4 GRIN Lenses for Gaussian lllumination

4.1
Introduction

In Chap. 3, we discussed behavior of GRIN lenses illuminated by a uniform
monochromatic wave. But, it is well-known that the output modes of most lasers
can be simply described by Hermite—Gaussian or Laguerre-Gaussian functions.
Therefore, for applications involving the propagation of laser beams, it is
important to understand the effect of GRIN lenses on such Gaussian beams since
these lenses are used, for instance, in optical fiber communications and
optoelectronic systems for manipulating and processing optical signals.

Chapter 4 summarizes some useful properties of Gaussian beams and studies
the laws of transformation of these beams through and by GRIN lenses. Chapter 4
also discusses other related topics for non—uniform monochromatic waves
described by Gaussian beams.

4.2
Propagation of Gaussian Beams in a GRIN Lens

We consider a GRIN lens with rotational symmetry around the z-axis whose
refractive index is given by Eq. (3.1). We shall now study light propagation in a
GRIN lens when it is illuminated by a non-uniform monochromatic wave of
wavelength A, described by a Gaussian beam. That is, we are concerned with
waves whose irradiance is maximum on the axis and decreases as a Gaussian
function with distance from the axis. This is why the waves are called Gaussian
beams. These beams are solutions of the scalar parabolic wave equation, and they
are represented by the Hermite—Gauss or Laguerre—Gauss modes of lowest—order
[4.1].

When a GRIN lens is illuminated, for instance, by a spherical Gaussian beam
(Fig. 4.1), the complex amplitude at the input face can be written in the paraxial
region by [4.2-4.4]
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Fig. 4.1. Geometry for the evaluation of the complex amplitude distribution inside a GRIN lens
illuminated by a Gaussian beam, where R(0), wo, and d, are the curvature radius, the beam waist,
and the distance from the waist plane to the input face of the GRIN lens, respectively.

w(x,,¥,50)= %exp{iw@)}exp{iﬂ%@(xz +y: )} 4.1

where the beam parameters in free space at a distance d, from the waist plane of
diameter or spot size 2w, are given by the complex wavefront curvature

1 A
U0)=——+i 42
© R(0) =w’(0) (4-2)
and the on—axis phase
0(0) = —tan"(;:f,‘2 ) (4.3)
0

where R(0) and w(0) are the radius of curvature and the beam half-width or beam
radius at z =0. The beam half-width is the distance from the axis at which the
irradiance decays to e of its maximum value [4.5]. Complex wavefront curvature
reduces to real wavefront curvature in the geometrical optics limit, k — o .
Likewise, the relationship between the beam radius at z = 0 and the waist radius

is governed by
212
w(0) = wo[l +($-) ] 4.4)
ZO

o (4.5)

where
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is the Rayleigh range characterizing the Lorentzian profile of irradiance along the
axis.

The complex amplitude distribution in the GRIN lens is given by the integral
transform from Eq. (2.1)

v(x,y;2) = f\v(xo,yo;O)K(xo,yo,x,y;z) dx,dy, (4.6)
-

where K is the kernel function.
Substituting Eq. (4.1) into Eq. (4.6) and integrating, we have
{innOG(z)

— +y2)} @.n

w, .
W(X,y;z) = ————exp{ip(z)} exp AG(2)

w(0)G(z)

where Eq. (2.20) has been used.
Equation (4.7) is the central result of the present analysis, and it represents a
spherical Gaussian beam of complex curvature.

U(z) =n, aqz—[lnG(z)] =1n,G(2)G"(2) 4.8)

and the on—axis phase
®(z) = ¢(0) + knz 4.9)

where

U(0)

) ) )
G(z) =H:(2) + H.(2) (4.10)

[}
The complex curvature may also be expressed as [4.6]

A

R A —

@.11)

where R(z) and w(z) are the radius of curvature and the beam half-width of the
Gaussian beam in the GRIN lens at z.

