
Preface

The performance analysis of concrete technologies has already been discussed in a
multitude of publications and conferences, but the practical application has often been
neglected. An engineering procedure was comprehensively discussed for the first time
during the “International Workshop on Software and Performance: WOSP 1998” in
Santa Fe, NM, in 1998. Teams were formed to examine the integration of per-
formance analysis, in particular into software engineering. Practical experiences from
industry and new research approaches were discussed in these teams. Diverse national
and international activities, e.g., the foundation of a working group within the German
Association of Computer Science, followed.

This book continues the discussion of performance engineering methodologies. On
the one hand, it is based on selected and revised contributions to conferences that took
place in 2000:

• Second International Workshop on Software and Performance – WOSP
2000, 17 – 20 September 2000 in Ottawa, Canada,

• First German Workshop on Performance Engineering within Software
Development, May 17th in Darmstadt, Germany.

On the other hand, further innovative ideas were considered by a separate call for
chapters. With this book we would like to illustrate the state of the art, current
discussions, and development trends in the area of performance engineering.

In the first section of the book, the relation between software engineering and
performance engineering is discussed. In the second section, the use of models,
measures, and tools is described. Furthermore, case studies with regard to concrete
technologies are discussed in the third section.

The contributions published in this book underline the international importance of
this field of research. Twenty contributions were considered from Venezuela, Spain,
Cyprus, Germany, Canada, USA, Finland, Sweden, and Austria.

We would like to thank all the authors as well as Springer-Verlag for the good
cooperation during the preparation of the manuscript. Furthermore, our thanks are due
to Mrs. Dörge for her comprehensive editorial processing.

March 2001 Reiner Dumke
 Claus Rautenstrauch
 Andreas Schmietendorf

 André Scholz

Historical Roots of Performance Engineering

Initially, computer systems performance analyses were primarily carried out because
of limited resources. D. E. Knuth discussed extensive efficiency analyses of sort and
search algorithms in 1973 [5].

Although the performance of modern hardware systems doubles every two years,
performance analyses still play a major role in software development. This is because
functional complexity and user requirements as well as the complexity of the
hardware used and software technologies are increasing all the time.

Performance engineering has many historical roots. The following historical survey
sketches selected periods, all of which have contributed to the basis of performance
engineering.

The Danish engineer A. E. Erlang had developed the mathematical basis for the
utilization analysis of telephone networks by 1900. He described the relationships
between the functionality of communication systems and their arrival as well as
service times with the help of mathematical models. The queuing theory, with which
runs in hardware systems can be modeled, is based on these mathematical basics.

A. A. Markov developed a theory for modeling stochastical characteristics of arrival
and service processes in 1907. Markov chains, as a special case of Markov processes,
have offered the basis for the coverage of IT systems with the help of discrete models
for performance analysis since 1950.

Furthermore, C. A. Petri developed an important metamodel for the specification
of dynamic system characteristics – the Petri net. The basic model has been extended
over the years. Time-based Petri nets in particular are a basis for performance-related
analyses and simulations of IT systems.

In the 1970s a series of algorithms were developed for the evaluation of these
models. Most of them were very time-consuming [2, 8]. Henceforth, research has
concentrated on approximate and efficient solution procedures [1].

The operational analysis, which was developed by J. P. Buzen and P. J. Denning,
provided a practicable-analytical-oriented model evaluation [3, 6]. It could be used
comprehensively and was integrated into many modeling tools.

Simulation is a further measure for the evaluation of IT systems. The use of
conventional programming languages was replaced by the application of specific
simulation language and/or environments. The simulation system GPSS was
developed back in 1961 by G. Gordon in order to facilitate the capacity planning of
new systems.

