
Preface

This book is based on lectures on geometry at the University of Bergen,
Norway. Over the years these lectures have covered many different aspects and
facets of this wonderful field. Consequently it has of course never been possible
to give a full and final account of geometry as such, at an undergraduate level:
A carefully considered selection has always been necessary. The present book
constitutes the main central themes of these selections.

One of the groups I am aiming at, is future teachers of mathematics.
All too often the geometry which goes into the syllabus for teacher-students
present the material as pedantic and formalistic, suppressing the very pow-
erful and dynamic character of this old – and yet so young! – field. A field
of mathematical insight, research, history and source of artistic inspiration.
And not least important, a foundation for our common cultural heritage.

Another motivation is to provide an invitation to mathematics in gen-
eral. It is an unfortunate fact that today, at a time when mathematics and
knowledge of mathematics is more important than ever, phrases like math
avoidance and math anxiety are very much in the public vocabulary. An im-
portant task is seriously attempting to heal these ills. Ills perhaps inflicted
on students at an early age, through deficient or even harmful teaching prac-
tices. Thus the book also aims at an informed public, interested in making
a new beginning in math. And in doing so, learning more about this part of
our cultural heritage.

The book is divided into two parts. Part 1 is called A Cultural Heritage.
The section contains material which is normally not included into a math-
ematical text. For example, we relate some of the stories told by the Greek
historian, Herodotus, in [17]. We also include some excursions into the his-
tory of geometry. These excursions do not represent an attempt at writing
the history of geometry. To write an introduction to the history of geometry
would be a quite different and very challenging undertaking. Even for the
period up to the beginning of the Middle Ages it would vastly surpass what
is presently undertaken in [21].

To write the History of Geometry is therefore definitely not my aim with
Part I of the present book. Instead, I wish to seek out the roots of the themes
to be treated in Part 2, Introduction to Geometry. These roots include not
only the geometric ideas and their development, but also the historical con-
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text. Also relevant are the legends and tales – really fairy-tales – told about,
for example, Pythagoras. Even if some of the more or less fantastic events
of Iamblichus’ writings are unsubstantiated, these stories very much became
our perception of the geometry of Pythagoras, and thus became part of the
heritage of geometry, if not of its history.

In Chapters 1 and 2 we go back to the beginnings of science. As geometry
represents one of the two oldest fields of mathematics, we find it in evidence
from the early beginnings. The other field being Number Theory, they go
back as far as written records exist. Moreover, in the first written accounts
from ancient civilizations they present themselves as already well developed
and sophisticated disciplines.

Thus we find that problems which ancient mathematicians thought about
several thousand years ago, in many cases are the same problems which are
stumbling stones for the students of today. As we move on in Chapters 3 and
4, we find that great minds like Archimedes, Pythagoras, Euclid and many,
many others should be allowed to speak to the people of today, young and
old. They are unsurpassable tutors.

The mathematical insight which Archimedes regarded as his most pro-
found theorem, was a theorem on geometry which was inscribed on Archi-
medes’ tombstone. All of us, from college student to established mathemati-
cian, must feel humbled by it. What does it say? Simply that if a sphere is
inscribed in a cylinder, then the proportion of the volume of the cylinder to
that of the sphere, is equal to the proportion of the corresponding surface
areas, counting of course top and bottom of the cylinder. The common pro-
portion is 3

2 . This is a truly remarkable achievement for someone who did
not know about integration, not know about limits, not know about... Its
beauty and simplicity beckons us. How did Archimedes arrive at this result?
Archimedes deserves to be remembered for this, rather for the silly affair of
him having run out into the street as God had created him, shouting – Eu-
reka, Eureka! But the story may well be true, his absentmindedness under
pressure cost him dearly in the end.

Pythagoras and his followers certainly did not discover the so-called
Pythagorean Theorem. The Babylonians, and before them the Sumerians,
not only knew this fact very well, they also had the sophisticated number-
theoretical tools for constructing all Pythagorean triples, that is to say, all
natural numbers a, b and d such that a2 + b2 = d2. And the astronomers and
engineers – or, if we prefer, the astrologers and priests – of ancient Babylo-
nia, or Mesopotamia, used these insights to construct trigonometric tables.
Tables which were simple, accurate and powerful thanks to the sexagesimal
system they used for representing numbers. What a challenging project for
interested college students to understand the math of the Plimpton 322 tablet
at Columbia University! And to correct and explain the four mistakes in it.
Or finally to construct the successor or the predecessor of this tablet in the
series it must have belonged to.
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So what did Pythagoras discover himself? We know nothing with certainty
of Pythagoras’ life before he appeared on the Greek scene in midlife. Some say
that he traveled to Egypt, where he was taken prisoner by the legendary, in
part infamous, Persian King Cambyses II, who also ruled Babylon, which had
been captured by his father Cyrus II. Pythagoras was subsequently brought
to Babylon as a prisoner, but soon befriended the priests, the Magi, and was
initiated into the priesthood in the temple of Marduk. We tell this story as
related by Herodotus and Iamblichus in [17] and [22]. However, the accounts
given in these classical books are not always historically correct, the reader
should consult the footnotes in [17] to get a flavor of the present state of
Herodotus, The Father of History, by some of his critics labeled The Father
of Lies! But Herodotus is a fascinating story-teller, and the place occupied by
Pythagoras today has considerably more to do with the legends told about
him than with what actually happened. So with this warning, do enjoy the
story.

Euclid’s Elements represents a truly towering masterpiece in the develop-
ment of mathematics. Its influence runs strong and clear throughout, leading
to non-Euclidian geometry, Hilbert’s axioms and a deeper understanding of
the foundations of mathematics. The era which Euclid was such an eminent
representative of, ended with the murder of another geometer: Hypatia of
Alexandria.

In Chapter 5 we describe how the foundation of present day geometry
was created. Elementary Geometry is tied to straight lines and circles. The
theorems are closely tied to constructions with straightedge and compass,
reflecting the postulates of Euclid. In higher geometry one moves on to the
more general class of conic sections, as well as curves of higher degrees.

Descartes introduced – or reintroduced, depending on your point of view
– algebra into the geometry. At any rate, he is credited with the invention of
the Cartesian coordinate system, which is named after him.

In Chapter 6, the last chapter of Part 1, we discuss the relations between
geometry and the real world. The qualitative study of catastrophes is of a
geometric nature. We explain the simplest one among Thom’s Elementary
Catastrophes, the so-called Cusp catastrophe. It yields an amazing insight
into occurrences of abrupt events in the real world.

Also tied to the real world are the fractal structures in nature. Fractals are
geometric objects whose dimensions are not integers, but which instead have
a real number as dimension. Strange as this sounds, it is a natural outgrowth
of Felix Hausdorff’s theory of dimensions. Hausdorff was one of the pioneers
of the modern transformation of geometry, referred to in his time as the High
Priest of point-set topology. In the end, this all did not help him. He knew,
being a Jew, what to expect when he was ordered to report the next morning
for deportation. This was in 1942 in his home town of Bonn, Germany. Instead
of doing so, Hausdorff and his wife committed suicide.
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The Geometry of fractals shows totally new and unexpected geometric
phenomena. Amazingly, what was thought of as pathology, as useless curiosi-
ties, may turn out to give the most precise description of the world we live
in.

In Part 2, Introduction to Geometry, we take as our starting point the
axiomatic treatment of geometry flowing from Euclid.

Euclid’s original system of axioms and postulates passed remarkably well
the test of modern demands to rigor. But an explanation was nevertheless
very much called for, as his original system was set on a somewhat shaky
foundation by our current mathematical standards. This clarifying explana-
tion of the foundations was provided by Hilbert. The search for a proof of
Euclid’s Fifth Postulate at an earlier age, had met with no success. One ver-
sion of this postulate asserts that there is one and only one line parallel to a
given line through a point outside it.

Assuming the converse, one wanted to derive a contradiction. But instead
the relentless toil produced alternatives to Euclidian Geometry. This was a
highly troubling development for an age in which non-Euclidian Geometry
would appear as heretic as “Darwinism” appears in some circles today. We
explain non-Euclidian Geometry in Chapter 9. But first we need to do some
serious work on foundations. We start with Logic and Set Theory. In fact, the
Intuitive Set Theory, even as put on a firmer foundation by Cantor, turned
out to imply grave contradictions. The best known is the so-called Russell’s
Paradox, which we explain in Section 7.3.

Thus arouse the need for Axiomatic set theory, to which we give an in-
troduction. The aim is to give a flavor of the field without going into the
technical details at all.

We then explain the interplay between axiomatic theories and their models
in Sections 7.3 and 7.4. The troubling result of Gödel is explained, in simpli-
fied terms, showing that a mathematical Tower of Babel as perhaps dreamt
of by Hilbert, is not possible: Any axiomatic system without contradictions
among its possible consequences, will have to live with some undecidable
statements. That is to say, statements which are perfectly legal constructions
within the system, being inherently undecidable: Their truth or falsehood
cannot be ascertained from the system itself.

In Chapter 8 we apply these insights to axiomatic projective geometry.
This is an extensive field in itself, and a complete treatment does of course,
fall outside the scope of this book. But we give a basic set of axioms, to
which other may be added, thus in the end culminating with a set which
determines uniquely the real, projective plane. This is not on our agenda here.
But we do give, in some detail, two important models for the basic system
of axioms. The Seven Point Plane and the real projective plane P2(R). That
the simple axioms still hold intriguing open problems, is explained in Section
8.2. Use of powerful computers in conjunction with dexterous programming
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holds great promise for new insights, thus there exist ample possibilities for
exiting research.

In Chapter 9 we are ready to explain models for non-Euclidian Geometry.
In the hyperbolic plane there are infinitely many lines parallel to a given line
through a point outside it. In the elliptic plane there are no parallel lines:
Two lines always intersect. A model for this version is provided by P2(R).

Plane non-Euclidian geometries have, of course, their spatial versions.
This is best understood by turning to some of the basic facts from Rie-
mannian Geometry, which we do in Section 9.5.

Chapter 10 contains some much needed mathematical tools, simple but
essential. We need them for constructions to be carried out in following chap-
ters, where we employ these standard techniques. The reader is advised to
take the moments needed to ingest this material, which may well appear
somewhat dry and barren at the first encounter.

In Chapter 11 we are now able to give coordinates in the projective plane,
introduce projective n-space and discuss affine and projective coordinate sys-
tems. Again, the material may appear dry, but the reader will be rewarded
in Chapter 12. There we use these techniques to give the remarkably simple
proof of the theorem of Desargues. We introduce duality for P2(R) and start
the theory of conic sections in R2 and P2(R) discussing tangency, degeneracy
and the familiar classification of the conic sections. Pole and Polar belong to
this picture, as well as a very simple proof of a famous theorem of Pascal.
Using it, we then prove the theorem of Pappus by a classical technique known
as degeneration, or as the principle of continuity. Here we give the first, naive,
definition of an algebraic curve.

