUpdatedEventArgs, 554

recordsets
versus DataSets, 128–129, 274
filling DataAdapters with, 327

rectangular arrays, example of, 26
ref parameters, using with methods, 54–56
reference types, explanation of, 4, 21–25
Reference.cs file, contents of, 540–541
ReferenceEquals method of Object class,

description of, 12, 14–15
references

adding to ADOMD, 603
adding to ADOX libraries, 599
adding to COM libraries, 595–596
adding to Microsoft.Data.Odbc.dll assem-

bly, 615–616
adding to msadomd.dll library, 602

RegularExpressionValidator ASP.NET server-
side control, description of, 457

RejectChanges method
of ADO.NET DataRow class, 252–253, 256
of ADO.NET DataSet class, 276
of ADO.NET DataTable class, 259

relational databases
and ADO.NET, 660–661
details of, 653–654
dirty reads in, 662
effect of deadlocks on, 665
nonrepeatable reads in, 662
and normalization, 654–660
phantoms in, 662
resources for, 666
role of cursors in, 660–661
role of isolation levels in, 662–663
role of locking in, 661–665
role of locking modes in, 664–665
role of sets in, 660–661

relational operators, examples of, 38
Relations property of ADO.NET DataSet class,

description of, 275
relationships between tables, creating with

Data Form Wizard, 213–215
ReleaseObjectPool method

of ADO.NET Connection class, 285
calling, 300

RemoveAll methods of XmlElement class,
description of, 398–400

RemoveAllAttributes methods of XmlElement
class, description of, 398

RemoveAttribute methods of XmlElement
class, description of, 398

RemoveAttributeAt methods of XmlElement
class, description of, 398

RemoveAttributeNode methods of
XmlElement class, 
description of, 398

Repeatable Read isolation level, definition of,
663

RepeatableRead isolation level for transac-
tions, descriptions, 343

Repeater ASP.NET data-bound control,
description of, 464

ReplaceChild XML method, functionality of,
401

RequiredFieldValidator ASP.NET server-side
control, description of, 457

Reset method
of ADO.NET DataSet class, 276
of ADO.NET DataTable class, 259

return statement, functionality of, 45
ReturnValue member of ParameterDirection

enumer-ation, description of, 586
Reverse property of array class, 

description of, 27–29
Rollback method of Transaction class,

description of, 342
Rollback Transaction, functionality of, 340
Rollback(SavePoint) transaction method in

Sql data providers, 347
root nodes

getting for XML documents, 399
moving to, 417–418
role in XML, 359

Row property of
OleDbRowUpdatedEventArgs,
description of, 554

RowChanged event of DataTable event,
description of, 560, 563–564

RowChanging event of DataTable event,
description of, 561, 563–564

RowDeleted event of DataTable event,
description of, 561, 564–565

RowDeleting event of DataTable event,
description of, 561, 564–565

RowFilter property of ADO.NET DataView
class, description of, 277

rows
adding to ASP.NET tables at design-time,

504–505, 507
adding to DataTables, 270
deleting from DataTables, 271
using SELECT DISTINCT SQL statement

with, 611
Rows property of ADO.NET DataTable class,

description of, 259
RowState property of ADO.NET DataRow dis-

connected class, description of,
251

RowUpdated event handler, code for, 556–557
RowUpdating event handler, code for, 557
Run method of Windows.Forms.Application

class, description of, 102

S
Sales by Year stored procedures in Northwind

database, code for, 306–307
Save methods, role in DOM implementa-

tions, 395
SaveFileDialog class, functionality of, 119

703

Index

933Index  3/20/02  2:56 PM  Page 703



SaveFileDialog class of
System.Windows.Forms, descrip-
tion of, 101

savepoints
definition of, 340
using in SQL Server, 347–349

Save(SavePointName) transaction method in
Sql data providers, 347

sbyte C# type alias, details of, 18
scalability in C#, explanation of, 4–5
Scale property of OleDbParameter class,

description of, 338
schemas, role in XML, 364–366
SearchButton_Click method, code for, 272
SELECT COUNT statement, using with SQL,

674
SELECT DISTINCT SQL statement, selecting

records with, 611, 672
Select method

of ADO.NET DataTable class, 259
using with XPathNavigator class, 419–420

SELECT statements
examples of, 670–675
executing with SqlDataAdapters, 321
saving as stored procedures with

