
CHAPTER 6

ActiveSync

IN CHAPTER 1, YOU DISCOVERED how to set up ActiveSync and you learned that it
provides a conduit between your Pocket PC and your desktop computer. This
conduit enables you to run your eMbedded Visual Basic applications on your
Pocket PC and it allows you to synchronize things such as your Outlook e-mail,
Web pages, files, and databases. Because this is a database book, I’m only going
to focus on how ActiveSync enables you to keep desktop and handheld data-
bases in sync with each other.

ActiveSync is a powerful feature with obvious benefits to business users of
the Pocket PC. Many companies have mobile workforces that need to have vital
corporate data available to them when they’re out of the office or on the road.
They need to be able to synchronize their Pocket PCs with desktop and corporate
databases first thing in the morning so that they have the latest company
information at their fingertips while out in the field. Likewise, new data that’s
captured on the Pocket PC by mobile workers needs to get back to corporate
databases so that decisions can be made based on the new information. Profes-
sions that would find this technology useful include the following:

• Real estate agents: Every morning, a real estate agent can sync up with the
MLS database to ensure that he or she has the latest information and pho-
tos of all the homes for sale in the area. Having the answers to potential
homebuyer questions on the Pocket PC can enhance the agent’s respon-
siveness and increase customer satisfaction.

• Sales force personnel: Offline client information on the Pocket PC com-
bined with corporate database synchronization makes for a powerful sales
force automation tool. New leads discovered in the field can turn into sales
calls when data is replicated back to the office through the Internet or the
USB cradle.

• Doctors: Rather than filling out patient charts and putting up with mounds
of paperwork, doctors can now enter patient data on the Pocket PC and
merge that data with hospital patient databases at the end of their shift.
Pocket PC handwriting recognition can turn a doctor’s illegible scribbling
into accurate drug prescriptions.

135

658Ch06 6/21/01 11:12 AM Page 135

• Insurance agents: When an insurance agent visits a client at his or her
home, the agent can dispense with paper forms and enter insurance appli-
cation information directly into the Pocket PC. The synching of new policy
data can happen immediately using remote access or it can happen when
the agent gets back to the office.

The list of uses for Pocket PC data that can replicate with corporate data-
bases can go on and on. Let’s stop talking about what can be done and start
learning how to do it. The first thing I’ll do is bore you with the details of data
conversion between the desktop and the device so that you can make better de-
cisions about the data types you choose to use. The next thing you’re going to do
is build an Access database on the desktop and then walk through the necessary
steps to get that database on your Pocket PC and converted into Pocket Access
format. You’ll then build a full-featured DML Pocket Access database manager so
you can add, delete, and update synchronized data to your heart’s content.
Finally, you’ll play ping-pong with your data with lots of manipulation thrown in
to prove that ActiveSync really works.

Data Conversion Issues

The movement of data between databases on your Pocket PC and your desktop is
far from seamless. ActiveSync has its work cut out for it when trying to maintain
the integrity of your data during the synchronization process.

Desktop to Device

Starting out on the desktop, ActiveSync can work with Microsoft Access or any
ODBC-compliant database. It then has the unenviable task of converting your
perfectly good desktop or server database into a Pocket Access database. With its
small footprint, Pocket Access doesn’t support the enterprise features or the
range of data types that SQL Server or Oracle does. ActiveSync is forced to map
data types, which may result in the loss of data if the data types don’t match up
well. Table 6-1 displays Access and ODBC data types and the Pocket Access types
they map to.

Chapter 6

136

658Ch06 6/21/01 11:12 AM Page 136

Table 6-1. Desktop to Device Type Mappings

ACCESS DATA TYPE ODBC DATA TYPE POCKET ACCESS DATA TYPE

Text sql_varchar Varchar

Memo sql_longvarchar Text

LongInt sql_integer Integer

sql_bigint Integer

Byte sql_tinyint Smallint

Int sql_smallint Smallint

Single sql_real Double

Double sql_double Double

sql_float Double

ReplID sql_varbinary Varbinary

Date/Time sql_timestamp Datetime

Currency sql_numeric Double

AutoNumber sql_integer Integer

YesNo sql_bit Boolean

OleObject sql_longvarbinary Varbinary

HyperLink sql_longvarchar Text

Lookup sql_varchar Varchar

Table Issues

• A table will not be converted or copied to your Pocket PC if all its fields use
unsupported data types.

• System tables will not be converted or copied to your Pocket PC.

• Table names longer than 31 characters will be truncated.

• If a table with a truncated name exists and you’ve chosen not to overwrite
tables, the last character of that table name will be deleted and replaced
with the number 0. If a truncated table name already has a 0, numbers
1 through 9 will be tried. If truncated tables exist with all ten numbers, the
table won’t be copied.

ActiveSync

137

658Ch06 6/21/01 11:12 AM Page 137

Field Issues

• Field names longer than 64 characters will be truncated.

Index Issues

• Index names longer than 64 characters will be truncated.

• Only Ascending and Descending index attributes will be copied. All other
index attributes will be omitted.

• Only three indexes are allowed in a database. Indexes beyond that number
will be skipped.

• Index names are not case sensitive.

• Only the first field of a multicolumn index will be indexed in Pocket Access.

• Pocket Access indexes are created in three stages during the conversion
process.

Stage 1: Unique Primary Key Indexes

Any unique index named “PrimaryKey” will be processed first. If this is a single-
field index, PrimaryKey will be created in Pocket Access. If PrimaryKey is made
up of multiple fields, an index will be created for each field that exists in Pocket
Access. If need be, these fields will have 0, 1, or 2 appended to their names.
A Boolean cannot be a unique PrimaryKey index.

Stage 2: Unique Indexes

Unique indexes are created in Pocket Access after PrimaryKey indexes. If any of
the following statements are true, a unique index will not be created.

• A 64-character, truncated index name matches an index name that is
already present in Pocket Access.

• The particular field already has an index in Pocket Access.

• The indexed field is a Boolean data type.

Chapter 6

138

658Ch06 6/21/01 11:12 AM Page 138

Stage 3: Nonunique Indexes

Nonunique indexes are created after unique indexes. If any of the following state-
ments are true, a nonunique index will not be created.

