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6
Neuro-fuzzy Systems

6.1 Introduction

T
his Chapter deals with neuro-fuzzy systems, i.e., those soft

computing methods that combine in various ways neural net-

works and fuzzy concepts. Each methodology has its particular

strengths and weaknesses that make it more or less suitable in a giv-

en context. For example, fuzzy systems can reason with imprecise

information and have good explanatory power. On the other hand,

rules for fuzzy inference have to be explicitly built into the system

or communicated to it in some way; in other words the system can-

not learn them automatically. Neural networks represent knowledge

implicitly, are endowed with learning capabilities, and are excellent

pattern recognizers. But they are also notoriously diÆcult to ana-

lyze: to explain how exactly they reach their conclusions is far from

easy while the knowledge is explicitly represented through rules in

fuzzy systems.

The complementarity between fuzzy systems and learning systems,

especially ANNs, has been recognized early by researchers. Taking

again a rather courageous, and utterly unrealistic biological analogy,

we could say that, conceptually at least, mixed neural and fuzzy sys-

tems resemble nervous systems where neural cells are the low-level

perceptive and signal integration part that make possible the higher
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level functions of the brain such as reasoning and linguistic abilities.

In this metaphor the ANN part stands for the perceptive and signal

processing biological machinery, while the fuzzy part represents the

emergent \higher level" reasoning aspects. As a result, these two

technologies have been integrated in various ways, giving rise to hy-

brid systems that are able to overcome many of the limitations of

the individual techniques. Therefore, neuro-fuzzy systems are likely

to be of wider applicability on real-life problems. The reader should

be aware that the �eld has an enormous variety and it would be

impossible to present a complete survey in a single chapter. We

have thus been obliged to make a choice of topics that we believe

are significant and representative of modern trends but by no means

exhaustive. Two useful recent books covering in detail all the topics

treated here and more are Nauck et al. [156] and Jang et al. [104].
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Figure 6.1 Schematic
view of how arti�cial
neural networks and
fuzzy systems can

interact
synergetically.

There are two main ways in which ANNs and fuzzy systems can

interact synergetically. One is the \fuzzi�cation" of neural networks

and the other consists in endowing fuzzy system with neural learning

features. In the �rst case, fuzziness may be introduced at di�erent

levels in a neural net: the weight level, the transfer function level,

or the learning algorithm level. In the second case, the most com-

mon arrangement is for the ANN to learn membership functions or

rules for a given fuzzy system. This relationships are schematically

depicted in Figure 6.1.

More precisely, according to [156], systems that combine neural

and fuzzy ideas can be divided into three classes:
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� co-operative, in the sense that neural algorithms adapt fuzzy

systems, which can in turn be distinguished in

{ o�-line (neural algorithms learn membership functions or

rules or both, once and for all)

{ on-line (neural algorithms are used to adapt the member-

ship functions or the rules of the fuzzy system or both, as

the system operates);

� concurrent (but we would prefer to call them sequential), where

the two techniques are applied after one another as pre- or

post-processing.

� hybrid (here too, this terminology can be misleading, because,

as a matter of fact, all neuro-fuzzy systems are hybrid), the

fuzzy system being represented as a network structure, mak-

ing it possible to take advantage of learning algorithms inher-

ited from ANNs. From now on this combination will be called

\fuzzy neural networks".

Concurrent (i.e., sequential) approaches are the weakest form of

combination between neural and fuzzy techniques, and not such an

interesting one for the purpose of this chapter. After all, the two

techniques retain their individualities and can be understood without

studying their interactions. Therefore, the �rst part of the chapter

describes \fuzzy neural networks", that is, how single neural units

and networks can be given a fuzzy avor. The second part of the

chapter deals with the other aspect of the mutual relationship that

is, using ANNs to help design eÆcient fuzzy systems \cooperatively".

6.2 Fuzzy Neural Networks

T
he purpose of this section is to introduce fuzzy concepts into

single arti�cial neurons and neural networks. Fuzzy systems and

neural networks are certainly di�erent soft computing paradigms;

however, they are rather complementary if one takes into accoun-

t their respective strong and weak features. Therefore, integrating

them into a single new soft computing model gives hopes of exploit-

ing their complementary nature by reinforcing the good points and

by alleviating their respective shortcomings. Fuzziness can be intro-
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duced in several ways into arti�cial neurons. In the next section we

present a way of \fuzzifying" single neurons.

6.2.1 Fuzzy Neurons

Fuzzy models of arti�cial neurons can be constructed by using fuzzy

operations at the single neuron level. The fuzzy operations that have

been used for that purpose are the union and the intersection of fuzzy

sets and, more generally, t-norms and t-conorms also called s-norms

which are extensions of the usual fuzzy operations (see Chapter 3,

Section 3.2.4). A variety of fuzzy neurons can be obtained by apply-

ing fuzzy operations to connection weights, to aggregation functions

or to both of them. We shall start from the structure of an arti-

�cial neuron such as it was introduced in Chapter 2 and which is

reproduced here for ease of reference in Figure 6.2.
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Figure 6.2 Model of a
crisp arti�cial neuron.

We recall that a vector x = (x1; x2; : : : ; xn) of input values enters a

neural unit through n incoming connections after having being modi-

�ed by the corresponding connection weights w = (w1; w2; : : : ; ; wn).

The neuron computes the sum of the weighted inputs, which is sim-

ply the scalar product w �x and produces an output signal according

to a prede�ned activation function g. When the function is a simple

step function the neuron �res (i.e, it produces a 1 output signal) if

w � x reaches a given thereshold value, otherwise it doesn't �re (the

output is 0). However, for numerical reasons, it is often useful to

have g as a non-linear monotonic mapping of the type:

g: [0; 1] ! [0; 1]; (6.1)

such as a sigmoid, hyperbolic tangent or gaussian curve. In this
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case the neuron emits a graded output signal between 0 and 1 (See

Chapter 2, Equation 2.2 and Equation 2.3).