ADO.NET, 578–579
SelectCommand property

of OleDbDataAdapter Command, 322
of OleDbDataAdapters, 322
setting in SQL data adapters, 182

SelectedIndex property of ASP.NET DataGrid
control, description of, 466

SelectedItem property of ASP.NET DataGrid
control, description of, 466

SELECT . . . FORM XML clause, using with
SQL, 682

semicolon (;)
advisory about, 46
role in XML-document references, 370

Serializable built-in attribute, description of,
31

Serializable isolation level, explanation of,
343, 663

serialization, explanation of, 377
server controls, role in Web Forms, 438
server cubes

getting dimensions of, 605–607
getting from FoodMart 2000 database,

604–605
role in OLAP, 600

Server Explorer
adding connections with, 156–159
creating SQL data adapters with, 170–171
displaying Northwind database in, 288
displaying views available in, 592
introduction to, 154–156
launching, 427
launching to create stored procedures,

573–574
managing and viewing data with, 159–161
using DataSet objects with, 430–432

servers, adding to Server Explorer, 156

ServerVersion property of ADO.NET
Connection objects, 
description of, 284

Service1.asmx file in Web services
explanation of, 514
running, 521

SetAttribute method of XmlElement class,
description of, 398

SetAttributeNode method of XmlElement
class, description of, 398

sets, role in relational databases, 660–661
SetValue property of array class, 

description of, 27
SGML (Standard Generalized Markup

Language), explanation of,
355–356

shift operators, examples of, 38
short C# type alias, details of, 18
ShowFooter property of ASP.NET DataGrid

control, description of, 466
ShowHeader property of ASP.NET DataGrid

control, description of, 466
SignificantWhitespace member of

XmlNodeType enumeration,
description of, 384

simple types, explanation of, 17–19
single-dimenisional array example, 25–26
single quote (‘) entity in XML, representing,

370
Size property of OleDbParameter class,

description of, 338
sizeof operator, explanation of, 39
Skip method, using with XML nodes,386
Skip property of XmlReader class, description

of, 388
SOAP (Simple Object Access Protocol), pass-

ing XML nodes with, 537–539
Solution Explorer, using with Web services,

513
Sort property

of ADO.NET DataView class, 277
of array class, 27–29

source code
documenting, 67
reviewing for SQL data adapters, 186–189

Source property
of OleDbError class, 351
of SqlError class, 352

Source property of InfoMessageEvents,
description of, 548

SourceColumn property of OleDbParameter
class, description of, 338

SourceVersion property of OleDbParameter
class, description of, 338

Splitter class of System.Windows.Forms,
description of, 101

Sql Command objects, creating, 303–305
SQL data adapters

adding DataAdapter components to,
172–173

adding DataGrid controls to forms for, 172
choosing data connection pages for, 173

704

Index

933Index  3/20/02  2:56 PM  Page 704



choosing query types for, 174
creating with Data Adapter Configuration

Wizard, 171
creating with Server Explorer, 170–171
generating SQL statements for, 175
introduction to, 169–170
previewing data for, 186
reviewing source code for, 186–189
selecting project templates for, 171–172
setting and reviewing DataAdapter prop-

erties for, 180–184
setting SelectCommand in, 182
using Query Builder with, 176–178

Sql data provider for ADO.NET
Command class for, 135
connecting to SQL Server databases with,

288–289
Connection class for, 134
for DataAdapter class, 136
transaction methods in, 347
using savepoints with, 347–349

SQL data providers, executing mySP stored
procedure with, 584–585

SQL queries
executing in Web Forms, 497–499
executing with ADO.NET Command

object, 134–135
SQL Server

connecting through ODBC, 291–292
connecting through SqlClient data

provider, 292
connecting with OleDb data provider, 

288
using savepoints with, 347–349

SQL Server Connection objects, constructing
for ADO.NET applications, 148

SQL Server databases
accessing with SqlCommand, 304–305
getting tables from, 608–609
using DataReaders with, 316–317

