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THE AIRPORT LIMOUSINE EXAMPLE in Chapter 2 illustrates how important the know-
ledge of random distribution of data and the shape of the histogram can be to drawing
statistically sound conclusions. Although we didn’t state it in the example, the assumption
that the data followed a known statistical distribution was inherent in the calculations
of the three contour radii based on the standard deviation of the data values. In this
chapter, we present the technique of fitting a statistical model to a set of observed data
and testing for “goodness of fit.”

Once we represent a set of observed data pictorially by a histogram, and we calculate
measures of central tendency and dispersion, our interest may shift to the shape of the
distribution of data. By constructing the histogram, the data moved from a formless
collection of numbers to a visual representation that has meaning. Frequently in statistical
studies the focus is to attempt to associate the observed data values with a known statistical
model. The result may reveal important information about the population from which
the data were sampled. In fact, if it can be shown that a known distribution “fits” the
data, we can make predictions regarding the population as a whole.

Three steps are necessary to attempt to fit a known statistical distribution to a set of
observed data, assuming a histogram has already been set up. These are as follows:

1. Classify the data as variables or attributes (see Chapter 1) and study the data
characteristics to determine a candidate statistical model.

2. Observe the shape of the histogram to further direct the search for a model that
may fit the data.

3. After deciding on a candidate model, check to see how well the observed data
fits the model by conducting a “goodness of fit” test.

The classification of the data into either variables or attributes narrows your
choices for a candidate statistical model, thereby making a selection somewhat easier.
Statistical distributions fall into one of these two categories, and the sections that follow
present the more commonly encountered distributions of each type. Distributions have
unique graphs or plots (although some are very similar), so it’s helpful to compare such
shapes to the histogram of the observed data. Finally, once a candidate model has been
selected, we follow a procedure to determine how well the model characterizes, or
“overlays,” the histogram of the observed data. The degree, or goodness, of fit is tested

most commonly by what is known as a chi-square test (the Greek symbol used is xz).
The test is so named because the calculation used to compare the observed to the
assumed model closely follows the ideal xz statistical distribution, if the observed data
and the candidate model do not differ significantly. The degree to which they deviate
determines the outcome of the test.
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Tests of Hypothesis

Such a test falls under a category of statistical testing known as “hypothesis testing.” In
the diagnostic tree in Figure 1-3, note that the second branch addresses hypothesis test-
ing. To satisfy the pure-blood statistician who might by chance be reading this, a brief
discussion of tests of hypothesis is presented. Basically, a test of hypothesis begins with
a statement of the hypothesis to be tested. Makes sense so far, right? The hypothesis
might be that a statistic such as the mean, calculated from a set of observed sample
data, differs little from the mean of the population from which the sample was collected.
The problem becomes how to define “differs little.” Fortunately, folks smarter than we
are years ago developed a general solution to this dilemma, and thereby acquired tenure
at their respective institutions. The degree of deviation of the observed from the popula-
tion (or theoretical) statistic is compared to a tabulated value based on the theoretical
distribution appropriate to the test. If the calculated value exceeds the table value, the
conclusion reached is that the observed statistic differs so significantly from the table’s
that the hypothesis test fails, and the observed data therefore does not behave the way
we thought. Well, it’s a bit more complicated than that.

For one thing, you must establish a degree of significance before the test is conducted.
This is usually stated as a percent or decimal fraction, such as 5% (which is probably
the most commonly used value). This significance level is easier to understand if
viewed pictorially. If we look back at the histogram for the limousine service data in
Figure 2-5, also shown in Figure 3-1, we notice that the bulk of the observations cluster
around the center of the bar chart, near the mean value. The histogram is tallest in this
area, representing the higher number of data values. As we move to the right or to the
left of center, the heights of the bars decrease, indicating fewer and fewer observations
the further we deviate from the mean. Now, we draw a smooth line near the tops of the
bars on the histogram as illustrated in Figure 3-1. This curve looks much like the curve
in Figure 3-2 that represents a candidate statistical model.

