*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 253 E;
" . [- 3 E ._.f::__:" i
L om By ’

Part Four

Advanced Topics in
Automated Test
Scripting

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 254 $

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 255 $

CHAPTER 8

Introduction to
Database Testing

The testing of software applications usually includes accessing and verifying
data of some kind. This is true of any kind of software application you can think
of these days, including, of course, Web applications. In fact, out of necessity,
more focus is being placed these days on end-to-end testing of large software
applications. End-to-end testing traces the flow of information and any bugs
encountered from the user of the system, the client, all the way through to any
data accessed and then back again to the original client. Going through the
entire system may include passing through multiple servers and accessing het-
erogeneous data stores. For example, a client system such as a browser on a
home computer accesses an application stored on a Web server. This Web server,
in turn, passes the client’s request for information—say, a price on a product—to
a database server. The database server returns the request back to the Web
server, which, in turn, passes the information back to the client. Testing this kind
of arrangement can be complex as the tester tries to determine the source of
bugs in the system’s multiple layers. It is important to be able to understand and
work with of all types of data to be effective at end-to-end testing. This data can
be stored in many ways—for example, spreadsheets, text files, and databases.
Relational database management systems (DBMS) such as Oracle, SQL Server,
Informix, Sybase, etc. are used to store data for large, client-server type systems.
However, many applications include data from older, nonrelational database
systems. Because of this exceedingly wide field of possible data sources, we will
have to limit the focus in this chapter to data stored in ODBC-compliant data-
bases.

Understanding data involves more than can be presented in one book. To be
effective at database application testing, you will also need some database back-
ground—in other words, a thorough knowledge of database design and
Structured Query Language (SQL) as well as practical training and experience
with a database management system (DBMS).

Visual Basic can be a very functional means to access and verify data in an
ODBC-compliant relational database in several ways. First, Visual Basic contains
anumber of useful tools to reference and view a database and even modify its
structure and data. It can also be used to programmatically access data using a

255

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 256 $

Chapter 8

256

variety of data access methods. In this chapter, we will start by exploring the use
of the Visual Database tools for data access and then use ADO (ActiveX Data
Objects) programming to manipulate data in a SQL Server database.

NOTE See the “ODBC and OLEDB” and “SQL” sidebars in Chapter 2.

Objectives
By the end of this chapter, you will be able to:
e Use the Visual Database tools to access database components.

¢ Use the Visual Database tools’ Query Builder window to execute some
queries useful for testing.

e Use ADO code to open and access a database.

e Access the SQL Server SQL-DMO (Distributed Management Objects)
library.

Database Application Testing
Using the Visual Database Tools

Visual Basic 6 can be used to support database testing both with and without
doing a lot coding. The tools that don’t involve a lot of coding include the Data
Form Wizard and the Visual Database tools. In Chapter 2, you learned how to use
the Data Form Wizard to create a quick front end for a database. In this section,
you will learn how to use the Visual Database Tools to access many types of data-
bases and even to modify SQL Server databases. This will afford you a common
way to access heterogeneous data so you can examine the state of the data and
execute and test queries against it.

NOTE The Visual Database tools available in the Visual Basic 6 Enter-
g prise edition are also available in Visual InterDev, Microsoft Visual
S— J++, and Microsoft Visual C++ 6 Enterprise editions.

)

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 257 $

Introduction to Database Testing

The Visual Database tools in Visual Basic are comprised of three major com-
ponents: the Data View window, the Query builder, and the Data Environment
designer.

Using the Data View Window

Creating a data link in the Data View window is an easy way to quickly set up a
connection to a database. Once the database is open, you will be able to retrieve
database objects like tables and views. This will give you a look at the structure of

the database so that you can verify the presence of those same database objects.
You will also be able to inspect the data and perform queries as mentioned earlier.

TO TRY THIS

1. Select the View > Data View Window menu item or
you can click the Data View window icon from the /

Standard toolbar. @
L)
CJ

|g-H-B|lEH| % E@d|o x|\ .|%5%%*%@£3 ’l
NS
I}

2. Click on the Add a New Data Link icon within the Data View window.

The Data Link Properties window appears with the Data tab displayed.
From this window, you can select the OLE DB data provider for many
different kinds of databases including Oracle and SQL Server. The most
general one is the OLE DB data provider for ODBC databases, which will
allow you to connect any ODBC database. (See Chapter 2 for a discus-
sion of ODBC and OLE DB.)
257

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 258 $

Chapter 8

258

B Data Link Properties
Provider | Connectinnl Advancedl All I

Select the data you want ba caonnect to:

OLE DB Prowider(z]

Microzoft 154k 1.1 OLE DB Provider
Microzoft Jet 3.51 OLE DB Provider
i Jet 4 00LE DB Provider
Microzoft OLE DB Prowider for DTS Packages
Microzoft OLE DE Prowider for Internet Publishing
Microzoft OLE DE Provider for ODEC Drivers
Microzoft OLE DB Provider for OLAP Services
Microzaft OLE DB Provider for Olap Services 8.0
Microzoft OLE DB Provider for Oracle

Microzoft OLE DB Provider for SOL Server
Microzoft OLE DB Simple Provider

MS Remate

M50 ataShape

Mewt » |
Q. I Cancel | Help |

The Jet database providers allow us to connect to a Microsoft Access
database. That is what we will select for this example since Visual Basic
installs sample databases of this type (as long as you have selected that
option when you installed Visual Basic). Select Microsoft Jet 4.0 OLE DB
provider, then click Next>>. This takes you to the Connection tab of the
same window (so you could have just clicked on the Connection tab
also).

From the Connection tab, browse to the database you want to investigate.
This part of the dialog will look different depending on what you selected
in the previous Data tab. Since you selected a Jet provider, you are
prompted only for an Admin account and password. By default, Access
databases have an Admin account with no password so you can usually
just specify the default here. For this example, you will link to the sample
Northwind database located in the following file when Visual Basic
installs: C:\Program Files\Microsoft Visual Studio\VB98\NWIND.MDB.
You can browse to this file or type it directly.

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 259 $

Introduction to Database Testing

B Data Link Properties x|

Provider Connection |Advanced| &l I

Specify the following to connect o Access data:
1. Select or enter a databaze name:

C:\Program FilesiMicrozoft Visual Studio'WB I85MWIN J

2. Enter information ta lag on to the databasze:

Uszer nanne: |.-'1‘u:|min

Pazaword: I

¥ Blark password [Allow gaving password

Microsoft Data Link E

@ Teszt connection succeeded.

Test Connection

QK Cancel Help

TIP You can test the connection to the databases by clicking the Test

Connection button on this same dialog. If the connection is success-
@ ful, it will display a Message box indicating success. If not, you will

have to check with your system administrator to determine the cor-
rect database and logon specifications required.

5. From here, you can simply click OK and continue; however, there is one
more important point to discuss on the Advanced tab of this dialog. By
default, the Microsoft Access permissions are set to Share Deny None on
this tab. This means that neither read nor write access can be denied to
others and you also have read and write access to the database (as long
as the username you specified in step 3 also has that capability). When
testing, you don’t usually want to modify data unless you are specifically
adding test data to do so. My recommendation, in most cases, is to set
your access to Read access on a production database. This will not allow
you to change database values. If you change this value now, however,
you won't be able to change data—which we are going to do in a later
task. So, for now, you can leave the default access, Share Deny None.
Click OK to close the dialog.