SQL Server exception, advisory about,
150–151

SQL statements
generating for SQL data adapters, 175
testing, 667

SQL (Structured Query Language)
aliases, 679–680
conditional statements used in, 673
CREATE TABLE statement with, 676–677
CREATE VIEW statement, 681
CROSS JOINs, 680
DELETE statement with, 676
DROP TABLE statement with, 677
GROUP BY clause, 674–675
HAVING clause with, 675
INNER JOINs, 680
INSERT statement, 678–679
JOIN queries with, 679–680
OUTER JOINs, 680
resources for, 682–683
SELECT COUNT statement, 674
SELECT statements, 670–675

SELECT . . . FORM XML clause, 682
SUM and AVG functions, 673
TRUNCATE TABLE statement with,

677–678
UPDATE statement with, 675–676
using views with, 680–682

SQL View option, choosing, 668
SqlClient data provider, connecting to SQL

Server through, 292
SqlCommand

accessing SQL Server databases with,
304–305

calling stored procedures with, 306
SqlCommandBuilder, using, 335–337
SqlConnection class object

role in VS .NET, 166, 169, 171
viewing in form designer, 180

SqlDataAdapters
connecting to ADO.NET databases with,

148
displaying Customers tables data in

DataGrids with, 326
executing SELECT statements with, 321
viewing in form designer, 180

SqlError class, properties of, 352
SqlException class, catching errors with,

351–352
SqlParameter class, using with ADO.NET

stored procedures, 585
SqlState property of OleDbError class,

description of, 351
start and end tags, role in XML documents,

368–369
State property

of ADO.NET Connection objects, 284
of SqlError class, 352

StateChange ADO.NET event
testing, 551–552
writing event handlers for, 550

StateChange event, using with Connection
object and ADO.NET events,
547–548

StateChangeEventHandler ADO.NET event,
functionality of, 546

StatementType property of
OleDbRowUpdatedEventArgs,
description of, 554

static constructor class member
functionality of, 49–51
and inheritance, 46

static cursors, explanation of, 660
static methods, definition of, 52
static variables, explanation of, 35–36
Status property of

OleDbRowUpdatedEventArgs,
description of, 554

stored procedures
accepting input parameters with, 581–582
adding parameters to, 585–587
adding subtotal listings to, 309
calling with Command objects, 306–309
creating with ADO.NET, 573–580, 576–577

705

Index

933Index  3/20/02  2:56 PM  Page 705



stored procedures (continued)
editing, deleting, and executing with

ADO.NET, 575–578
executing with ADO.NET Command

object, 134–135
executing and reading results in ADO.NET,

307–308
executing from VS.NET, 580–583
executing programmatically with

ADO.NET, 583–589
returning data with, 578
returning values from, 586
using output parameters with, 588–589
viewing, 574

StoredProcedure member of CommandType
enumeration, description of, 305

string conversion, performing with ToString
method of Object class, 16

StringWriter class, definition of, 351
<strong> tag, description of, 357
struct types, explanation of, 19–20
stylesheets, expressing with XSL, 402–404
SUM function, using in SQL, 673
switch statement

functionality of, 41–42
versus goto statement, 44

switches, exiting with break statement, 44
Sybase databases, using ODBC .NET data

providers with, 651–652
synchronous Web services, explanation of,

539
System.Console class, functionality of, 10–11
System.Data assembly in ADO.NET, contents

in IL DASM utility, 129–131
System.Data namespace

event handler and event argument classes
defined in, 546

hierarchy in ADO.NET, 232–233
interfaces in ADO.NE, 238–239

System.Data.Common namespace in
ADO.NET

diagram of, 234
functionality of, 131, 237, 239–240

System.Data.dll assembly adding namespace
references to, 139

System.Data.OleDb namespace
functionality of, 131
hierarchy in ADO.NET, 235–236

SystemData.SqlClient namespace in
ADO.NET, functionality of,
131–132

System.Data.SqlTypes namespace hierarchy
in ADO.NET, diagram of, 234–235

SystemException type in C#, description of,
65

System.String class, getting type of, 12–13
SystemWeb namespace, role in .NET

Framework library, 457–458
System.Web.Services namespace, role 

in .NET Framework library, 459
System.Web.UI namespace, role in .NET

Framework library, 458

System.Web.UI.HtmlControls namespace,
role in .NET Framework library,
458

SystemWeb.UI.WebControls namespace, role
in .NET Framework library, 459

System.Windows.Forms common classes, list
of, 101

System.Windows.Forms namespace
adding menu items to applications with,

115–118
adding toolbars to applications with,

103–115
common Control class in, 103
creating dialogs with, 118–121
functionality of, 100