In Chapter 13 we find the transition to the study of curves of degrees
greater than 2. This forms the fundament for Algebraic Geometry, and gives a
glimpse into an important and very rich, active and expanding mathematical
field. Here we encounter the cubical parabola, merely a fancy name for a
familiar curve, but also the enigmatic semi cubical parabola, so important in
modern Catastrophe Theory. However, as we shall see in the following chapter,
in Chapter 14, from a projective point of view these two kinds of affine curves
are the same! This is shown at the end of Section 14.5. We also learn about
the Folium of Descartes, the Trisectrix of Maclaurin, of Elliptical Curves –
which are by no means ellipses! – and much more. Chapter 14 concludes with
Pascal’s Mysterium Hexagrammicum, which may be obtained as a beautiful
application of Pascal’s Theorem: Dualizing it the Mystery of the Hexagram
is revealed.

In Chapter 15, as the title says, we sharpen the Sword of Algebra. The
aim is to show how one finally disposes of the three problems, which have
haunted mathematicians and amateurs for two millenia. And unfortunately,
still does haunt the latter. The algebra derives in large part from the heritage
of Euclid, relying as it does on Euclid’s algorithm. This mathematics also
constitutes the foundation for the important field of Galois theory and the
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theory of equations and their solvability by radicals. That theme is, however,
not treated in the present book.

In Chapter 16 we use this algebra for proving that the three classical
problems are insoluble: Trisecting an angle with legal use of straightedge
and compass, doubling the cube using straightedge and compass, and finally
we see how the transcendency of the number π precludes the squaring of
the circle using straightedge and compass. Gauss’ towering achievement on
constructibility of regular polygons conclude the chapter. The solution of this
problem by Gauss transformed the final answer to the geometric problem into
a number theoretic problem on the existence of certain primes, namely primes
of the form Fr = 22r

+ 1, the so-called Fermat primes . For r = 0, 1, 2, 3, 4
the numbers Pr are 3, 5, 17, 257 and 65537. They are all primes, but then no
case of an r yielding a prime is known. Gauss proved that if q is a product
of such primes pr, all of them distinct, then the regular n = 2mq-gon may be
constructed with straightedge and compass, and that this is precisely all the
constructible cases. Thus for example the regular 3-gon, the regular 5-gon and
the regular 15-gon are all constructible with straightedge and compass, as is
the regular 30-gon and the regular 60-gon. The first impossible case is the
regular 7-con. Now Archimedes constructed the regular 7-gon, but he used
means beyond legal use of straightedge and compass. In Section 4.4 we have
given Archimedes’ construction of the regular 7-gon, the regular heptagon, by
a so-called verging construction. It is not possible by the legal use of compass
and straightedge, but may be carried out by conic sections or by a curve of
degree 3. In fact, such constructions were very much part of the motivation
for passing from elementary geometry to higher geometry in the first place.

In Chapter 17 we take a closer look at the theory of fractals. We explain
the computation of fractal dimensions.

Chapter 18 contains a mathematical treatment of introductory Catastro-
phe Theory. We explain the Cusp Catastrophe as an application of geometry
on a cubic surface. For this we also explain some rudiments of Control Theory.

Several variations of courses may be taught from the present text. Two
possibilities are outlined below, each with two hours of lecture and preferably
one hour of discussion per week, each of one term duration. I have labeled
them as follows:

– Geometry 1: Historical Topics in Geometry
– Geometry 2: Introduction to Modern Geometry.

They may well be merged into one course, then possibly with 3 hours
of lecture and two hours of discussion. Geometry 1 would be taught before
Geometry 2.

Geometry 1 would comprise all of Part 1, and in addition a somewhat
cursory treatment of selected sections from Part 2.

Geometry 2 would essentially consist of Part 2, with an in-depth treatment
of the material from Part 2 having been more summarily taught in Geometry
1.
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Geometry 1 requires modest background in mathematics, and could be
offered to elementary school teachers, possibly in the settings of a Community
College.

Sufficient background for Geometry 2 would be high school math with
trigonometry and analytic geometry, or a pre calculus course. However, some
prerequisites may be dealt with in an extra discussion hour.

With some faculty guidance a freshman seminar combining elements of
the two alternatives is also a possibility.

Some of the material in this book has been published in the author’s [19]
and [21]. The material is included here with the permission of Fagbokforlaget,
the publisher of [19] and [21]. A large number of the illustrations are cre-
ated by the marvelous system Cinderella, [28], some of them were made by
Ulrich H. Kortenkamp, one of the authors of the system. Others were made
by the author, who would like to take this opportunity to thank Professor
Kortenkamp for his efforts in making these illustrations, as well as for his
valuable advice and assistance during this work. A few illustrations are made
with the aid of the Computer Algebra system MAPLE, and finally some were
made by Springer’s illustrator, based on sketches by the author.

Thanks are also due to Dr. Even Førland of the Norwegian Statoil Corpo-
ration, who has red parts of the manuscript and provided valuable comments.

It is a great pleasure to thank Springer Verlag, in particular the Math-
ematics Editor Dr. Martin Peters as well as Mrs. Ruth Allewelt, for their
enthusiasm and support. Mrs. Daniela Brandt of Springer’s Production De-
partment has provided great support and assistance in getting the manuscript
in shape for the printer.

Bergen, Audun Holme
November 2001



3 Greek and Hellenic Geometry

3.1 Early Greek Geometry. Thales of Miletus

The word geometry is derived from two Greek words, namely γη, gē, which
means earth and µετρoν, metron, which means measure. Our sources on early
Greek geometry – and mathematics in general, for that matter – are sparse.
Indeed, as far as mathematical contents is concerned we have to rely on
the work of the first serious historian of mathematics, namely Eudemus of
Rhodes, 350 – 290 B.C. He was, probably, a student of Aristotle, at any rate
a close associate and collaborator of him. But Eudemus of Rhodes should
not be confused with Eudemus of Cyprus, another philosopher associated
with Aristotle. In any case, our Eudemus is known to have written three
works on the history of mathematics, namely The History of Arithmetic,
of Geometry and of Astronomy. All three are lost now, but were available
to Hellenistic mathematicians and used to the extent that at least some of
their contents is known to us today. In particular Eudemus reports, in his
History of Astronomy, that Thales of Miletus predicted a solar eclipse, which
is presumed to be the one which occured on May 28, 585 B.C. But most
historians of mathematics tend to be skeptical to this claim. The reason for
this is that Thales is generally agreed to have been the first Greek astronomer,
and that such abilities would have been unlikely at this early stage of Greek
astronomy. However, it appears that the most plausible explanation is offered
by van der Waerden in [35], where he writes:

The conclusion is inescapable that he must have drawn upon the ex-
perience of Oriental astronomers.

By the way, the Greek historian Herodotus also makes this assertion con-
cerning the prediction by Thales. The solar eclipse occured during a battle
fought between the Lydians, under their King Alyattes, and the Medians un-
der their King Astyages. The war had been going on for five years, and when
the eclipse occured during an ongoing battle, the belligerent parties found it
prudent to end the fighting and make peace. The Gods, evidently, did not
approve of what they were doing. Thales had ties to the Lydian kingdom, and
when Alyattes’ son Croesus later went to war against the Persian King Cyrus
II, who had meanwhile conquered the Median kingdom, Thales went along
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as an advisor to the Lydian King. Thales is credited with a clever scheme for
splitting the river Halys, so that the Lydian troops could pass over.

Eudemus’ historical works are lost. But their contents are, to some extent,
known through later summaries. The last Greek philosopher and mathemati-
cian was Proclus Diadochus. He was head of the Neoplatonic Academy in
Athens late in the fifth Century A.D., one of the last holdouts of classic
civilization. At that time Eudemus’ books were still extant. As all research
towards the end of the classic civilization, Proclus’ research is not very origi-
nal. But as part of his work at the Academy he wrote a summary of Eudemus’
History of Geometry, as an introduction to his own Comments on Euclid’s
Elements, Book I. This is essentially the only surviving source on early Greek
geometry, frequently referred to as The Eudemian Summary. There can be
no doubt that Proclus amply deserves a honorable place in the history of
geometry and mathematics for preserving this knowledge for posterity. An-
other important contribution by Proclus was the formulation of Euclid’s Fifth
Postulate as we state it today, usually referred to as Playfair’s Axiom. See
Section 4.1.

Thales is the first Greek mathematician whose name we know. He lived
and worked in Miletus, a Greek city in Asia Minor, now in Turkey. He was
born about 625 B.C. and died around 545 B.C., in Miletus. We may regard
Thales as the Founding Father of Greek Geometry. His mother was Cleobu-
lina, the first woman philosopher in Greece. Thales referred to her as The
Wise One.

There are reports that Thales was of Phoenician descent, but others re-
fute this by asserting that “... the majority opinion considered him a true
Milesian, and of a distinguished family.” Do we sense a trace of bigotry
here? Perhaps the infusion of some Phoenician blood through Thales did the
Greeks and their science some real good...

Thales is supposed to have estimated the height of a pyramid in Egypt
by measuring its shadow at the time when the shadow cast by himself was
equal in length to his own height. Eudemus ascribes to Thales a method for
finding the distance between two ships at sea. We do not know exactly what
this method was, but van der Waerden in [35] supposes that it might be
something like the method described by the Roman surveyor Marcus Junius
Nipsius, which goes as follows:

In order to find the distance from A to the inaccessible point B, one
erects in the plane a perpendicular AC to AB, of arbitrary length,
and determines its mid point D. On C one constructs a line CE
perpendicular to CA, in a direction opposite of AB, and one extends
it to a point E, collinear with D and B. Then CE has the same
length as AB.

The rule is illustrated in Figure 3.1.
Thales also is credited for discovering that the base angles of isosceles

triangles are equal, and that vertical angles are equal. He is also said to have
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Fig. 3.1. To find the distance to an inaccessible point.

discovered that a diameter of a circle divides it in two equal parts. In what
sense Thales “discovered” these geometrical facts is not clear, it does seem
reasonable to assume that this knowledge would have predated Thales by
perhaps more than a thousand years, in Egypt, Mesopotamia, and elsewhere
in the East. He may, however, have studied this material, providing some sort
of proofs for the above statements.

According to Aristotle, Thales was ridiculed by some Milesians for direct-
ing a lot of energy to activities which had no useful applications, and from
which he made no profit. Thales then decided to show them that if he had
thought it worthwhile, he could do better than most of them in this regard
as well. Thus, noticing signs that a bumper crop of olives was in the comings,
he bought up all the presses. When the bumper crop then subsequently did
materialize, the growers had to buy or rent presses from him, at a substantial
price.