259

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 260 $

Chapter 8

260

Ef Data Link Properties

F'mvidell Connection Advanced |.f1‘n.|| I

— Metwork, settings

Impersonation level;

Frotection [evel:

Lol L

— Other

LConnect imeout:

I seconds,

Aocess pemizsions -
[Readwhite
[1 Share Deny Nore
[1 Share Deny Read
[] Share Dieny wiite
[Share Exclusive _"I
)4 Cancel Help

In the Data View window, expand the Data Links folder, expand the data
link you just created, and then expand the Tables folder. You can now
expand any table to see its list of fields (columns). Double-clicking the
table will open a new window, the Run table window (which is referred
to as the Query Builder window in Help but does not contain that name
in its caption), and display the current contents of the table.

} Run Table: Categories

|Categor jie} |Categor Marne |Dascriptmn |Picture ‘
i Beverages Soft drinks, coffee: <Binary =

z Condiments Sweet and savory | <Binary >

3 Confections Desserts, candies, | <Binary >

4 Dairy Products Cheeses <Binary >

5 Grains/Cereals Breads, crackers, p <Binary =

& Meat/Poultry Prepared meats | <Binary>

7 Produce Dried Fruit and bea <Binary =

] Seafood Seavweed and fish

*

=i

8 |=1 3

=21 DataLinks
=) Datalinki
=3 Tahles

=]

CategaryID
ZategoryMame
= Description

- Picture
Customers
Emplovess

Order Details

-5 Orders

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 261 $

Introduction to Database Testing

NOTE Double-clicking a table opens the whole table. For a sample
5 database, this action is okay; however, when accessing a very large
table, this operation may take quite awhile. There are other kinds of
queries that will return useful information but don't return all of the
~———— rows in the table. We will explore other queries practical to testing
next.

—

~
o~

Using the Query Builder Window to
Execute Database Queries

Creating a data link and investigating the database structure and contents as we
have just done is a valuable first step in database access. You can follow pretty
much all of the same steps as in the last section to access any ODBC database.
This gives you a common way to access these databases so it isn’t always neces-
sary to learn each one of their individual DBMS software.

It is even more valuable to be able to execute queries against the database.
The Run Table window that displays when double-clicking on a table in the Data
Link window is really the Query Builder window cleverly disguised! Adding more
panes to this same window will allow you to create and execute queries within it.
There are quite a few valuable SQL queries for testing that will return information
about the database. The next steps demonstrate how to use the Query Builder
window to do just that using the data link created in the previous section.

TO TRY THIS

1. Make sure you have created the data link from the
last section, “Using the Data View Window.” Then
click on the caption of the Run Table window (Query
Builder) to make sure it has the focus.

NOTE The Run Table window pops up by double-clicking on a table
5 in the Data View window. If you closed the Run Table window earlier,
S— simply click on any table from the Data View window.

3 \

>

2. Select the View > Show Panes menu item and select the Diagram and
SQL panes. Now the Query Builder window is set to build and run SQL

261

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 262 $

Chapter 8

statements. The Diagram pane of the Query Builder window displays the
tables in the query and, if there is more than one table, any relationships

between them. The SQL pane shows the current SQL statement. It can
be modified to any valid SQL statement.

i Run Table: Categories !EE
:I

* (all Colurnns)
[| categorym
DCategoryName

losscription Diagram Pane

Picture

ki _'l_I
SELECT * =
FROM Categories
SQL Pane

o _l_I

CakeqoryID |Categ0r Mame |Description |Picture | -
na 1 Beverages Soft drinks, coffee: <Binary >
_ |2 Condiments Sweet and savory @ <Binary >
_ |3 Confections Desserts, candies, | <Binary > RESU”'S Pane
|4 Dairy Products Cheeses <Binary =
_ |5 Grains{Cereals Breads, crackers, f <Binary > _v|

Modify the SQL statement in the SQL pane so that it reads:

Select Count(*) from Categories.

This statement will return the number of rows in the Categories table.
Right-click in the Diagram pane (or the Results pane) and select Run

from the pop-up menu. The Results pane will show the answer to the
query.

There are a number of SQL statements that are valuable for testing. The fol-
lowing are just a sample using the data in the Northwind database (to try them,
repeat steps 3 and 4 from the preceding task).

¢ Toreturn the most recently ordered items from the Orders table:

SELECT *
FROM Orders
WHERE orderdate =
(SELECT MAX(orderdate)
FROM orders)
262

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 263 $

Introduction to Database Testing

e To find records with duplicate primary keys in a table (there are no such
duplicate records in Northwind tables. However, this is a good check for
other databases where referential integrity of the data is suspect):

SELECT employeeid

FROM employees

GROUP BY employeeid

HAVING COUNT(employeeid) > 1

e To find orphan records, that is, Orders that have no Employee assigned
(again, this result should yield zero rows [no data] in the Northwind
database):

SELECT e.EmployeeID, o.0Orderid
FROM employees e RIGHT OUTER JOIN

orders o ON e.employeeid = o.employeeid
WHERE e.employeeid IS NULL

* You can also drag tables and views from the Data View window and drop
them onto the Diagram pane of the Query Builder window. This is a
quick way to run predefined queries without knowing a lot of SQL. To
give this a try, place your cursor on any table in the Data View window,
click it once, drag it just over the Diagram pane of the Query Builder
window, and let go. From there, you can modify the SQL statement if
desired.

To get the most out of these tools, you should learn more about SQL. There
are many excellent books on SQL, for further information on learning this lan-
guage, see Appendix A: Resources and References.

Relational Database Objects Primer

If you are unfamiliar with relational databases, you will need to get up to speed
on the basics before doing any significant amount of testing. There are courses
available at community colleges and many good books that can help you get
up to speed; Appendix A of this book has some good resources.

To get you started, here is a description of some of the major objects in a rela-
tional database:

Tables: All data in relational databases is stored in table format. The rows of
the table represent one record’s worth of data. For example, each row in a
Customers table would contain information about a single customer. The
columns of the table represent individual pieces of data about the customer,
such as the customer’s name, address, and so on.

263

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 264 $

Chapter 8

264

Views: A view is an alternate way to look at data from one or more tables in the
database. A view’s contents are generated by a query and usually contain a
subset of columns from one or more tables. A view is considered a virtual table
because it can be treated as though it were a table even though it isn’t. For
example, a view can store the SQL code to find all customers in the customer’s
table who live in Washington. That information actually resides in the cus-
tomer’s table but since it is defined in a view, we can look at it in the view as
though it is a table of its own. So, a view is really just a query that is stored and
has a name.

Stored Procedures: A stored procedure allows the database programmer to
write a set of SQL statements and give them a name so that they can be used
over and over without having to rewrite them each time they are needed.
Stored procedures can contain most any SQL statement and can be used to
perform simple or complex database tasks.

The Data Environment Designer

You can do a lot of data interrogation using just the Query Builder window—it’s
quick and easy. The Visual Database tools also provide an alternate way to access
databases visually through the use of the Data Environment designer. It is set up
in much the same way but with some extra steps. The value of these extra steps is
that unlike the data link, you get a Connection object that you can refer to in
your Visual Basic code. You can programmatically manipulate the Connection
object to perform database tasks. You can also create Command objects to attach
to a connection and drag and drop those Command objects to create forms
based on the data. Although these activities might be valuable in testing, they
are, of course, largely useful for application software development. There are a
number of ways to access databases programmatically in Visual Basic. To cover
all of them may be confusing so I will focus on methods that are either simple or
very powerful. The data link is a very simple method that does not require a lot of
code. To perform programmatic access, I will use the ADO object library com-
mands since this library provides great flexibility and power.