System.Xml namespace
adding reference for System.Xml.dll

assembly to, 379–380
role in Microsoft .NET and XML, 375–377

System.Xml.dll assembly, adding reference to
System.Xml namespace, 379–380

System.Xml.Schema namespace, role in
Microsoft .NET and XML, 377

System.Xml.Serialization namespace, role in
Microsoft .NET and XML, 377

System.Xml.XPath namespace, role in
Microsoft .NET and XML, 377–378

System.Xml.Xsl namespace, role in Microsoft
.NET and XML, 378

T
tab-delimited text files, using ODBC to read

data from, 293
Table control, introduction to, 503–509
table information, reading with TableDirect

CommandType, 309–311
Table Mappings dialog box, displaying for

SQL data adapters, 183–184
Table object of ADOX, functionality of, 599
Table property

of ADO.NET DataRow disconnected class,
251

of ADO.NET DataView class, 277
table schemas, getting, 609–610
<table> tag, description of, 357
TableDirect CommandType, reading table

information with, 309–311
TableDirect member

of CommandType enumeration, 305
TableMapping property

of OleDbRowUpdatedEventArgs, 554
TableMapping property, making DataAdapter

connections through, 188
TableMappings property

of DataAdapter class, 332
of OleDbDataAdapters, 322

TableName property of ADO.NET DataTable
class, description of, 259

tables
adding records with INSERT SQL state-

ment, 311–313
adding to View Designer, 590

706

Index

933Index  3/20/02  2:56 PM  Page 706



choosing with Data Form Wizard, 212
creating and adding data to, 648–649
creating at design-time with ASP.NET,

504–507
creating with DataTables and

DataColumns, 249–250
displaying with Data Form Wizard,

215–216
getting from SQL Server databases,

608–609
Tables property of ADO.NET DataSet class,

description of, 275
tags in HTML

examples of, 358
explanation of, 356
list of, 357
navigating with Document Outline viewer,

448
<td> tag, description of, 357–358
ternary operators, definition of, 37
text file databases, accessing, 633–641
text files

accessing, 637–641
connecting with ODBC data providers for

ADO.NET, 293–294
defining formats and column settings for,

639
exporting to Access tables, 633–637

Text member
of CommandType enumeration, 305
of XmlNodeType enumeration, 384

Text node in XML, description of, 375
TextBox ASP.NET data-bound control,

description of, 464
TextBox class of System.Windows.Forms,

description of, 101
TextDB.txt file, accessing, 640
Thanks.aspx item, adding to MyGuestBook

ASP.NET application, 484,
486–487

three slashes (///), using with comments in
source code, 67

TILs (transaction isolation levels), determin-
ing for relational databases,
662–663

Timer class of System.Windows.Forms,
description of, 101

<title> tag, description of, 357
toolbar buttons

adding images with Windows.Forms
namespace, 107–113

writing event handlers with
Windows.Forms namespace,
113–115

ToolBar controls, adding with
Windows.Forms namespace,
104–105

toolbars, adding to applications with
Windows.Forms namespace,
103–115

ToString method of Object class, description
of, 12, 16

<tr> tag, description of, 357
Transaction classes, methods of, 342
transaction processing, beginning, 340
transactions

in ADO.NET, 342–343
introduction to, 339–341

Transform XSL method, functionality of,
403–404

trees in XSLT, definition of, 403
TreeView class of System.Windows.Forms,

description of, 101
TRUNCATE TABLE statement, using with

SQL, 677–678
try . . . catch blocks, using, 65
Type class

and inheritance, 46
usage of, 12

type conversions, performing in C#, 29–31
type testing operators, examples of, 38
typed DataSet objects, using in VS .NET,