3.2 The Story of Pythagoras and the Pythagoreans

Pythagoras of Samos is a rather enigmatic figure. It is frequently asserted in
texts on the history of mathematics that we know practically nothing of his
life and work prior to the time when he founded the school of the Pythagoreans
in Croton, at which time Pythagoras may have been in his mid 50’s. We do
know however, that he appears at this precise point, and that he undoubtedly
possessed extensive knowledge of mathematics in general and geometry in
particular. Prior to that time this kind of knowledge is only very sparsely
documented in Greece, and all of it comes to us from Thales. But in the
East, in Egypt, Mesopotamia, in India and even, perhaps, in the early Indus
valley civilization, as well as in China, we find evidence of extensive insights
into these matters. Add to this the many stories which are told concerning
his travels in Egypt and more widely. We have to realize, however, that for
now there is no solid evidence on which the legends of Pythagoras’ travels
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can be accepted as historical facts. So until some new papyrus is found in
Egypt, or a tablet uncovered from ancient Babylon, relating the tale of the
Greek visiting priest at the Temple, we might as well sit back and enjoy the
stories. Some of them simply are too good not to be true!

Pythagoras was born about 570 B.C. in Samos, one of the most fertile
Greek islands, just off the coast of Asia Minor. It seems to be general agree-
ment that he died in the Greek city of Metapontium, in southern Italy, proba-
bly some time during the first decades of the fifth Century B.C., one estimate
being approximately 480 B.C. At any rate there are reports that he died at
the advanced age of 90.

Some historians of mathematics think that Pythagoras was a student of
Thales. Others feel that the age-gap between them makes this unlikely. But
with the – admittedly hypothetical – dates of birth and death we have put
down, Pythagoras would have been 25 at the time of Thales’ death. This does
not preclude him having been a student of Thales, but it is probable that
Pythagoras at least also had other teachers, working in the same mathemat-
ical environment as Thales. In fact, Samos and Miletus were geographically
close.

Iamblichus relates in [22] that Pythagoras “...went to Pherecydes and to
Anaximander, the natural philosopher, and also he visited Thales at Miletus.
All of these teachers admired his natural endowments and imparted to him
their doctrines. Thales, after teaching him such disciplines as he possessed,
exhorted his pupil to sail to Egypt and associate with the Memphian and
Diospolitan priests of Jupiter by whom he himself had been instructed, giving
the assurance that he would thus become the wisest and most divine of men.”

So according to this source, Pythagoras followed in Thales’ footsteps. Not
only did he take up his geometry, he also made extensive travels in the known
civilized world. In Samos Polycrates assumed dictatorial powers, but he was
in many ways an enlightened ruler, and at least in the beginning Pythagoras
may have had good relations with him.

Polycrates had allied himself with Amasis, the King of Egypt. Polycrates
was very successful in the beginning, and he established Samos as a naval
power, he build temples, harbors and aqueducts and he encouraged art and
science including mathematics. Herodotus relates how Polycrates became
worried when he received a message from his Egyptian ally, warning him
that his good fortune would eventually make the Gods envious, thus bring-
ing some kind of disaster down on him. The advice he gave was for Polycrates
to throw away his most valued possession. The grief this would cause him,
should suffice to placate the envious Gods. After thinking about it, Poly-
crates decided that a precious ring he owned would be a suitable object to
loose, and he went out to sea on a boat, where threw his ring into the water.
Some days later, however, a local fisherman caught a big fish. The fish was
so extraordinary that the fisherman brought it to Polycrates, expecting to
be rewarded lavishly. Polycrates was very pleased, and showed it by invit-
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ing the fisherman to his supper, where the fish was to be served. The cook
started the preparations and cut the fish open, and in its stomach he found
the ring. He brought the ring to Polycrates, who was not exactly overjoyed.
When Amasis learned about this, he realized that Polycrates could bring him
nothing but bad luck, and canceled his alliance with him. And in fact, to-
wards the end of his reign Polycrates engaged in some ill-conceived schemes,
trying to ally himself with the Persians against the Egyptians. This failed
because of mutiny among the men he sent, who with good reason suspected
that Polycrates really wanted to get rid of them. He himself was later lured
into an ambush by the Persians and suffered a shameful death.

Returning to Pythagoras, he went to Egypt, some say around 535 B.C.
Polycrates had supplied him with letters of recommendation, so he could
gain access to the Temples there.1 He visited many temples where he had
discussions with the priests. He tried to gain admittance to the Order of
the Temples, and finally succeeded when he was admitted into the Temple
and Priesthood at Diospolis, near Memphis. Here he stayed for some time,
and absorbed their customs and their geometry, as well as their magic and
astrology.

But this quiet life was interrupted when there appeared on the scene
a Persian King and warlord by the name Cambyses. He invaded Egypt in
525 B.C., and capturing Memphis came across Pythagoras in the Temple, as
Iamblichus relates in [22]. Pythagoras was then taken prisoner by Cambyses,
and if this story is true, he must have had some very exiting and interesting
years, under Cambyses’ rather heavy hand. In the beginning it would not
have been too bad, Cambyses himself respected the Egyptians and showed
great interest in their traditions and customs. He even had himself designated
a Pharo under the name Ramesut. He also had himself initiated into the
priesthood, and if Pythagoras were around this, he might have had something
to do with it. In fact, Cambyses’ father was King Cyrus II or Cyrus the Great.
He could possibly have met Thales, Pythagoras’ mentor, under the following
circumstances: According to Herodotus, Thales accompanied King Croesus
when he went to war against the Persians under King Cyrus. Croesus lost,
and after several dramatic events he was saved from being burned alive on
a pyre erected by the victorious Persians. These same events also led him to
become a trusted friend and advisor of King Cyrus. This happened in 547
B.C., admittedly late in Thales’ life, if not after his death.

Cyrus was one of Persia’s great Kings, who went on to capture the mar-
velous ancient City of Babylon, in 539 B.C. He is the Cyrus the King referred
to in the Old Testament, who restored the Jews to Palestine and ordered
the Temple of Jerusalem to be rebuild. Unfortunately for him, however, he
did not rest on his laurels. Instead, he marched with his troops across the
Araxes, the river now named Araks which flows east to the Caspian Sea. He
1 Some say this, others claim that Pythagoras feared Polycrates, and fled because

of him.
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went against the Massagetic queen Tomyris, she ruled over a kingdom in
that area. His advisor Croesus was with him, and the crossing of the Araxes
was undertaken on his advice. This was a disastrous move. Tomyris defeated
Cyrus, who was slain in a battle 529 B.C. Then his son, Cambyses II, suc-
ceeded him on the Persian throne. On his fathers advise, he retained Croesus
as an aide and advisor, in spite of the sad outcome of his last service to his
father. And Croesus accompanied Cambyses to Egypt. Thus Pythagoras and
Cambyses’ aide would have some points of contact.

At any rate, the good state of affairs for Pythagoras in Egypt did not last.
Cambyses continued his milliary expansion, and now he met with some very
serious, humiliating setbacks and defeats. Without going into details, let us
just relate that he turned into a paranoid man, suspicious of everything. When
he arrived back from one of his ill-fated expeditions, his troops decimated and
starved, having been reduced to cannibalism, he unfortunately came just
in time for a big celebration in Memphis. Feeling that the people rejoiced
because of his own misfortune, he ordered the leading citizen rounded up
and executed. The most repulsive incident occured when it was explained
to him that the celebration was on occasion of the appearance of a very
special calf, the latest incarnation of the God Apis. On his orders the calf
was brought into his presence. Cambyses, in a fit of senseless rage, grabbed
his sword and dealt the Holy Calf a powerful blow, wounding it in the thigh,
in front of all the terrified Egyptians. The Holy Calf fell to the ground, and
it died some time afterwards from the infected wound.

He also committed various other acts of sacrilege, like several instances
of outrageous profanation of temples, killings of priests, he broke up ancient
tombs and examined the bodies, burned them in some cases, and so on.

Matters worsened. Cambyses appears to have gone completely mad. Ac-
cording to Herodotus one of the misdeeds he committed was to have his own
brother, Smerdis,2 murdered. Smerdis had been a member of his Egyptian
expedition, but Cambyses had sent him back to Persia because of jealousness
caused by his brother’s physical strength. Some time after Smerdis’ return,
Cambyses had a dream which caused him great worry: He dreamt that a mes-
senger arrived from Persia, telling him that Smerdis was sitting on the royal
throne and that his head was touching the sky. Interpreting this to mean
that his brother would kill him and seize the throne of Persia, Cambyses sent
his most trusted Persian friend Prexaspes back to Persia to do away with
Smerdis. Prexaspes dutifully did what he had been ordered. And then he
informed the people that His Royal Highness the Prince spent all his time in
seclusion at the palace, praying for the success of his brother the King during
his campaign abroad. Cambyses later rewarded him for his services by mur-
dering his son in front of his very eyes, in order to prove his marksmanship
with bow and arrow and ability to hold his liquor.
2 According to the Persian sources Cambyses murdered a brother by the name

Bardiya.
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Now Herodotus relates that Cambyses had left the control of his household
with a man who belonged to the caste of the Magis, his name was Patizeites.
Patizeites had a brother, named Smerdis, like the prince. This brother also
looked a lot like the murdered prince, and as Patizeites knew of Cambyses’
foul deed regarding his brother, he hatched a rather obvious plan: He had his
own brother usurp the throne, claiming to be Cambyses’ brother!3

The Magis constituted the hereditary caste of priests among the ancient
Persians. They interpreted dreams and performed sacred rituals, being de-
voted to the Gods. In the New Testament the astrologers who divine the
birth of the King of the Jews by the appearance of a star in the east are
called Magis. The priests of Babylonia are also frequently called Magis, and
of course the term is preserved today in our word magic.

Heralds were sent out proclaiming the change of regent, and one of them
happened to encounter Cambyses and his men in Ecbatana in Syria. When
brought before the rightful, if incompetent, King, the herald was questioned
about the situation. Cambyses suspected that Patizeites had double-crossed
him, but the latter had the explanation ready: “I think, my lord, that I know
what happened. The rebels are the two Magi brothers you left in charge of
your household. One of the brothers is named Smerdis, as you may recall.”
Cambyses now realized the true meaning of his dream. The Smerdis on the
throne was really Smerdis the Magi! The murder of his brother had served
no purpose, in fact it had made the prophesy of the dream come true, rather
than preventing it from happening. As sanity started to return, he understood
the depths to which he had fallen, and he bitterly lamented the abysmal
situation in which he found himself. Finally he resolved to march back to
Persia at once, to attack the Magi. But as he leaped into the saddle, the
cap fell off the sheath of his sword. The exposed blade cut his tight, at the
very spot where he had struck the sacred Egyptian Bull of Apis. Cambyses
now felt that he was mortally wounded, and asked his men for the name of
the town they were in. Being told that the name was Ecbatana, he realized
the true meaning of a prophecy from the oracle at Buto: Namely, that he
should die at Ecbatana. He had thought this to be Median Ecbatabna, his
capital city, and that he should therefore die at home of old age. Now he
realized that the oracle meant Ecbatana in Syria. At this point sanity fully
returned to Cambyses, and he said no more. After twenty days he called the
leading Persians together, and explained the situation to them. In tears he
bitterly lamented his cruel fate, and the Persians tore their cloths, crying and
3 Persian sources give the name of the Magian usurper, or pretender, as Gau-

mata. Thus there is no homonymy in the Persian version of this story, as well
as other discrepancies with the account as given by Herodotus. It is generally
accepted among historians that Herodotus’ version of the story is far from ac-
curate. A political intervention by priests of the temples in the face of a ruler
who was obviously incompetent and mentally disturbed, as well as a political
rivalry between Medes and Persians with economic and social ramifications, has
undoubtedly taken place. But the details are lost today.
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groaning. Shortly after, gangrene and mortification of the thigh set in, and
Cambyses died.