Testing Databases Using ActiveX Data Objects (ADO)

There is a real alphabet soup of methods to access databases in code. Microsoft
started out with DAO (Data Access Objects), which is built primarily to access
Microsoft’s proprietary Jet database engine used by Microsoft Access. RDO

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 265 $

Introduction to Database Testing

(Remote Data Objects) had, for a long time, been the method to access data in a
client-server system. RDO provides commands to access multiple types of data-
bases since it is really just a wrapper around the ODBC API. (I warned you this
was an alphabet soup!)

ODBC was built to accommodate databases of varying types. There has
been so much proprietary database access that businesses found it difficult to
access all the data they needed in a single program. ODBC answered this by cre-
ating drivers for databases that allow the access of data in a common way. (See
Chapter 2 for a discussion of ODBC.)

Since Microsoft had DAO and RDO working just great, why did they come up
with something new like ADO? Actually, ADO itself is a wrapper around OLE DB
(see Chapter 2). ODBC (and its wrapper RDO) only allows for data access across
Windows databases. This does not address the need to access heterogeneous
data across multiple platforms such as UNIX-based systems and other non-
Windows operating systems. The intent of OLE DB is to allow data access across
even these varying operating systems. So, this is effectively a step beyond ODBC
towards multiple-platform, heterogeneous database systems.

For testers, ADO is a good choice for data access since it allows us to learn a
single method to access a variety of databases.

With all of these acronyms, it’s easy to get confused. The chart in Figure 8-1
summarizes the common Windows data access methods and how ADO com-
pares to them.

Application Software

DAO ADO

RDO JET OLE DB

SOL Data: NonSQL Data
SQL Server Mail
Oracle Text

FoxPro

Jet

Figure 8-1. Comparison of Data Access methods for Windows programming.

O0DBC API

ainframe an
Legacy Data

265

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 266 $

Chapter 8

266

Understanding ADO Architecture Basics

The ADO programming model has two important objects necessary to open a
connection to a database and obtain a set of records: the Connection object and
the Recordset object. ADO does have other objects, such as an optional Com-
mand object and an Error object. However, the only two that are really necessary
to make a connection are the Connection and Recordset objects. The interesting
thing about them is that they are not related hierarchically. You can have a Con-
nection object that sets up a connection to a database, then creates sets of
data—that is, Recordset objects—and attaches them to this connection. How-
ever, you can also just create a Recordset object and set it up with a connection
when you create it. You can set it again at a later time to attach to a different con-
nection. This allows for great flexibility in programming. If you find this
confusing, don't worry, you can set up a connection to a database and then
obtain a recordset from it very easily. You don’t have to worry about disconnect-
ing them unless you get to a point in programming in which you want to do so.

It’s usually best to start with an example, but first, we will need to do some
set up. To use the ADO library, you must set a reference to the Microsoft ActiveX
Data Objects Library by selecting the Project > References menu item and place
a check in its box in the Project References dialog (Figure 8-2).

NOTE Figure 8-2 shows a check in the box of the Microsoft ActiveX
5 Data Objects 2.6 Library. Versions of the library available to you may
vary depending on what is installed on your machine. Check the box
\ with the highest-level version you have available. Earlier versions are
~——— there for backwards compatibility with applications that may use
them.

S—
b)
N
.

Once you have set the reference, you can view the ADO objects and their
corresponding properties and methods (similar to what we did with the
Microsoft Scripting Runtime library in Chapter 5) in the Object Browser
(Figure 8-3).

NOTE Press F2 in Design mode to get to the Object Browser, or View >
5 Object Browser, or click its icon on the Standard toolbar.

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 267 $

Available References:
[Microsoft Activel Daka Cbjecks 2.0 Library ;l Cancel |
[]Microsoft Activel Daka Cbjecks 2.1 Library
[Microsaft ActiveX Data Objects 2.5 Librar
ElMicrosoft Actives D Dhie 6 Library Browse. .. |
[[IMicrosoft Activel Data Objects Recordset 2,1 Library_1
[CIMicrosoft Active® Plugin ﬂ
[IMicrosoft &dd-In Designer
[Microsaft ADO Ext, 2,1 For DOL and Security Priority
[]Microsoft Agent Control 2.0 Help |
[IMicrosoft Agent Server 2.0 ﬂ
[IMicrosoft Agent Server Extensions 2.0

[]Microsoft Connection Designer Instance 1.0

[CIMicrosoft Conneckion Designer ve.0

[]Microsoft DA 2,53.51 Compatibility Lilbrar':.f _l;l
F

4

—Microsoft Activer Data Objects 2.6 Library

Locabion: G \PROGRARM FILESYCOMMON FILES),SYSTEMADO msadol 5.
Language: Standard

Introduction to Database Testing

Figure 8-2. Setting a reference to the ADO library using the Project References

dialog.

[anons B ‘| >| |3&| il
IConnecﬁon d M

Search Results

Library |_Q_Iass | Eember
I ADODE 21 Command Eé ActiveConnection i
ifs ADODB 21 Record E& ActiveConnection
Iifs ADODB 2l Recordset EH ActiveConnection [
If ADODB =7 ErrorvalueEnum E adErrCantChangeConnectio
it An00A =8 FrratdaliaFnim F1_adFrrinvalidCnhnactinn s
|Classes Members of 'Connection’
21 Command | Moge =l

CommandTypeEnun|-
= =3 Openschema
: E& Properies

=
2@ ConnectModeEnum | |28 Provider =

Suh Openi[ConnectionString As String], [UseriD As String), [Password As Stringl, [Options As Long = -1])
Member of ADODB Connection

Figure 8-3. The ADO library.

267

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 268 $

Chapter 8

Using the Connection Object

The Connection object is used to set up the information necessary to attach to a
database. It has a number of properties used to specify this information, such as
username and password, as well as, of course, the location of the database. The
Open method of the Connection object is used to actually create the connection.
There are two ways to connect to the database. One is to use a Data Source
Name (DSN) and the other is to directly specify the database using a DSN-less
connection.

NOTE The Connection object has other uses as well. In addition to
-‘ opening a connection, it can be used to execute SQL statements by

using its Execute method. Once the connection is created, set, and
kA \ open, you can specify a SQL statement to execute such as:

cnn.execute

"Insert into categories (CategoryName) values ('Tester Products')"

Creating a Data Source Name (DSN)

Think of a Data Source Name as a kind of alias to a database. You create a DSN
to preset the logon information for the database you want to access. You can
include password and other access information in the DSN and give it a name
of your choice. Then, in your Visual Basic code, you can reference this name
and use it to logon to the database. Data Source Names can be created from
the Control Panel. For Windows 95/98 systems, set up a DSN in the ODBC
data sources area. When you double-click there, the dialogs do a good job of
explaining how to set up the DSN. You will need to have an appropriate logon
for the database as provided by your system administrator.

To create a DSN for a database:

1. Open your computer’s Control Panel starting from the Windows
TaskBar by selecting Start > Settings > Control Panel. In Windows
95/98, double-click on the ODBC Data Sources icon. In Windows
2000, select Administrative Tools and then Data Sources (ODBC).

2. There are three different kinds of DSNs to choose from: System, File,
or User DSNs, depending on the visibility you need for this database.
The System DSN is the most global; the User DSN is the least global.
The dialog explains the options; choose whichever is most appropri-
ate. If you can't decide, select System, then click Add. A list of data-
base drivers will display in the next dialog.

268

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 269 $

Introduction to Database Testing

3. Select a driver for the kind of database you want to use such as
Oracle, SQL Server, or Access and click Finish. You will then be
prompted to create a name for the DSN. You can make that up but it
should be something you will remember such as NWindDSN.

4. If you have selected the Microsoft Access driver, you will need to
browse to find the Access .mdb file. Other databases drivers will walk
you through a series of forms you will need to examine to enter
logon information for the database.