When Eq. (4.8) is compared with Eq. (4.11) and Eqs. (4.2) and (4.10) are taken
into account, it follows that R(z) and w(z) are given by

1

11 {
R(z) |o(z)* |REO

] [, @t (2)+ B, ()M, ()]
(4.12)

1 1 : :
+ [—2 + n%R—z(O):InoHa (2)H1, (2) + noH (2)H1; (Z)}

w(z)=w?(0)G(z)’ (4.13)

where zg is the Rayleigh range along the z—axis of the GRIN lens, expressed as
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, = 7n,w’(0)

4.14
R n 4.14)
and |G} is the modulus of G(z); that is
IG(2)" = F{’(—Z)+H,(z)] +§L2(_Zl =GX(z)+G!(2) (4.15)
n,R(0) z;

which relates the beam radius at z > 0 to the beam radius at the input face of the
GRIN lens, where G, and G; are the real and imaginary parts of G, respectively.

Likewise, from Eqs. (4.8) and (4.13) it follows that the complex amplitude
distribution of the Gaussian beam in the GRIN lens can be written as

v:;;) exp{iw(z)}exp{— itan-l[Gi(% , (Z)J} exp{iﬁ%ﬁ(xz ¥ y’)} (4.16)

Equations (4.7) or (4.16) include plane Gaussian illumination as a particular
case. For this illumination, the waist w, is located at the input face of the GRIN

y(x,y;2) =

0]
lens and R(0) — oo . Under these conditions G(z) becomes

)
&,(2) =t (z)+i @) @.17)

PR

where
2
Zy = 1‘% (4.18)

and the radius of curvature, beam profile, and complex amplitude distribution for
plane illumination are now given by

1 n, [H@H,( :
S 21207 H,(2)H 4.19
R,(2) IG,,(z)l’{ Z @ ‘(Z)] @19
w.(2) =w;|G,(2) (4.20)
1 : _o ] _H(2) ", (2) }
0530 =gt e [ T2
(4.21)
where
0,(2) =kn,z - tan“(fl"—d‘) (4.22)
Zp

U,(2) =n,G,(2)G;'(2) (4.23)



4.2 Propagation of Gaussian Beams in a GRIN Lens 91

On the other hand, as mentioned in Chap. 2, there is a connection between the
kernel function and the ray-transfer matrix that leads to useful relations between
the geometrical ray optics and the wave optics. In this way, the passage of a
Gaussian beam through a GRIN Iens is described by the ABCD law [4.7]

(o) (e o) 429
n,q(z)/) \C' D’'An,q(0)
where the elements of the ray—transfer matrix are given by Eqs. (1.91b).

In this case, the ABCD law relate complex rays whose positions and optical
direction cosines are denoted by q(0), n,q(0) and q, n,q at the planes z = 0 and
z > 0, respectively. The complex parameters q and q, resulting from real rays by
means of analytic continuation, describe Gaussian beam propagation and play a
role similar to the one played by the position and slope of the real geometrical rays
used in uniform illumination.

The complex beam parameter ((z) obeys the paraxial ray equation, and the real
and imaginary parts ¢, and q;, respectively, are also two solutions of the equation
[4.1,4.2]

q,, +8°(2)q,, =0 4.25)
Uy + 87 (D (

satisfying the z—-invariant condition

2
kn

qrqi —q.rqi = (4'26)

0
or equivalently

4i
kn,

qQ'4-99" =2i(q,9, -q,9,) = 4.27)

In order to find the relations between the geometrical ray optics and the wave
optics for Gaussian beam propagation in a GRIN lens, Eq. (4.24) is written as

q(2) = q(0)[A" +n,q(0)q " (0)B] (4.282)

q(z) = Q(O)[:— +4(0)q™( 0)D'] (4.28b)

At the input face of the GRIN lens, position and slope of the complex rays are
given by

q(0)=w, +i A, (4.29a)
W,

iA
W 11,

4(0) = (4.29b)
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From Eqgs. (4.29) and after straightforward calculation we obtain

n,g(0)q"'(0) = U(0) (4.30)
where the following relationship
aw? Y
R(0)=dl[l+( }»d,o) } 4.31)

between R(0) and d; has been used, and U(0) is given by Eq. (4.2).
Substitution of Eq. (4.30) into Eqgs. (4.28) provides

q(z) =q(0)G(z) (4.32a)
4(2) =q(0)G(2) (4.32b)