The above standard model of an arti�cial neuron derives some

credibility from biological data on neural cells but it is certainly a

gross oversimpli�cation of reality. Thus, although it is a convenient

choice, there is nothing special about the weighted sum of the input

values as an aggregation operator. A step toward the fuzzi�cation

of an arti�cial neuron can be done by considering other forms A of

the aggregation function according to the more general equation:

y = g (A(w;x)); (6.2)

where g is the transfer function and y is the scalar output signal of

the neuron.

In fact, fuzzy union, fuzzy intersection and, more generally,

s-norms and t-norms can be used as an aggregation function for

the weighted inputs to an arti�cial neuron. Due to the fact that tri-

angular norms form an in�nite family, there exist an in�nite number

of possibilities for de�ning fuzzy neurons at the level of the aggrega-

tion function. In what follows, we present a particular class of fuzzy

neurons, the OR and AND neurons.
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Figure 6.3 Model of
an OR fuzzy neuron.

The OR fuzzy neuron realizes a mapping from the unit hypercube

to fuzzy signals pertaining to the graded membership over the unit

interval:

OR: [0; 1] � [0; 1]n ! [0; 1]

the weights are also de�ned over the unit interval. The OR fuzzy

neuron uses an aggregation function that corresponds to the maxi-
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mum of the weighted inputs; that is, it selects the fuzzy disjunction

of the weighted inputs as follows:

y = OR(x1 AND w1; x2 AND w2; : : : ; xn AND wn): (6.3)

This setting is depicted in Figure 6.3. As we saw in Chapter 3,

Section 3.2.4, fuzzy set logical connectives are usually de�ned in

terms of triangular norms 4 and t-conorms 5. Thus, the preceding

expression for the neuron output becomes:

y = 5n
j=1(xj 4 wj): (6.4)

The transfer function g is linear. In a manner analogous to standard

ANNs a bias term can be added representing a constant x0 = 0

value input signal with a weight w0. Taking the bias into account

the preceding equation reads:

y = 5n
j=0(xj 4 wj): (6.5)

We observe that, for any connection k, if wk = 0 then wk ANDxk =

0 while if wk = 1 then wk ANDxk = xk independent of xk.
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Figure 6.4 Model of
an AND fuzzy

neuron.

The AND fuzzy neuron (see Figure 6.4) is similar to the OR case

except that it takes the fuzzy conjunction of the weighted inputs,

which is the same as the minimum. First the inputs are \ored"

with the corresponding connection weights and then the results are

aggregated according to the AND operation. The transfer function

g is again linear:

y = AND(x1 OR w1; x2 OR w2; : : : ; xn OR wn): (6.6)
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Analogous to the OR case, when expressed in terms of triangular

norms the output fuzzy value is given by:

y = 4n
j=0(xj 5 wj); (6.7)

where the bias term x0 is now equal to 1, giving w0 AND x0 = w0.

Of course, in the generalized forms based on t-norms, operators

other than min and max can be used such as algebraic and bounded

products and sums. As they stand, both the OR and the AND

logic neurons are excitatory in character, that is higher values of xk
produce higher values of the output signal y. The issue of inhibitory

(negative) weights deserves a short digression since their introduction

is not as straightforward as it is in the standard neural networks. In

fact, we are here in the realm of fuzzy sets and we would obviously

like to maintain the full generality of the operations de�ned in [0; 1].

If the interval is extended to [�1; 1] as it is customary in ANNs,

logical problems arise from the fuzzy set-theoretical point of view.

The proper solution to make a weighted input inhibitory is to take

the fuzzy complement of the excitatory membership value �x = 1�x.

In this way, the generic input vector x = (x1; x2 : : : xn) now includes

the complemented values as well: x = (x1; x2 : : : xn; �x1; �x2 : : : �xn).

The weighted inputs xi Æ wi, where Æ is a t-norm or t-conorm, can

be general fuzzy relations too, not just simple products as in standard

neurons. As well, the transfer function g, which has been supposed

linear, can be a non-linear one such as a sigmoid. These kinds of

fuzzy neurons have been introduced by Pedrycz and coworkers [173,

195].

OR/AND Fuzzy Neuron

A generalization of the above simple fuzzy neurons is the OR/AND

neuron [95]. The OR/AND neuron is a combination of the AND

and OR neurons into a two-layer structure as depicted in Figure 6.5.

Taken as a whole, this structure can produce a spectrum of interme-

diate behaviors that can be modi�ed in order to suit a given problem.

Looking at the �gure, it is apparent that the behavior of the net can

be modulated by suitably weighting the output signals from the OR

or the AND parts through setting or learning the connection weights

c1 and c2. The limiting cases are c1 = 0 and c2 = 1 where the system

reduces itself to a pure AND neuron and the converse c1 = 1, c2 = 0,

in which case the behavior corresponds to that of a pure OR neuron.
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Figure 6.5 The
computational
structure of an
AND/OR fuzzy

neuron.

6.2.2 Multilayered Fuzzy Neural Networks

Fuzzy neurons such as those described in the previous section can

be assembled together into multilayered networks [170]. Since the

neurons used to build the nets are in general di�erent, the construc-

tion gives rise to non-homogeneous neural networks, in contrast with

the usually homogeneous networks that are used in the crisp ANN

domain. For example, Figure 6.6 depicts a two-layer network (not

counting the input layer) composed of a �rst layer with p neurons of

the same AND type and a second output layer wich aggregates all

the preceding signals with a single OR neuron. The input is consti-

tuted by 2n values including both the direct and the complemented

ones. A second possibility is to have OR neurons in the hidden layer

and a single AND neuron in the output layer (Figure 6.7). These

two types of networks have been called logic processors by Pedrycz.
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Following Pedrycz [170], for the �rst layered network type we have

that the signals zk produced at the hidden layer are given by:

zk = [4n
j=1(xj 5 wk;j)] 4 [4n

j=1(�xj 5 wk;(n+j))]; k = 1; 2; : : : ; p;

(6.8)

where wk is the vector of all connection weights from the inputs to

the kth node of the hidden layer. The output value y is the single

OR-aggregation of the previous signals from the hidden layer:

y = 5p
j=1(xj 4 vj): (6.9)

In the last expression the vector v is the weight vector of all the

connections from the hidden layer nodes to the single output node.