If you have set up the DSN correctly, you will see it appear in the list. You can
then use the DSN in your code to simplify calls to the database. It is possible to
create a DSN-less connection, however. We will explore both ways.

Accessing a Database Using a DSN

To open an ODBC-compliant database that has an available DSN, the connec-
tion can be set with the following two lines:

Dim MyConn As New ADODB.Connection

MyConn.Open "YourDSN", "Admin",

In this code, MyConn is created as an object variable of the Connection
class. Then, the Open method of this new object is used to connect to the data-
base. The first argument of the Open method, YourDSN, refers to a DSN that can
be created through the Control Panel’s ODBC settings (see the previous sidebar,
“Creating a Data Source Name”). Usually, the developer will have already created
this DSN so you will simply need to find out what it is. The second argument of
the Connection object’s Open method is where you specify the username to con-
nect to the database—in this case, Admin. The third argument is the password to
log onto this database; in this case, there is no password for the Admin account.
(That probably won't always be the case!)

Accessing a Database without a DSN

It is possible in ADO to create a DSN-less connection by specifying all of the con-
nection criteria when you set the Connection object. For example, the following
code demonstrates opening a connection to the SQL Server sample database,

269

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 270 $

Chapter 8

270

Northwind, using a DSN-less connection, and logging onto the SQL Server sa
(system administrator) account, assuming there is no password:

Dim MyConn As New ADODB.Connection
MyConn.Open "Driver={SQL Server};Server=;Database=Northwind;UID=sa;PWD="

In order for this to work, you must have Microsoft SQL Server installed
because when the Server argument is left blank as shown, the default is to look
for alocal server—in other words, a server on your machine. Otherwise, you
must specify the name of a server you can access. In that case, you don’t need
SQL Server installed on your machine but you must have access to a SQL Server
database installed on the server you are connecting to. If you want to use a
trusted connection to SQL Server, which means logging on using your NT or
Windows 2000 username and password, then you leave both the UID (user iden-
tification) and the PWD (password) arguments unset.

NOTE Your SQL Server database administrator determines whether
g you can log onto SQL Server with a trusted connection or with a SQL
— Server connection (called SQL Server authentication).
)

Once the connection is established, our next step is to retrieve a set of
records for testing.

Using the Recordset Object

The Recordset object can be used to issue a SQL statement to retrieve exactly
what it sounds like: a set of records. Once you have a set of records, you can think
of them like a card file of index cards: you can process them one-by-one and look
up information in them. To get this set of records, we must first create the
Recordset object variable and set it equal to a new, empty recordset:

Dim MyRs As ADODB.Recordset
Set MyRs = New ADODB.Recordset

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 271 $

Introduction to Database Testing

Before retrieving the actual records for the recordset, you need to specify
where the records will be processed—either on the client or the server. If you
specify that you want to process on the client, you can save server resources so,
in general, you will usually choose client-side processing. To set this, use the
CursorLocation property:

MyRs.CursorLocation = adUseClient

You can also specify a cursor type. A cursor is essentially a pointer that
points to the current record in a recordset. There are different kinds of cursors
and depending on which you choose, you can specify how the data is retrieved.
For example, you can choose a cursor that will allow you to see changes made by
others, or not. Choices for cursors are:

Static—A fast cursor because you get a snapshot of the data as it exists at
the moment you capture it. You will not get to see any additions or deletions
to the data that other users may be making while you work.

Forward Only—This is the fastest cursor because it is a static cursor that can
only go forward through the recordset. This cursor is appropriate for writing
code to generate a report.

Dynamic—The slowest but most powerful cursor. You can move in any
direction in the recordset and see all changes, additions, and deletions.

Keyset—Just like a dynamic cursor, you can move any direction in the
recordset and see modifications made by other users to a particular record.
However, you won't be able to see the addition of new rows to the data.

The cursor type will determine our ability to modify or view the data. For
testing, you will be viewing data largely for verification rather than modification
purposes; this allows you to choose a fast cursor. The static cursor is fast, even
though it doesn’t allow for viewing modifications performed by others. The ADO
library provides four constants to access the four types of cursors: adOpenStatic,
adOpenDynamic, adOpenForwardOnly, and adOpenKeyset. The following code
sets the CursorType property of the MyRs recordset to a static cursor:

MyRs.CursorType = adOpenStatic

271

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 272 $

Chapter 8

Now we can open the recordset. We use a SQL statement to determine the
records to view. This SQL statement will retrieve all of the records from the
Customers table in the database:

MyRs.Open "Select * from Customers", MyConn

Notice that the Connection object is an argument for the recordset’s Open
method. This is how you connect the Recordset object to the connection. Now
we have a set of records to work with and from here on, we will use the MyRs
Recordset object properties and methods to access this set of records. The next
code sample shows a few of the properties and methods we can use to work with
our recordset:

MyRs.MoveFirst 'moves to the first record

MyRS.MoveNext 'moves to the next record

Debug.print MyRs.RecordCount 'returns the # of records In the recordset:

Debug.print MyRs!Fieldname 'Will return the value of a field in the recordset

If MyRs.EOF then 'determine whether the cursor is at the end of the file
MyRs.Close 'close the recordset

Endif

The syntax for all of these properties and methods can be found by exploring
the ADO type library in the Object Browser.

Now you can write code to test the database. Suppose that one test require-
ment is to determine that a certain number of rows exist in a table within the
database. The code in Listing 8-1 will open the database, count the number of
rows in a table, and determine whether or not the actual number of rows found
is equivalent to what is expected.

NOTE The code in Listing 8-1 presumes the existence of the
-‘ LogUtil.bas module. The code will not compile correctly without it.
The full text of this project can be viewed and run from following file
\ in the Practice files: Chapter8\Demos\ADORecordVerif.vbp.

—

~—
b
5
2

272

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 273 $

Introduction to Database Testing

Listing 8-1. Testing the Northwind sample database by verifying row count in the
Customers table.

Option Explicit
¥ 3kskokok ok ok ok ok ok ok ok ok Sk k sk skok ok ok ok ok ok ok ok ok sk sk sk sk ok sk ok ok sk ok ok sk sk sk skok sk sk ok ok ok ok ok ok sk sk ke skok sk ok ok kok ok ok
"* Northwind Test.
"* Verify that the expected number of records
"* in the Customers table, matches the actual number of records.
'* Dependencies: LogUtil.bas must be available
'* References: This project sets a reference to the Microsoft SQL-DMO object
'* library. It also sets a reference to the Microsoft scripting
"* run time library in order to perform the logging routines from
'* the logutil module.
¥ skskskokokosk sk sk sk sk ok sk sk sk sk skok sk sk sk sk sk sk sk sk sk skok sk sk sk sk sk sk sk sk sk sk sk skokok sk sk sk sk sk sk sk sk skskskokok sk sk ksk sk sk sk ok
Private Sub cmdShowResults Click()

ReadlLog
End Sub

Private Sub Form Load()
Dim MyConn As New ADODB.Connection
'MyConn.Open "NWindDSN", "sa", "" 'This line uses a DSN. This DSN must
'be preset up to access the
'Northwind sample Database on any SQL Server
MyConn.Open "Driver={SQL Server};Server=;Database=Northwind;UID=sa;PWD="
'The line above uses a DSN-less connection and
'presumes you have a local server with SQL Server installed
'If you can connect to a remote SOL Server, place its name after
‘the 'Server=' argument
Dim MyRs As ADODB.Recordset
Set MyRs = New ADODB.Recordset
MyRs.CursorType = adOpenStatic
MyRs.CursorlLocation = adUseClient
Const iEXPECTED As Integer = 91 'set number of expected items

LogUtil.Appname = "Northwind DB Test" ‘'set Public application variable
MyRs.Open "Select * from customers", MyConn
If (Not (MyRs Is Nothing)) Then
' empty recordset?
If (Not MyRs.EOF) Then
MyRs.MoveFirst

End If

273

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 274 $

Chapter 8
' verify results
If MyRs.recordcount <> iEXPECTED Then
LogToFile "***Test Failed. Actual records: " & MyRs.recordcount & _
"; Expected records: " & iEXPECTED
Else
LogToFile
"Test Passed. Actual records: " & MyRs.recordcount & _
"; Expected records: " & iEXPECTED
End If
End If
End Sub

Notice that the logging of test results in Listing 8-1 is accomplished through
the use of the Logging utilities module created back in Chapter 5. You can try this
example by running the ADORecordVerif.vbp project file from the
Chapter8\Demos folder.