Of course, the percentage of area under the curve of the candidate model is 100%
and represents the entire population. If we want to select a region representing only 5%
of this area, one option would be to pick a point in the “upper tail” of the curve to the
right of which is 5% of the area. This is illustrated in Figure 3-2. Thus, any calculation
or observation that falls within this relatively small area of the distribution is considered
significantly different than most of the rest of the observations. The table we mentioned
earlier (available in statistics texts and in our Appendix B) is used to determine the value
of the distribution to the right of which is this 5% area.

Statisticians call this type of test a “one-tailed” test, since only one tail of the distri-
bution has been employed. However, we may in some situations want to run a “two-tailed”
test. In these cases, the total significance area is usually divided equally between both tails
of the curve. If we stay with 5%, that means that 2.5% falls in each tail, as shown in
Figure 3-3. The test is a bit more involved, so for now let’s stick with the one-tailed variety.
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[0-7) [7-14) [14-21) [21-28) [28-35) [35-42) [42-49) [49-56) [56-63) [63-70) [70-77) [77-84)
Miles from Dispatch Point

Figure 3-1. Histogram from Figure 2-5 with the bar height curve added

Figure 3-2. A typical one-tailed significance level for a test of hypothesis
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2.5% 2.5%

Figure 3-3. A typical two-tailed significance level for a test of hypothesis

There is one more parameter that must be used to extract the appropriate value
from the table. This is the number of degrees of freedom (you know it’s important if
it’s in bold italics). This is one of the most difficult concepts in statistics to explain to
anyone. Perhaps it is easiest to present it as follows: Recall from Chapter 2 that the
calculation of the standard deviation of a collection of sample values was

J(n)(ZxZ)—(fo
(n)(n-1)

An equivalent form of this expression is

_ 2%y

S=
n-1

where ) (x— X)Z is calculated by first finding the mean X of all » data values, then
subtracting it from each individual data value (represented by x), squaring the results
one at a time, and adding all the n squared results together. The n—1 in the denominator
of the expression is the number of degrees of freedom for the statistic.

Suppose we want to calculate the standard deviation of four values, say 3, 5, 6, and 10.
The mean X of these values is 6. To calculate the standard deviation, we subtract the
mean from each of the four values, as follows:

3-6=-3 5-6=-1 6-6=0 10-6=4
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Now square each of these results:
(-3?=9 (-1’=1 (0)=0 (4) =16

Then sum the four values, yielding 26. Divide by n—1= 3, take the square root of the
result, and the standard deviation is equal to 2.94.

Now let’s explain the degrees of freedom. Notice that the four values found by
subtracting the mean from each observation sum to zero. Therefore, you can take any
three of these differences and obtain the fourth with this knowledge. For example,
knowing the first three differences are —3 , —1, and 0, and the sum of all four is 0, the
fourth difference has to be 4. Since any three of the four differences yield the fourth,
there are three “free” variables, hence three degrees of freedom. For the sample standard
deviation calculation, the number of degrees of freedom is always equal to one less
than the number of observations (i.e., n—1). Another way of stating this is that, since
the sample statistic X was used to estimate the standard deviation, and its value was
obtained from the sample data itself, this fact reduced the number of degrees of freedom
by one. Clear as mud? Good, now we can proceed from shaky ground to the quicksand.

John’s Jewels
The Degrees of Freedom of Flightless Birds

In Chapter 7 we revisit the concept of degrees of freedom when we discuss
experimental design analyses. At that point we state that the number of degrees
of freedom is basically the number of independent variables in a problem less the
number of constraints. For example, consider a bird in an aviary. If the bird can
fly, it can move in any direction of length, width, and height of the aviary, so it
has three degrees of freedom in which to travel. However, think about a flightless
bird in the aviary. It can basically only move across the floor, in two directions
(length and width). It is constrained by its inability to fly. Therefore, it has only
two degrees of freedom (three directions less one constraint). Maybe this makes
the concept a bit easier to understand.

Goodness of Fit Test

Generally speaking, tests of hypotheses have similar characteristics. However, for specific
testing, there are slight variations, and the goodness of fit test is a typical example. After
the candidate distribution model is selected for the goodness of fit test, it is necessary to
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use this model and one or more parameters estimated from the observed data (such as
the mean and standard deviation) to calculate values predicted by the model. These values
are compared to the observed values in intervals of the histogram. The comparison
involves calculating a statistic that is the basis for the chi-square test. This will (perhaps)
become clear when we present the following examples.