• The index contains more than one field.

• The indexed field is not selected to be copied to Pocket Access.

• A 64-character, truncated index name matches an index name that is
already present in Pocket Access.

• The particular field already has an index in Pocket Access.

• The indexed field is a Boolean data type.

Device to Desktop

When moving from a Pocket Access database to a desktop Microsoft Access or
ODBC database, things don’t look as bad because you don’t have to funnel count-
less desktop data types into a handful of device data types. The result is a reduced
chance of data loss. Table 6–2 lists all the Pocket Access data types as well as the
ODBC and Access data types that they map to.

Table 6-2. Device to Desktop Type Mappings

POCKET ACCESS DATA TYPE ODBC DATA TYPE ACCESS DATA TYPE

Datetime sql_timestamp Date/Time

Double sql_double Double

Integer sql_integer LongInt

Smallint sql_smallint int

Boolean sql_bit YesNo

Varbinary sql_varbinary Binary

Long Varbinary sql_longvarbinary OLEObject

Varchar sql_varchar Text

Text sql_longvarchar Memo

ActiveSync

139

658Ch06 6/21/01 11:12 AM Page 139

Table Issues

• A table will not be converted or copied to your desktop PC if the table is a
system table.

• A table will not be converted or copied to your desktop PC if it doesn’t have
an entry in the MSysTables table.

Index Issues

• If the Pocket Access index has a name beginning with the text PrimaryKey,
a unique index will be created on the desktop.

• Only Ascending and Descending index attributes will be copied. All other
index attributes will be omitted.

Conversion Error Log

When ActiveSync is converting data between your desktop and your Pocket PC,
both informational and fatal errors may occur. An informational error occurs
when the structure of the data has to be altered as a result of things such as a
truncated field or table name. A fatal error occurs when the data can no longer be
copied to the desktop or Pocket PC as a result of a break in the communications
link or some other anomaly. When either of these kinds of errors occurs, a log file
named “Db2ce.txt” is generated in the device partner directory on the desktop
PC. The information contained in the error log is displayed in Table 6-3.

Chapter 6

140

658Ch06 6/21/01 11:12 AM Page 140

Table 6-3. Conversion Error Log

SECTION DESCRIPTION

Startup Statistics Displays the user name, conversion start time,

and the user options that were selected for

conversion.

Desktop Computer Database For Access databases, it displays which .mdb file is

being copied and where it’s located. For ODBC

databases, it shows the connection string.

Options Chosen Displays the sync or overwrite options chosen.

Displays 1 for True and 0 for False.

Index Statistics Displays information about converted indexes.

Table Statistics Displays the SQL statement used to create the

table and shows the number of records copied.

Closing Statistics Displays the time the conversion was completed

and the number of tables, records, packets, and

bytes copied.

Even though this section on data conversion issues may not seem that inter-
esting, it’s important for you to take it seriously. Every time you build a desktop or
ODBC database that you intend to sync your Pocket PC with, let the type map-
ping tables guide you. Your big database should only use data types that work
well with your little database.

Shrinking a Database

Now it’s time to dive in and see how you can put a single-user database
synching relationship into production. The first thing you’ll need to do
is construct a simple database on your desktop computer. Let’s stick
with the simple contact manager database you’ve been using
throughout the book as a model for your desktop database. My database
of choice will be SQL Server 2000, which will communicate with ActiveSync
through an ODBC connection.

ActiveSync

141

658Ch06 6/21/01 11:12 AM Page 141

Building the Database

Bring up the SQL Server 2000 Enterprise Manager and create a new database
called “ContactManager.” Next, create a table in your new database called “Con-
tacts.” The column names, data types, and so on are listed in Table 6-4.

Table 6-4. Contacts Table Data Types

IDENTITY

COLUMN NAME DATA TYPE LENGTH ALLOW NULLS (AUTO NUMBER)

ContactID int 4 No Yes

FirstName varchar 50 Yes No

LastName varchar 50 Yes No

CompanyName varchar 50 Yes No

StreetAddress varchar 50 Yes No

City varchar 50 Yes No

State varchar 2 Yes No

Zip varchar 10 Yes No

Make sure that the ContactID column is both the Key field and an Identity
column in order to keep it unique. If you entered your data correctly, the result-
ing design view in the SQL Server Enterprise Manager should look like Figure 6-1.

Chapter 6

142

TIP If you don’t have a copy of SQL Server 2000, download a
120-day evaluation copy from the Microsoft Web site
(http://www.microsoft.com/sql/productinfo/evaluate.htm).
Microsoft Access is also a perfectly acceptable partner in a
single-user database relationship between your desktop and
your Pocket PC when you work with ActiveSync.

658Ch06 6/21/01 11:12 AM Page 142

Now create the related PhoneNumbers table. The proper column names,
data types, and so on are listed in Table 6-5.

ActiveSync

143

Figure 6-1. The Design view for the Contacts table

658Ch06 6/21/01 11:12 AM Page 143

Table 6-5. PhoneNumbers Table Data Types

IDENTITY

COLUMN NAME DATA TYPE LENGTH ALLOW NULLS (AUTO NUMBER)

PhoneNumberID int 4 No Yes

ContactID int 4 Yes No

PhoneNumber varchar 12 Yes No

Make sure that the PhoneNumberID column is both the Key field and an Iden-
tity column in order to keep it unique. If you entered your data correctly, the result-
ing design view in the SQL Server Enterprise Manager should look like Figure 6-2.