Revisiting the ODBC Logon Form Template

In Chapter 2, I discussed how the many form templates and wizards provided by
Visual Basic can be great learning tools. Now that you know a bit about accessing
the ADO library and calling the Windows API routines (from Chapter 7), the code
generated when you create a new form in a project from the ODBC Logon form
template should be more intelligible. Listing 8-2 displays the code behind an
ODBC Logon form.

Listing 8-2. The code generated when you add an ODBC Logon form from the
template to your Visual Basic project.

Option Explicit

Private Declare Function SQLDataSources Lib "ODBC32.DLL" _
(Byval henv8, Byval fDirection%, ByVal szDSN$, _
ByVal cbDSNMax%, pcbDSN%, ByVal szDescription$, _
ByVal cbDescriptionMax?%, pcbDescription%) As Integer

Private Declare Function SQLAllocEnv% Lib "ODBC32.DLL" (env&)

Const SQL_SUCCESS As Long = 0

Const SQL FETCH NEXT As Long = 1

Private Sub Form Load()
GetDSNsAndDrivers
End Sub

Private Sub cmdCancel Click()

274

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 275 $

Introduction to Database Testing

Unload Me
End Sub

Private Sub cmdOK Click()
Dim sConnect As String
Dim sADOConnect As String
Dim sDAOConnect As String
Dim sDSN As String

If cboDSNList.ListIndex > 0 Then

sDSN = "DSN=" & cboDSNList.Text & ";"
Else

sConnect = sConnect & "Driver=" & cboDrivers.Text & ";"
sConnect & "Server=" & txtServer.Text & ";"

sConnect
End If

sConnect = sConnect & "UID=" & txtUID.Text & ";"
sConnect = sConnect & "PWD=" & txtPWD.Text & ";"

If Len(txtDatabase.Text) > 0 Then
sConnect = sConnect & "Database=" & txtDatabase.Text & ";"
End If

sADOConnect = "PROVIDER=MSDASQL;" & sDSN & sConnect
sDAOConnect = "ODBC;" & sDSN & sConnect

MsgBox _
"To open an ADO Connection, use:" & vbCrLf _
& "Set gConnection = New Connection" & vbCrLf & _
"gConnection.Open """ & sADOConnect & """" & vbCrLf & vbCrLf & _
"To open a DAO database object, use:" & vbCrLf & _
"Set gDatabase = OpenDatabase(vbNullString, 0, 0, sDAOConnect)" & vbCrLf & _
"Or to open an RDO Connection, use:" & vbCrLf & _
"Set gRDOConnection = " & _
"rdoEnvironments(0).OpenConnection(sDSN, rdDriverNoPrompt, 0, sConnect)"

'ADO:
'Set gConnection = New Connection
"gConnection.Open sADOConnect
'DAO:
'Set gDatabase = OpenDatabase(vbNullString, 0, 0, sDAOConnect)
'RDO:
'Set gRDOConnection = _
rdoEnvironments(0).0penConnection(sDSN, rdDriverNoPrompt, 0, sConnect)
End Sub
275

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 276 $

Chapter 8

Private Sub cboDSNList Click()

On Error Resume Next
If cboDSNList.Text = "(None)" Then

Else

End
End Sub

Sub GetD
Dim
Dim
Dim
Dim
Dim
Dim
Dim
Dim

On E

txtServer.Enabled = True
cboDrivers.Enabled = True

txtServer.Enabled = False

cboDrivers.Enabled = False

If

SNsAndDrivers()
i As Integer

sDSNItem As String * 1024
sDRVItem As String * 1024

sDSN As String
sDRV As String
iDSNLen As Integer
iDRVLen As Integer
1Henv As Long

rror Resume Next

'handle to the environment

cboDSNList.AddItem "(None)"

'get

the DSNs

If SQLAllocEnv(1Henv) <> -1 Then
Do Until i <> SQL_SUCCESS
sDSNItem = Space$(1024)
sDRVItem = Space$(1024)
i = SQLDataSources(1lHenv, SQL FETCH NEXT, _

If sDSN <> Space(iDSNLen) Then

End

sDSN
SDRV

sDSNItem, 1024, iDSNLen, sDRVItem, 1024, iDRVLen)

Left$(sDSNItem, iDSNLen)
Left$(sDRVItem, iDRVLen)

cboDSNList.AddItem sDSN
cboDrivers.AddItem sDRV

End If
Loop
If

'some additional code has been removed for this listing

'see the ODBC logon form for the rest.

End Sub

276

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 277 $

Introduction to Database Testing

When the ODBC Logon form is displayed, the Form_Load event runs and
executes a call to the subroutine GetDSNsAndDrivers. If you examine this sub-
routine, you will see it uses calls to Windows ODBC32.DLL API routines,
SQLAllocEnv, and SQLDataSources to list all of the available DSNs and drivers.
This is information you might want to include as setup information when run-
ning your tests since it may vary from system-to-system. The code in the
cmdOK_Click event creates a connection string and has code that will allow you,
the programmer, to choose between an ADO connection, a DAO connection, or
an RDO connection by uncommenting the correct lines. The ADO code option
can be used to open a DSN or DSN-less connection depending on the field val-
ues filled in on the form by the user. Figure 8-4 displays the ODBC Logon form.

ODBC Logon |

— Connection Yalues

DSM: I LocalServer j
[][nER Isa
Pazzword: I

Databaze: INDrthwind
Dirivee: I SEL Server d

Server I
Cancel |

Figure 8-4. The ODBC Logon form generated by a form template.

I hope you have noticed that there is a lot of work being done here by the
form template code, which you can copy and paste rather than writing it from
scratch. The ODBC Logon form and its associated code can be modified to suit
your needs for logging into a database.

Another way to let Visual Basic generate code for you is to use the Data Form
Wizard. In Chapter 2, we used it to quickly connect to a database and to view
data in a prebuilt form. The Data Form Wizard has an option to connect to
remote ODBC databases and then produces an option to generate ADO code for
the connection. If you select this ADO code option when using the wizard, then
create the form and view the code behind it, you will find code to create the con-
nection and Recordset objects. You will also find the code to move between
records on a form and bind the data to those fields. If you need to do anything
like this, this code is a good starting point. Listing 8-3 displays a portion of the
code generated by this wizard for the Form_Load event.

277

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 278 $

Chapter 8

278

Listing 8-3. A portion of the code generated from by the Data Form Wizard.

