Preface

The performance analysis of concrete technologies has already been discussed in a
multitude of publications and conferences, but the practical application has often been
neglected. An engineering procedure was comprehensively discussed for the first time
during the “Intemational Workshop on Software am Perbrmance: WOSP 199" in
Santa Fe, NM, in 1998. Teams were formedetamire the integration of per-
formane analysisin particular into software engineering. Practicadperiences from
industry and new researchpproahes were idcussed in these teams. erse mtional
andinternaional acivities, e.g.the foundabn of aworking group within the German
Association of Computer Science, follesv

This book continues the discussion of peformance egineering méhodologies. On
theonehand, it is bagd on selected and revised contibutionsto conferenes that took
place in2000:

¢ Second nternatonal Workshop onSoftware and Perforamce ~-WOSP
2000, 1720 Septenber 2000 in OttawaCarada,

« First German Wokshop on Performance Engineering within Software
Devdopment, May 17" in Darmstadt, Germany.

On the dher hand, further innowtive ideas were conslered by aseparatecal for
chaptes. With this book we wold like to illustrate the sta¢ of the art, current
discussions, ad development trends inthe area of perforamce agineeing.

In the first setion of the book,the relaton between software engneerirg and
performanceengineeing is discussd. In the seond setion, the use of models,
measuresand tools is descibed. Furthermore,casestudies wth regad to concrete
technologies are digssd in the thid section.

The contributons published in this book undeiine the internation& importanceof
this field of reseath. Twenty contributions were considerednfr&/ enezuela Spain,
Cyprus, Germay, Carada, USA Finland, Sweden,and Austria.

We would like to thank all the authorsas well asSpringer-Verlag for thegood
cooperatiorduring the preparation of the manuscript. Furthermore, oankk ae due
to Mrs. Darge for hercomprehensiveditorial procesng.

March 2001 Reiner Dumke
Claus Rutenstrauch

Andreas Schmiegndorf

André $holz



Historical Roots of Performance Engineering

Initially, computer systems performance analyses were primarily carried out because
of limited resources. D. E. Knuth discussed extensive efficiency analyses of sort and
search agorithmsin 1973 [5].

Although the performance of modern hardware systems doubles every two years,
performance analyses still play amajor role in software development. This is because
functional complexity and user requirements as well as the complexity of the
hardware used and software technologies are increasing all the time.

Performance engineering has many historical roots. The following historical survey
sketches selected periods, all of which have contributed to the basis of performance
engineering.

The Danish engineer A. E. Erlang had developed the mathematical basis for the
utilization analysis of telephone networks by 1900. He described the relationships
between the functionality of communication systems and their arrival as well as
service times with the help of mathematical models. The queuing theory, with which
runs in hardware systems can be modeled, is based on these mathematical basics.

A. A. Markov developed a theory for modeling stochastical characteristics of arrival
and service processes in 1907. Markov chains, as a specia case of Markov processes,
have offered the basis for the coverage of IT systems with the help of discrete models
for performance analysis since 1950.

Furthermore, C. A. Petri developed an important metamodel for the specification
of dynamt systen characteristics the Petr net. The basicmodd has been exended
over the years. TimeabedPetri nets irparticular ae a bass for performance-relat
analysesnd simulatons of IT systems.

In the 1978 a seriesof algorithms were @eloped for the evaluabn of these
modds. Most of them were very timeeonsuning [2, 8]. Henceforth, reseath has
conentraied on approximatand efficient solution procedures [1].

The operationaéndysis, whichwas developed by J. P. Buzen andP. J. Denning,
provided apracticableandytical-oriented modelevaluaion [3, 6]. It codd be used
compeehensively and was integraed into many modeling toals.

Simulation is a further measue for the evaluation of IT systems. Theeusf
conwentiond programming langages was aplaced by tk application of specific
simuldion languege andor environmets. The gnulaton system @SS was
devdoped back in 1961 by G. Gordon in order to facilitatethe capaity planning of
new systens.