In addition, modeling measurements are also used for the determination of
performance characteristics. J. C. Gibson proposed one of the first measurement-
oriented approaches with the "Gibson instruction mix" at the end of the 1950s[7].
Measurements and benchmarks in particular, which have been used since the mid
1970s, are based on the transfer of a synthetic workload to a hardware system. The
whetstone benchmark for the measurement of the floating point performance, which
was developed by H. J. Curnow und B. A. Wichmann [4], as well as the Dhrystone-
Benchmark for the determination of the integer performance, which was developed by
R. Weicker in 1984 [10], are classical benchmarks. Only single system components,
e.g., processors, were considered within the first phases of using benchmarks.

VIII Introduction

Current benchmarks of vendor-independent organizations, such as the SPEC
(Standard Performance Evaluation Cooperation) or TPC (Transaction Processing
Council), consider complex software and hardware architectures as well as user
behaviors. They are the basis for the comparison of IT systems and provide
performance-related data for the creation of performance models. ISO 14756 defined
the first international standardized procedure for the evaluation of IT systems with the
help of benchmarks in 1999.

C. Smith pointed out the problematic of a performance-fixing approach at the end
of the software development (fix-it-later). With software performance engineering she
proposes that the performance characteristics of IT systems consisting of hardware
and software be analyzed during the whole software life cycle [9].

Reiner Dumke, Claus Rautenstrauch, Andreas Schmietendorf, André Scholz

References

1. Agrawal, S.C.: Metamodelling. A Study of Approximations in Queuing Models. Ph.D.
Thesis, Purdue University of W. Lafayette, IN, 1983.

2. Basket, F., Brown, J.C., Raike, W. M.: The Management of a multi-level non-paged
memory System. Proceedings of AFIPS, AFIPS Press, 1970, p. 36.

3. Buzen, J.P.: Computational Algorithms for Closed Queuing Networks with Exponential
Servers. Comms. ACM 16, 1973, 9, 527-531.

4. Curnow, H.J., Wichmann, B.A.: A Synthetic Benchmark. The Computer Journal, Volume
19, Oxford University Press, 1976.

5. Knuth, D.E.: The Art of Computer Programming. Vol. 3: Sorting and Searching. Addison-
Wesley: Reading/MA, 1973.

6. Denning, P.J., Buzen, J.P.: The Operational Analysis of Queuing Network Models. ACM
Computing Surveys 10, 1978, 3, 225-261.

7. Gibson, J.C.: The Gibson Mix. IBM System Development Division. Poughkeepsie, NY,
Technical Report. No. 00.2043.

8. Kleinrock, L.: Queuing System Volume II: Computer Applications. Wiley & Sons: New
York/NY, 1976.

9. Smith, C.U.: The Evolution of Software Performance Engineering: A Survey. In
Proceedings of the Fall Joint Computer Conference, November 2–6, 1986, Dallas, Texas,
USA, IEEE-CS.

10. Weicker, R.P.: Dhrystone. A Synthetic Systems Programming Benchmark. Com-
munications of the ACM 27, 1984, 10, 1013-1030.

Aspects of Performance Engineering – An Overview

Andreas Schmietendorf and André Scholz

University of Magdeburg, Faculty of Computer Science
P.O. Box 4120, Magdeburg, 39106, Germany

schmiete@ivs.cs.uni-magdeburg.de;
ascholz@iti.cs.uni-magdeburg.de

1 Motivation

The efficient run of business processes depends on the support of IT systems. Delays
in these systems can have fatal effects for the business. The following examples
clarify the explosive nature of this problem:

The planned development budget for the luggage processing system of the Denver,
Colorado airport increased decisively by about 2 bill ion US$ because of inadequate
performance characteristics. The system was only planned for the United Airlines
terminal. However, it was enlarged for all terminals of the airport within the
development without considering the effects on the system’s workload. The system
had to manage more data and functions than any comparable system at any other
airport in the world at that time. Beside a faulty project management, inadequate
performance characteristics led to a delay in the opening of the airport of 16 months.
A loss of 160’000 US$ per day was recorded.