Chapter 6

144

Figure 6-2. The Design view for the PhoneNumbers table

658Ch06 6/21/01 11:12 AM Page 144

You won’t create any explicit one-to-many relationships with the two tables
because Pocket Access would ignore the referential integrity rules anyway. Now
that you have your ContactManager database and tables constructed, you need
to do one more thing before initiating the synching process. Word has it on
many of the eMbedded Visual Basic Web sites and newsgroups that your desk-
top database needs to have at least one row of data entered into it before you
run ActiveSync in order to consistently achieve good results. It’s not a hard and
fast requirement, but having that first row inserted will help you measure suc-
cess or failure when you view the Pocket Access version of your ContactManager
database. Go ahead and enter your own personal contact information into the
Contacts table. The value of your ContactID Identity column should be 1 after
you’ve inserted the row of data. Now go to the PhoneNumbers table and enter
two phone numbers for yourself. Even though the PhoneNumberID Identity
column will autoincrement its numbers, you will need to manually enter the
ContactID that was assigned to you in the Contacts table for each phone num-
ber that you enter for yourself. Make sure your PhoneNumbers table looks
something like Figure 6-3.

With your desktop database all set and ready to go, you need to create an ODBC
DSN for your SQL Server 2000 ContactManager database. Bring up the ODBC Data
Source Administrator, click the User DSN tab, and then click the Add button. High-
light SQL Server in the list box and click Finish. On the next screen, type in Contact-
Manager for the name, choose (local) from the Server combo box, and then click
Next. On the next screen, choose SQL Server Authentication, type in the appropriate
login ID and password (with no password if you’re bad), and then click Next. Check
the option Change the default database to, select ContactManager from the combo
box, and then click Next. On the next screen, click Finish. On the last screen, click
Test Data Source and then click OK twice if everything worked out with your data
connection. Now you’re ready for ActiveSync.

ActiveSync

145

Figure 6-3. The Data view for the PhoneNumbers table

658Ch06 6/21/01 11:12 AM Page 145

ActiveSync Walk-through

If you’ll remember back to Chapter 1, I had you check Pocket Access as one of the
programs to be synchronized between the desktop and the device. Now you’re
going to do just that. The other thing I mentioned back in Chapter 1 was that
I would make every attempt to ensure that all of the examples in this book could
be done with just the emulator. This chapter is going to be the exception because
ActiveSync can only work against a real device.

With your Pocket PC sitting in its cradle and actively connected, bring up
ActiveSync and select Tools � Import Database Tables (as you see shown in
Figure 6-4) to get started with converting your SQL Server database into a Pocket
Access database.

The next thing you’ll see is an Open dialog box that enables you to navigate
to your desktop database. Its default setting is to look for Microsoft Access data-
bases. Go to the Files of type combo box and select ODBC Database. A Select
Data Source dialog box opens for you to select a DSN. Click the Machine Data
Source tab, select ContactManager from the list box, and then click OK. When
the SQL Server Login dialog box opens, uncheck Use Trusted Connection, type
in the appropriate entries in the Login ID and Password text boxes, and then

Chapter 6

146

Figure 6-4. Selecting Import Database Tables from the Tools menu

658Ch06 6/21/01 11:12 AM Page 146

click OK. You’ll briefly see a Copy & Convert dialog box as your SQL Server data
is imported. When the import is complete, the Import from Database to Mobile
Device dialog box will appear, as shown in Figure 6-5.

ActiveSync

147

NOTE I don’t recommend using the Export Database Tables
feature of ActiveSync to create a relationship between a
Pocket Access database and a desktop database. This feature
takes a Pocket Access database and converts it into a desktop
database. Unfortunately, the source database on your Pocket
PC only supports a small subset of the features and data types
that a desktop or server database supports. This will leave
you with a crippled desktop ActiveSync partner that’s unable
to perform even simple tasks, such as autoincrementing an
indexed column.

Figure 6-5. The Import from Database to Mobile Device dialog box

658Ch06 6/21/01 11:12 AM Page 147

In this dialog box, you will specify all aspects of the synchronization relation-
ship between SQL Server and Pocket Access. The text box at the top informs you
that it plans to put your ContactManager Pocket Access database in the My Doc-
uments folder. This is a good place for your database, but you’re free to change
the location if you want. A Treeview displays the tables you created and every
once in a while it displays a rogue system table called “dtproperties” that you
have no interest in. Here you’re allowed to select the tables you want converted.
You can even decide to select specific fields if you don’t want to convert the whole
table. Finally, you’re given the choice of selecting the Read Only option for each
table if you don’t want your Pocket Access database to be modified. Under the
Treeview, don’t change the default settings for keeping the tables synchronized
and overwriting existing tables. Make sure that the only tables selected are
Contacts and PhoneNumbers and then click OK to get things started. A Copy &
Convert dialog box displays, as shown in Figure 6-6, to let you know that the
conversion is under way.

To verify the existence of the new Pocket Access database, bring up the File
Explorer in your Pocket PC and look for a file named “ContactManager” located
in the My Documents folder, as shown in Figure 6-7.

Chapter 6

148

Figure 6-6. Database conversion in progress

658Ch06 6/21/01 11:12 AM Page 148

From now on, every time you return your Pocket PC to its cradle, it automati-
cally synchronizes with the desktop database. Furthermore, you can manually
synchronize your desktop and Pocket PC databases anytime you want by clicking
the Sync button. Now that you’ve found the file, you need a flexible way to open
and manipulate it. This sounds like a golden opportunity to write some code.

The Database Manipulator

Having the new Pocket Access database on your Pocket PC is only half the battle.
You need to see for yourself that you can make additions, updates, and deletions
on your Pocket PC and then see those changes reflected in your desktop database
the next time you run ActiveSync. You’re going to build an eMbedded Visual Basic
program to do just that. This time around, you’re not going to write code that’s
specific to the database that you’re expecting. Throughout the book, I’ve made
references to building a complete Pocket Access database manager that will give
you DDL and DML features similar to what you’re used to having in Microsoft
Access 2000. In this chapter, you’ll build a small piece of the program that will
enable you to make additions, updates, and deletions to any Pocket Access data-
base you like. It’s about time we wrote a flexible program around here!

ActiveSync

149

Figure 6-7. File Explorer displaying ContactManager

658Ch06 6/21/01 11:12 AM Page 149

Bring up eMbedded Visual Basic and create a new project called “InSync.”
Check a reference to the Microsoft CE ADO Control 3.0 and add both the
Common Dialog control and the Grid control to your project. Finally, add
a Module to your project and call it “Module1.”