The network in which all the hidden nodes are of the OR type and the

output node is an AND fuzzy neuron (Figure 6.7) gives analogous

expressions with the 4 and 5 symbols exchanged. If we restrict

ourselves to the pure two-valued Boolean case then the network with

the hidden OR layer represents an arbitrary Boolean function as a

sum of minterms, while the second network is its dual in the sense

that it represents any Boolean function as a product of maxterms.

More generally, if the values are continuous members of a fuzzy set

then these networks approximate a certain unknown fuzzy function.

6.2.3 Learning in Fuzzy Neural Networks

The interest of having fuzzy connectives organized in network form is

that there are thus several ways in which ANN supervised learning
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methods can be applied to the fuzzy structure. This is a de�nite

plus in many situations since learning capabilities are not typical

of fuzzy systems. Of course, there exist other ways in which fuzzy

systems can learn but this particular neuro-fuzzy hybrid is useful in

light of the large amount of knowledge that has been accumulated

on the crisp ANNs versions. Supervised learning in fuzzy neural

networks consists in modifying their connection weights in a such a

manner that an error measure is progressively reduced by using sets

of known input/output data pairs. Another important requirement

is that the network thus obtained be capable of generalization; that

is, its performance should remain acceptable when it is presented

with new data (see the discussion on ANN supervised learning in

Chapter 2, Section 2.5).

Let us call the set of n training data pairs (xk; dk) for k = 1; 2 : : : n,

where xk is a vector of input data and dk is the corresponding ob-

served scalar output. A single fuzzy neuron adapts its connection

weights in order to reduce a measure of error averaged over the train-

ing set:

wt+1 = wt + �wt; (6.10)

where the weight change is a given function F of the di�erence be-

tween the target response d and the calculated node output y:

�wt = F (jdt � ytj); (6.11)

For instance, in standard ANNs a common learning rule is the delta

rule, which uses an estimate of the gradient of the continuous neuron

activation to reduce the mean square error (Chapter 2, Section 2.5).

For fuzzy neurons, one should take into account the fact that the

weighted inputs are not simple scalar products; rather, they are more

complex relationships between fuzzy sets.

For the whole network supervised learning proceeds as follows. A

criterion function E is de�ned such that it gives a mesure of how well

the fuzzy network maps input data into the corresponding output.

A common form for E is the sum of the squared errors:

E(w) = 1=2

nX
k=1

(dk � yk)2 (6.12)

The goal of the learning algorithms is to systematically vary the

connection weights in such a way that E is minimized on the training
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data set. This can be achieved by taking the gradient descent of E

with respect to the weights. The update step in the output weights

wi;j of the connections between unit j in the hidden layer and unit

j in the output layer can thus be found by di�erentiating:

�wi;j = ��
@E

@wi;j
; (6.13)

where � is a scale factor that controls the magnitude of the change.

The update in the input weights can be found by using the chain rule

for partial derivatives in the backpropagation style (see also Chap-

ter 2, Section 2.5). The derivation of the weight changes layer by

layer back to the input layer is straightforward but somewhat tricky.

The interested reader can �nd an example completely worked out

in Pedrycz's book [170]. The network chosen for the example corre-

sponds to the three-layer system of Equation 6.8 and Equation 6.9

where the algebraic sum is used for the s-norm and the product for

the t-norm.

6.2.4 An Example: NEFPROX

Approximating a continuous unknown function speci�ed by sample

input/output data pairs is a widespread problem. We already saw

in Chapter 2 how multilayer neural networks can implicitly approx-

imate such a mapping. Here we present another approach to this

problem by using a neuro-fuzzy system. The discussion that follows

is based on the work of D. Nauck [155, 157].

In this approach, called NEFPROX for NEuro Fuzzy function ap-

PROXimator, a neuro-fuzzy systems is seen as a three-layer feedfor-

ward network similar to the type described in the preceding section.

There are no cycles in the network and no connections exist between

layer n and layer n + j, with j > 1. The �rst layer represents input

variables, the hidden layer represents fuzzy rules, and the third layer

represents output variables. The hidden and output units in this

network use t-norms and t-conorms as aggregation functions, in a

manner similar to what we have seen in the previous sections. Fuzzy

sets are encoded as fuzzy connection weights and fuzzy inputs. The

whole network is capable of learning and provides a fuzzy inference

path. The end result should be interpretable as a system of linguistic

rules.
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The problem to be solved is that of approximating an unknown

continuous function using a fuzzy system given a set of data sam-

ples. There is an existence proof that fuzzy systems are capable of

universal function approximation [116]. However, actually building

such an approximation for a given problem requires the speci�cation

of parameters under the form of membership functions and of a rule

base. This identi�cation can be done by previous knowledge, trial

and error, or by some automatic learning methodology. NEFPROX

encodes the problem parameters in the network and uses a super-

vised learning algorithm derived from neural network theory in order

to drive the mapping towards satisfactory solutions. The advantage

of the fuzzy approach over a standard neural network is that, while

the latter is a black box, the fuzzy system can be interpreted in terms

of rules and thus has more descriptive power.

The NEFPROX system is a three-layer network with the following

features:

� The input units are labeled x1; x2; : : : ; xn. The hidden rule u-

nits are called R1; R2; : : : ; Rk and the output units are denoted

as y1; y2; : : : ; ym.

� Each connection is weighted with a fuzzy set and is labeled

with a linguistic term.

� All connections coming from the same input unit and having

the same label are weighted by the same common weight, which

is called a shared weight. The same holds for the connections

that lead to the same output unit.

� There is no pair of rules with identical antecedents.

According to these de�nitions, it is possible to interpret a NEFPROX

system as a fuzzy system in which each hidden unit stands for a fuzzy

if-then rule. Shared weights are needed in order for each linguistic

value to have a unique interpretation. If this were not the case, it

would be possible for fuzzy weights representing identical linguistic

terms to evolve di�erently during learning, leading to di�erent in-

dividual membership functions for its antecedents and conclusions

variables, which would in turn prevent proper interpretation of the

fuzzy rule base. Figure 6.8 graphically depicts the structure of a

NEFPROX system.