Fitting a Normal Distribution to Observed Data

The histogram of limousine service data presented in Figure 3-1 has a shape that we
very commonly encounter in real-world situations, where the values are measured
quantities (variables data). If we trace a smooth curve through the tops of the bars on
the histogram, the resulting shape looks like a bell, so it is known as a bell curve.
Statisticians prefer a more academic term, so the curve is said to represent a normal
distribution. The normal statistical distribution is basic to an understanding of data
mining and analysis. It is a type of continuous distribution, which means that the data
whose histogram is bell-shaped assume continuous, or variables, values. In the case of
the limousine service data, the observations were measured in miles from a point. The
precision of these measurements was limited only to the method of measurement and
the needs of the analyst. In this example, the results were simply rounded to the nearest
mile, but in general they could have been measured to tenths or hundredths of a mile, or
even more precise values. For the purpose of the analysis, this was not necessary, but
the point is that the values could potentially assume any number within the observed
range between 2 and 83 miles. This is why the data are termed continuous.

A continuous statistical distribution like the normal is represented by what is
known as a density function. This is simply an algebraic expression that defines the
shape of the distribution, and may be used to calculate areas under the normal curve
between points on the horizontal axis. These points represent the various values that the
range of the distribution might be expected to assume. In the case of an ideal normal
distribution, the values range, in general, over the entire set of real numbers (both positive
and negative). For most practical data sets, the numbers range from zero to (positive)
infinity. If we integrate the normal density function between any two desired values
within its range, it is possible to determine the area under the curve in that interval. This
is especially useful in testing for goodness of fit. Fortunately, it is not necessary to actu-
ally integrate the horrible looking functional expression to obtain these areas (in fact, it
is impossible to integrate it exactly!). Tables have been developed to accomplish this.
For those stalwart few who wish to see the actual normal density function expression, cast
your eyes below.

_1 ga/mix-w/er
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In the normal density function, UL denotes the mean, 6 denotes the standard deviation,
and x is the variable (e.g., miles traveled). Often | and ¢ are unknown and we estimate
them from the sample data by X and s, respectively. Of course T = 3.14159.

The procedure for testing to see if the limousine data actually fit a normal distribution
is a little involved, so please bear with us. The first step is to calculate the mean and
standard deviation of the original data. These are X =36.56 miles and s = 19.25 miles.
Both these parameters are necessary to determine expected numbers of observations (or
expected frequencies) to compare to the actual observations. The method by which this
is accomplished is to calculate the area in each bar of the histogram. If the top of that
bar was really determined by the curve of the (ideal) normal distribution, then multiply
the result by the total number of observations (in this case 100). The results are com-
pared to the observed frequencies interval by interval to determine the extent of
deviation. However, there is a little rule that you should follow: If in any interval (or
bar) of the histogram, the number of data values expected is less than 5, this interval is
combined with one or more neighboring intervals until the total values are at least 5.
The same values are then combined for the observed frequencies. This rule will be
demonstrated when we calculate the expected frequencies a little later. Table 3-1 sum-
marizes the data from the histogram in Figure 3-1.

Table 3-1. Number of Limousine Pick-Up Points Falling Within Each Mileage Interval
from the Dispatching Location at the Airport

HISTOGRAM INTERVAL (MILES) OBSERVED FREQUENCY (0)

[0-7) 5
[7-14) 7
[14-21) 8
[21 - 28) 11
[28 - 35) 13
[35 - 42) 15
[42 - 49) 14
[49 - 56) 11
[56 - 63) 7
[63 —70) 5
[70 —77) 2
[77 - 84) 2
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The data shown in Table 3-1 can be generated by executing a set of SQL queries. In our
first query we create an initial version of Table 3-1 by forming the intervals of width 7
and by giving each interval an identification number. Query 3 1 accomplishes the task.
Just a reminder: Notice that the table in Query 3 1 is named Table 3 1 rather than
Table 3-1. This is because most implementations of SQL do not allow a hyphen in a

table or field name. The result of Query 3 1 is illustrated in Table 3-2.