0
where G(z) coincides with Eq. (4.10). Then, from Egs. (4.32) the complex
curvature of the Gaussian beam in the GRIN lens can be now expressed in terms of
q(z) and §(z) as

U(2) =n,q(2)q " (2) (4.33)
that is, U(z) in terms of the ray matrix elements is written as [4.8-4.14].
U(z) = S UOD (4.34)
A'+U(0)B’

Comparing Eq. (4.33) with Eq. (4.11), the beam half-width and the radius of
curvature of the Gaussian beam in terms of q and q are given by

WZ(Z) - MQ(Z)|2
non[qr(Z)Qi(Z) - Q,(Z)qi(z)]

=lq(2)l’ (4.35)

I _n[4.24(2)+a@4,@1_ 0, da@)_
R(z) la(z)!’ la(z)l dz
where Eq. (4.26) has been used.

From Eqgs. (4.35-38) it follows that the modulus of the complex ray is equal to
the beam half-width and that R(z) and w(z) are related by

n, %lnlq(Z)I (4.36)

1 __n dw’(z)
R(z) 2w¥(z) dz

4.37)

Finally, the on-axis phase of Eq. (4.16) in terms of the complex ray may be
expressed as [4.2]
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moz—é-phase[%%%] knoz+-1-tan [5:%] ltan"li%iﬁéﬂ (4.38)

—knoz+ 1

o - o)

In short, the wave optics parameters (complex wavefront curvature and on—axis
phase) defining the field of 2 Gaussian beam can be related, in a simple way, to the
complex ray q.

Equation (4.13) indicates the evolution of the half-width; we are now interested
in those lengths where the half-width is an extremum (beam waist). Then, the
condition of the plane Gaussian beam inside the GRIN lens can be obtained by
evaluation of the extremum values of the beam half-width or by the vanishing of
the wavefront curvature. From Eq. (4.13) or (4.37), this condition provides

dw’(z) _ diG(z)’
dz dz

=0 (4.39)

that is,

—[H (2)H,(2) + H,(2)H, (z)]+[

R(0) ]noH,(z)Ha(z)

1
z; nR*(0)
+n,H,(2)H,(z) =0

(4.40)

where Eqs. (4.12) or (4.15) have been used.

Equation (4.40) has two oscillatory solutions z* and z~, in which the beam
half-width can be a maximum or a minimum. The axial localizations of these
positions can be obtained if we take into account that position and slope of the
axial and field rays, given by Eqs. (1.92) and (1.95), are written as

H (2) _ u(z)

H,(z) =- = 441
§ 8.8(2)  {g,g(n1+v’ ()]}
g g 12
H =-S5 g —_— 4.42
(2) = g2(z) (2= {g(z)[1+u1(z)]} (442)
where
u(z) = tan[ jg(z’) dz'] (4.43)

Substituting Eqs. (4.41, 4.42) into Eq. (4.40), we have the following second-
order equation

au’(z) +bu(z) +c=0 4.44)
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with
=g =20 (4.45a)
R(0)
b=-n [—1—+ ! —-g’] (4.45b)
Lz nlR(0) °° '
Taking into account Eq. (4.14), solution of Eq. (4.44) is given by
u<zi‘)=n_0 21 2R(0 lﬁn@_l
2g, nOR(O) w*(0)
5 5 12 (4.46)
4
£ B |l L 02R(0 WJ;J(—))—l +1
2g, ) | ngR(0) w*(0)
where
A. 1/2
w.(0)= ( ) (4.47)
nnogo

is the half-width of the fundamental mode at z = 0 in a tapered GRIN medium
[4.15], and with the use of plus for z* and minus for z . Note that when
W (0) = w(0), it follows from Eq. (4.46) that the axial positions of extremum
values of the beam half-width reduces to

1 1 2 12
u (z* = + +1 4.48
o )I“"“”““‘” 2n,g,R(0) l:( 2n0goR(0)) ] ( )