Learning in NEFPROX is based on supervised training and em-

ploys a conceptual variation of standard backpropagation in ANNs
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Figure 6.8 Schematic
architecture of a
NEFPROX system.
The connections
going through the
small rhombuses are
linked i.e., they share
the same weight (see
text). The �gure is
adapted from Nauck
[155].

since we are in a framework where known input/output sets do usu-

ally exist. The di�erence with the standard algorithm is that the

method for determining the errors and propagating them backwards

to e�ect local weight modi�cations is not based on gradient descent.

This is due to the fact that the functions involved in the system are

not always di�erentiable, as is the case for some types of triangu-

lar norms such as minimum and maximum used here. Central to

the NEFPROX approach to learning is simplicity, speed, and inter-

pretability of the results. The system is more suitable for Mamdani-

type fuzzy systems with a small number of rules and a small number

of meaningful membership functions. Indeed, according to [157], if

very precise function approximation is called for, then a neuro-fuzzy

approach, which should be characterized by tolerance for impreci-

sion, is probably not well suited anyway and other methodologies

should be preferred.

Since fuzzy rules are used in NEFPROX to approximate the un-

known function, pre-existing knowledge can be used at the outset

by initializing the system with the already known rules, if any. The

remaining rules have to be found in the learning process. If nothing

is known about the problem, the system starts out without hidden

units, which represent rules, and incrementally learns them. This

constructive aspect of the algorithm constitutes another di�erence
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with respect to the usual backpropagation learning algorithm in a

�xed network architecture. Simple triangular membership functions

are used for fuzzy sets although other forms would also be permis-

sible. At the beginning of the learning process fuzzy partitions for

each input variable are speci�ed. Fuzzy sets for output variables are

created during learning and a defuzzy�cation procedure is used at

the output nodes to compare calculated and observed values. The

network structure is as described above (see also Figure 6.8). Given

a training set of patterns fs1; t1; : : : ; sr; trg where s 2 IRn is an input

pattern and t 2 IRm the desired output, the learning algorithm has

two parts: a structure-learning part and a parameter-learning part.

The following is a slightly simpli�ed description of the algorithm,

more details can be found in the original work [157].

Structure Learning Algorithm

1. Select the next training pattern (s; t) from the training set.

2. For each input unit xi �nd the membership function �
(i)
ji such

that

�
(i)
ji (si) = max

j2f1;:::;pig
f�

(i)
j (si)g:

3. If there is no rule R with weights W (x1; R) =

�
(1)
ji ; : : : ;W (xn; R) = �

(1)
jn then create the node and con-

nect it to all the output nodes.

4. For each connection from the new rule node to the output

nodes �nd a suitable fuzzy weight �
(i)
ji using the membership

functions assigned to the output units yi such that �
(i)
ji (ti) =

maxj2f1;:::;qigf�
(i)
j (ti)g and �

(i)
j (ty) � 0:5. If the fuzzy set is not

de�ned then create a new one �
(i)
new(ti) for the output variable

yi and set W (R; yi) = �
(i)
new.

5. If there are no more training patterns then stop rule creation;

otherwise go to 1.

6. Evaluate the rule base and change the rule conclusions if ap-

propriate.

The supervised learning part that adapts the fuzzy sets associated

to the connection weights works according to the following schema:
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Parameter Learning Algorithm

1. Select the next training pattern (s; t) from the training set and

present it at the input layer.

2. Propagate the pattern forward through the hidden layer and

let the output units determine the output vector o.

3. For each output unit yi determine the error Æyi = ti � oyi.

4. For each rule unit R with output oR > 0 do:

� Update the parameters of the fuzzy sets W (R; yi) using a

learning rate parameter � > 0.

� Determine the change ÆR = oR(1 � oR) �P
y2output layer(2W (R; y)(ti)� 1) � jÆyj.

� Update the parameters of the fuzzy sets W (x;R) using

ÆR and � to calculate the variations.

5. If a pass through the training set has been completed and the

convergence criterion is met then stop; otherwise go to step 1.

The learning procedure for the fuzzy sets is based on simple heuris-

tics that result in shifting the membership functions and in making

their support larger or smaller. It is possible and easy to impose

constraints on the learning procedures such as that fuzzy sets must

not pass each other or that they must intersect at some point and

so on. As usual in supervised learning algorithms, one or more vali-

dation sets of data are used and training goes on until the error on

the validation set starts to increase in order to avoid over�tting and

to promote generalization (see also Chapter 2, Section 2.5).

NEFPROX has been tested on a well-know diÆcult benchmark

problem: the Mackey-Glass system. The Mackey-Glass delay-

di�erential equation was originally proposed as a model of white

blood cell production:

dx

dt
=

0:2x(t � �)

1 + x10(t� �)
� 0:1x(t); (6.14)

where � is a parameter. Using a value of � = 17 the resulting series

is chaotic. Training data can be obtained by numerical integration of

the equation. A thousand values were calculated of which the �rst

half were used for training and the rest for validation. The NEF-

PROX system used to approximate the time series has four input
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and one output variable and each variable was initially partitioned

by seven equally distributed fuzzy sets with neighboring membership

functions intersecting at degree 0.5. After learning, 129 fuzzy rules

were created. The resulting system approximates the function quite

well in the given range. The results are only slightly worse than

those that have been obtained on the same problem with another

neuro-fuzzy system called ANFIS [103] (see next section) but the

learning time is much shorter.

Two related neuro-fuzzy approaches are NEFCON and NEF-

CLASS which are used, respectively, for control applications and

for classi�cation problems [155]. NEFCON is similar to NEFPROX

but has only one output variable and the network is trained by re-

inforcement learning using a rule-based fuzzy error measure as a

reinforcement signal. NEFCLASS sees pattern classi�cation as a

special case of function approximation and uses supervised learning

in a manner similar to NEFPROX to learn classi�cation rules.