In addition, modeling measurements eaialso used for the determination of
performancecharacteristicsJ. C. Gibson proposedone of the first measurement-
oriened approaches with the 'Gibsoninstuction mix" at theend of the 1950$7].
Measuremerstand bechmarks in partiular, which have been ued snce the mid
1970s are baed on the transfer of a synthetieorkload to a hardware system. The
whettone benchmak for the measureemt of the floatng point peformance, whih
was aveloped by H. J. Curnow undB. A. Wichmann [4], as well as the Digstone-
Berchmark forthe deterrimaion of theinteger performance,which was deweloped by
R. Weicker in 1984 [10], are classicalebchmarks.Only single systemcomporents,
e.g., proessors, were onddered vithin the firstphases of usng benchmaks.



VIl Introduction

Current benchmarks of vendor-independent organizations, such as the SPEC
(Standard Performance Evauation Cooperation) or TPC (Transaction Processing
Council), consider complex software and hardware architectures as well as user
behaviors. They are the basis for the comparison of IT systems and provide
performance-related data for the creation of performance models. 1SO 14756 defined
the first international standardized procedure for the evaluation of 1T systems with the
help of benchmarksin 1999.

C. Smith pointed out the problematic of a performance-fixing approach at the end
of the software development (fix-it-later). With software performance engineering she
proposes that the performance characteristics of IT systems consisting of hardware
and software be analyzed during the whole software life cycle [9].

Reiner Dumke, Claus Rautenstrauch, Andreas Schmietendorf, André Scholz

References

1. Agrawal, S.C.: Metamodelling. A Study of Approximations in Queuing Models. Ph.D.
Thesis, Purdue University of W. Lafayette, IN, 1983.

2. Basket, F., Brown, J.C., Raike, W. M.: The Management of a multi-level non-paged
memory System. Proceedings of AFIPS, AFIPS Press, 1970, p. 36.

3. Buzen, J.P.: Computational Algorithms for Closed Queuing Networks with Exponential
Servers. Comms. ACM 16, 1973, 9, 527-531.

4. Curnow, H.J., Wichmann, B.A.: A Synthetic Benchmark. The Computer Journal, Volume
19, Oxford University Press, 1976.

5. Knuth, D.E.: The Art of Computer Programming. Vol. 3: Sorting and Searching. Addison-
Wesley: Reading/MA, 1973,

6. Denning, P.J., Buzen, J.P.: The Operational Analysis of Queuing Network Models. ACM
Computing Surveys 10, 1978, 3, 225-261.

7. Gibson, J.C.: The Gibson Mix. IBM System Development Division. Poughkeepsie, NY,
Technica Report. No. 00.2043.

8. Kleinrock, L.: Queuing System Volume II: Computer Applications. Wiley & Sons. New
York/NY, 1976.

9. Smith, C.U.: The Evolution of Software Performance Engineering: A Survey. In
Proceedings of the Fall Joint Computer Conference, November 2—6, 1986, Dallas, Texas,
USA, IEEE-CS.

10. Weicker, R.P.: Dhrystone. A Synthetic Systems Programming Benchmark. Com-
munications of the ACM 27, 1984, 10, 1013-1030.



Aspects of Perfomance Engineering — An Overview

Andreas Schmietendorf and André Scholz

University of Magdeburg, Faculty of Computer Science
P.O. Box 4120, Magdeburg, 39106, Germany

schm et e@vs. cs. uni - nagdebur g. de

aSchol z . CS. uni - nagdebur g. de|

1 Motivation

The efficient run of busnes proceesses depends on thesuppot of IT systems. Delays
in these systms canhave fatal effects for the busss The following exampkes
clarify theexplosivenaure of ths problem:

The planned dewvelopment budget for the uggageproaessng systenof the Denver,
Cdorado aiportincreasd decgsively by abot 2 billion US$ be@use of inadequate
performane characteristics. The systemasvonly pbnned for the United Airlines
terminal However, it was enlarged for all termirals of the airport wihin the
developmenwithout considering the effexbn the systens workload. The system
had to marege more data iad functions then any compasble system atany other
airpott in the world at that time. Besde a fauly project managenent, inadequate
performancecharacteristis led to a delay in the ogening of the aiport of 16 moths.
A lossof 160 000 US$ per day was rrded.