Declaring Globals

Go to your Module and declare public object variables for both the ADOCE
Connection object and the Recordset object. Additionally, declare a String
variable to maintain the path to whatever Pocket Access database you
choose to open.

Option Explicit

Public CN As ADOCE.Connection

Public RS As ADOCE.Recordset

Public PocketAccessDatabase As String

Instantiating Globals

In the Load event of your main form, you need to add the code necessary to
instantiate both the Connection and the Recordset objects.

Private Sub Form_Load()

‘Instantiate the Connection Object

Set CN = CreateObject(“ADOCE.Connection.3.0”)

‘Instantiate the Recordset Object

Set RS = CreateObject(“ADOCE.Recordset.3.0”)

End Sub

Closing and Dereferencing Globals

In the OKClick event of your main form, you need to add code to close the
Connection object as well as code to dereference both the Connection object and
the Recordset object.

Chapter 6

150

658Ch06 6/21/01 11:12 AM Page 150

Private Sub Form_OKClick()

If CN.State = 1 Then ‘Open

‘Let’s close the database

CN.Close

End If

‘Dereference the Recordset

Set RS = Nothing

‘Dereference the Connection

Set CN = Nothing

App.End

End Sub

Opening and Closing the Database

Now things start to get interesting. You need to have a button that enables you to
toggle between opening and closing your Pocket Access database. In order to actu-
ally open the database, you’ll need the Common Dialog control to enable a user to
navigate to and open Pocket Access database files. Therefore, you need to drag the
Common Dialog control from the Toolbox and drop it on your form. This code also
uses a Grid control as well as a combo box, so drag both of those items from the
Toolbox and drop them on your form. Name the combo box “cboTableSelect” and
set its Text property to “Select a Table.” The Grid control can keep its default name
and no property adjustments are necessary. To implement the code necessary to
open and close the database, drag a CommandButton from the Toolbox and drop
it on your form. Name this control “cmdOpenDatabase” and set its caption to
read “Open Database.” In the click event of this CommandButton, insert the
following code:

Private Sub cmdOpenDatabase_Click()

Select Case cmdOpenDatabase.Caption

Case “Open Database”

Dim fileflags As FileOpenConstants

Dim e As Variant

Dim i As Integer

ActiveSync

151

658Ch06 6/21/01 11:12 AM Page 151

‘Set the text in the dialog box title bar

CommonDialog1.DialogTitle = “Open Database”

‘Set the default filename and filter

CommonDialog1.InitDir = “\”

CommonDialog1.FileName = “”

CommonDialog1.Filter = “Pocket Access (*.cdb)|*.cdb”

‘Verify that the file exists

CommonDialog1.Flags = cdlOFNFileMustExist

‘Show the Open common dialog box

CommonDialog1.ShowOpen

‘Return the path and filename selected or

‘Return an empty string if the user cancels the dialog box

PocketAccessDatabase = CommonDialog1.FileName

If PocketAccessDatabase �� “” Then

‘Open the database

CN.Open PocketAccessDatabase

‘Display Connection Errors

For Each e In CN.Errors

MsgBox e.Description

Next

‘Display Tables

RS.Open “MSysTables”, CN

While Not RS.EOF

‘Disregard all System Tables

If RS(“TableName”) �� “MSysTables” _

And RS(“TableName”) �� “MSysIndexes” _

And RS(“TableName”) �� “MSysFields” _

And RS(“TableName”) �� “MSysProcs” Then

‘Add table to combo box

cboTableSelect.AddItem RS(“TableName”)

End If

Chapter 6

152

658Ch06 6/21/01 11:12 AM Page 152

RS.MoveNext

Wend

RS.Close

‘Change caption

cmdOpenDatabase.Caption = “Close Database”

End If

Case “Close Database”

If CN.State = 1 Then ‘Open

‘Let’s close the database

CN.Close

End If

‘Remove existing data from Grid

GridCtrl1.Redraw = False

For i = 1 To GridCtrl1.Rows

GridCtrl1.RemoveItem 0

Next

GridCtrl1.Redraw = True

‘Clear the combo box

cboTableSelect.Clear

‘Reset combo box text

cboTableSelect.Text = “Select a Table”

‘Zero out the path to the database

PocketAccessDatabase = “”

‘Change caption

cmdOpenDatabase.Caption = “Open Database”

End Select

End Sub

ActiveSync

153

658Ch06 6/21/01 11:12 AM Page 153

The beginning of this block of code starts out with a Case statement based on
the value of the CommandButton caption. If the caption reads “Open Database,”
you execute the appropriate code to get the database loaded into your program.
On the other hand, if the caption reads “Close Database,” you execute the code
necessary to unload the database from your program. The next bit of code deals
with the Common Dialog control. You set its filter to ensure that it only looks for
files that end in .cdb. You also set a flag that makes sure that the file you’re trying
to open truly exists. Once the Common Dialog is open and the user has chosen
the database they want to open, set the PocketAccessDatabase string equal to the
path given to you by the Common Dialog control. Based on that path, you open
a database connection and then proceed to list all the tables in the database in
a combo box. The last bit of code is concerned with closing the database and per-
forming cleanup operations, such as clearing out the Grid and combo box.

Choosing a Table

Once the database is open, the combo box named “cboTableSelect” is filled with
the names of the tables in the database. Selecting one of these tables from the
combo box will cause the Grid to be filled with the metadata and data associated
with the selected table. In order to make this happen, insert the following code in
the click event of this combo box:

Private Sub cboTableSelect_Click()