199–207
typed DataSets

in ADO.NET, 276–277
advantages of, 204
generating from existing XML schemas,

430–432
typeof operator, explanation of, 39
types

definition of, 4
introduction to, 17–18

typesafety feature of C#, explanation of, 3–4

U
uint C# type alias, details of, 18
ulong C# type alias, details of, 18
unary (-) operators, using with for loop state-

ments, 42
unary (++) operators, using with for loop

statements, 42
unary operators

definition of, 37
examples of, 38

unboxing, definition of, 30–31
Unchanged member of ADO.NET

DataRowState enumeration, 257
unchecked operators, explanation of, 38–39
Unique property of ADO.NET DataColumn

disconnected class, description
of, 244

UniqueConstraint class in ADO.NET
System.Data namespaces,
description of, 237

UniqueID property of ASP.NET DataGrid con-
trol, description of, 466

unmanaged code, definition of, 3, 594
Unspecified isolation level for transactions,

descriptions, 343
untyped DataSets in ADO.NET, 

description of, 276–277
Update method

adding data with, 328–330
calling for ADO.NET events, 557–558

707

Index

933Index  3/20/02  2:56 PM  Page 707



Update method (continued)
deleting data with, 331
of OleDbDataAdapters, 323
using with databases, 327–331

UPDATE statement, using with SQL, 675–676
UpdateCommand property

of OleDbDataAdapter Command, 322
of OleDbDataAdapters, 322

UpdateDataSet method, generating with
Data Form Wizard, 226

UpdateDataSource method, generating with
Data Form Wizard, 226

URI (Universal Resource Identifier), 
explanation of, 363

User ASP.NET server-side controls, 
explanation of, 457

UserAppDataPath method of
Windows.Forms.Application
class, description of, 102

ushort C# type alias, details of, 18
Using System; line of “Hello, C# World!”) pro-

gram, examining, 8

V
valid XML documents, explanation of, 367–372
Validation ASP.NET server-side controls, list

of, 457
Value property

of OleDbParameter class, 338
role in getting XML node infor-mation,

381–382
of XmlReader class, 387

value types, explanation of, 4, 17
values

assigning to variables, 32
representing with enum data types, 20–21

Values property of FillErrorEventArgs,
description of, 553

variable access modifiers, explanation of,
32–33

variables
explanation of, 32–36
using with property members, 56

versioning control in C#, explanation of, 4–5
View Code option in Form Designer, using,

84–85
View Wizard Results page, displaying for SQL

adapters, 179
ViewGuestBook.aspx item, adding to

MyGuestBook ASP.NET applica-
tion, 484–486

ViewGuestBook.aspx, source code for open-
ing of, 482

views
choosing with Data Form Wizard, 212
creating, 589–592
executing from VS.NET, 592
retrieving data from programmatically,

593–594
saving, 591
using with ADO.NET, 588–594
using with SQL, 680–682

VirtualItemCount property of ASP.NET
DataGrid control, description of,
466

visual data components, 162–166
VS .NET IDE Windows Forms 

application
adding classes to, 92–96
adding controls to, 79–82
adding event handlers to, 89–91
adding methods and properties to, 97–100
building and running, 91–92
examining code in, 84–89
selecting project template for, 78–79
setting properties in, 82–84

VS (Visual Studio) .NET
adding connection events at design-time

with, 549
adding OleDbDataAdapters to, 192–197
adding server-side controls with, 460
benefits of using with ASP.NET, 436
creating ADO.NET projects in, 153–154
creating connection components with,

166–167
creating console-based applications with,

142–145
creating stored procedures with, 573–574
creating Web services in, 512–521
developing ASP.NET applications with,

450–455
executing stored procedures from, 580–583
executing views from, 592
filling DataGrid controls in, 197–198
generating typed DataSets with, 199–204
populating DataSet objects in, 197–198
returning values from stored procedures

with, 586
role of connection strings in, 167–169
role of data connections in, 166–169
role of DataView objects in, 207–208
understanding typed DataSets in, 

199–207
using Data Form Wizard with, 208–223
using DataSet components with, 199–208
using DataView components with,

199–208
using OleDb data provider with, 165
using Server Explorer with, 154–159
using visual data components with,

162–166
writing ADO.NET applications with,

145–151

W
W3C, Web site for, 357
WaitHandle method, making asynchronous

calls to Web services with,
541–542

warnings, listening to, 352–353
Web applications

creating with ASP.NET, 438–442
definition of, 438

Web-based client applications, creating, 525

708

Index

933Index  3/20/02  2:56 PM  Page 708



Web Forms
adding, editing, and deleting data in,

496–503
adding new records to, 499–500
adding server-side controls to, 460
adding Web controls to, 442–444
binding at design-time, 472–478
executing SQL queries in, 497–499
explanation of, 437–438