On the other hand, |G(z)| given by Eq. (4.15) can be expressed in terms of u(z)

as

G = g, [( u(z) +1) L W @W,(0)

g@[1+u*(2)][\n,g,R(0) w*(0)

and the second derivative of Eq. (4.49) with respect to z is given by

C6E) | 2(e)
dz* ng ll + uz(z)]

{ o) ) uZ(z)[nR g[wlﬂ}

] (4.49)

(4.50)

oo W4(0)

It is easy to prove that when w,,(0) is greater than, smaller than, or equal to
w(0) and R(0) > 0 (diverging illumination), we have
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d’IG(z)’

d*|G(2)
4z’ (0, and 7 |

u(z)=u{z’} Z

0 4.51)

u(z)=u(z")

Then, the axial positions in which the beam half-width is a maximum or a
minimum are given by u(z*) and u(z"), respectively.

Conversely, when w, (0) is greater than, smaller than, or equal to w(0) and
R(0)<0 (converging illumination), we arrive at

d*IG(z)I"

d’IG(z)
dZZ 2

0, and ———
uw(z)=u{z") dZ

0 (4.52)
u(z)=u(z")
The axial locations in which the beam half-width is a maximum or a minimum
are obtained for u(z™) and u(z"), respectively.
Likewise, it is also of interest to examine the evolution of the beam half-width
for plane Gaussian illumination. In this case, for w, (w, and w,_)w,, Egs. (4.50)
and (4.46) become

6@ _2e2)e,[1-v'(2)] {M_l} (4.53)
dz"  yorse 1+u*(2) W,
imu@)>{ o7 (4.54)
0 for w,_(0Xw,
R(0) > =
GO A (4.55)
- for w,_(0Xw,
R(0) > o

From Eqs. (4.54-4.55) and (4.43) it follows that when W )W, we have

cos ng(z’)dz’ =0 or Hf(z+)=0, for u(z*) (4.56)
0 -

sin ng(z')dz' =0 or Ha(z')=0, for u(z') .57
0 .

where Egs. (1.92) have been used.
For Gaussian plane illumination and w,_(0))w,, the sign of the second
derivative of |G(z)| evaluated at u(z*) is given by

d’iG(2)!’

o (© (4.58)

u(z)=ufz")
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Fig. 4.2. Evolution of the beam half-width inside a selfoc lens illuminated by a plane Gaussian
beam for a we, > wo, b Wi = wo, and ¢ wa, < wo.

d’IG(z)!’

o )0 (4.59)

u(z)=u(z")

Consequently, the maximum or minimum values of the beam half-width are
achieved at the transforming and imaging conditions respectively, as mentioned in
Chap. 2. The reverse behavior occurs for Gaussian plane illumination and
W (OXW, .

Finally, note that when w,,(0) = w,, it follows from Egs. (4.49) and (4.53) that
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G)I* =t (4.60)
R(0)—»o g(Z)
Wi (0)=w,
d’IG(2)* B
e . =0 “4.61)
W (0)=w,

for all values of z inside the GRIN lens, and the incident plane Gaussian beam
propagates as the fundamental mode since

R(O)>o = £o " =

12
] =w, (2) (4.62)
™, g(z)
where Eqs. (4.20) and (4.47) have been used.

Figure 4.2 depicts the evolution of the beam half-width inside a selfoc lens
illuminated by a plane Gaussian beam. When wg, = w, the beam propagates as
the fundamental mode, and there is an adiffractional Gaussian beam inside the
selfoc lens.

4.3
GRIN Lens Law: Image and Focal Shifts

We now consider transformation of Gaussian beams by a GRIN lens. Referring to
the geometry of Fig. 4.3, and in comparison to the uniform illumination case in
calculating the GRIN lens law, we regard the waist of the input beam as the object,
and the waist of the output beam as the image. The ratio of the input waist to the
output waist is the transverse magnification. Our aim is to determine the condition
for which the output beam radius becomes the output waist, that is, for which the
beam half-width is a minimum.