However, his men really did not believe him. They suspected another
malicious lie, to set the country against his brother Smerdis.

Thus no obvious course of action seemed to present itself, and about one
year of political strife followed in Persia, with the Magi on the throne. Prex-
aspes originally decided to side with the Magis, out of fear for punishment
and also his bad feelings towards the house of Cyrus and Cambyses. Thus he
changed his story about having murdering Smerdis the Prince. The Magi rule
ended when a young and ambitious nobleman by the name Darius, himself of
royal descent, headed a successful coup d’etat. Prexaspes, repenting his trea-
son to the Persian cause (the Magi were originally a Median caste), confessed
his crime to an assembled crowd from the main tower, and then leaped to his
death.4 Darius then assumed power, to become the famous Darius I, Darius
the Great.

The story of the false Smerdis, the usurpation of power by the Magis
and finally the accession of Darius plays an important role in the history of
mathematics, at least indirectly. In fact, the Persian version of it, as told to
us by Darius himself, forms part of the inscription at Behistun, described in
section 2.1, and thus provided the basis for Rawlinson’s decipherment of the
cuneiform script. This again led to our present insights into the mathematics
in Mesopotamia, of the Sumerians, Assyrians and the Babylonians. As already
noted, the inscription by Darius himself differs considerably from the tale as
told by Herodotus. For more details, see note 25 on page 571 in [17].

Pythagoras, however, had been brought to Babylon by Cambyses’ troops.
At least so the story goes. The political situation in the Persian Empire being
somewhat murky, he sought refuge in the Temple, where he was once more
initiated into the Priesthood. Iamblichus writes as follows in [22], in the fourth
Century A.D.:

“Here the Magi instructed him in their venerable knowledge and he arrived
at the summit of arithmetic, music and other disciplines. After twelve years
he returned to Samos, being then about fifty six years of age.”

There are some ancient busts claiming to show what Pythagoras may have
looked like. One is a bronze copy of an original believed to be from the fourth
century B.C., which is displayed at Villa dei Papiri in Herculaneum, Museo
Nazionale, Neapels. Here Pythagoras is shown wearing turban and oriental
dress, absolutely compatible with our story. A photo of the bust is shown in
[21] and in [35].

Iamblichus has Pythagoras’ stay in Egypt to last for 22 years, plus 12
years in Babylon, altogether 34 years abroad. At any rate he spent many
years in Egypt and in Babylon, working and learning in the temples.
4 Still according to Herodotus, the Persian story runs differently. There is no char-

acter by the name Prexaspes in that version.
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Cambyses had died in 522 B.C., and Polycrates, the tyrant of Samos,
was killed by the Persians about the same time. King Darius I took over in
521 B.C., and after Polycrates death Samos came under his rule. Exactly
when Pythagoras returned to Samos is uncertain. Some say that he returned
at a time when Polycrates was still alive and in power, others assert that
he returned at a time when Samos had fallen under Persian rule. In any
case, after the fall of the Magi from power, it would seem to make sense for
Pythagoras to leave Babylon, since he presumably had close ties with that
group.

Iamblichus reports that Pythagoras formed a school in the city of Samos,
called the semicircle. He also reports that Pythagoras made a cave outside
the city, where he did his teaching, and spent both nights and days doing
research in mathematics. But then Iamblichus goes on to tell how Pythagoras
attempted to employ the same didactical principles he had learned in the
temples of Egypt and Babylon, to teaching the Samians. This did not work
too well, they found his teachings too abstract and symbolic. Pythagoras did
not like such attitudes any better than some present day college professors
do, and decided to leave. At least this is the reason Pythagoras himself is
supposed to have given for leaving Samos.

Actually, the Samians were by no means ignorant of geometry. Herodotus
relates how they constructed, at the order of Polycrates, an aqueduct for
bringing drinking water to the capital city by the same name as the island.
They had to dig a tunnel through a mountain, and started to dig at both
ends simultaneously. And in fact, they met in the middle of the mountain
with remarkable accuracy! The direction of the tunnel had to be found by
reasoning with similar triangles. Also a fairly sophisticated use of a diopter
had to be employed. Heron of Alexandria explains the method in his work
Dioptra, about 600 years later, around 60 A.D. For details, see [21] or [35].
The engineers, some of them quite possibly being slaves, who worked on
the tunnel at Samos certainly knew quite sophisticated geometry. But this
knowledge was part of their practical work in the field, not necessarily as an
object of the “refined contemplation” considered worthy of free men.

So Pythagoras left for Croton, a Greek city on the coast of southern Italy.
Here he formed his school or brotherhood, The Pythagoreans. The society
consisted of an inner circle, whose members were called mathematikoi, and
an outer circle whose members were known as the akousmatics.

The mathematikoi lived permanently with the Society, they had no per-
sonal belongings, were vegetarians and practiced celibacy, did not eat beans,
and did not wear cloths made of animal skin. Presumably this was the way of
life Pythagoras had picked up at the temples in Egypt, although Herodotus
does report on ample supplies of meat and wine for the Egyptian priests.

It should be noted that there are marked similarities between the practices
of the Pythagoreans and those associated with the Orphic Cult. Orpheus of
Thrace was the founder of this cult. He played so divinely on the lyre that all
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nature stopped to listen. When his wife Eurydice died, he went to the nether
world, to Hades, to bring her back. By the music from his lyre he succeeded
in obtaining her release, but on the condition that he would not look at her
until they were clear of the world of death. However, he could not bear to
refrain from looking, and she had to return to Hades for good.

The akousmatics, however, were allowed to live normal lives. Both men
and women were allowed to be Pythagoreans, and there are some reports of
women Pythagoreans who became well known mathematicians and philoso-
phers.

There are accounts to the effect that Pythagoras had a wife. Her existence
would seem to contradict the claimed practice of celibacy, but this particu-
lar kind of contradiction should not disturb historians too much. Her name
was Theano, and she had three daughters with Pythagoras. Together with
them she is said to have continued Pythagoras’ school after his death. Her
most important mathematical work is supposed to have been a treatise on
the Golden Section. We refer to [39], [23] and to [36]. As far as this author’s
information goes, this is the first known, or claimed, individual name of a
woman mathematician. Pythagoras’ three daughters also were Pythagore-
ans. Damo is said to have been entrusted the responsibility for her fathers
works, which she refused to sell and therefore had to live in poverty. The two
other daughters Arignote and Miyia were also Pythagoreans, and are credited
with several works on a variety of subjects. Other women Pythagoreans were
Themistoclea, priestess of Apollo at Delphi and said to be Pythagoras’ sister,
and Melissa, thought to have been one of the very first Pythagoreans.

The Pythagoreans were in opposition to the democratic movement in
Greece. The followers of the philosophical school of the Sophists were de-
mocrats, while the Pythagoreans believed in oligarchy, the rule by a small
political elite. Some of the Greek geometers did in fact belong to the de-
mocrats. They did not get along too well with the main stream Pythagoreans,
who were very influential. Thus for example Hippasus of Metapontium, who
was a Pythagorean, and nevertheless democrat, made known the findings that
not all line segments have a common measure, that there are incommensu-
rable line segments. We say more about this below, but the Pythagoreans did
not take lightly to this breach of secrecy! In fact, he was severely denounced
for having described the Sphere of the Twelve Pentagons, in other words the
dodecahedron and for having revealed the nature of the non-mensurable to the
Unworthy.

To the Pythagoreans the regular pentagon with the inscribed pentagram,
the 5-pointed star formed by all the diagonals, was a sacred symbol. There
is a story about a Pythagorean who became seriously ill while traveling,
far from home. The keeper of the inn where he stayed was a compassionate
man, and had his servants nurse him as best they could. The money of our
traveling Pythagorean expended, he was reduced to nothing: Seriously ill, at
the mercy of foreigners, far from home. Nevertheless the inn-keeper stood by
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him, providing for him at his own expense. As the unfortunate Pythagorean
realized that his Earthly Goal for the present incarnation was approaching,
he called for his benefactor. Not being able to leave behind any significant
earthly values, he told him to paint the symbol of the pentagon with the
inscribed pentagram on his door, but to paint it right, not upside down. If
ever a Pythagorean came this way again, he would generously return the
favor. And so the man did, after his foreign guest had passed away. Not that
he had much belief in the benefits to be reaped from this undertaking. But
years later a rich Pythagorean traveled through the area, saw the pentagon
with the inscribed pentagram, and did indeed repay the local good Samaritan
generously.

Returning to Hippasus, his treasonous publication may have happened
towards the end of Pythagoras’ life, maybe after his death. Hippasus was ex-
pelled from the Brotherhood, and one version of what happened afterwards
is this: The Pythagoreans made a grave monument for him, as he was to be
considered dead. Soon afterwards he perished at sea, and this was seen as
punishment from the Gods: He died as a godless person at sea. Another ver-
sion of the story is that he was murdered by Pythagoreans, who threw him
overboard from a ship at sea. Be this as it may, during this time the opposi-
tion to the Pythagoreans grew, Pythagoras himself had to move from Croton
to Metapontium. A prominent citizen of Croton by the name Cylon is said
to have been refused entry into the Pythagorean Brotherhood by Pythago-
ras, presumably because he was lacking in the spiritual qualities required,
and as a result the same Cylon mobilized his followers against Pythagoras
and the Pythagoreans. Others report the events differently, but at any rate
Pythagoras had to move to Metapontium, not too far from Croton, as the
situation became difficult. He died in Metapontium soon afterwards. Accord-
ing to some accounts he was murdered, killed by arson at the house of his
daughter Damo.

In Croton the Pythagoreans continued to exist as an organization, but
increasingly surrounded by controversy. Finally mobs emanating from the
democratic party killed a large number of Pythagoreans when they set fire to
the house in which they were assembled, the house of an athlete named Milo,
a famous wrestler. As many as 50 or 60 Pythagoreans are said to have been
killed at that time. The surviving Pythagoreans fled from Croton, and thus,
ironically, the ideas of Pythagoras were spread more widely in the Greek do-
main. Later still the Pythagoreans reappeared in the area, the last important
of them being Archytas of Tarentum, 438 - 365 B.C. His best known work
is probably an ingenious 3-dimensional construction which accomplishes the
doubling of the cube. We shall explain this in Section 3.11.