‘Declare variables

Dim i As Integer

Dim ColumnNames As String

Dim ColumnValues As String

‘A keyset-based, forward and backward, read and write Recordset

RS.Open cboTableSelect.List(cboTableSelect.ListIndex), CN, adOpenKeyset,

adLockOptimistic, adCmdTable

‘Remove existing data from Grid

GridCtrl1.Redraw = False

For i = 1 To GridCtrl1.Rows

GridCtrl1.RemoveItem 0

Next

GridCtrl1.Redraw = True

‘Set the Grid columns equal to the field count

GridCtrl1.Cols = RS.Fields.Count

Chapter 6

154

658Ch06 6/21/01 11:12 AM Page 154

‘Get the column names

For i = 0 To RS.Fields.Count - 1

ColumnNames = ColumnNames & RS.Fields(i).Name & vbTab

Next

GridCtrl1.Redraw = False

‘Add the column headers to the Grid

GridCtrl1.AddItem ColumnNames

‘Loop through the Recordset

While Not RS.EOF

‘Get the column values for this row

For i = 0 To RS.Fields.Count - 1

ColumnValues = ColumnValues & RS.Fields(i).Value & vbTab

Next

‘Add the column values to the row

GridCtrl1.AddItem ColumnValues

‘Set ColumnValues to a zero-length string

‘so it can be refilled with the next row

ColumnValues = “”

RS.MoveNext

Wend

GridCtrl1.Redraw = True

‘Close the Recordset

RS.Close

End Sub

The first thing that happens in this block of code is that a Recordset is
opened based on the name of the table you selected from the combo box. This
Recordset is designed to return all the columns from the table in question. The
next thing you’ll notice is that I’ve added some new code to complement the
standard Grid-clearing code. At the beginning of the operation, I set the Grid’s
Redraw property to False and then I set it back to True once all the rows have
been removed. Doing this causes the Grid to both clear and fill with data much
faster. You may not notice a performance difference in your emulator, but you

ActiveSync

155

658Ch06 6/21/01 11:12 AM Page 155

sure can see a difference when you run the application on your Pocket PC. The
next thing that happens is that you iterate through and dynamically display
the column names as well as the column values for each row. Finally, you close
the Recordset.

Adding a Record

Now that you have a Grid full of data based on the table you’ve chosen, you may
want to add an additional record to it. In order to do this, you should drag a
CommandButton from the Toolbox and drop it on your form. Name this control
“cmdAdd” and set its caption to read “Add a Record.” In the click event of this
CommandButton, insert the following code:

Private Sub cmdAdd_Click()

cmdAdd.Enabled = False

‘Declare variables

Dim i As Integer

Dim ColumnNames As String

Dim ColumnValues As String

‘A keyset-based, forward and backward, read and write Recordset

RS.Open cboTableSelect.List(cboTableSelect.ListIndex), CN, adOpenKeyset,

adLockOptimistic, adCmdTable

‘Call the AddNew method

RS.AddNew

‘Get dynamic user input

For i = 0 To RS.Fields.Count - 1

‘If the field is an integer. . .

If RS.Fields(i).Type = adInteger Then

‘Ask the user if the field is autoincrementing

If MsgBox(“Is “ & RS.Fields(i).Name & “ an autoincrementing field?”,

vbYesNoCancel) = vbYes Then

‘Code to Auto Increment

Dim AutoNumber As Integer

Dim Identity As ADOCE.Recordset

Set Identity = CreateObject(“ADOCE.Recordset.3.0”)

Chapter 6

156

658Ch06 6/21/01 11:12 AM Page 156

Identity.Open “SELECT “ & RS.Fields(i).Name & “ FROM “ &

cboTableSelect.List(cboTableSelect.ListIndex) & “ ORDER BY “ &

RS.Fields(i).Name & “ DESC”, CN

If Not RS.BOF And Not RS.EOF Then

AutoNumber = CInt(Identity(0)) + 1

Else

AutoNumber = 1

End If

Identity.Close

Set Identity = Nothing

‘Set new field equal to a new autoincremented number

RS(RS.Fields(i).Name) = AutoNumber

Else

‘Set new field equal to user input

RS(RS.Fields(i).Name) = InputBox(RS.Fields(i).Name, “Add”)

End If

Else

‘Set new field equal to user input

RS(RS.Fields(i).Name) = InputBox(RS.Fields(i).Name, “Add”)

End If

Next

‘Ask user if he or she wants the record added

If MsgBox(“Do you wish to add this record?”, vbYesNoCancel) = vbYes Then

RS.Update

Else

RS.CancelUpdate

MsgBox “No new record added.”

End If

‘Query the database again to refresh the Grid

RS.Requery

‘Remove existing data from Grid

GridCtrl1.Redraw = False

For i = 1 To GridCtrl1.Rows

ActiveSync

157

658Ch06 6/21/01 11:12 AM Page 157

GridCtrl1.RemoveItem 0

Next

GridCtrl1.Redraw = True

‘Set the Grid columns equal to the field count

GridCtrl1.Cols = RS.Fields.Count

‘Get the column names

For i = 0 To RS.Fields.Count - 1

ColumnNames = ColumnNames & RS.Fields(i).Name & vbTab

Next

GridCtrl1.Redraw = False

‘Add the column headers to the grid

GridCtrl1.AddItem ColumnNames

‘Loop through the Recordset

While Not RS.EOF

‘Get the column values for this row

For i = 0 To RS.Fields.Count - 1

ColumnValues = ColumnValues & RS.Fields(i).Value & vbTab

Next

‘Add the column values to the row

GridCtrl1.AddItem ColumnValues

‘Set ColumnValues to a zero-length string

‘so it can be refilled with the next row

ColumnValues = “”

RS.MoveNext

Wend

GridCtrl1.Redraw = True

RS.Close

cmdAdd.Enabled = True

End Sub

Chapter 6

158

658Ch06 6/21/01 11:12 AM Page 158

When you learned how to add a record to a table back in Chapter 5, you knew
the table structure in advance and therefore wrote rigid code based on that fact.
Because everything about the program here in Chapter 6 is dynamic, the code is
a lot trickier. Your code block starts out normally enough with the opening of a
Recordset based on the currently selected table. After you call the AddNew
method, things start to get a little crazy. The goal is to pop up Input boxes to ask
the user to type in the new record data. The problem is that you don’t know the
names of the table columns in advance of doing so. As a result, you have to iter-
ate through the Fields Collection to determine the column names that the user is
entering data into—but don’t get too cozy just yet.