We apply the ABCD law to the derivation of the GRIN lens law for Gaussian
beams. The ray position q' and the ray slope q' at any output plane of the optical
system, located at distance d’ from the output face of the GRIN lens, are related
by the ray position q, and slope §, at the waist w, of the input Gaussian beam

by the matrix equation
((.1,) = Ms(‘.l") (4.63)
q 9,

ir
W

where

Qo =Wg; Qg = (4.64)
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and the elements of the ray—transfer matrix M of the optical system are given by
Egs. (3.51) for n, =n; =1, provided that the GRIN lens is surrounded by free
space.

From Egs. (3.51) and (4.63—4.64) it follows that

q' = wo{Hf(d) +n,d'H,(d) +Zl[H,(d) +n,d'H, (d) +n,d, (H, (d) +n,,d'H,(d))]}

(4.65)

Then the beam half-width of the Gaussian wavefront at the output plane can be
written as

w = |q'| = wo{[Hf (d)+ nod'Hf(d)]z
" (4.66)
+ ZLZ [Ha (d)+nod'H,(d)+nod, (Hf (d)+nodHy (d))]z}

r

The output beam half-width reaches its minimum value at the waist (Fig. 4.3).
Thus, the image condition can be expressed as
dwlZ
dd’

Equation (4.67) indicates that the distance from the output face of the GRIN
lens to the waist is given by [4.16].

=0 (4.67)

_H ()H (d)z} +[H,(d) +n,d H (D][H,(d) +n,d H, ()]
n, [ (d)z2 +(H,(d) +n,d, 1, (d))’]
1 d

=§g2(_d)ﬂ{ln[ﬂi(z)zf‘ +(1,(2)+n,d,H,(2)’ ],

d =
(4.68)

Equation (4.68) represents the final result of the present analysis and can be
called the GRIN lens law for Gaussian illumination.

GRIN
\r->——r——"/
W] Lens | TWow,
/—_6\ /»__\
-d A
—d, d N—od'—\

Fig. 4.3. Gaussian beam transformation by a GRIN lens.
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Substituting Eq. (4.68) into Eq. (4.66), we obtain the waist of the output beam
w

w! = 0 (4.69)

[Hz(z)z; + (I:I, D)+ n(,d,Hr (d))2 ]U2

Then, the transverse magnification is given by
! . . . 112
m! = = = [{}(2)2, + ([, +n,d, 7, (@) ]’ (4.70)
0

On the other hand, from the GRIN lens law we can also obtain the back working
distance of the lens for Gaussian illumination, that is, the back focal length
measured from the output face of the GRIN lens. The back working distance
results when the incident beam has its waist located on the input face of the GRIN
lens. At this particular case d, =0, z; = z,, and Eq. (4.68) becomes

_ H()H(d)z + H,(d)HL(d)
n, [112(d)z5 + H2(d)]

I =
(4.71)

1 d T2 2 T2 z
" 2n,g*(d) &Zm[H‘ @)z + F(2)]

z=d

Equation (4.71) reduces to the back working distance for uniform illumination,
Egs. (3.33) or (3.60), when zpr —> .

An example of the difference in behavior between Gaussian and uniform beams
concerns the image shift [4.17-4.19], i.e., the difference between the position of
the image for Gaussian illumination and its position for uniform illumination, as
shown in Fig. 4.4. Comparing Eqs. (3.27) and (4.68), we obtain the image shift as

~ H,(d)z}
n,[H, (d) +n,d,H, (][22 (d)z2 + (8, (d) +n,d,H, (@)’]

72 2
= ~12—i{1n[1 oD% : }}
2n,g°(d) dz (H,(2) +n,d,H,(2)
When the waist of the incident Gaussian beam and the point source for uniform

illumination are located at the input face of the GRIN lens, that is, when both
sources are located at the input, Eq. (4.72) reduces to

Ad' =d! -d! =

(4.72)

z=d

Hf(d)z;R z?

pR

n, H (D)2, + B @] 0@z, +H(d)]

2n,g’(d) dz Hl(z)

where 1 is the front working distance for uniform illumination given by Eq. (3.34).

(ady, ., =-

4.73)

z=d
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Fig. 4.4. Comparison between Gaussian beam and uniform illumination: image shift.