Again we should reiterate the warning that the story of Pythagoras’ life
which we have told here is regarded by some as being highly unreliable.
Contradicting ones are in circulation as well. The indisputable fact, however,
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is that these stories and legends about him do exist, and have been told for
2500 years.

3.3 The Geometry of the Pythagoreans

No work by Pythagoras is extant, and in fact the practice of the early
Pythagoreans was to ascribe all their findings to the master himself, to
Pythagoras. But it is well documented from later sources that the Pythagore-
ans viewed mathematics as basic to the very fabric of reality, and that certain
fundamental doctrines were important to their thinking and teaching. One
such doctrine was that numbers, that is to say, the natural numbers, formed
the basic organizing principle for everything. The motion of the planets could
be expressed by ratios of numbers. Musical harmonies could be expressed so
as well. The right angle was fixed by ratios like 3:4:5, as a triangle with sides
in these proportions is a right triangle.

This takes us to the geometry of the Pythagoreans. Several discoveries
have traditionally been attributed to the Pythagoreans, but at least some
of them are without question of a much earlier origin. We reproduce a list
of such discoveries in geometry, together with some comments. See [15] and
[37].

1. The Pythagoreans knew that the sum of the angles of a triangle is
equal to two right angles. They also knew the generalization to any
polygon, namely, that in any n-gon the sum of all the interior angles
is equal to 2n− 4 right angles, while the sum of all exterior angles is
equal to four right angles.

The last assertion may be viewed as completely obvious, as far as the
mathematical realities are concerned. As for the first, that the sum of the
angles in a triangle equals two right angles, Egyptian, Babylonian, Chinese
and Indian geometers knew well the properties of similar triangles. It is,
therefore, hard to believe that the realities behind such properties of triangles
were not known before the Pythagoreans. However, the precise formulation
as a mathematical proposition, as well as a formal proof may well have been
first supplied by them.

2. The Pythagoreans knew that in a right triangle the square on
the hypothenuse is equal to the sum of the squares on the two sides
containing the right angle.

This theorem, the so-called Pythagorean Theorem, was certainly known
to the Babylonians at least 1000 years before Pythagoras. As we have seen,
not only did the Babylonians know this, they also knew how to generate all
the so called Pythagorean triples, namely triples (a, b, c) of integers such that
a2 + b2 = c2. Whether the Babylonians also knew proofs of the Pythagorean
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Theorem is more hypothetical. But proofs based on a simple figure com-
bined with some algebraic manipulation could well have been known to the
Babylonians, who were superb algebraists.

3. The Pythagoreans knew several types of constructions by straight-
edge and compass of figures of a given area. They also solved what
we would call algebraic problems by geometric means.

Again, much of this would be known long before the Pythagoreans. Thus
for instance the Sulva Sutra, the oldest source of Indian mathematics, con-
tains rules for constructing altars of a given area. Typical assignments would
include the following:

1. Construct a square altar table, the area of which is twice that
of a given square alter table. Solution: Use the diagonal of the given one
as the length of the sides of the new one. We will return to this assignment
in Section 3.8.

2. Given a rectangular altar table. Construct a square one of the
same area. Solution: Let the sides in the rectangular table be a and b, the
unknown side of the square be x. Then x2 = ab, thus a : x = x : b, in other
words, x is the mean proportional of a and b. We then draw a half circle of
diameter a + b, erect a line normal to this diagonal where a is joined to b,
and find x as the half-cord. See Figure 3.2.

A B

C

D

Fig. 3.2. Construction of the mean proportional.

By the way, we may also use 2. to solve 1., of course. But the first method
is simpler.

Finally we come to a discovery which is universally credited to the
Pythagoreans, if not to Pythagoras himself. There are some who think
that the discovery was made by a woman mathematician, Theano, who was
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Pythagoras’ wife. It is arguably one of the most profound piece of mathemat-
ics discovered by the Greek classical school, and brought the Greeks almost
to the point of discovering the system, or the field, of real numbers, as we
would say in modern language.

But somehow the decisive last step was never taken, and the discovery
of the field of real numbers as a powerful extension of the rationals would
have to wait for about 2000 years. Perhaps one of the reasons for this was
that the Greeks did not possess any good algebraic notation. Only towards
the end of the Hellenistic epoch do we see a movement in this direction,
in the work of Apollonius. Also, the Greeks were really true geometers, and
not algebraists. They considered geometry to be a more complete science
than algebra, in fact they did their “algebra” in terms of geometry, we would
call it Geometric Algebra. Perhaps it was this philosophical prejudice which
prevented them from taking the last definitive step and discovering the system
of real numbers as an extension of the rationals. But even to say that the
Greeks worked with rational numbers, is somewhat misleading. To them,
what we would understand as the number 3

2 = 1.5 would be the proportion
3 : 2.

However, when this is said it has to be added that some historians of math-
ematics seem to have underestimated the sophistication and power of Greek
computing abilities. Especially towards the end of the Hellenistic Epoch such
abilities to an impressive degree are documented in the work of Claudius
Ptolemy and others. See Section 4.11.

3.4 The Discovery of Irrational Numbers

Presumably the Pythagoreans would early on work from the assumption that
given any two line segments a and b, then their proportion a : b would always
be equal5 to the proportion between two numbers, i.e., in our present language
be equal to a fraction r

s where r and s are positive integers. Arguably, this
would be the position taken by Pythagoras himself, at least originally. Of
course at this time many Greek philosophers espoused the atomistic view of
the physical world. According to this idea, all things are made up of incredibly
many, but a finite number, of incredibly small, but of a definite size, indivisible
atoms. In fact, this model for the physical world became generally accepted
all the way up to our own times. Some of the early Pythagoreans applied this
idea to geometry and mathematics as well. For numbers they had the atom
in the number 1, from which all other numbers were built.

In accordance with this general way of thinking, lines would consist of
small chained line elements. In particular two line segments a and b would
have a common measure: There would exist some line segment c such that
c would fit exactly an integral number of times, say r, in a, and exactly an
5 The Greek concept of equality for proportions will be explained below.
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integral number of times, say s, in b: Of course this would be true, at the very
worst one would have to take one of the miniscule line elements, which would
work since the two line segments were made up of whole numbers of such line
elements. The line element would always constitute a common measure, for
any two line segments. Now, for convenience one would let c be the largest
such common measure. This situation is illustrated in Figure 3.3.

a

b

c

Fig. 3.3. c is the largest common measure of a and b.

How would we go about finding the biggest common measure of two given
line segments a and b? The procedure is an ancient method, which the Greeks
called antanairesis, meaning successive subtractions. Literally, given the two
line segments a and b, the smallest is subtracted from the biggest. Of the re-
maining, the smallest is again subtracted from the biggest. This subtraction-
procedure is repeated again and again, until the two segments are equal in
length. Note that if you believe in the atomistic nature of lines, then this
will occur sooner or later, at the very worst when you are left with two line-
atoms, two line elements discussed above. Then a moment of contemplation
will convince you that these two equal line segments are indeed the greatest
common measure of the original line segments a and b.

This method of successive subtractions was very useful in ancient times.
It allowed amazingly exact mensurations of an unknown distance, using only
a measuring rod without subdivisions, and a good sized compass. It is no ac-
cident that the Master Builder so frequently is depicted with the measuring
rod and the compass! He would proceed as follows. Let’s say that the mea-
suring rod would be, anachronistically, one meter long. First, as carefully as
possible he would count the number of times the whole measuring rod could
be subtracted from the unknown distance, i.e., find the number of whole me-
ters. Let’s say he gets 50. Then he would take the residue, the left over piece,
in his compass, and count the number of times it could be subtracted from
the length of the measuring rod itself. Let’s say he gets 2, and a new left over
piece, a new residue. He now successively repeats the procedure, counting
the number of times the new residue can be subtracted from the previous
one, and writing down the numbers. Let us say he repeats this 4 more times,
getting 1, 1, 4 and 2, at which point there is nothing left, at least as far as he
can see: Then, of course, he has to stop. Denoting the length to be measured
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by L, the measuring rod (here of 1 meter) by m, the first residue by r1, the
second by r2, then r3 and finally, r4, we obtain

L = 50m+ r1

m = 2r1 + r2

r1 = r2 + r3

r2 = r3 + r4

r3 = 4r4 + r5

r4 = 2r5

To find L in terms of m, we substitute r5 = 1
2r4 from the sixth relation into

the fifth relation, obtaining r4 = ( 1
4+ 1

2
)r3, which substituted into the fourth

yields

r3 = (
1

1 + 1
4+ 1

2

)r2

and so on, until we finally get

L = (50 +
1

2 + 1
1+ 1

1+ 1
4+ 1

2

)m

We show the process in Figure 3.4.
As m is supposed to be one meter, we find after some computing of

fractions that the length L is 50 20
51 meters, or 50.39 meters, in present days

decimal notation. Of course the number is deceptive, as counting the 50
meters to begin with could introduce an error of around 5 cm. But using a
longer rod, or a longer string of a known length, this measuring error would
be reduced.

Now, it is generally thought that the first “irrational number”, discovered
by the Pythagoreans, was

√
2. But first of all, the Pythagoreans, as indeed

all Greek mathematicians of this time, did not think of this as a number.
Rather, it was a question about the proportion between the lengths of two
line segments not being equal to the proportion of two numbers, we would
say not being a rational number, the fraction of two integers. It is presumed,
by some, that the first such pair of line segments found was the diagonal
and the side of a square. It is also asserted, frequently, that the so called
Pythagorean Theorem should have been essential in realizing this. Others
find this questionable. First of all, at the time of Pythagoras proving that
two line segments are incommensurable would consist in showing that the
process of repeated subtraction applied to these two particular line segments
never stops. Later more sophisticated methods were developed by geometers
like Theodorus of Cyrene, (465 – 398 B.C), pupil of Pythagoras and teacher of
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m

r1

r2

r3

r4

r5

Fig. 3.4. Measuring by repeated subtractions.

Plato, and by Theaetetus. They are the principal characters in two of Plato’s
famous dialogues, one of them dealing with square roots.

At Pythagoras’ time the simplest case to consider would be the diagonal
and the side of the regular pentagon. This certainly appears surprising, since
we would view the regular pentagon as considerably more complicated than
a square. But from the point of view of repeated subtraction of the side and
the diagonal it is the absolutely simplest figure in existence. A look at Figure
3.5 will explain this.