What do you do about those pesky autoincrementing indexes that work on
the desktop but not on the Pocket PC? The workaround is to check the data type
of each column as you iterate through the Fields Collection. When you find an
Integer data type, you prompt the user with a Yes/No message box and ask if the
field is autoincrementing. Don’t worry, when you build your Pocket Access data-
base manager in the next chapter, I promise to be more scientific about the
determination of autoincrementing fields. Anyway, if the user chooses Yes, you
open up a second Recordset to figure out the highest number in the given field
and add 1 to that number to get your new AutoNumber value. If the user chooses
No, you prompt the user to enter his or her own Integer in an Input Box.

After getting all the non-Integer user inputs, you ask the user if he or she is
sure he or she wants to add this new record. If the user chooses Yes, you call the
Update method. If the user chooses No, you call the CancelUpdate method. The
rest of the code is similar to what you’ve done before. You’ll empty the Grid and
then dynamically refill it to display the new record.

ActiveSync

159

NOTE Because there’s no referential integrity enforcement in
Pocket Access, you’ll have to follow up on adding, updating,
and deleting records in related tables manually.

Updating a Record

The second DML function you’ll want to perform after adding records is updat-
ing records. For the purposes of this program, I’ll allow you to click any cell in the
Grid and let you update the contents of that cell. To accomplish this tall order,
drag a CommandButton from the Toolbox and drop it on your form. Name this
control “cmdUpdate” and set its caption to read “Update the Selected Record.” In
the click event of this CommandButton, insert the following code:

Private Sub cmdUpdate_Click()

658Ch06 6/21/01 11:12 AM Page 159

‘Declare variables

Dim i As Integer

Dim ColumnNames As String

Dim ColumnValues As String

Dim SQL As String

If GridCtrl1.RowSel � 0 Then

If GridCtrl1.TextMatrix(GridCtrl1.RowSel, GridCtrl1.ColSel) �� “” Then

‘Build a query to return just the column and value

‘reflected in the user’s Grid selection

SQL = “SELECT “ & GridCtrl1.TextMatrix(0, GridCtrl1.ColSel) &

“ FROM “ & cboTableSelect.List(cboTableSelect.ListIndex) & “ WHERE “ &

GridCtrl1.TextMatrix(0, GridCtrl1.ColSel) & “ = “ &

GridCtrl1.TextMatrix(GridCtrl1.RowSel, GridCtrl1.ColSel)

‘A keyset-based, forward and backward, read and write Recordset

RS.Open SQL, CN, adOpenKeyset, adLockOptimistic, adCmdText

‘Get dynamic user input

For i = 0 To RS.Fields.Count - 1

‘Set new field equal to user input

RS(RS.Fields(i).Name) = InputBox(RS.Fields(i).Name, “Add”)

Next

‘Ask user if he or she wants the record added

If MsgBox(“Do you wish to update this record?”, vbYesNoCancel) = vbYes

Then

RS.Update

Else

RS.CancelUpdate

MsgBox “No new record updated.”

End If

RS.Close

‘Query the database again to refresh the Grid

‘A keyset-based, forward and backward, read and write Recordset

RS.Open cboTableSelect.List(cboTableSelect.ListIndex), CN,

adOpenKeyset, adLockOptimistic, adCmdTable

Chapter 6

160

658Ch06 6/21/01 11:12 AM Page 160

‘Remove existing data from Grid

GridCtrl1.Redraw = False

For i = 1 To GridCtrl1.Rows

GridCtrl1.RemoveItem 0

Next

GridCtrl1.Redraw = True

‘Set the Grid columns equal to the field count

GridCtrl1.Cols = RS.Fields.Count

‘Get the column names

For i = 0 To RS.Fields.Count - 1

ColumnNames = ColumnNames & RS.Fields(i).Name & vbTab

Next

GridCtrl1.Redraw = False

‘Add the column headers to the Grid

GridCtrl1.AddItem ColumnNames

‘Loop through the Recordset

While Not RS.EOF

‘Get the column values for this row

For i = 0 To RS.Fields.Count - 1

ColumnValues = ColumnValues & RS.Fields(i).Value & vbTab

Next

‘Add the column values to the row

GridCtrl1.AddItem ColumnValues

‘Set ColumnValues to a zero-length string

‘so it can be refilled with the next row

ColumnValues = “”

RS.MoveNext

Wend

GridCtrl1.Redraw = True

RS.Close

ActiveSync

161

658Ch06 6/21/01 11:12 AM Page 161

End If

End If

End Sub

The first thing that happens at the top of the code block is you make sure
that your Update code is only executed if the user selects a nonmetadata row in
the Grid. The next thing you have to do is build a complicated SQL statement
using the TextMatrix property of the Grid that determines the column name as
well as the value of the cell selected by the user. You open a Recordset that con-
tains a single column and a single row to update. You then dynamically prompt
the user to enter the new value for this cell. After that, you call the Update or
CancelUpdate method depending on whether or not the user wants to commit
the change to the database. The final bit of code refreshes the Grid so that you
can see the results of the cell update.

Deleting a Record

The Delete function in this program works similarly to the Update function.
When a user clicks a cell in the Grid, the row that cell belongs to is deleted. To
make this operation a reality, drag a CommandButton from the Toolbox and drop
it on your form. Name this control “cmdDelete” and set its caption to read
“Delete the Selected Record.” In the click event of this CommandButton, insert
the following code:

Private Sub cmdDelete_Click()

‘Declare variables

Dim i As Integer

Dim ColumnNames As String

Dim ColumnValues As String

Dim SQL As String

If GridCtrl1.RowSel � 0 Then

If GridCtrl1.TextMatrix(GridCtrl1.RowSel, GridCtrl1.ColSel) �� “” Then

SQL = “SELECT * FROM “ & cboTableSelect.List(cboTableSelect.ListIndex) &

“ WHERE “ & GridCtrl1.TextMatrix(0, GridCtrl1.ColSel) & “ = “ &

GridCtrl1.TextMatrix(GridCtrl1.RowSel, GridCtrl1.ColSel)