An IBM information system was used for the evaluation of individual competition
results at the Olympic Games in Atlanta, Georgia. The performance characteristics of
the system were tested with approximately 150 users in advance. However, more than
1000 people used the system in the productive phase. The system collapsed under this
workload. The matches were delayed and IBM suffered deep-cutting image losses,
whose immaterial damages are hard to determine. These examples show that the
evaluation of the performance characteristics of IT systems is important, especially in
high-heterogeneous system environments.

However, active performance evaluations are often neglected in industry. The
quality factor performance is only analyzed at the end of the software development
process [4]. Then performance problems lead to costly tuning measures, the
procurement of more efficient hardware, or to a redesign of the software application.
Although the performance of new hardware systems is increasing all the time,
particularly complex application systems, based on new technologies, e.g.,
multimedia data warehouse systems or distributed systems, need an explicit analysis
of their performance characteristics within the development process.

These statements are also confirmed by Glass. In an extensive analysis, he
identifies performance problems as the second most frequent reason for failed
software projects [2].

mailto:schmiete@ivs.cs.uni-magdeburg.de
mailto:ascholz@iti.cs.uni-magdeburg.de

X Introduction

2 Requirements and Aims

The performance characteristics of a system have to be considered within the whole
software development process. Performance has to have the same priority as other
quality factors such as functionality or maintainability.

However, a practicable development method is necessary to assure sufficient
performance characteristics. Extensive and cost-intensive tuning measures, that play a
major part within most development projects, can consequently be avoided. The
operation of high-critical systems, e.g., complex production planning and control
solutions, depends on specific performance characteristics, since inefficient system
interactions are comparable with a system breakdown, because all following
processes are affected. The system user’s work efficiency is impaired by inadequate
response times, because of frustration. Additionally, software ergonomic analyses
have shown that users, who have to wait longer than five seconds for a system
response, initiate new thought processes. Controlled cancellations of the new thought
processes and the resumption of the old condition take time and lead to a lower
productivity of the user [3, pp.326].

The development method has to determine performance characteristics early within
the development process to minimize performance-entailed development risks. A
structured performance analysis is necessary. This should be supported by a process
model, which has to be integrated within the existing company-specific software
development process. Also, the application of this method should not be isolated from
the development process, since additional activities, that accompany the software
development process, are usually neglected when faced with staff and temporal
problems.

The fused models should not become an inefficient complex. An economical
application must still be guaranteed. Expenditures should be justifiable in relationship
to the total project costs [6].

The size of the expenditures is often based on empirically collected data and
knowledge. The deployment of qualified employees, who have a high level of
knowledge in the areas of software engineering and performance analysis, is
imperative. However, methods and technologies must be shaped with the developer in
mind.

3 The Performance Engineering Method

The described set of aims can be reached with the performance engineering method.
Performance engineering can be defined as a collection of methods for the support of
the performance-oriented software development of application systems throughout the
entire software development process to assure an appropriate performance-related
product quality. Performance engineering becomes an interface between software
engineering and performance management. It is not a relaunch of long-standing
performance management methods as were other engineering approaches that had
already been successfully used in the area of telecommunication.

Performance engineering analyzes the expected performance characteristics of a
software system in its early development phases. In the system analysis, software

Introduction XI

developers, customers, and users define performance characteristics as service level
objectives beside functional specifications.

The performance has to be determined and quantified by performance metrics.
These are specific product metrics that can be derived from different system levels
and perspectives. An internal and external perspective is often distinguished. Internal
performance metrics refer to operation times, e.g., the number of operations per time
unit needed to transfer ratios, like the number of transferred bytes per second, or to
the utilization of system resources, like CPU or RAM. External performance metrics
reflect the outside behavior of the software system with regard to executed functions.
The metrics often refer to response times of concrete application functions and to the
throughput. A mix of varied quantified metrics describes the performance
characteristic of an IT system.

The negotiations of developers, customers, and users should be based on suitable
and justifiable cost-performance-ratios [1]. Performance engineering already provides
instruments for this phase, like rules of thumb. Unrealistic developments can be
discontinued early on or can be renegotiated.