Indeed, the diagonal is AC and the side is AB. Now AB = AD, as elemen-
tary considerations yield the equality of the angles ∠ABD = ∠ADB. Thus
subtracting AB from AC we are left with DC, and the subtraction can only
be performed once. In the next step CD is to be subtracted from AB. Now
CD = AD’ and AB = AD, thus in this next step we may also only subtract
once, and the remainder is D’D. But as CD = CE = ED’, the third step will
be to subtract the side of the inner pentagon from the diagonal of the inner
pentagon! Thus, magnifying the inner pentagon and turning it upside down,
we are back to the starting point. Hence the process evidently repeats itself
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Fig. 3.5. The pentagon and the pentagram.

without ever stopping. Thus the incommensurability of diagonal and side of
the regular pentagon is proven.

A similar procedure may be carried out for the diagonal and the side
of a square, but it is considerably more complicated. And in view of the
special relationship the Pythagoreans had to the regular pentagon, it is a
very plausible guess that this is how they arrived at the conclusion that not
all line segments are commensurable.

A final point to be made is this: If we put x = AC:AB, then we obtain

x = 1 +
1

1 + 1
1+...

= 1 +
1
x
,

which yields the equation

x2 − x− 1 = 0,



3.5 Origin of the Classical Problems 45

Indeed, this follows in the same manner as the computation carried out on
the basis of Figure 3.4. Hence x = 1

2 (1 +
√

5) ≈ 1.6180. This number is often
referred to as the Golden Section.6

3.5 Origin of the Classical Problems

There are three problems occupying a special position in Greek geometry,
namely the so-called classical problems. They are all insoluble in their strictest
interpretation. However, they may be solved by various creative procedures
and they have generated an enormous amount of mathematics. Their attrac-
tion on mathematical amateurs is perhaps paralleled only by the famous Fer-
mat Conjecture, which was finally proven not too many years ago by Andrew
Wiles. The first of these problems we encounter in the history of mathematics
is the

Squaring the Circle. Given any circle. Then construct a square
with the same area as the one enclosed by the circle.

The first time we find this problem mentioned, is in connection with
the Greek philosopher Anaxagoras. Anaxagoras lived at a time when Athens
stood at the summit of its power, politically and intellectually.

After Athens and Sparta had won the protracted war against Persian
invaders, there followed half a century of peace and prosperity. This was a
time of flourishing cultural life in Athens. Many of the expelled Pythagoreans
found their way to Athens, and Socrates played an important role in the
intellectual life of the city state.

Athens had an enlightened leader in Pericles for a great part of this time,
from about 460 B.C until he died in the great plague in the year 429 B.C.,
two years after the peace had been broken and the devastating Peloponnesian
war with Sparta had broken out. Unfortunately Pericles must bear a large
part of the responsibility for this fratricidal struggle. In fact, he transformed
the alliance of the Greek cities against the Persians, the Delian Alliance,
into an instrument for Athenian dominance. This worked fine for Athens,
but the Spartans and others were considerably less pleased. Athens now had
more than 300000 inhabitants, one third were slaves and about 40000 were
male citizens enjoying full rights. The city wall also enclosed the port city of
Piraeus, and their fleet was the dominating power at sea.

Pericles erected the magnificent buildings at Acropolis, and showed great
interest in mathematics and philosophy. He belonged to the democrats, from
the aristocratic wing of the party. He was succeeded by Cleon when he died,
also a democrat but from the less aristocratic wing.
6 Other names include the Golden Mean, the Golden Number and the Golden

Ratio.
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Pericles’ teacher and close friend was Anaxagoras. Anaxagoras was born
about 500 B.C., in Clazomenae (now Izmir), in Ionia, presently Turkey. He
died 428 B.C. in Lampsacus in the Troad, where he had sought refuge for
persecution by his enemies in Athens, who continued to press charges for
impiety against him.

He was more a natural philosopher than a mathematician. Nevertheless he
played an important role in Greek geometry, and indeed in the development
of mathematics, since he was, apparently, the first to be tied to one of the
great problems of antiquity, the Squaring of the Circle.

In his teachings, he had denied that the heavenly bodies were divinities.
Instead, he explained them as stones torn from the earth, the sun being red
hot from its motion. The sun was as big as all of the Peloponnese, he asserted,
and the moon reflected the light from the sun. The moon was an inhabited
world, like the earth, according to Anaxagoras.

These ideas were hard to swallow, any right-thinking Athenian would
be disgusted at such impiety. Consequently Anaxagoras was incarcerated.
According to Plutarchus Anaxagoras spent the time in prison by attempting
to square the circle.

Pericles had to be cautious, since he had many powerful enemies in
Athens. But he also stood by his friends, and he finally managed to get
Anaxagoras out of prison. But Athens certainly was not a safe place for him
any more, and he therefore moved to Lampsacus where he founded his own
Academy. Aristotle speaks highly of the reputation he enjoyed there.

The Peloponnesian War broke out in 431 B.C., and two and a half years
later Pericles died in the great plague which had started to ravage Athens.
One year later Anaxagoras also died.

The plague had broken out for full in 427 B.C., the presumed year of
Plato’s birth. The plague weakened Athens considerably, one fourth of its
population is said to have perished. According to the legend, the citizens of
Athens sent a delegation to the oracle of Apollo at Delos, to ask for advice on
how to emerge form the dire circumstances in which they found themselves: A
war with Sparta which would be very difficult to win, now that they also had
this debilitating pestilence to cope with. The answer delivered by the priestess
of Apollo was enigmatic: The cubic Altar of Apollo should be doubled. They
may also have received other instructions as well, since Athens carried out
extensive purifications of the island in the year 426 B.C.: Among other things
all graves on the island were opened, and the remains which were buried
there removed and reburied on the neighboring island of Rheneia. Doubling
the cubic altar proved more difficult. The Greek geometers realized of course
that the purest, and most pleasing way to Apollo, would be using compass
and straightedge. In other words to perform a geometric construction which
for a given cube would render another with volume twice the given:
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Doubling the Cube, or the Delian Problem. Given any cube,
construct with straightedge and compass the side of another cube,
the volume of which is twice that of the given one.

It must have been quite intriguing to the geometers in Athens that this
problem proved so hard, since the corresponding assignment for a square was
so easy. More on that below, in Section 3.8.

There are accounts to the effect that Plato, when consulted about the
problem later, voiced the opinion that Apollo had not offered the oracle
because he wanted his altar doubled, but that he had intended to censure the
Greeks for having turned their back on mathematics and geometry: By paying
more attention to science and philosophy instead of making war, things would
start to go better for them.

Greek geometers were fully aware that all circles are similar, as are all
squares and cubes. Thus the problems stated above for any circle and for any
cube is equivalent to the same problem stated for one circle or for one cube:
If you can square one circle you can square them all, if you can double one
cube, then you can double them all. Not so with the third problem, which
also circulated in Athens about this time:

Trisecting the Angle. Given any angle, divide it in three equal
parts using straightedge and compass.

In this last case the situation is different: There is an infinite number of
angles which may be trisected using ruler and compass. We show the con-
struction for a right angle, that is to say an angle of π

2 radians or 90◦, in
Figure 3.6.

O

BC

A

D
E

Fig. 3.6. Trisecting a very special angle by straightedge and compass.

We start with the right ∠AOB, and draw a circle with O as center passing
through B. Producing BO we find the point C. With C as center draw the
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circle passing through O. The latter circle intersects the former in D. With
D as center draw the circle passing through O, this circle intersects the one
about O in E. Then 3 × ∠AOE = ∠AOB. Thus there are angles which
may be trisected by compass and straightedge, and there are infinitely many
such angles: Namely, we may by continued bisection divide ∠AOB in 2n

equal parts for any n, and the resulting small angle may then be trisected
by similarly bisecting ∠AON in 2n equal parts. Of course these are not all,
there are several other kinds of angles which may be trisected by compass
and straightedge as well.

3.6 Constructions by Compass and Straightedge

Another remark to be made concerning the little construction in Figure 3.6
is this: The construction illustrates the legal use of compass and straightedge.
The legal use of compass and straightedge is tied to what later was codified as
Euclid’s axioms. Many complex constructions may be performed under these
rules, but the three classical problems are not soluble in this way. This led
Greek geometers to introduce other methods, like the use of conic sections,
also curves of higher degrees, even transcendental curves, as we would say
in modern language: The transition from elementary to higher geometry was
initiated as a consequence of the struggle with the classical problems. The
transition is not as unnatural as one might think, since employing conic
sections or higher curves is equivalent to solving the problem by an infinite
number of steps using ruler and straightedge, at each stage in a completely
legal manner, according to the rules. We now state these rules.

Legal Use of Compass and Straightedge. A finite set of points
is given. A point is constructed if it is a point of intersection between
two lines, two circles or a line and a circle as produced according to
1. and 2. below:
1. The straightedge may be used to draw a line passing through two
given or previously constructed points, and to produce it arbitrarily
in both directions.
2. The compass may be used to draw a circle with a given or al-
ready constructed point as center, passing through a given or already
constructed point.

We note that according to 2. above, the compass may not be used to
move a distance. A compass which may only be used in this restricted way,
is frequently referred to as a Euclidian compass. We may imagine that the
compass collapses immediately when either end is lifted from the paper.

Using these two procedures is also referred to as constructing by the
Euclidian tools. By Euclidian tools we may easily perform tasks like dividing
any angle in two equal parts, drop the normal to a given line from a given
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point or erect the normal at a given point on a given line. This is shown in
the three top constructions in Figure 3.7.

(i) (ii)

(iv) (v)

(iii)
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D

Z

Fig. 3.7. Simple but essential constructions which may be carried out using
straightedge and the Euclidian compass.

An angle is given by the points A, B and C. We wish to bisect ∠ABC.
Draw the circle with B as center through A, D is the point of intersection
between this circle and the line (possibly produced) BC. Then circles are
drawn with A and D as centers, passing through, respectively, D and A.
These circles intersect in a point Z such that a line AZ bisects the angle in
two equal parts. Next, the line EF is given, as well as the point H outside it.
To drop the perpendicular from H to EF, a circle through F is drawn with
H as center, intersecting EF in another point G. With F and G as centers,
circles are drawn through G and F, respectively, intersecting in K. Then HK is
perpendicular to EF, its foot is the point of intersection with EF. Finally, we
erect the perpendicular to a line LM in the point N. We leave the explanation
of this construction to the reader.

In the lower part of the figure, we show how to construct a parallel to a
given line QS through a given point T, by first dropping the perpendicular
from T to QS (produced), its foot being R, then erecting the perpendicular
to RT at T.

We now find a pattern, similar to proving complex theorems from simpler
propositions or axioms: The construction in (iv) is obtained by appealing to
the two previous ones in (ii) and (iii), without having to start from scratch.
This becomes even more striking by including construction (v).
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Namely, if we allow the compass to be used to draw a circle about a
given or constructed point with radius equal to the distance between two
other points in the construction, then this is strictly speaking is not allowed
according to the rules above. But actually, we may nevertheless do this, since
we have the construction (v). Here the points A, B and C are given, and we
wish to draw a circle with A as center and radius BC. Proceed as follows:
Draw the line BC. Through C construct the parallel to AB, and through A
the parallel to BC. They intersect in C’. Now the length of BC equals the
length of AC’, so draw the circle with center A passing through C’.