Web Forms controls as server-side controls,
explanation of, 459–462

Web methods, adding to Web services, 519
Web services

accessing, 530
adding database support to, 516–517
adding Web methods to, 519
adding Web references to, 526–527
attributes of, 511–512
creating clients for, 525–539
creating consumers for, 525–539
creating in VS .NET, 512–521
creating method for populating database

orders in, 532
displaying client event handler for execu-

tion of, 538
displaying client event handlers for execu-

tion of, 535
displaying files in, 514
displaying for local servers, 528
executing asynchronously, 539–542
explanation of, 438, 511
increasing functionality of, 531–536
and .NET Framework, 512
order retrieval example of, 530
passing XML to, 537–539
testing, 521–524
using discovery files with, 529
using proxy files with, 529
using WSDL files with, 529
viewing code in, 515
viewing OrderRetrievalService reference

for, 528
writing to databases with, 531

Web sites
C# Corner, 3
C# editors, 5
for DOM, 372
locking and concurrency levels, 665
Mono Project, 2
MySQL database, 621
normal forms, 660
ODBC .NET data providers, 613
Odbc .NET Software Development Kit, 162
relational databases, 666
role of design-time versus run-time devel-

opment in, 69–70
SQL (Structured Query Language),

682–683
W3C, 357

Web.config file in Web services, explan-ation
of, 514

WebForm1.aspx page, displaying, 440

WebService and WebMethod attributes,
adding descriptions to, 522

WebService attribute, setting namespace and
description properties for, 524

Weight property of ASP.NET DataGrid con-
trol, description of, 466

well-formed XML documents, explan-ation
of, 361, 367

while loop statement, functionality of, 42
white spaces, role in XML documents, 372
Whitespace member of XmlNodeType enu-

meration, description of, 384
Windows applications

adding menu items with Windows.Forms
namespace, 115–118

creating for toolbar example in
Windows.Forms namespace,
103–104

Windows Forms
adding controls to, 73–74
adding events to, 74–75
advantages of, 69
creating, 71–72
creating final code for example of, 75–78
sample output of, 77–78
setting properties for, 72–78
writing applications from command line,

70–78
Windows Forms application written with VS

.NET IDE
adding classes to, 92–96
adding controls to, 79–82
adding event handlers to, 89–91
adding methods and properties to, 

97–100
building and running, 91–92
examining code in, 84–89
selecting project template for,

78–79
setting properties in, 82–84

Windows.Forms namespace
adding menu items to applications with,

115–118
adding toolbars to applications with,

103–115
common Control class in, 103
creating dialogs with, 118–121
functionality of, 100

Windows.Forms.Application class, methods
of, 102

wiring protocol, role in Web services, 512
WorkStationId property of ADO.NET

Connection objects, 
description of, 284

Write method of System.Console class,
description of, 10

WriteLine method of System.Console class,
description of, 10

WriteNode XML method, functionality of, 389
WriteXml method

of ADO.NET DataSet class, 276
functionality of, 406–408

709

Index

933Index  3/20/02  2:56 PM  Page 709



WriteXmlSchema method
of ADO.NET DataSet class, 276
functionality of, 408–409

WSDL (Web Services Description Language)
files, using with Web services, 529

X
XHTML (Extensible Hypertext Markup

Language), explanation of, 366
XlLang property of XmlReader class, 

description of, 387
XML data

displaying in DataSet format, 411–413
loading with DataSet objects, 411

XML Designer
generating XML with, 426–427
using Generate Dataset option of, 

431–432
XML Designer, launching, 422
XML documents

adding nodes, 398–399
adding to projects, 420–421
closing, 387–388
components of, 367–372
generating ADO.NET typed DataSets

from, 430–432
getting node information about, 381–384
getting root nodes for, 399
inserting fragments of, 395–396
inserting XML fragments into, 401–402
loading with Load and LoadXml methods,

411
navigating nodes in, 384–385
reading, 412
reading with DataSet class, 405–406
reading with XmlReader class, 381
reading with XPathNavigator class,

418–419
removing and replacing nodes in, 399–401
role of attributes in, 371
role of CDATA sections in, 369
role of character and entity references in,

370
role of DOCTYPE declaration in, 368
role of empty elements in, 370–371
role of processing instructions in, 371
role of prologs in, 367–368
role of start and end tags in, 368–369
role white spaces in, 372
sample tree structure implement-ation of,