Dim db As Connection

Set db = New Connection

db.CursorLocation = adUseClient

db.0Open

"PROVIDER=MSDASQL ;driver={SQL Server};" & _
"server=(343600-A;uid=sa;pwd=;database=Northwind;"

Set adoPrimaryRS = New Recordset

adoPrimaryRS.Open _

"select ProductID,ProductName,SupplierID,CategoryID, Unitprice from Products", _
db, adOpenStatic, adlLockOptimistic

Testing SQL Server Databases Using COM

There’s another way to get at the structure and data of a database and that is if
the database exports a COM library. If it does, the database can also be accessed
by setting a reference to it as we have done with other applications that export
libraries, like Word and Excel. SQL Server since version 6 exports its COM archi-
tecture through a library called the SQL-DMO. (DMO stands for Distributed
Management Objects.) SQL-DMO is a powerful and fast way to access SQL
Server once you have become familiar with the basic library objects. In fact, SQL
Server’s own Enterprise Manager software, a front end to the DBMS itself, is writ-
ten using SQL-DMO. Figure 8-5 shows setting a reference to the SQL-DMO
library in the Project References dialog. Doing this will give you access to all of
the SQL database objects and allow you to write code to connect to a SQL Server
database.

There is another object library for SQL Server, SQL-NS. This is the Name-
space library and includes objects that can be used to access wizards and dialogs
from the SQL Server Enterprise Manager. Both the SQL-DMO and SQL-NS
libraries install with SQL Server. The SQL-DMO COM object library is displayed
in the Object Browser as shown in Figure 8-6.

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 279 $

References - Projectl

Available References:

[_IMicrosoft SOL Parser Ohject Library 1.0 a
[I Microsoft QL Replication Conflick Resolver Library
[CIMicrosoft 501 Replication Errors 8.0
[CIMicrosoft 55U Snapshot Contral 8.0
[Micrasaft Wirtual Directory Contral 1,0 Ty
Lk icrosoft jectk Library:
[CIMicrosoft SOLNamespace Object Library
[IMicrosoft TAPI 3.0 Type Library
[CIMicrosoft Telephony

[IMicrosoft ¥B T-5QL Debugoer Object: Library 1.0
[]Microsoft YEScript Regular Expressions 1.0
[IMicrosoft YBScript Reqular Expressions 5.5
[]Microsoft Yisual Basic £.0 Exkensibilicy
HII\'Iicru:usu:uFt VML Renderer Obiect LiI:urIar\-'

4

pe Librs

ki
3
S

—1 Priariky

0%

Cancel

Browse, ..

i

Help

—Microsoft SQOLDMO Object Library
Lacation:

Language: Standard

Z:\Program FilesiMicrosoft SOL Servert @0t Tools\Binntsgldmo. o

Figure 8-5. Setting a reference to SQL Server’s SQL-DMO library.

s2: Dbject Browser M=l &3
[soLomo = 2
Isqlseruer j MI o
Search Results
Lilrary | Class | member
il SoLOMO 21 20l Server B
. SQLDMO B s0LServer2
% SQLDMO & sQLServers =
1| T] ¥ Tl [e i mdion il T T A e e =
|Classes WMembers of 'SCLSemver
27 SOLDMO_UDF_TvP_ 2] [=® CammitTransaction =l
= SALDMO_WALIDATIC |E& Configuration
2F SELDMO_WALIDATIC =% Connect [l

2 SOLDMO_WERIFYCC
= SOLDMO_WERIFYSI
=F SOLDMO_WEEKDAY
=F SOLDMO_XFRSCRIF 1
Fl 50L0bjectList —! % DetachDE

_'| =% DisConnect

£ ConnectionBroken
EE ConnectionlD
=% Continue

L e o

I I T R

Property Databases As Databases
resd-only
Default member of SQLOMO S0L Server
Databaszes (default Server collection

Lo LLefpe

Figure 8-6. The SQL Server DMO object library.

e

Introduction to Database Testing

279

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 280 $

Chapter 8

280

Listing 8-4 accesses a SQL Server using the COM objects exposed by the
SQL-DMO library.

Listing 8-4. Code to access a SQL Server and list all of its available databases in a
list box.

Option Explicit
'The following code was written by Walt Rischer, President of the NW VBDA
" (Visual Basic Developer's association)
Private oServer As SQLDMO.SQLServer 'Create the Server object:
Private Const TestServer = null 'set this value to your actual server
"or It will default to the local server
Private Sub Form Load()
Dim oDB As SQLDMO.Database
Set oServer = New SQLDMO.SQLServer
oServer.Connect TestServer, "sa" ‘'connect to the server as system admin
lstDatabases.Clear
For Each oDB In oServer.Databases
1stDatabases.AddItem oDB.Name 'list all databases on the server
Next
End Sub

In Listing 8-4, an object is created to connect to a specific server in the
Form_Load subroutine. The code can then access any of the exposed properties
and methods of the object. The code above uses the databases collection in the
connected SQL Server and loops through it, loading each database name (using
the Name property) into a list control.

Listing 8-5 calls the PingSQLServerVersion method of the Server object to
determine the version of the SQL Server installation.

Listing 8-5. Code to interrogate a SQL Server and return its version using the
SQL-DMO object library.

Private Sub cmdPingIt Click()

"this routine uses the PingSQLServerVersion function to determine
'The correct version of the server.

"Author: Walt Rischer

Dim strMessage As String

Dim 1Version As Long

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 281 $

Introduction to Database Testing

On Error GoTo errhand ‘'error handling

1Version = oServer.PingSQLServerVersion(SERVER, "sa")
Select Case 1Version
Case SOLDMOSQLVer 80 'this constant only exists in SQL 2000;
'if using SQL 7 or earlier version you must comment out
strMessage = "SQL Server 2000"
Case SOLDMOSQLVer 70
strMessage = "SQL Server 7.0"
Case SQLDMOSQLVer 65
strMessage = "SOL Server 6.5"
Case Else
strMessage = "unable to determine version " & lVersion
End Select
MsgBox strMessage
Exit Sub
errhand:
MsgBox "Unable to connect to server " & vbCrLf & _
" Error: " & Err.Number & " " & Err.Description
End Sub

In the procedure cmdPinglt_Click (Listing 8-5), the PingSQLServerVersion
method of the Server object is used to return the current version of the Server.
This application is a simple utility for returning general information about a SQL
Server, its available databases, and its version—useful information on a test proj-
ect. It's a good start on a utility you may want to customize for your own SQL
Server test project. You can access this utility in the Chapter 8 Practice file by
opening the project Chapter8\Demos\SQLServerInterface.vbp.

Figure 8-7 shows the main form of the utility using the code in Listings 8-2

and 8-3.
i, Custom S50L Interface H=] E3
~Databases ——— Tables————————— Columns
master authors - job_desc
model dizcounts job_id
madb ermployes rnas_lvl
Morthiwind riry_lvl
pub_info
tempdb publishers

ravsched

zales

stares

syzallocations

syscolumng ;I

Figure 8-7. Walt Rischer’s simple SQL-DMO utility.

281

e

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 282 $

Chapter 8

282

Does all of this seem like a lot of coding work? What are the advantages to
accessing a database using ADO or COM libraries like the SQL-DMO, especially
when using the Visual Database tools is fast and easy? Using the Visual Database
tools is easy but must be performed manually. Once you have written the code to
test a database using ADO or the COM libraries, you can use the code again and
again. With code, the value is that you may only have to occasionally change a
few values, such as table names or expected row counts, and then run it without
taking the time to do manual investigation.

Using the SQL-DMO and other COM object libraries effectively requires a lit-
tle more knowledge of the structure of COM including classes and collections. I
will cover this in greater detail in Chapter 9.

The Many Ways to Test Databases Using Visual Basic

So far, we have seen that we can use the Visual Database tools, the ADO library,
and in some cases, COM libraries to access databases for testing purposes. I
chose to present the ADO library because of its advantages in accessing data of
all types but you could also choose to use DAO or RDO to access databases from
within Visual Basic. It is also possible to use the ODBC32.DLL library to write
code to test a database as we saw in the ODBC Logon form template code. Writ-
ing code to access the ODBC32.DLL would definitely require advanced
programming skills.