An IBM informaton system wa used for theevaluaion of individual competition
results at the Olypic Games in Atinta, Geogia. The performance characteristiof
the systemweretesed with approximately 1® usersin advance. Hoever, more thn
1000 people used the system in the productive ph@ke systen collapsd unde this
workload. The matcks were delyed and IBM suffered degp-cuting image losses,
whos immaterid dameges are had to determine.Theseexamplks show that the
evalwtion of the performanecharacteristics ofT systems ismportant, especially in
high-heterogesous syste environments.

However, active performare evaluations are ofin negleced in industy. The
qudity factor performanceis only aralyzed atthe end of the software avelopment
proaess [4]. Then performance problems lead to cosly tuning measures, the
procuremen of more efficient hedware, or to aadesgn of the softwareapplicaton.
Although the performance ofnew hardware systems is increasing all the time,
particularly complex appliation systems, lased on new techndogies, e.g.,
multimedia data wahous systens or dstribued systens, ned anexplicit andysis
of their peformance characteristics within theveloprrent process.

These sttements are als@onfirmed by Glass. In anextensive analysis he
identifies performance problemas the seond most frequent reason for failed
software pojects [2].


mailto:schmiete@ivs.cs.uni-magdeburg.de
mailto:ascholz@iti.cs.uni-magdeburg.de

X Introduction

2 Requirementsand Aims

The performance characteristics of a system have to be considered within the whole
software development process. Performance has to have the same priority as other
quality factors such as functionality or maintainability.

However, a practicable development method is necessary to assure sufficient
performance characteristics. Extensive and cost-intensive tuning measures, that play a
major part within most development projects, can consequently be avoided. The
operation of high-critical systems, e.g., complex production planning and control
solutions, depends on specific performance characteristics, since inefficient system
interactions are comparable with a system breakdown, because al following
processes are affected. The system user’'s work efficiency is impaired by inadequate
response times, because of frustration. Additionally, software ergonomic analyses
have shown that users, who have to wait longer than five seconds for a system
response, initiate new thought processes. Controlled cancellations of the new thought
processes and the resumption of the old condition take time and lead to a lower
productivity of the user [3, pp.326].

The devel opment method has to determine performance characteristics early within
the development process to minimize performance-entailed development risks. A
structured performance analysis is necessary. This should be supported by a process
model, which has to be integrated within the existing company-specific software
development process. Also, the application of this method should not be isolated from
the development process, since additional activities, that accompany the software
development process, are usually neglected when faced with staff and temporal
problems.

The fused models should not become an inefficient complex. An economical
application must still be guaranteed. Expenditures should be justifiable in relationship
to the total project costs[6].

The size of the expenditures is often based on empirically collected data and
knowledge. The deployment of qualified employees, who have a high level of
knowledge in the areas of software engineering and performance anaysis, is
imperative. However, methods and technol ogies must be shaped with the developer in
mind.

3 ThePerformance Engineering Method

The described set of aims can be reached with the performance engineering method.
Performance engineering can be defined as a collection of methods for the support of
the performance-oriented software development of application systems throughout the
entire software development process to assure an appropriate performance-related
product quality. Performance engineering becomes an interface between software
engineering and performance management. It is not a relaunch of long-standing
performance management methods as were other engineering approaches that had
already been successfully used in the area of telecommunication.

Performance engineering analyzes the expected performance characteristics of a
software system in its early development phases. In the system analysis, software



Introduction Xl

developers, customers, and users define performance characteristics as service level
objectives beside functional specifications.

The performance has to be determined and quantified by performance metrics.
These are specific product metrics that can be derived from different system levels
and perspectives. An internal and external perspective is often distinguished. Internal
performance metrics refer to operation times, e.g., the number of operations per time
unit needed to transfer ratios, like the number of transferred bytes per second, or to
the utilization of system resources, like CPU or RAM. External performance metrics
reflect the outside behavior of the software system with regard to executed functions.
The metrics often refer to response times of concrete application functions and to the
throughput. A mix of varied quantified metrics describes the performance
characteristic of an IT system.