The parallel to AB through C is unique since we are in the Euclidian
world. The possibility and the uniqueness of the constructions thus hinge on
the Fifth Postulate of Euclid. It might be interesting to contemplate what
constructions would be like in a non-Euclidian plane.

But to mark off a distance on the straightedge is prohibited. By such illegal
use of the straightedge one may indeed trisect any angle in three equal parts,
as we shall see in Section 3.9, and a cube may be doubled, as we shall see in
Section 4.6. In fact, constructions with compass and a marked straightedge is
equivalent to including among the Start Data one single higher curve, namely
the Conchoid of Nicomedes, which we treat in detail in Section 4.6. We also
refer to Section 16.8.

We now turn to some specifics on the three problems. Even though ideally
they should be solved with ruler and straightedge, Greek geometers of course
soon realized that this would be very difficult. So they came up with a variety
of solutions, ranging from rather simple but effective mechanical schemes, in
some cases constructing various kinds of instruments, to very sophisticated
geometric constructions like Archytas’ famous three-dimensional construction
for the doubling of the cube, using a cylinder, a cone and a torus. Also
employed were a variety of higher algebraic, as well as transcendental, curves
in the plane. We shall give some glimpses of these prodigious efforts in the
following three sections.

3.7 Squaring the Circle

We have already mentioned that if you can square one circle, then you can
square them all. In fact, suppose that a circle of the fixed radius r may be
squared, that is to say that we may construct a square of side s such that its
area equals that of the circle. The situation is shown in Figure 3.8.

Here we have a fixed circle, together with a fixed square with side KQ,
known to have the same area as the area enclosed by the circle. These two
being given, we may square any circle as follows: We construct a right triangle
VWX, where the side VW is equal to the diameter of the given circle, while
WX is equal to the side KQ of the given square. VW and WX are the sides
containing the right angle. Now consider an arbitrary, new circle, shown in
the lower left corner. Mark off VY on VW equal to its diameter, and let YZ
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Z

Fig. 3.8. If you can square one circle, you can square them all.

be parallel to WX, Z falling on XV. Then YZ is the side of the square of area
equal to the that of the new circle.

3.8 Doubling the Cube

We first look at the much simpler problem of doubling the square by straight-
edge and compass. This construction is shown in Figure 3.9.

A

D

B

C E

F

Fig. 3.9. Doubling the square by straightedge and compass.

Here we have the square ABCD. We now perform the doubling of the
square in a way very much in the spirit of Greek geometry as follows: Produce
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the line DC, and mark the point E such that DC = CE. Similarly produce BC
and mark F such that BC = CF. Then the square BEFD will have twice the
area of ABCD. Indeed, the former consists of four congruent right triangles
while the latter only requires two.

But this observation is just the beginning of what led Hippocrates of Chios
to a most remarkable discovery: Namely, we notice that the triangles ABD
and BDF are similar, thus

AB : BD = BD : BF

Thus

AB : BD = BD : 2AB

so the side of the double square is the mean proportional between the side
and the double side of the given square. Thus putting AB = 1 and using
modern notation, we find the side x of the double square by

1 : x = x : 2 or
1
x

=
x

2

so x =
√

2. A construction for doubling the cube which has much of the
same flavor, while of course not being possible by straightedge and compass,
is attributed to Plato and will be explained in the next section.

It was Hippocrates who realized that the enigma of doubling the cube was
but one very special case of a much more general and much more interesting
problem: Namely that of constructing a continued proportionality:

Construction of a continued proportionality. Let a and b be
two line segments. For a given integer n, construct n line segments
x, y, z, . . . , u, v, w such that

a : x = x : y = y : z = · · · = u : v = v : w = w : b

x, y z etc. are referred to as the mean proportionals of the continued
proportionality. A double mean proportionality is one with two mean
proportionals, a triple has three, etc.

He saw that doubling a cube of side a is equivalent to constructing a
double continued proportionality between a and 2a: To construct x and y
such that

a : x = x : y = y : 2a

We check this with modern notation. We have

a

x
=
x

y
=

y

2a
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This gives

ay = x2 and 2ax = y2

Squaring the former and substituting y2 from the latter yields 2a3x = x4, i.e.
x = a 3

√
2.

Recall the following construction of the mean proportional between two
line segments a ≥ b. We refer to Figure 3.2: First draw a semicircle with
diameter AB = a, then mark the point D such that AD = b.7 We then have
similar triangles ABC and ACD, thus

AB:AC = AC:AD

and so AC = x is the mean proportional.
There is a continuation of this construction to a double continued pro-

portionality, and indeed to any continued proportionality. In fact, from D in
Figure 3.2 we construct a line perpendicular to AC, see Figure 3.10.

A B

C

D

E

Fig. 3.10. Construction of a double continued proportionality.

Letting ∼ denote the relation of being similar triangles, we have

∆ADE ∼ ∆ACD ∼ ∆ABC

from which it follows that

AB : AC = AC : AD = AD : AE

Thus if we wish to construct the double continued proportionality between
the line segments a ≥ b,
7 Note that this is a slightly different construction from the one explained when

we first encountered Figure 3.2.
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a : x = x : y = y : b

then first draw the semicircle with diameter AB = a, and then observe what
happens as the point C on the semicircle moves from B to A: In the right
∆ABC draw the perpendicular to AB through C, meeting AB in D. Then
through D draw the perpendicular to AC, meeting it at E. As now C moves,
starting with the degenerate case of C = B where AE = a, AE will decrease
to 0 when the other degenerate case of C=A is reached. Therefore at some
unique location for C on the semicircle, AE = b. There we take AC = x and
AD = y, which solves our problem.

Fig. 3.11. A handy straightedge for finding a double proportionality.

This is the good news, the bad news being that this location for C can not
be found using straightedge and compass only, in an allowable manner. But
by “cheating” using two of the convenient tools displayed in Figure 3.11, it
becomes simple.

We proceed as shown in Figure 3.12: First draw the semicircle with diam-
eter AB = a. Then mark the points A’ and E’ on one of the rulers as shown,
so that A’E’ = b. Now position the rulers as shown in the figure, so that the
vertical, unmarked, straightedge meets the marked one in a point on the line
AB, where A’ coincides with A, and C is found as the point where the marked
straightedge crosses the semicircle. E’ on the marked straightedge gives us
the point E in our figure. We then have the construction from Figure 3.10.

This construction is of course completely illegal as a construction with
straightedge and compass. In fact, it is even illegal as a version of the already
illegal insertion principle, which we will explain in the next section. However,
in its pure form the insertion principle was much used by Greek geometers,
this is also known as a verging construction.

3.9 Trisecting any Angle

The construction of bisecting any angle was, as we have seen, very simple.
And subdividing a line segment in any number of equal pieces is also a very
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A
D B

E
E

C

A

Fig. 3.12. Two rulers, one of them marked, used for finding a double proportion-
ality.

simple construction. To Greek geometers it must therefore have been a source
of frustration and bewilderment that the problem of dividing any angle into
three equal pieces turned out to be so difficult.

This problem began to attract attention at about the same time as the
problem of Doubling the Cube. Some special angles could easily be trisected,
as the construction we display in Figure 3.6.

Greek geometers found solutions to the trisection-problem by solving what
they referred to as a Verging Problem. We shall not attempt to give a general
definition of this concept, but in Figure 3.13 we present the solution to the
trisection problem as being reduced to one variety of such a Verging Problem.
Another kind is represented by the famous construction of the regular 7-gon
found by Archimedes, treated in Section 4.4. Of course, neither the trisection
problem nor the construction of the regular 7-gon are possible by legal use
of compass and straightedge.

Now for Figure 3.13. To the left we have the angle v = ∠ABC, we draw
the circle about B through C, and then we find the point E on that circle
such that the line EC produced meets AB produced in a point D such that
the segment DE is equal in length to the radius BC. This is the verging-
part of the construction, it is possible by marking off the length BC on the
straightedge. Denote the angle at D by u. Then ∠CEB = 2u = ∠ECB, thus
v = 3u. To the right we have the same construction, essentially, but we do
not use the circle, nor a marked straightedge, to find the point E such that
AB = BE = ED. There are simple mechanical devises which may be used,
however, based on the construction we have given here.

There are various algebraic curves of degrees higher than 2, so called
Higher Curves, by means of which the verging problem may be solved. The
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Fig. 3.13. Two Verging Constructions solving the Trisection Problem.

most famous of these are probably the Conchoid of Nicomedes, which we
treat in detail in Section 4.6.

There is also another famous curve which may be used to trisect any angle,
and to square the circle as well, in fact it may be used to divide any angle in
any number of equal parts and to construct a regular n−gon for any number
n. A truly marvelous curve! It is the Quadratrix of Hippias, treated here
in Section 4.6 and explained in Figure 4.24. This is not an algebraic curve,
however. Like the Archimedian Spiral, it is what we call a transcendental
curve.

3.10 Plato and the Platonic Solids

Plato was born in 427 B.C. in Athens and died there in 347. Although he
made no original contribution to geometry himself, he has had an immense
influence on the subject. In 387 B.C. he founded the Academy in Athens,
devoted to philosophy and geometry as well as other sciences. Plato had been
engaged in the Peloponnesian war as a young man, and he saw his esteemed
teacher and friend Socrates condemned and executed. He felt that one reason
why the Greek civilization in general, and the one in Athens in particular,
was in decline, had to be sought in the disregard of philosophy and geometry.
To Plato the problem of Doubling the Cube, for example, was a question of
developing insights into geometry. Thus it was not a question of finding some
practical means for carrying out the physical labor involved, like devising
some mechanical instruments or “cheating” with the straightedge. Instead it
was a question of understanding the mathematics involved. Therefore Plato
would regard highly the doubling-constructions involving higher curves or
space-geometric constructions, even if these were of lesser practical value in
the actual work of doubling any given cubical altar!

Of course this is exactly how we enjoy this problems today, as well as the
one of trisecting any angle or squaring any circle. We understand them in
terms of properties of algebraic numbers. We return to this in Chapter 16.
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To Plato geometry was part of the ideal world, whereas the physical world
would only represent imperfect approximations. He ascribed a special signifi-
cance to the regular convex polyhedra, as symbolizing the four elements Earth,
Fire, Air and Water. The fifth one, namely the dodecahedron, stood for the
whole Universe.

In our modern language a polyhedron is a surface enclosing a solid figure
composed of (plane) polygons. These are called the faces of the polyhedron.
The sides of the polygons are called the edges, and the corners where the edges
meet, are called the vertices. At each vertex there a configuration as shown
in Figure 3.14: The vertex P from which the edges a, b, c and e emanate.

 

 

 

 
 

P

a

b

cd

e

Fig. 3.14. A polyhedral angle.