Yet another way to test a database programmatically is to access the API pro-
vided specifically for that database by the developers. Not every application has
its own set of API, but many times, they do. You will have to check with your
application’s developers to determine if such API exist. This would also likely
require more advanced programming skills.

*534 CHO8 CMP4.gxd 7/3/01 1:10 PM Page 283 $

Introduction to Database Testing

EXERCISE 8-1.

QUERYING A DATABASE USING VISUAL DATABASE TOOLS AND ADO

The purpose of Exercise 8-1 is to increase your familiarity with the Visual Data-
base tools and ADO programming by comparing their use. First, you will create

a connection to a database using a data link and execute a query using the
Query Builder window. Then, you will write ADO code to accomplish a similar
task. You will also modify the data in the database (this will work since the data-
base you will connect to is a Microsoft Jet database) and then run your ADO code
to verify the change.

Follow These Steps to Complete the Exercise
1. Start a new Visual Basic project.

2. Follow steps 1 through 4 from the previous section, “Using the Data
View Window,” in this chapter. You will be creating a data link to the
Microsoft Jet 4.0 OLE DB Provider and specifying the C:\Program
Files\Microsoft Visual Studio\VB98\NWIND.MDB database. When set-
ting the Data Link properties from the Data Link Properties dialog,
select the Advanced tab and click the Read/Write checkbox.

WARNING You must select read/write capability because you will

! be adding data to the database later.

3. Inthe DataView window, expand the Data Links folder, expand the data
link you just created, and then expand the Tables folder.

4. Double-click the Orders table. The Query Builder window will be dis-
played. Click the title bar of this window to make sure it is selected.

5. Select the View > Show Panes menu item and select the Diagram and
SQL panes.

283

*534 CHO8 CMP4.gxd 7/3/01 1:11 PM Page 284 $

Chapter 8
‘t5, Project] - Microsoft ¥isual Basic [design]
File Edit “iew Project Format Debug Run Query | Diagram Tools Add-Ins Window Help
B-a-HESH L BERA o],) R ¥ERER AL 5
DEmp\ﬂyeeID
Freight
QOrderDats
FRON Orders
L]
orderIl |CustomerID |Emg\oxeeID |OrderDate
P [10530 LILAS 3 11/16/94
10331 BOMAP 9 11/16/94
10332 MEREP 11/17]94
10333 WARTH 11/16/94
FE—T e = s e
10336 PRIMI 11/23/94 -5 Forms
10337 FRANK 11/24/94 +L3 Formt (Form1)
10338 QLDWO 11/25/94
6. Next, you will add SQL code into the SQL pane to return the mostly
recently ordered items in the database. To accomplish this in the SQL
pane, erase the Select * from Orders command by highlighting and
backspacing. In its place, type the following command exactly as shown
here:
SELECT *
FROM Orders
WHERE orderdate =
(SELECT MAX(orderdate)
FROM orders)
NOTE When typing into the SQL pane, you need not use the “_”
5 underscore character to continue lines. You are not typing Visual
S— Basic code into the SQL pane, you are typing SQL code. SQL state-
2, \ ments have different syntax—the line-continuation character is not
»—— required in SQL syntax.
7. Right-click in the SQL pane and select Run from the pop-up menu as
shown:
284

*534 CHO8 CMP4.gxd 7/3/01 1:11 PM Page 285 $

Introduction to Database Testing

' Run Table: Orders M=] E3

EH Drders !

* {all Columns)
DCustomerID
DEmpluyeelD

DFreight Group By
gOrderDate k"4 ;l
’7 Select Quety
] | | Insert Query
SELECT * Insert ¥alues Query
FROM Orders Update Query
WHERE orderdate = Delete Query

[SELECT MAX [orderdate)
FROM orders)

Make Table Query

_| Hide Pane
A4
OrderID | Customerin |Employeeln Properties
L 11074 SIMOE 7 FEER 71396
_ 11075 RICSU g &/5196 713196
11076 BONAP 4 BI5/96 71396
_ 11077 RATTC 1 G595 71396
ol
<1 2

Take note of how many records and their values have been returned.
Now we will write ADO code to execute the same statements program-
matically.

NOTE Do not close this window, you will return to it later in order to
5 add data to the database.
‘;"'--_.
b
k] \
',7,———'

8. Select the View > Object menu item from the Standard menu. This will
display the default form for the project.

9. Add two buttons to the form. In the Properties window, change the fol-
lowing properties of these two new buttons as follows:

e Name property: cmdADO; Caption property: Click to Start ADO Test

¢ Name property: cmdResults; Caption property: Click to View Test
Results

285

e

*534 CHO8 CMP4.gxd 7/3/01 1:11 PM Page 286 $

Chapter 8

10. Open the Code window for the form and create the following two object
variables:

Private cnnNW As adodb.Connection
Private rsMaxOrders As adodb.Recordset

11. Press F5 or select the Run > Start menu item. You will get the following
compile error dialog:

Microzoft ¥isual Basic |

& Compile erar;

I zer-defined bype not defined

Help |

I wanted you to see this error at least once. You will receive this error
anytime you try to use objects from a library for which you have not yet
set a reference. Click OK to dismiss the error dialog.

12. Set the reference to the Microsoft ActiveX Data Objects library by select-
ing the Project > References menu item and checking the appropriate
box. This test will require some logging so add a reference to the
Microsoft Scripting Runtime library also. Then click OK to close the
dialog. (You can now try running the program again. Nothing much will
happen since you have not done anything but you will not get the error
message this time.) Return to the Code window for the remaining steps.

highest-level version; at this writing, this is the Microsoft ActiveX
Data Objects 2.6 library. The others are there for compatibility with
code that may have been written to use them. Since you are writing
new code, select the highest library version available.

NOTE You will find several libraries that say “Microsoft ActiveX Data
5 Objects” with different version numbers. Which to choose? Select the
~—
2

13. Add the LogUtil Standard module you created in Chapter 5 Exercise 5-2
or you can add one that is already waiting for you in the Chapter8\Exer-
cises folder by selecting the Project > Add Module menu item. The Add
Module dialog displays. Select the Existing tab, find the LogUtil.bas file,
and double-click it to add it into your project.

286

e

*534 CHO8 CMP4.gxd 7/3/01 1:11 PM Page 287 $

Introduction to Database Testing

14. Next, you will add code to the click-event of the cmdADO button to
open a connection to the Microsoft NWIND sample database that
installs with Visual Basic 6 in the Program Files\Microsoft Visual Stu-
dio\VB98 library. This sample database is a Jet database (.mdb) so the
provider is Microsoft.Jet. OLEDB.4.0. You will also add code to open a
recordset with the same SQL command we used to return the most
recently ordered items in the database, as well as add code to log the
number of records found to a log file.

If you want to try to accomplish this on your own, ignore the following
code and use the previous chapter as a guide.

Or, you can type the following to the cmdADO_Click event:

Dim strRow As String

Dim fldHold As Variant

Appname = "Northwind DB (.mdb) "

cnnNW.Provider = "Microsoft.Jet.OLEDB.4.0"

cnnNW. ConnectionString = "C:\Program Files\Microsoft Visual Studio\VB98\NWIND.MDB"
cnnNW.Open

rsMaxOrders.Open "Select * from orders where orderdate = " & _
"(select max(orderdate) from orders)", cnnNW, adOpenStatic

rsMaxOrders.MoveFirst
LogToFile "Found the following number of records: " & rsMaxOrders.RecordCount
Do While Not rsMaxOrders.EOF
For Each fldHold In rsMaxOrders.Fields
strRow = strRow & fldHold & " " 'load a string with all fields in this row
Next fldHold
strRow = strRow & vbCrLf ‘'carriage return after each row

rsMaxOrders.MoveNext 'move to the next row in the record set
Loop
LogToFile strRow 'log to the test results file
‘clean up

rsMaxOrders.Close
cnnNW.Close

Print "Test complete!!"