6.2.5 A Second Example: The ANFIS System

ANFIS stands for Adaptive Network-based Fuzzy Inference System

and is a neuro-fuzzy system that can identify parameters by using

supervised learning methods [103]. ANFIS can be thought of as a

network representation of Sugeno-type fuzzy systems with learning

capabilities. ANFIS is similar in spirit to NEFPROX but, with re-

spect to the latter, learning takes place in a �xed structure network

and it requires di�erentiable functions. The ANFIS heterogeneous

network architecture is constituted by a number of layers of nodes

which have the same function for a given layer but are di�erent from

one layer to the next. For example, consider the fuzzy inference

system with two inputs x and y and a single output z [103]. For a

�rst-order Sugeno model, a rule set using a linear combination of the

inputs can be expressed as:

IF x is A1 AND y is B2 THEN f1 = p1x + q1y + r1
IF x is A2 AND y is B2 THEN f2 = p2x + q2y + r2

(6.15)

The reasoning mechanism for this model is:

f =
w1f1 + w2f2
w1 + w2

= �w1 + �w2: (6.16)

216



Section 6.2

Fuzzy Neural

Networks

A

A

B

B

1

2

1

2

N

N
y 

x 

w1 w1

w
2

x y

x y

f 2

f1
.

.

f

w
2

w
2

w1

Layer 1 Layer 2 Layer 3 Layer 5Layer 4

Figure 6.9 ANFIS
architecture
corresponding to a
two-input �rst-order
Sugeno fuzzy model
with two rules (see
text). The �gure is
adapted from the
work of Jang and Sun
[103].

The ANFIS network architecture corresponding to this Sugeno model

is shown in Figure 6.9. The layers in the net are constituted by nodes

having the same function for a given layer. The functionalities of the

layers are as follows:

Layer 1: Denoting by Ol;i the output of node i in layer l, each node

in layer 1 is an adaptive unit with output given by:

O1;i = �Ai
(x); i = 1; 2 (6.17)

O1;i = �Bi�2(x); i = 3; 4

where x and y are input values to the node and Ai or Bi�2 are fuzzy

sets associated with the node. In other words, each node in this layer

generates the membership grades of the premise part. The member-

ship functions for Ai and Bi can be any appropriate parameterized

membership function such as triangular, trapezoidal, Gaussian or

bell-shaped.

Layer 2: Each node in this layer is labeled � and computes the �ring

strength of each rule as the product of the incoming inputs or any

other t-norm operator:

O2;i = wi = �Ai
(x)4 �Bi

(y); i = 1; 2: (6.18)

Layer 3: Each node in this layer is labeled N and it calculates the

ratio of the i-th rule's �ring strength to the sum of all rules' �ring

strengths:

O3;i = �wi =
wi

w1 + w2
; i = 1; 2: (6.19)
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Layer 4: Each node in this layer has the following function:

O4;i = �wifi = �wi(pix + qiy + ri); (6.20)

where �wi is the output of layer 3 and fpi; qi; rig is the parameter set

(see Equation 6.15).

Layer 5: There is a single node � in this layer. It aggregates the

overall output as the summation of all the incoming signals:

O5;1 =
X
i

�wifi =

P
iwifiP
iwi

(6.21)

This completes the construction of the network which is seen to

have the same functionality as the equivalent Sugeno model.

Learning in ANFIS

The ANFIS learning algorithm is a hybrid supervised method based

on gradient descent and least-squares methods. In the forward phase,

signals travel forward up to layer 4 and the relevant parameters are

�tted by least-squares. In the backward phase the error signals travel

backward and the premise parameters are updated as in backprop-

agation. More details of the algorithm can be found in [103]. It is

worth noting that the ANFIS network with its learning capabilities

can be built by using the fuzzy toolbox available in the MATLAB

package.

Function Modeling and Time Series Prediction

ANFIS can be applied to non-linear function modeling and time se-

ries prediction. ANFIS gives excellent results on the prediction of

the time series generated by the numerical integration of the Mackey-

Glass delay-di�erential equation prediction of the time series gener-

ated by the numerical integration of this equation, better than most

other approaches for function approximation such as those based on

neural networks of various types [103] and on standard function �t-

ting methods. The ANFIS system shows excellent non-linear �tting

and generalization capabilities on this example. As well, the num-

ber of parameters and the training time is comparable or less than

what is required by ANN methods, with the exception of the neuro-

fuzzy system NEFPROX, which learns faster and has slightly fewer

parameters, as we saw above.
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ANFIS for Neuro-Fuzzy Control

Fuzzy control has been introduced in Chapter 3, Section 5.2.4. The

time evolution of a dynamical system can be described by the fol-

lowing di�erential equation:

dx

dt
= F (x;u);

where x represents the state of the system and u is a vector of

controllable parameters. The control action is formally given by a

function g that maps the system state into appropriate parameters

for a given control problem:

u(t) = g(x(t)):

We have seen in Chapter 3, Section 5.2.4 that the problem of �nd-

ing optimal control policies for non-linear systems is mathematically

very diÆcult, while fuzzy approaches have proved e�ective in many

cases. Since a wide class of fuzzy controllers can be transformed

into equivalent adaptive networks, ANFIS can be used for building

intelligent controllers that is, controllers that can reason with sim-

ple fuzzy inference and that are able to learn from experience in the

ANN style.

6.3 \Co-operative" Neuro-fuzzy Systems

A
nother level of integration between arti�cial neural networks

and fuzzy systems tries to take advantage of the array of adapta-

tion and learning algorithms devised for the former to tune or create

all or some aspects of the latter, and vice versa.

One important thing to note is that such approaches refrain from

casting the fuzzy system into a network structure, or fuzzifying the

elements of the neural network, unlike other approaches discussed in

Section 6.2.

One could also note that, under this perspective, radial-basis func-

tion networks, a type of neural network with bell-shaped activation

functions instead of sigmoid, might be interpreted as neuro-fuzzy

networks in their own way, simply by considering their activation

functions as membership functions.
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6.3.1 Adaptive Fuzzy Associative Memories

A possible interpretation of a fuzzy rule, proposed by Kosko [115],

views it as an association between antecedent and consequent vari-

ables. Kosko calls a fuzzy rule base complying with that semantic

interpretation a fuzzy associative memory (FAM).