This configuration is referred to as the polyhedral angle at P , so a polyhe-
dral angle is a point in space with a certain number of half lines emanating
from it.

A convex polyhedron is one where a plane containing any face does not
cut the other ones. See Figure 3.15 for an illustration of the property of
convexity.

Fig. 3.15. To the left a convex polyhedron. Any plane containing one of the faces,
does not cut any other. To the right evidently this property does not hold.
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We say that a polyhedron is regular if all the edges are of equal length, and
all polyhedral angles are congruent, that is to say that all the configurations
of rays at the vertices are the same. We also require that the faces are regular
polygons of the same kind, i.e., all are equilateral triangles, all are squares
etc. Finally, we require that it be convex. Then there are exactly five such
polyhedra, they are shown in Figure 3.16.

Fig. 3.16. The five Platonic Polyhedra, or as they are also known, the Platonic
Solids.

We can show that these are the only such polyhedra as follows. Let P be
a polyhedron of this type, consisting of regular n-gons. Let v be the angle
at each vertex. For any convex n-gon, in particular any regular one, the sum
of the angles contained by adjacent sides is (n − 2)π. This is easily seen by
subdividing it into n − 2 triangles. Thus v = n−2

n π. On the other hand the
sum of the angles constituting the polyhedral angle must be mv, m being the
number of edges meeting at each vertex. Thus we have

m(
n− 2
n

)π < 2π

and so

m(n− 2) < 2n

For n = 3 this leaves the possibilities m = 3, 4 or 5, n = 4 leaves only
m = 3, as does n = 5. For n ≥ 6 no value for m is possible. The values for m
listed above are indeed realized, and yield the five Platonic Solids.
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3.11 Archytas and the Doubling of the Cube

Archytas of Tarentum was born 428 B.C. and he died in 365 in a shipwreck
near his home city of Tarentum. Tarentum is located not far from Croton and
Metapontium. After the events when the Pythagoreans had been driven out of
Italy, things had quieted down to the effect that they had been able to reestab-
lish themselves in the area. He is considered the last great Pythagorean, and
in fact Book VIII of Euclid’s Elements is generally attributed to him.

He had been a student of another Pythagorean, namely Philolaus of Tar-
entum. Philolaus had studied with some of the expelled Pythagoreans, and he
was interested in number magic and mysticism. But he had been allowed to
write about the ideas of the Pythagoreans, and the book he wrote is supposed
to have been Plato’s source of information on the mathematics of Pythagoras
and the Pythagoreans.

Archytas made it to the top of Tarentum’s politics, he was elected admiral,
never lost a battle, and became the ruler of Tarentum with unlimited power.
But he is supposed to have been an enlightened ruler, who had a deeply rooted
belief in the virtues of philosophy and rationality in politics. He thought that
these forces would lead to enlightenment and social justice.

In spite of his political and military work, he also managed to pay at-
tention to mathematics in general and geometry in particular. He lectured
extensively, Plato studied under his direction in Tarentum.

Another important Greek geometer who studied under Archytas’ direc-
tion was Eudoxus of Cnidus. Eudoxus had ideas which were precursors to
fundamental concepts in our calculus and analysis of today. He probably did
the work contained in Euclid’s Elements, Book V. See Section 4.1.

Archytas’ significant contributions to the didactics of mathematics include
its division into four subjects: Arithmetics constitute the numbers at rest,
Geometry is the magnitudes at rest, Music is the numbers in movement and
Astronomy is the magnitudes in movement. Later the mathematical quadriv-
ium was seen as constituting the seven free arts, jointly with a trivium which
consisted of the subjects Grammar, Rhetoric and Dialectic. These ideas were
important in didactical practice up to our times.

It is told that Plato once became a prisoner of the notorious tyrant of
Syracuse, Dionysus I, who ruled with an iron fist, while at the same time
writing poems and tragedies. Archytas, who was concerned about the safety
of his student and friend, sent a letter to his colleague in Syracuse. In it,
he explained to Dionysus that Plato was one of his students and also a dear
friend, and that he, Archytas of Tarentum who had never yet lost a sin-
gle battle, would not like it if his friend should come to harm.8 This saved
Plato’s life. A quite significant contribution to philosophy from the admiral
in Tarentum.
8 Others say that Archytas sent a warship to Syracuse.
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Archytas solved the problem of doubling the cube by a general construc-
tion of the second continued proportionality between a > b, applied to the
case a = 2b. His marvelous construction uses an analogy to constructions
with straightedge and compass, in the form of finding points in space as in-
tersections of tori, cylinders and cones. We show the situation in Figure 3.17,
with the torus, the cylinder and the cone sketched in the first and the second
octant, anachronistically including coordinate axes.

Fig. 3.17. Archytas’ setup for the construction of the double continued propor-
tionality, by intersecting a cylinder, a cone and a torus.

We now explain Archytas’ 3-dimensional construction of the double con-
tinued proportionality between a > b in Figure 3.18. The whole point of the
construction is to obtain the right triangles in Figure 3.10, without using the
extended version of the insertion principle we employed with our two rulers
in Section 3.8.

One might say that Archytas’ construction appears as a clear cut space-
geometric generalization of constructions with straightedge and compass, em-
ploying higher dimensional versions of the compass.

In order to describe the construction, we introduce, anachronistically, a
Cartesian coordinate system with x, y and z axes. We denote the origin by
A. The following description is a slightly edited and commented version of
the one given by Archytas himself, as related by Proclus in the Eudemian
Summary. Of course Archytas did not use terms like “the xy-plane” and the
like. The situation is visualized in Figure 3.17, while Figure 3.18 shows the
exact geometry of the construction.
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Fig. 3.18. Archytas’ construction of the double continued proportionality, by in-
tersecting a cylinder, a cone and a torus. The torus is shown in the third octant
only, the cone and the cylinder in the first and the second octants.

Let a > b be the two given line segments, let Q be a the point on the
y-axis such that AQ = a. Draw a circle with AQ as diameter in the xy-
plane and a semicircle with the same diameter in the first quadrant of the
yz-plane. Draw a chord AP of length b to the former circle. On this circle also
construct a right cylinder above the xy-plane. The semicircle in the yz-plane
is now rotated about the z-axis from Q towards P . While being rotated the
semicircle meets the cylinder in a moving point which traces out a curve on
the cylinder. In Figure 3.18 this curve is indicated from Q to A. (In other
words, this is the curve of intersection between the cylinder and the torus
produced by rotating the circle.) On the other hand, when the prolongation
of the chord AP is rotated about the y-axis, then it also meets the cylinder
in a moving point, tracing out a curve, which is indicated in the figure from
F through the point C pointing towards P. (This is the curve of intersection
between the cone and the cylinder.) Evidently these two curves, one sloping
upwards from Q and the other sloping downwards from F , will meet in a
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unique point. (In other words, the three surfaces, the torus, the cylinder and
the cone, have exactly one point in common in the first octant.) In Figure
3.18 this is the point denoted by C. Drop the perpendicular from C to the
xy-plane. Denote its foot by D. Now CD of course lies on the cylinder, and
thus D lies on the circle in the xy-plane. The moving semicircle through C
meets the xy-plane in the point B.

Draw the line PH parallel to the x-axis, it intersects AB in the point G.
The line AC meets the circular arc from P to H via R, which P describes as
AP is rotated about the y-axis, in a point E. Now EG is perpendicular to the
xy-plane: Indeed, it is the intersection of the two planes spanned by ABC and
PER, respectively, both of which are perpendicular to the xy-plane. We have
now established all points and lines in the figure, and shown their relevant
properties. The claim is that we have the double continued proportionality

AB : AC = AC : AD = AD : AE

which will solve the problem since AE = AP = b. From what we already
know, it will suffice to show that ∠AED = π

4 , a right angle. In fact, that this
suffices was established in the discussion of Figure 3.10 in Section 3.8.

HP

E

G

Fig. 3.19. HG : EG = EG : PG.

First, from Figure 3.19 we conclude that HG : EG = EG : PG. or in
other words, HG · PG = EG2.

But from Figure 3.20 we find HG·GP = AG·GD since∆DPG ∼ ∆HAG.
Thus we conclude that AG : EG = EG : GD.

We now finally use this information on the detail from Archytas’ con-
struction shown in Figure 3.21.

Indeed, we have that ∆AGE ∼ ∆EGD: They have one angle equal,
namely the right angle at G, and the sides containing it are pairwise pro-
portional. Hence in particular ∠EAD = ∠DEG. But as the corresponding
pair of lines AD and EG of these two angles are perpendicular, so must be
the case for the other pair. Thus DE is perpendicular to AC, as claimed.
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Fig. 3.20. HG · GP = AG · GD
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Fig. 3.21. The final argument.

This completes the proof of Archytas’ construction of the double continued
proportional between a > b.

Having completed Archytas’ argument, we shall now carry it out by meth-
ods which he did not have at his disposal, namely by algebraic geometry.
Putting the two arguments side by side we are better able to appreciate
Archytas’ geometric genius, as well as the power and convenience of algebra
in geometry. One may even sympathize with those in the beginning of the
twentieth century, who resisted the algebraic methods in geometry, feeling
that geometry was defaced and destroyed in this way! Plato, incidentally,
had similar misgivings about the use of mechanical tools in solving prob-
lems like the duplication of the cube. Comparing Archytas’ solution to our
crude and illegal use of the two rulers, a procedure very probably well known
to Archytas, we may safely conclude that these misgivings were shared by
Archytas himself.

The equation of the cylinder in Figure 3.18 is

x2 + y2 = ay,

the equation of the torus is obtained by putting r =
√
x2 + y2, the equation

of this surface is then
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z2 + r2 = ar

Thus the equation for the torus is

x2 + y2 + z2 = a
√
x2 + y2
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Fig. 3.22. The figure shows how we deduce the equation of the cone in Archytas’
construction.

Finally, in (ii) of Figure 3.22 we see how the cone is produced by rotating
the line y = kx, where P = (u, v), so that u2 + v2 = av. Thus b2 = av, and
hence

k =
v

u
=

b√
a2 − b2

When the line in (ii) is rotated about the y-axis, the cone in (i) is gener-
ated. With r given by r2 = x2 + z2, the equation of the cone becomes

y = kr = k
√
x2 + z2

i.e.,

y2 = k2(x2 + z2)

and when the expression for k, namely k = b√
a2−b2

, is substituted into this
equation for the cone, we finally obtain that the cone is given by

x2 + y2 + z2 =
a2

b2
y2

where the only constants occuring are a and b. We are now ready to state
the
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Claim: With α = AC and β = AD we have

a : α = α : β = β : b

We put C= (p, q, r), so that

α =
√
p2 + q2 + r2 and β =

√
p2 + q2

The equation for the torus yields α2 = aβ, which gives the first proportion-
ality.

From the equation for the cylinder we have β2 = aq, while the equation
for the cone yields α = a

b q, so that

bα = β2,

which gives the last proportionality.