LogToFile "Test Completed " & Now
cmdResults.Enabled = True
c¢mdADO.Enabled = False

287

*534 CHO8 CMP4.gxd

Chapter 8

288

7/3/01 1:11 PM Page 288 $

15. Add the following line into the cmdResults_Click event so that the log
file can be viewed when this button is clicked:

R[=8H &) testresults tat - Notepad - [0]]

File Edit Search Help

Starting Tests on Horthwind DB (.mdb) 4723781 5:084:44 PH ;I
1 Found the following number or records: 4

2 11074 SIMOB 7 6/5/96 7/3/96 2 18.44% Simons bistro Vinbzltet 3%
Kebenhaun 1734 Denmark

116875 RICSU 8 6/5/96 7/3/96 2 6.19 Richter Supermarkt Starenweg 5
Gendve 1204 Switzerland

11676 BONAP 4 6/5796 7/3/96 2 38.28 Bon app' 12, rue des Bouchers
Harseille 13888 France

11877 RATTC 1 6/5796 7/3/96 2 8.53 Rattlesnake Canyon Grocery 2817
Hilton Dr. Albuquerque HH 87118 USA

3 Test Completed 4/23/81 5:84:h4 PH

=l

The answer for this code is located in Chapter8\Exercises\Answers\
ADOExercise8_1.vbp. Do not close out of Visual Basic, the next exercise
continues on with the same files.

*534 CHO8 CMP4.gxd 7/3/01 1:11 PM Page 289 $

ADDING TEST DATA

Introduction to Database Testing

EXERCISE 8-2.

In Exercise 8-2, you will continue your work with the Orders table in the North-
wind database. You will add a new row to the Orders table using the Visual
Database tools and then verify its existence by running the ADO code you cre-

ated in Exercise 8-1. This exercise presumes you have accomplished Exercise 8-1.

Follow These Steps to Complete the Exercise

1.

Switch back to the Query Builder window. (If you closed it, open the
Data Link window by selecting the View > Data Link menu item and

expanding the data link and tables folders. You can then double-click on

the Orders table to produce the Query Builder window once again. Use
the View > Show Panes menu item to show the SQL and Diagram
panes.)

You will enter a new row into the Orders table using a SQL statement.
This row will have an OrderDate column equal to the most recent order
so it should show up in our query to return most recent orders. You may
have to adjust the date depending on how current the data in your data-
base is. In the following statement, the orderdate is 6/5/96; modify this
date, if necessary, to make sure it’s the same as the most recent order-
date. Erase whatever value is in the SQL pane and type the following
SQL Insert statement into the SQL pane:

INSERT INTO Orders
(orderid, customerid, employeeid, orderdate, requireddate,
shipvia)

VALUES (77777, 'BONAP', 7, '6/5/96', '7/3/96', 2)

Right-click in the SQL pane and select Run from the pop-up menu to
execute this query. If you have any problems, check the syntax and try
again. Once the query has successfully run, you will receive a message
box saying, “1 row affected by last query.” This means the new row was
inserted correctly. Click OK to dismiss this message box.

289

*534 CHO8 CMP4.gxd 7/3/01 1:11 PM Page 290 (E

Chapter 8
4. Now run your own project (from Exercise 8-1 or you can run the answer
from Chapter8\Exercises\Answers\ADOExercise8_1.vbp). When the
Query Builder window has the focus, the Run menu item and toolbar
button are disabled. To run the project first, click the View > Object
menu item to again view your Visual Basic form. You can now run the
project by selecting F5 or the Run > Start menu item
5. Your test results should now show that another row qualifies.
] testresults. tut - Notepad M= E3
File Edit Seach Help
ktarting Tests on Northwind DB (.mdb) 4/23/01 4:54:21 PH =
1 Found the following number or records: 5
2 11874 SIMOB 7 6/5/96 7/3/96 2 18.44 Simons bistro Uinbaltet 34
Kebenhavn 1734 Denmark
11875 RICSU 8 6/5/96 7/3/96 2 6.19 Richter Supermarkt Starenweg 5
Genéue 1284 Switzerland
11076 BONAP 4 6/5/796 7/3/96 2 38.28 Bon app’ 12, rue des Bouchers
Harseille 130088 France
11877 RATTC 1 6/5/796 7/3/96 2 8.53 Rattlesnake Canyon Grocery 2817
Hilton Dr. Albuquerque NH 87118 USA
77777 BONAP 7 6/5/96 7/3/96 2 @
3 Test Completed 4723781 4:54:21 PH
El
290

*534 CHO8 CMP4.gxd 7/3/01 1:11 PM Page 291 $

Introduction to Database Testing

EXERCISE 8-3.

TESTING USING SOL-DMO

In Exercise 8-3, you will access a SQL Server database using the SQL-DMO

library.

! nents must be installed (so that you may access another SQL

WARNING Microsoft SQL Server 7 or 2000 or the client compo-

Server across a network) before you can begin the exercise. If you
do not have access to any SQL Server, you will not be able to per-
form this exercise.

Follow These Steps to Complete the Exercise

1.

Open the Chapter8\Exercises\SQLServerInterface.vbp file in the online
Practice files.

Start the Visual Basic debugger by pressing F8. Review the code by step-
ping through it line-by-line with the debugger. As you step through the
code, use your cursor to view the contents of the object variables and
properties.

Open the Object Browser and select the SQL-DMO library. Look up the
Server object and view its properties. Look up the databases and tables
collections and read the available Help for these objects.

Add a new button anywhere on the form and name it cmdGetData.

Add the following code to display the number of rows in the Sales table
in the Pubs database:

Private Sub cmdGetData Click()
MsgBox "Number of Sales in Pubs:
& oServer.Databases("Pubs").Tables("Sales").Rows
End Sub

Compile, debug, and run your code. Save your files.

An answer to this exercise is in the project
Chapter8\Exercises\Answer\SQL_DMO8_3.vbp.

To verify your answer, try connecting to the Pubs database via the Visual Data-
base tools.

291

e

*534 CHO8 CMP4.gxd 7/3/01 1:11 PM Page 292 $

Chapter 8

292

TESTER’S CHECKLIST

When testing a relational database:

[Use the Visual Database tools to quickly and easily
connect to an ODBC-compliant database and visually
verify data. Use ADO or SQL-DMO to connect to a
database programmatically if you need to save and
run automated scripts to test the database.

1 Save queries you have found that find data problems. Start with those
SQL queries the in section, “Using the Query Builder Window to Execute
Database Queries” earlier in this chapter. These queries can be used
programmatically by using ADO or SQL-DMO or they can be used
within the Visual Database tools.

(1 Use the ODBC Logon form template to quickly perform database con-
nection tasks. Remember, you can copy and paste the code from this
form for your own use. The Data Form Wizard also generates code for
quick database access.

1 Become proficient at database design and SQL.

Chapter 8 Review

¢ Describe how the Visual Database tools can be used to support testing of a
database application.
See page 256.

¢ List two ways to access a database using Visual Basic code.
See pages 264 and 278.

¢ Explain the difference between accessing a database via SQL-DMO and
ADO.
See pages 264-282.

e List the steps to connect to a database using the SQL-DMO.
See pages 278-282.

e List the steps to connect to a database using ADO.
See pages 269-272.