Associative Memories

An associative memory consists of memory components of the form

(k; i), where k is a key and i the information associated with it.

Retrieval of a memory component depends only on its key and not on

its place in the memory. Recall is done by presenting a key k�, which

is simultaneously compared to the keys of all memory components.

The information part i� is found (or reported missing) within one

memory cycle.

Associative memories can be implemented as neural networks, and

in that case one speaks of neural associative memories: if a key

pattern is presented to a neural associative memory, the activations

of the output units represent the corresponding information pattern.

Fuzzy Associative Memories

When a variable x takes up values in a �nite discrete domain X =

fx1; : : : ; xmg, a fuzzy set A with membership function �A:X ! [0; 1]

can be viewed as a point vA in the m-dimensional hypercube, iden-

ti�ed by the co-ordinates

vA = (�A(x1); : : : ; �A(xm)):

Accordingly, a fuzzy rule R of the form

IF x is A THEN y is B

can be viewed as a function mapping vA (a point in [0; 1]m) to vB
(a point in the hypercube, say [0; 1]s de�ned by the domain Y of y).

A fuzzy associative memory is a two-layer network, with one input

unit for each discrete value xi in every domain X of input variables

and one output unit for each discrete value yj in the output variable

domain Y . Activation for all units can range in [0; 1] and is to

be interpreted as the degree of membership of the relevant discrete

value in the relevant linguistic value. The weights between input

unit-output unit pairs can range in [0; 1] and the activation function
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for output unit uj is

uj = 5
i=1;:::;m

vi 4 wij: (6.22)

A FAM is determined by its connection weight matrix W = (wij),

with i = 1; : : : ;m and j = 1; : : : ; s. Such a FAM stores just one rule.

Matrix W is called fuzzy Hebb matrix.

Given an input fuzzy set A in the form of a vector vA and the

corresponding output fuzzy set B in the form of a vector uB, the

fuzzy Hebb matrix storing their association is given by the correlation

minimum encoding [115]

W = v Æ u; wij = vi4 uj : (6.23)

The associative recall is given by

u = v ÆW; uj = 5
i=1;:::;m

vi4 wij: (6.24)

The recall is always correct if h(�A) � h(�B), where h(�) is the height

of a membership function, i.e., the maximum degree of membership.

If we restrict our attention to normal fuzzy sets, then the recall will

always be correct.

Summarizing, the concept of a FAM should be nothing really new

to the reader. Once the notational details are clear, one can recognize

that a FAM is simply a matrix-vector representation of a fuzzy rela-

tion or a fuzzy rule, and one which resembles very closely two-layer

neural networks.

FAM Systems

Because combination of multiple fuzzy Hebb matrices into a single

matrix is not recommended lest a severe loss of information is in-

curred, each rule of a fuzzy rule base should be represented by a

distinct FAM. The overall output of the system is then given by the

component-wise maximum of all FAM outputs. Such a fuzzy system,

shown in Figure 6.10, is called a FAM system.

The FAM system is completed by a fuzzi�cation and a defuzzi�-

cation component, and by weights associated with each FAM.

One strength of a FAM's striking resemblance with a two-layer

arti�cial neural network is that we can borrow some learning tech-

niques and make FAMs adaptive.
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Figure 6.10 General
scheme of a FAM

system.

Learning in Adaptive FAMs

Kosko suggests two approaches to learning for adaptive FAMs. The

�rst possibility is to learn the weights associated with FAMs' outputs.

The second and more interesting is to create FAMs completely by

learning.

The learning procedure proposed by Kosko is di�erential competi-

tive learning , a form of adaptive vector quantization (see Chapter 2,

Section 2.6.2).

Given a data set of examples of inputs and correct output val-

ues, with n input variables and one output variable, the idea is to

build a two-layer network with as many input units as variables (i.e.,

n + 1) and as many output units as the number of possible rules

one could build from the given variable and a prede�ned partition of

their domains (that is, the user must determine the linguistic values

in advance). To begin with, all the input units are connected to all

the output units and the output units are completely connected by

inhibitory links. The examples in the data set form clusters in the

product space of all variables; the learning process is supposed to

develop prototypes of these clusters; each cluster is interpreted as

an instance of a fuzzy rule and their best matching prototypes are

selected by the learning process. Therefore, the learning procedure

selects the FAMs to be included in the system and assigns them a

weight; if further training data are collected during the use of the

FAM system, the learning process can resume and continue concur-

rently with the operation of the system, by updating the rule weights

or by deleting or adding rules.
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6.3.2 Self-Organizing Feature Maps

An approach similar to Kosko's di�erential competitive learning is

proposed by Pedrycz and Card [171]. They use a self-organizing

feature map (cf. Chapter 2, Section 2.6.3) with a planar competition

layer to cluster training data, and they provide means to interpret

the result of learning as linguistic rules.

The self-organizing map has an input layer with n units, where n is

the number of variables in a dataset record. The output layer of the

map is a n1 � n2 lattice of units. Inputs and connection weights are

in [0; 1]. It is convenient to specify the connection weights between

input and output units as a three-dimensional matrix W = (wi1 ;i2;i),

where i1 = 1; : : : ; n1, i2 = 1; : : : ; n2, and i = 1; : : : ; n.

The result of learning a set of sample records (or vectors) xk =

(xk1; : : : xkn), k = 1; : : : ;m, shows whether two input records are

similar, i.e., belong to the same class. However, if n is suÆciently

large, the structure of the problem is not usually detected in the two-

dimensional map. Rather, Pedrycz and Card provide a procedure for

interpreting the result using linguistic variables.

After learning, each variable xi can be described by a matrix Wi,

which contains the weights of the connections between the relevant

input unit ui and all the output units. This constitutes the map for

a single variable, or feature. The procedure consists in specifying

a number of fuzzy sets A
(i)
ji

for each variable xi, with membership

function �
A
(i)
ji

. These membership functions are applied to matrix

Wi to obtain an equal number of transformed matrices �
A
(i)
ji

(Wi).