The negotiations of developers, customers, and users should be based on suitable
and justifiable cost-performance-ratios [1]. Performance engineering already provides
instruments for this phase, like rules of thumb. Unredistic developments can be
discontinued early on or can be renegotiated.

Software
Engineering

Capacity
Planning

Software

Quality
Assurance

Performance
Management

Performance
Engineering

Performance
Modeling

Performance
Tuning

Fig. 1. Use of existing concepts of other disciplines

The quantified performance metrics have to be refined in the system design and
implementation phase. Concrete application functions and interfaces can be evaluated
at this time. The software development process should alow a cyclic verification of
the performance characteristics. These will be analyzed in the respective phase of the
software life cycle in the available granularity. In the first phases, estimations have to
be used that are often based on rules of thumb. In further development phases,
analytical and simulative models can be used. If prototypical implementations of
individual program components are already available, measurements can be executed.
The quantified metrics should be continuously compared with the required
performance characteristics. Deviations lead to an immediate decision process.
Performance engineering uses existing methods and concepts from the areas of
performance management, performance modeling, software engineering, capacity
planning, and performance tuning, as well as software quality assurance. It enlarges



Xl Introduction

and modifies them by performance-related analysis functions, cf. figure 1. However,
the performance metrics are only as exact as the basis data of the models. In order to
make a concrete and reality-based calculation, the set up of a performance database is
imperative. Since a lot of performance data can be collected in the productive
operation of a software system by benchmarking and monitoring, it should be assured
that these data are stored in the database for further performance engineering tasks in
future development projects. The quality of the performance evaluation depends
decisively on the PEMM-level (Performance Engineering Maturity Model) of the
development process [5].

However, critical software components are analyzed until the end of the
implementation phase. The complete test environment is available within the phase of
the system test. If prototypical implementations have not been used within the design
and implementation phase, the fulfillment of the performance requirements can be
verified with the help of load drivers, e.g., by synthetic workload, in the system test
phase.

The real production system is available in the system operation phase. Often
performance analyses are performed again in pilot installations over a certain time
period, since the analysis is now based on real workload conditions. Thereby, an
existing system concept can be modified again. The workload of the system often
increases with a higher acceptance. That is why reserves should be considered within
the system concept. The proposed procedure has to be adapted to domain specific
environments.

Because of the scope of the tasks, specialists should support performance
engineering. In further development projects, these tasks are handed over step-by-step
to the software developers. Their long-term task spectrum widens. The integration can
essentially be simplified if software developers come into contact with these
principles during their academic education.

References

1. Foltin, E., Schmietendorf, A.: Estimating the cost of carrying out tasks relating to
performance engineering. In: Dumke, R., Abran, A.. New Approaches in Software
Measurement. Lecture Notes in Computer Science LNCS 2006, Springer-Verlag Berlin
Heidelberg, 2001.

2. Glass, R.: Software Runaways. Lessons learned from Massive Software Project Failures.
Prentice Hall: Upper Saddle River/NJ, 1998.

3. Martin, J.: Design of Man-Computer-Dia ogues, Engelwood Cliffs, NJ. Prentice Hall, Inc.,

1973.

4. Rautenstrauch, C., Scholz, A.: Improving the Performance of a Database-based Information
System. A Hierarchical Approach to Database Tuning. In Quincy-Bryant, J. (Ed.): Milleneal
Challenges in Management Education, Cybertechnology and Leadership, San Diego/CA,

1999, pp. 153-159.

5. Schmietendorf, A., Scholz, A., Rautenstrauch, C.: Evaluating the Performance Engineering
Process. In: Proceedings of the Second International Workshop on Software and Per-
formance. WOSP2000. Ottawa, ON, 2000, ACM, pp. 89-95.

6. Scholz, A., Schmietendorf, A.: A risk-driven Performance Engineering Process Approach
and its Evaluation with a Performance Engineering Maturity Model. In Bradley, J.T.;
Davies, N.J.: Proceedings of the 15th Annual UK Performance Engineering Workshop.
Technical Report CSTR-99-007, Research Press Int., Bristol/UK, 1999.



	2047intr.pdf
	References
	2047int1a.pdf
	1	Motivation
	2	Requirements and Aims
	3	The Performance Engineering Method
	References