‘A keyset-based, forward and backward, read and write Recordset

Chapter 6

162

658Ch06 6/21/01 11:12 AM Page 162

RS.Open SQL, CN, adOpenKeyset, adLockOptimistic, adCmdText

‘Ask user if he or she wants the record deleted

If MsgBox(“Do you wish to delete this record?”, vbYesNoCancel) = vbYes Then

RS.Delete

RS.Close

‘Query the database again to refresh the Grid

‘A keyset-based, forward and backward, read and write Recordset

RS.Open cboTableSelect.List(cboTableSelect.ListIndex), CN,

adOpenKeyset, adLockOptimistic, adCmdTable

‘Remove existing data from Grid

GridCtrl1.Redraw = False

For i = 1 To GridCtrl1.Rows

GridCtrl1.RemoveItem 0

Next

GridCtrl1.Redraw = True

‘Set the Grid columns equal to the field count

GridCtrl1.Cols = RS.Fields.Count

‘Get the column names

For i = 0 To RS.Fields.Count - 1

ColumnNames = ColumnNames & RS.Fields(i).Name & vbTab

Next

GridCtrl1.Redraw = False

‘Add the column headers to the Grid

GridCtrl1.AddItem ColumnNames

‘Loop through the Recordset

While Not RS.EOF

‘Get the column values for this row

For i = 0 To RS.Fields.Count - 1

ColumnValues = ColumnValues & RS.Fields(i).Value & vbTab

Next

‘Add the column values to the row

GridCtrl1.AddItem ColumnValues

ActiveSync

163

658Ch06 6/21/01 11:12 AM Page 163

‘Set ColumnValues to a zero-length string

‘so it can be refilled with the next row

ColumnValues = “”

RS.MoveNext

Wend

GridCtrl1.Redraw = True

Else

MsgBox “The record is unchanged.”

End If

RS.Close

End If

End If

End Sub

After checking to make sure that the user doesn’t click a metadata cell in the
Grid, a complicated SQL string is constructed with the help of the Grid’s
TextMatrix property. This query causes the Recordset to open only the row of data
the user clicked on in the Grid. The user is then prompted with a Yes/No message
box asking whether or not to delete the selected record. If the user chooses Yes,
the Delete method is called and the code proceeds to refresh the Grid so you can
see that the row in question has been removed.

Trying It Out

Now that you’ve wired all this code together, it’s time to see what your little pro-
gram can do. By the way, you can put your Grid, combo box, and buttons any-
where you want, but mine looks like Figure 6-8.

Chapter 6

164

658Ch06 6/21/01 11:12 AM Page 164

You’re about to start playing ping-pong with your data as you bounce it from
Pocket Access to SQL Server. The InSync program in conjunction with the SQL
Server Enterprise Manager will help you accomplish the following tasks:

• Verify the original conversion and row of data

• Add data to Pocket Access

• Update data in SQL Server

• Update data in Pocket Access

• Delete data in SQL Server

• Delete data in Pocket Access

Bring up the InSync program on your Pocket PC so you can get started put-
ting it through its paces.

ActiveSync

165

Figure 6-8. The InSync program without an open database

658Ch06 6/21/01 11:12 AM Page 165

Verifying Original Conversion and Row of Data

The first thing you need to do is verify that the database you built and the row of
data you added in SQL Server has made it to your Pocket PC successfully. Click
the Open Database button to display the Open common dialog box. It should
default to All Folders and should display only files that end in .cdb, as you see
shown in Figure 6-9.

Hopefully, you’ll see your ContactManager database. Tap on the database to
open it. The next thing you need to do is click the Select a Table combo box (see
Figure 6-10) and choose the Contacts table.

Chapter 6

166

Figure 6-9. The Open common dialog box displaying the ContactManager
database

658Ch06 6/21/01 11:12 AM Page 166

Once you’ve clicked Contacts, the Grid should fill with the same metadata and
data you entered in SQL Server. Your Grid should look something like Figure 6-11.

ActiveSync

167

Figure 6-10. Select a table

658Ch06 6/21/01 11:12 AM Page 167

Be sure that you also verify the contents of the PhoneNumbers table as well
before you move on.

Adding Data in Pocket Access

Now you get to try out your Add a Record function and see how its dynamic
adding capabilities work. Reselect the Contacts table from the combo box so that
it’s displayed in the Grid. Now click the Add a Record button to start the process.
As your code loops through the metadata, it should display the message box
shown in Figure 6-12 almost immediately.

Chapter 6

168

Figure 6-11. The Grid displaying the Contacts table

658Ch06 6/21/01 11:12 AM Page 168

Because you created ContactID as an Identity column in SQL Server, you
know that it is an autoincrementing field and you should therefore click Yes.
From there on, you will see a series of Input Boxes prompting you to enter values
for the given column name as shown in Figure 6-13.

ActiveSync

169

Figure 6-12. Checking for autoincrementing fields

658Ch06 6/21/01 11:12 AM Page 169

After you’ve entered all the necessary data for this new record, click Yes when
you’re asked if you want to add the record. If all went well, you should be looking
at a new row of data in your Grid with a ContactID of 2. Now I want you to close
the database but leave InSync running. Go to ActiveSync on your desktop and
click the Sync button. Once it’s finished synchronizing, take a look at your Con-
tacts table in SQL Server through the Enterprise Manager. It should look just like
your InSync Grid looked a moment ago (mine did).

Updating Data in SQL Server

With the Contacts table displayed in the Enterprise Manager, change the last
name of ContactID 2 by clicking in the cell and making the edit. Now close the
Contacts table Grid, bring up ActiveSync and click the Sync button. When the
synchronization is complete, go back to the InSync program on your Pocket PC,
open the ContactManager database, and view the Contacts table in the Grid. Sure
enough, your ContactID 2 should have a new last name. Mine went from Swant-
kowski to Johnston—try and top that!