The transformed matrices have higher values in those areas of the

map that are compatible with the linguistic concept represented by

A
(i)
ji

.

Each combination of linguistic terms is a possible linguistic de-

scription of a cluster of records from the data set. To check a linguis-

tic description for validity, the transformed matrices are intersected,

yielding a matrix D = (di1;i2), which can be interpreted as a fuzzy

relation among the variables:

D =
n̂

i=1

�
A
(i)
ji

(Wi); di1;i2 = min
i=1;:::;n

f�
A
(i)
ji

(wi1;i2;i)g: (6.25)

Each linguistic description is a valid description of a cluster if

the relevant fuzzy relation D has a non-empty �-cut D�. If the
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variables are separated into input and output variables, according to

the particular problem at hand, then each valid linguistic description

readily translates into an IF-THEN rule.

Compared to Kosko's FAMs, Pedrycz and Card's approach is more

computationally expensive, because all combinations of linguistic

terms must be examined in order to produce the desired fuzzy rule

base. Furthermore, the determination of a suÆciently high thresh-

old � for assessing description validity and of the right number of

neurons in the output layer is a problem that has to be individual-

ly solved for every learning problem. However, the advantages are

that the rules are not weighted and that the user-de�ned fuzzy sets

have a guiding inuence on the learning process, leading to more

interpretable results.

6.3.3 Learning Fuzzy Sets for Sugeno-Type Fuzzy Systems

A method for learning the fuzzy sets in a Sugeno-type fuzzy rule-

based system using supervised learning is the one proposed by No-

mura and colleagues [169].

First of all, the assumption is made that linguistic values referred

to by rule antecedents are de�ned by parameterized triangular fuzzy

numbers, that is, membership functions of the form

�(x) =

�
1� 2 jx�Cjb C � b

2 � x � C + b
2

0 otherwise,
(6.26)

where C is the center and b is the base, or width, of the triangle.

The consequent of a rule just consists of a crisp value w0 (this is a

degenerate case of the Sugeno model). The product is used as the

t-norm.

The learning algorithm is based on gradient descent using the half

squared error as the error measure:

hse =
1

2

mX
k=1

(yk � y�k)2; (6.27)

where yk is the value computed by the fuzzy system and y�k is the

actual value in the training data set. Since the type of Sugeno model

adopted applies only di�erentiable operations, both to determine the

degree of truth of the antecedents (product) and to aggregate the

outputs of all the rules (weighted average), the calculation of the
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changes for the parameters C and b of each membership function

and w0 of each rule is equivalent to the generalized delta rule (cf.

Chapter 2, Section 2.5) for multilayer neural networks.

The only caution one must have is that the triangular membership

functions are not di�erentiable in three points. However, it is not too

diÆcult to devise satisfactory heuristics that overcome this potential

problem.

One disadvantage of this approach is that the semantics of the

linguistic values depend on the rules they appear in. Whereas in

the initial (hand-crafted) rule base identical linguistic terms are de-

scribed by distinct yet identical membership functions, the learning

procedure changes this state of a�airs, by modifying the member-

ship functions of each term independently of the others. Such e�ect

is undesirable, for it obfuscates the interpretation of the resulting

rule base. A way to overcome this diÆculty, proposed by Bersi-

ni, Nordvik, and Bonarini [27] would be to make identical linguistic

terms share the same membership function.

6.3.4 Fuzzy ART and Fuzzy ARTMAP

A Fuzzy ART (for \Adaptive Resonance Theory") neural network

[41] is a self-organizing neural network capable of clustering collec-

tions of arbitrarily complex analog input patterns via unsupervised

learning.

Fuzzy ART Neural Networks

The Fuzzy ART neural network architecture, illustrated in Fig-

ure 6.11, consists of two subsystems, the attentional subsystem and

the orienting subsystem. The attentional subsystem consists of two

layers L1 and L2. L1 is called the input layer because input patterns

are applied to it; L2 is called the category or class representation

layer because it is the layer where category representations, i.e., the

clusters to which input patterns belong, are formed. The orienting

subsystem consists of a single node (the reset node), which accepts

inputs from the nodes in L1 and L2 and the input pattern directly;

its output a�ects the nodes in L2.

Patterns are assumed to be n-dimensional vectors in [0; 1]n; the

input to the Fuzzy ART network is formed by putting the pattern

and its complement in a 2n-dimensional vector x.
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Figure 6.11 Network
architecture of a

Fuzzy ART.

Each category j in L2 corresponds to a vector wj = (wj1; : : : ; wj;2n)

of weights. All these weights are initially set to one: such a category

is said to be uncommitted. After a category has been chosen to

represent an input pattern, it is referred to as a committed category

or node.

Training a Fuzzy ART means tuning its weights so as to cluster the

input patterns x1; : : : ;xP into di�erent categories, according to their

similarity. The dataset of patterns is repeatedly presented to the

Fuzzy ART in the given order, as many times as necessary. Training

is considered accomplished when the weights do not change during

a complete dataset presentation. This training scenario is called o�-

line training.

O�-line training proceeds as follows: each time an input pattern xi
is presented, the input Tj(xi) to each category node j is calculated

as

Tj(xi) =

(
n

�+2n ; if j is uncommitted;
jxi^wj j
�+jwj j

; if j is committed.
(6.28)

Now, let's call j� the node in L2 receiving the maximum input from

L1,

j� = arg max
j2L2

Tj(xi):

Two cases require special actions:

1. if node j� is uncommitted, a new uncommitted node in L2 is

introduced, and its weights are all initialized to one;
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2. if node j� is committed but

jxi ^wjj

jxij
< �;

(i.e., it does not satisfy the vigilance criterion), it is disquali�ed

by setting Tj�(xi) = �1 and the next maximum-input node in

L2 is considered, until either case 1 is veri�ed or j� satis�es the

vigilance criterion.

At this point, the weights associated with node j� are modi�ed ac-

cording to the equation

wj�  wj� ^ xi:

Quantity � 2 [0; 1] is the vigilance parameter, a�ecting the res-

olution of clustering: small values of � result in coarse clustering,

whereas larger values result in �ner clustering of input patterns. Pa-

rameter � 2 (0;+1) is called the choice parameter.