 Software

Engineering

Performance
Management

Performance
Engineering

Performance
Tuning

Capacity
Planning

Software
Quality

Assurance

Performance
Modeling

Fig. 1. Use of existing concepts of other disciplines

The quantified performance metrics have to be refined in the system design and
implementation phase. Concrete application functions and interfaces can be evaluated
at this time. The software development process should allow a cyclic verification of
the performance characteristics. These will be analyzed in the respective phase of the
software life cycle in the available granularity. In the first phases, estimations have to
be used that are often based on rules of thumb. In further development phases,
analytical and simulative models can be used. If prototypical implementations of
individual program components are already available, measurements can be executed.
The quantified metrics should be continuously compared with the required
performance characteristics. Deviations lead to an immediate decision process.
Performance engineering uses existing methods and concepts from the areas of
performance management, performance modeling, software engineering, capacity
planning, and performance tuning, as well as software quality assurance. It enlarges

XII Introduction

and modifies them by performance-related analysis functions, cf. figure 1. However,
the performance metrics are only as exact as the basis data of the models. In order to
make a concrete and reality-based calculation, the set up of a performance database is
imperative. Since a lot of performance data can be collected in the productive
operation of a software system by benchmarking and monitoring, it should be assured
that these data are stored in the database for further performance engineering tasks in
future development projects. The quality of the performance evaluation depends
decisively on the PEMM-level (Performance Engineering Maturity Model) of the
development process [5].

However, critical software components are analyzed until the end of the
implementation phase. The complete test environment is available within the phase of
the system test. If prototypical implementations have not been used within the design
and implementation phase, the fulfillment of the performance requirements can be
verified with the help of load drivers, e.g., by synthetic workload, in the system test
phase.

The real production system is available in the system operation phase. Often
performance analyses are performed again in pilot installations over a certain time
period, since the analysis is now based on real workload conditions. Thereby, an
existing system concept can be modified again. The workload of the system often
increases with a higher acceptance. That is why reserves should be considered within
the system concept. The proposed procedure has to be adapted to domain specific
environments.

Because of the scope of the tasks, specialists should support performance
engineering. In further development projects, these tasks are handed over step-by-step
to the software developers. Their long-term task spectrum widens. The integration can
essentially be simplified if software developers come into contact with these
principles during their academic education.

References

1. Foltin, E., Schmietendorf, A.: Estimating the cost of carrying out tasks relating to
performance engineering. In: Dumke, R., Abran, A.: New Approaches in Software
Measurement. Lecture Notes in Computer Science LNCS 2006, Springer-Verlag Berlin
Heidelberg, 2001.

2. Glass, R.: Software Runaways. Lessons learned from Massive Software Project Failures.
Prentice Hall: Upper Saddle River/NJ, 1998.

3. Martin, J.: Design of Man-Computer-Dialogues, Engelwood Cliffs, NJ: Prentice Hall, Inc.,
1973.

4. Rautenstrauch, C., Scholz, A.: Improving the Performance of a Database-based Information
System. A Hierarchical Approach to Database Tuning. In Quincy-Bryant, J. (Ed.): Milleneal
Challenges in Management Education, Cybertechnology and Leadership, San Diego/CA,
1999, pp. 153–159.

5. Schmietendorf, A., Scholz, A., Rautenstrauch, C.: Evaluating the Performance Engineering
Process. In: Proceedings of the Second International Workshop on Software and Per-
formance. WOSP2000. Ottawa, ON, 2000, ACM, pp. 89-95.

6. Scholz, A., Schmietendorf, A.: A risk-driven Performance Engineering Process Approach
and its Evaluation with a Performance Engineering Maturity Model. In Bradley, J.T.;
Davies, N.J.: Proceedings of the 15th Annual UK Performance Engineering Workshop.
Technical Report CSTR-99-007, Research Press Int., Bristol/UK, 1999.

	2047intr.pdf
	References
	2047int1a.pdf
	1	Motivation
	2	Requirements and Aims
	3	The Performance Engineering Method
	References