373
saving data from DataSets to, 413–414
transforming, 404
using Close method with, 392
validating with DTDs, 364–366
writing attributes for, 389
writing comments to, 389
writing elements to, 389
writing strings to, 389
writing to console, 391
writing with DataSet class, 406–409

XML DOM tree representation, diagram of,
374

XML elements, explanation of, 365–366, 369
XML (eXtensible Markup Language)

attributes in, 361–362
case-sensitivity of, 361
characteristics of, 361–362
example of, 359–360
functionality of, 359
and Microsoft .NET, 375–380
navigating in, 415–420
passing to Web services, 537–539
role in ADO.NET, 124, 127
role of comments in, 369
role of DTDs and schemas in, 364–366
role of URIs in, 363

XML items, writing, 389–390
XML names, transferring to ADO.NET

objects, 393
XML namespaces, explanation of, 363–364
XML .NET API, explanation of, 378–379
XML nodes

adding attributes to, 402
description of, 374–375
navigating, 384–385
reading and displaying, 419–420
reading for XML documents, 382–383
removing and replacing, 399–401
searching for, 386
using GetAttributes method with, 385–386

XML parser, explanation of, 363–366
XML-related technology, defining, 355–358
XML schema items

adding to projects, 422–427
deleting from projects, 424

XML schema toolbox, displaying, 422–423
XML schemas

browsing for, 431
creating, 406
explanation of, 364–366
generating, 420
generating DataSet objects from, 430–432
generating for database tables, 429

XML source trees, definition of, 402–403
XML support, management by ADO.NET ver-

sus ADO, 129
XML trees, opening documents as, 402–403
XML versions of documents, defining, 360
XmlConvert class in System.Xml namespace,

explanation of, 377
XmlConvert class, example of, 393
XmlDataDocument class

diagram of, 409
explanation of, 376
functionality of, 415
loading data from, 411
reading and writing data with, 410

XmlDataDocument events, using with
ADO.NET events, 565–568

XmlDataDocumentSample.cs, code and out-
put for, 412–413

710

Index

933Index  3/20/02  2:56 PM  Page 710



XmlDeclaration member of XmlNodeType
enumeration, description of, 384

XmlDocument class
role in DOM implementation, 394–395
role in XML .NET API, 378
in System.Xml namespace, 376

XmlDocumentFragment class
role in DOM implementation, 395–396
in System.Xml namespace, 376

XmlDocumentType class in System.Xml
namespace, explanation of, 376

XmlElement class, role in DOM 
implementation, 397–402

XmlException class, role in System.Xml
namespace, 377

XmlLinkedNode class, role in System.Xml
namespace, 377

XmlNamespaceManager class, role in
System.Xml namespace, 377

XmlNode class in System.Xml namespace,
explanation of, 375–376

XmlNode class
functionality of, 401
role in DOM implementation, 394

XmlNode methods, functionality of, 396
XmlNodeChangedEventHandler, code for,

565–566
XmlNodeList class, role in System.Xml name-

space, 377
XmlNodeType enumeration, role in getting

XML node information, 382–384
XmlReader and XmlWriter classes, role in

System.Xml namespace, 376
XmlReader class

diagram of, 380

properties of, 387–388
role in XML .NET API, 378

XmlSpace property of XmlReader class,
description of, 387

XmlTextWriter method, example of, 389–390
XmlWriter class

diagram of, 388
example of, 390–392
properties of, 389
role in XML .NET API, 378

XmlWriterSample.cs class, output of, 
391–392

xmlWriterTest document, code for, 390–392
XPathDocument class in System.Xml.XPath

namespace, explanation of, 378
XPathExpression class in System.Xml.XPath

namespace, explanation of, 378
XPathIterator class in System.Xml.XPath

namespace, explanation of, 378
XPathNavigator class

functionality of, 416
Move methods of, 416–417
reading XML documents with, 418–419
searching with, 419–420
in System.Xml.XPath namespace, 378

XSD (XML Schema Definition) types versus
CLR data types, 393

xsd:schema statements, explanation of,
364–365

XSL (Extensible Stylesheet Language), func-
tionality of, 402

XSLT (XSL Transformation), explanation of,
402–404

XslTransformation class in .NET Framework,
functionality of, 403–404

711

Index

933Index  3/20/02  2:56 PM  Page 711