In the same way, comparing the behavior of a GRIN lens illuminated by a
Gaussian plane beam and by a uniform plane wave, the focal shift can be evaluated
as shown in Fig. 4.5. From Egs. (3.10) and (4.71) we can express the focal shift (or
the working distance shift) as

fw oy H,(d) 1
Al'=1 -1'=— =
n H (D[ (dz, +HA(D]  [A(d)z} +H(d)] .14)
Ly
2n,g’(d) dz " Hiz) i,
By comparing Eqs. (4.73-4.74), we have
AdY, ! 2y?
Ad)os _ _(L’R) - _("“’0 ) (4.75)
Al n,l A

where Eq. (4.18) has been used.

Thus, the relationship between the image shift at d, = 0 and the focal shift is
proportional to the square of the ratio between the square of the waist of the
Gaussian beam and the front working distance of the GRIN lens.

It is essential to know image and focal shifts for optimized performance of
devices such as optical GRIN connectors illuminated with Gaussian beams. Any
deviation from position of the image of the back focus has the effect of reducing
the efficiency of coupling, there by adding insertion losses to the device.
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Fig. 4.5. Comparison between Gaussian and uniform plane waves: focal shift.

Another example of the difference in behavior between Gaussian beams and
uniform waves occurs when the waist of the incident beam is at the front focal
plane of the GRIN lens, in which case the emerging beam has a waist at the back
focal plane. The position of the front focal plane measured from the input face of
the GRIN lens for uniform illumination is given by Eq. (3.34). When the input
waist is located at this plane, d, =1, the output waist is at the back focal plane,
that is

d - H@ =1

! = 4.76
n,H,(d) ( )

where Eqs. (3.33) and (4.68) has been used.

To evaluate image and focal shifts we apply the above results to the selfoc lens,
since this kind of lens is used mainly as a GRIN connector in devices for optical
communications. In this case, the axial and field rays are given by Egs. (1.96).

With Eqs. (1.96) inserted into Eqgs. (4.72—4.74) and g(d) = g, , image and focal
shifts become

w‘((y4
Ad’ = Vo

n,g,sin’(g,d){cotan(g,d) - nogod,][w ©

4
fin

4.77)

+(cotan(g,d) - n,g,d,) z:l
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4

w()
' Wi
(A, , = - (4.78)
nogocotan(god)sinz(god)[ J +cotan2(g0d)]
wfm
' 1
Al'= - = (4.79)
nogotan(god)sin’(god)[ n +cotan’(god)]
wfm

where Eqgs. (4.14) and (4.18) have been used, and wyg, is the waist radius of the
fundamental mode in a selfoc lens given by Eq. (4.47).
Note that when w;, = w(0) or w,, = w,, Eqgs. (4.77-4.79) reduce to

1

Ad' = — 5 (4.80)
n,g,sin (god)[comn(god) - nogodI] [1 + (COtan(god) - nogadl) ]
1
M), =——————=_d' 4.81
(A0 n,g,cotan(g,d) tlyo @.81)
[ l [
Al'=——r——ooo— =] (4.82)
n,g,tan(g,d)

Equations (4.81-4.82) give the image position and the back working distance
for uniform illumination, and they indicate once again the adiffractional behavior
of light propagation inside the GRIN lens for w,, = w,.

Figure 4.6a shows the variation of image shift against normalized thickness god
forw(0) < w,, and w(0))ws,, and for object distance d, =100pm. Note that
when
_ cotan(g,d)

n.g,

d, (4.83)
that is, when the object distance is equal to the front working distance given by Eq.
(3.34) the image shift goes to infinity, since for uniform illuminationd; — <, and
_cos(g,d)
n,g,’

Figure 4.6 depicts focal shift versus god for w(0) < w,, and w(0))w,, . In both
figures A =1.56 um. Selfoc lens data correspond to a w—type selfoc microlens
with diameter of 2 mm [4.20].

for Gaussian illumination d,
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Fig. 4.6. Variation of a image and b focal shifts with normalized thickness of selfoc lens.
Calculations have been made for d,=100pm (in a), A=156pm, w, =23.04um,

n, =159, and g, =0.294mm™.
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4.4
Effective Aperture

Until now we have not considered the finite cross—section of the GRIN lens; we
shall now study the effect of this limitation on Gaussian beam propagation through
a GRIN lens of radius a and thickness d. A spherical Gaussian beam will be
confined in a GRIN lens if the following condition is satisfied

w(z)

< 4.84
G@ly “.34)

where |G(z)|,, denotes the maximum value of |G(z)| in the lens.