Chapter 6

170

Figure 6-13. Adding a value in the FirstName column

658Ch06 6/21/01 11:12 AM Page 170

Updating Data in Pocket Access

Not to be outdone by SQL Server, let’s do some updating with Pocket Access. With
the Contacts table displayed in the InSync Grid, tap the FirstName of ContactID
1. The cell should have a dotted outline around it signifying that it has been
selected. Now click the Update the Selected Record button. If everything is work-
ing correctly, it should only prompt you to enter a new FirstName. When a mes-
sage box asks if you want to update the record, tap the Yes button. You should
now be looking at a refreshed Grid with a new FirstName for ContactID 1. This
time, I changed my name from Rob to my wife’s name, Cathy. I guess I’ll inform
her that she’s the new CTO over at CommonVision. Now let’s find out if Cathy
survives the trip back to SQL Server. Close the InSync database and click the Sync
button in ActiveSync. Display the Contacts table in the SQL Server Enterprise
Manager and see if your Pocket Access change is reflected in SQL Server. In my
case, my wife’s name managed to beam over to SQL Server without any loss of
molecular structure.

Deleting Data in SQL Server

It’s now time for one of the two remaining contestants in the Contacts table to get
voted out. In the Contacts table Grid in the Enterprise Manager, select the entire
row of ContactID 1 and push the Delete key on your keyboard. With only contes-
tant number two remaining, click the Sync button in ActiveSync. When the syn-
chronization is finished, go back to your InSync program on your Pocket PC,
open the ContactManager database, and select the Contacts table. If your code is
working as good as mine, you should only see ContactID 2 displayed in the Grid.

Deleting Data in Pocket Access

Because no one gets out of this world alive, it’s time to delete the remaining row
of data in your Contacts table. Tap any one of the cells in ContactID 2’s row so
that the cell is outlined with dots. Now click the Delete the Selected Record but-
ton and definitely tap the Yes button when asked if you want to delete this record.
You should now be staring at a Grid displaying only column metadata. Well, let’s
try to replicate your empty table back to SQL Server. Close the database on the
Pocket PC and click the Sync button in ActiveSync. When the synchronization
finishes, bring up the Contacts table Grid in the Enterprise Manager. If you did it
right, your Grid should be empty with the exception of column metadata, as
shown in Figure 6-14.

ActiveSync

171

658Ch06 6/21/01 11:12 AM Page 171

Now that you’ve accomplished the previous tasks, you should feel confident
in your ability to build single-user Pocket PC database applications that use
ActiveSync. You’ve learned all the important points regarding establishing a rela-
tionship between a desktop or server database and a Pocket Access database.
What about multiuser ActiveSync database relationships, you might ask? It’s
important to differentiate what you’ve done in this chapter with single-user issues
versus what might happen in multiuser scenarios and how best to handle those
issues. The single-user scenario assumes that only you are using the desktop and
Pocket PC databases at any given time. When you’re at your desk, only you make
additions, updates, and deletions to your desktop database, whether that’s
Microsoft Access or SQL Server. This scenario also dictates that you’ll run
ActiveSync to replicate those changes to your Pocket PC before you decide to mod-
ify the data residing in Pocket Access. Likewise, when you’re on the road making
additions, updates, and deletions to your Pocket Access database, you must run
ActiveSync upon your return to the office to replicate those changes to your desk-
top database before you decide to modify the data residing in Microsoft Access or
SQL Server. At this point, you’re probably wondering what the big deal is.

In a multiuser scenario, all kinds of people back at your office can make
additions, updates, and deletions to your Microsoft Access or SQL Server data-
base while you’re on the road with your Pocket PC, and that is a big deal. At a
minimum, you can just imagine the conflicts that will arise with your autoincre-
menting fields when you’re making additions to Pocket Access while others are
making additions to your desktop database at the same time. You’ll end up with
clashing Identity column numbers that ActiveSync won’t be able to resolve and
will therefore not synchronize. Go ahead and try this out for yourself by adding a
new record to both your desktop and your Pocket Access databases. With new
records added in both places with differing data but the same ID number, run
ActiveSync to see what happens. You’re now staring at an ActiveSync dialog box

Chapter 6

172

Figure 6-14. An empty table

658Ch06 6/21/01 11:12 AM Page 172

reporting the database synchronization conflict that it’s going to write to its error
log. I know you’re hoping that I’m about to show you a slick workaround for this
issue, but sadly, Pocket Access is now officially out of its league. Replication usu-
ally involves moving from autoincrementing key fields to using randomly gener-
ated numbers to uniquely identify a particular row. The only way to be certain
that you won't have any conficting key fields is to use 128-bit GUIDs as your key
field data type. The ability to autogenerate GUIDs for a key field whenever a new
row is added is supported in SQL Server and Access but unfortunately not in
Pocket Access. Since I don't know of a way to make the CoCreateGuid call work
on the Pocket PC, you wouldn't even be able to generate the GUIDs yourself like
you do with the autoincrementing numbers. Don't throw in the towel just yet,
there is a solution.

Sophisticated data merge and replication code is used all the time in enter-
prise products such as Lotus Notes, Oracle, and Microsoft SQL Server. Using the
right tools for the job can solve your multiuser replication issues. Those tools are
SQL Server 2000, Windows 2000, Internet Information Server 5, and SQL Server
CE 1.1. Firewall-friendly HTTP is used as the transport mechanism to replicate
changes from SQL Server CE on your Pocket PC to SQL Server 2000 through IIS 5.
Best of all, using merge replication, these products are designed to automatically
handle the conflicts that arise in multiuser scenarios where the SQL Server 2000
database is being modified at the same time as the SQL Server CE database that’s
out on the road. I won’t delve into SQL Server CE any further because it deserves
its own book and this is a book on Pocket Access, but I would like to point you in
the right direction to help you get started if you require this greater level of data-
base sophistication. You can download a trial version of SQL Server CE 1.1 on the
Microsoft Web site (http://www.microsoft.com/sql/evaluation/trial/CE/
download.asp). Additionally, you can find several good SQL Server CE articles
and tutorials on the deVBuzz Web site (http://www.devbuzz.com/).

Summary

You now know more about programming a flexible Pocket Access application in
eMbedded Visual Basic then you probably ever cared to know. Well, it only gets
better. You’re going to take everything you’ve learned up to this point to build the
closest thing you can get to having the Microsoft Access 2000 design environ-
ment running on your Pocket PC.

ActiveSync

173

658Ch06 6/21/01 11:12 AM Page 173

658Ch06 6/21/01 11:12 AM Page 174