The ^ operation in the above equations is the componentwise min-

imum, and could be replaced in principle by any t-norm.

Fuzzy ARTMAP

A Fuzzy ART module generates the categories needed to classify the

input by unsupervised learning, according to a similarity criterion.

A composition of Fuzzy ART modules makes up a Fuzzy ARTMAP

[40], a neuro-fuzzy architecture capable of learning the relationship

between data and user-de�ned categories (supervised learning).

A Fuzzy ARTMAP, illustrated in Figure 6.12, consists of two Fuzzy

ART modules, ARTa and ARTb, plus a MAP module. ARTa receives

in input the patterns to be classi�ed; ARTb receives in input the

m user-de�ned classes to which the patterns belong, and generates

an internal category layer corresponding to it. The MAP module

connects the two Fuzzy ART modules and tries to minimize the

di�erence between the classes generated by ARTa from data and the

user-de�ned classes generated by ARTb. In other words, the MAP

module builds a mapping from the n inputs to the m classes, possibly

by acting on the vigilance parameter �a of ARTa.

Among the main features of Fuzzy ART and Fuzzy ARTMAP are

the minimization of the predictive error, the maximization of code

compression and generalization, the dynamic introduction of new

categories when needed, the possibility of distinguishing exceptions

from noise, and fast convergence. All these features make this type

of neuro-fuzzy architecture very popular in a variety of applications.
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6.4 Applications of Neuro-fuzzy Systems

N
euro-fuzzy systems are passing from their infancy, where re-

search on foundations and methodologies predominates over ap-

plications, to maturity, where principles and methodologies become

technology deployed on the �eld. This passage has been fostered by

several methodological developments that have been described in the

previous sections. In this last section, which roughly follows Chapter

14 of [223], we give an overview of neuro-fuzzy systems applications

that have gained their acceptance on the �eld, without any ambition

of being comprehensive. In fact, new valuable applications appear

every year, and any attempt at making a survey would soon become

obsolete.

6.4.1 Engineering

Neuro-fuzzy approaches have been used in a variety of engineering

applications, including consumer electronics, control, diagnostics,

manufacture, biotechnology, power generation, chemical processes,

power electronics, communications, and software resource manage-

ment. It is now rather well established that neuro-fuzzy systems can

adequately adapt to changing environmental conditions.

Ishibuchi and colleagues [102] applied an ANFIS-like fuzzy neural

network (Sugeno-type fuzzy rules with gradient descent learning) to

rice tasting, which involves the development of a six-variable fuzzy

relation.228
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Of particular interest to our synergetic vision of soft computing

is the work reported by Pao [162], where neural networks, fuzzy

logic, and evolutionary algorithms are combined to support the task

of process monitoring and optimization in electric power utilites,

including heat rate improvement and NO emission minimization.

6.4.2 Diagnostics in Complex Systems

Neuro-fuzzy systems have been applied to several problems arising

in the aerospace industry, like control surface failure detection for a

high-performance aircraft [184]. The detection model is developed

using a linear dynamic model of an F-18 aircraft. The detection

scheme makes use of a residual tracking error between the actual

system and the model output to detect and identify a particular fault.

Two parallel models detect the existence of a surface failure, whereas

the isolation and magnitude of any one of the possible failure modes

is estimated by a neuro-fuzzy decision algorithm. Simulation results

demonstrate that detection can be achieved without false alarms

even in the presence of actuator/sensor dynamics and noise.

Typical examples of complex systems whose modeling and moni-

toring is of critical importance are nuclear reactors. Several applica-

tions of neuro-fuzzy techniques have been described in the literature

[224].

6.4.3 Control

Neuro-fuzzy systems have found broad application in control, proba-

bly more so than in any other �eld. Controlled plants are as diverse

as industrial sewing machines [213] and fusion reactors [250], home

electric appliances [236] like refrigerators, air-conditioning systems,

and welding machines, and consumer electronic devices such as hand-

held video cameras.

6.4.4 Robotics

In the �eld or robotics, neuro-fuzzy systems have been employed

for supervisory control, planning, grasping, and guidance. Grasping
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[61] has to do with the control of robotic arms with three or more

�ngers; the main issue is �nding an optimal coordination of the forces

applied to the object, in order to hold it �rmly without squeezing

or damaging it. On-line learning ensures that grasp parameters are

continuously adjusted to current conditions.

Approaches based on Fuzzy ART have been used for autonomous

robot guidance and navigation: for instance, Bonarini and Ludovi-

co [30] report on a system that is able to learn a topological map

derived from di�erent robot sensors, and use it to navigate in un-

structured environments. Their approach is based on the de�nition

and identi�cation of grounded concepts by integrated instances of

Fuzzy ART.

6.4.5 Image Processing

Image processing and pattern recognition are a �eld in which neural

networks play a prominent role, especially because it naturally lends

itself to massively parallel and connectionist processing of the type

supported by ANNs. However, in recent years, neuro-fuzzy systems

have been designed and investigated to improve on ANN performance

in image processing tasks both at low level, such as in image quality

enhancement and image manipulation, and high level, such as in edge

detection, pattern recognition, medical and environmental imaging.

6.4.6 Finance

ANNs have been used for years by the �nancial community in in-

vestment and trading because of their ability to identify patterns of

behavior that are not readily available and complex relations among

variables that are hidden by chaos and noise. Much of this work

has never been published for obvious reasons, although generic and

casual accounts of it have been given.

Since the mid 1990s, neuro-fuzzy techniques have been incorpo-

rated into some �nancial applications. For instance, a neuro-fuzzy

decision support system is described in [96], which tries to deter-

mine whether a given stock is underpriced or overpriced by learning

patterns associated with either condition.

Another neuro-fuzzy system [39] is capable of evaluating portfo-
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lios by using currency exchange rate uctuations and expert knowl-

edge given in the form of fuzzy IF-THEN rules; the merit of the

neuro-fuzzy system is its ability to automatically �ne tune the ex-

pert knowledge with a backpropagation-like algorithm.
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