Equation (4.84) indicates that it will be necessary to define the effective
aperture a. of the input face of the GRIN lens (Fig. 4.7) since not all the Gaussian
beam reaching the lens will be confined through it.

From Eq. (4.84) it follows that the effective aperture of the input face of the
GRIN lens is given by

a, =0 (4.85)
IG(2)\\

where Eq. (4.13) has been used.
The evolution of a, for ray confinement inside the GRIN lens can be written as

a (z) =a |G(2)l (4.86)

verifying

pry
—o—

-—->

Ay d A\

Fig. 4.7. Geometry for evaluating the effective aperture of a GRIN lens illuminated by a
Gaussian beam.
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GRIN-lens|

Fig. 4.8. Equi-index cones for a GRIN lens with divergent linear taper function.

0<a(z)<a (4.87)

Then the effective aperture for the output face of the GRIN lens will be given
by
a, =a |G(d)| (4.88)

As mentioned in Sect. 4.2, {G(z)l,, is obtained for u(z') as w(0)> w(0) or
W (0Xw(0) and R(0))0, and for u(z") as w(0)2w(0) or ww(0)Xw(0) and
R(0XO.

For the sake of simplicity, we suppose an incident Gaussian beam that has its
waist located on the input face of the GRIN lens. In other words, for the lens
illuminated by a plane Gaussian beam, R(0) > ®, w(0)—> wo and Egs. (1.92),
(4.15), and (4.56—4.60) provide

G, @z"),, = 8D en W, opw, (4.89)
g(z")w,
G,z ), =—22~ when w, (0O)w, (4.90)
g(z’)
and
G,(@), =8 when w,(0)=w, (4.91)
g(2)

for all values of z inside the GRIN lens.



106 4 GRIN Lenses for Gaussian lllumination

We can apply these results to a GRIN lens with a divergent linear taper function
given by [4.21]

g(2) = 1— (4.92)

7

where g, is the value of g(z) at the input face of the GRIN lens, and L is the
distance from this face to the common apex of the equi—index cones (Fig. 4.8).
In this kind of GRIN lens, axial and field rays are given by

H,(2) = . (1+ L)msin[goL m(1 +f)] (4.93)

H,(2) = (1 + %)m cos[goL m(1 . f)] (4.94)

For plane Gaussian illumination, the axial positions in which |G| is maximum
as W (0)<wo or wm(0)> wo can be expressed, respectively, as

(2m+h)=n
—L[ 2l —1] (4.95)

z, = L[e;"EL - 1} (4.96)

where m is an integer. The first maximum value of G is obtained for m = 0, the
second one for m = 1, and so on.
From Eqgs. (4.95-4.96) it follows that

Qmil)n
IG,(z")|, = (O) L when w,_(0))w, 4.97)
G, (), =e* when w, (0)Xw, (4.98)
and
|Gp(z)|M—L;:Z when w, (0)=w, (4.99)

for all values of z.
Thus, the evolution of the effective aperture inside the GRIN lens is given by

s _Q@myn

a,(z)= fv" IG(z)le ** when w, (0)>w, (4.100)
w, (0)

fm

_amm

a(z)=w IG(z)le & when w,(0)<w, (4.10D)
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and

a(z)= ———L—w,m(z) when w_ (0)=w, (4.102)
L+z

Finally, the results obtained in this chapter can be extended to GRIN lenses
illuminated by Gaussian beams with two complex curvatures (elliptical Gaussian
beams). Likewise, the diffractive effect due to finite aperture (diffraction—limited
propagation of light) can also be evaluated, in the same way as in Chap. 3, by
Lommel functions with complex arguments [4.22].