Query 3 _1:

SELECT Fix(([Miles])/7) AS [Interval],
(Fix(([Miles])/7))*7 AS LowEnd,
(Fix(([Miles])/7+1))*7 AS HiEnd,
Count([Limo Miles].Miles) AS CountOfMiles
INTO [Table 3 1]

FROM [Limo Miles]

GROUP BY Fix(([Miles])/7), (Fix(([Miles])/7))*7, (Fix(([Miles])/7+1))*7

ORDER BY Fix(([Miles])/7);T

Table 3-2. Result of Query 3_1

INTERVAL LOWEND HIEND COUNTOFMILES
0 0 7 5
1 7 14 7
2 14 21 8
3 21 28 11
4 28 35 13
5 35 42 15
6 42 49 14
7 49 56 11
8 56 63 7
9 63 70 5

10 70 77 2
11 71 84 2

To calculate the frequencies we would expect if the data were exactly normally distrib-
uted, we must either employ the table of areas under the normal curve found in Appendix B
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or use the Visual Basic code in Appendix D. Most forms of this table give the area under the
normal curve from negative infinity up to the desired value. The normal curve used in the
table, however, is called a standardized normal distribution, so that it can be used for any
normal curve, so long as a transformation of variables is accomplished. The standardized
normal curve has its mean at zero and standard deviation equal to one. For our example, the
transformation is accomplished described in the text that follows:

The first interval on the histogram is from 0 to (but not including) 7 miles. If we
overlay a normal distribution onto the histogram, a portion of the curve actually falls in
the negative range to the left of zero. In practice we know we can’t have any distances
less than zero, but we still need to accommodate this very small (theoretical) tail region
when we determine the area under the normal curve up to 7 miles. This area is illus-
trated in Figure 3-4. To use the normal table to determine this area, we need to calculate
the following expression, which represents the transformation of variables:

X=X

S

where x is the right-hand endpoint of the histogram interval, X is the mean of the data,
and s is the standard deviation. For the first interval, this expression is equal to

7-36.56
19.25

=-1.536

This value is called the normal variate, and is used to find the desired area in the
normal table. If we find -1.53 in the table and interpolate for the third decimal place
(which usually isn’t necessary), the corresponding area is 0.0623, or 6.23%. This
means that 6.23% of the area under the normal curve of mileage is to the left of 7 miles.
For 100 observations, this means 6.23 is an expected frequency of occurrence. As a
comparison, in the actual data there were 5 customer calls less than 7 miles from the
limousine headquarters, or 5% of the sample data.

6.23%

. X
0 7 miles X = 36.56 miles

Figure 3-4. Theoretical normal distribution of limousine customer pick-ups,
showing the area under the curve to the left of 7 miles
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The next histogram interval is between 7 and 14, so we need to calculate the area
under the normal curve between these two values. To do this using the normal table, we
would first find the area to the left of 14 by using the procedure outlined above, then
subtract from it the area to the left of 7 (already calculated). The difference would be
the area between 7 and 14. Therefore, the following calculation is first performed:

14-36.56
19.25

=-1.172

The area to the left of this value in the normal table is 0.1206, or 12.06%. By subtract-
ing 6.23% from this area, we obtain the desired area between 7 and 14. This is 5.83%, or
5.83 occurrences for 100 values. Continuing in this manner, Table 3-3 is generated. The last
expected frequency (1.782) may be found by subtracting the sum of all previous expected
frequencies from 100 (in this case).

Table 3-3. Observed and Expected Frequencies of Occurrence of Call Distances (in
Miles) Based on the Sample of 100 Records of the Limousine Service

HISTOGRAM INTERVAL (MILES) OBSERVED FREQUENCY (0) EXPECTED FREQUENCY (E)
<7 5 6.227
[7-14) 7 5.833
[14-21) 8 8.895
[21-28) 11 11.861
[28 —35) 13 13.956
[35—42) 15 14.369
[42 — 49) 14 12.945
[49 — 56) 11 10.289
[56 — 63) 7 7.153
[63 —70) 5 4353
[70—77) 2 2.337
>77 2 1.782

—

Goodness of Fit

51

ﬁ%

*

\
N

%@%



\
é 542.book Page 52 Tuesday, July 31,2001 10:27 PM

Chapter 3

52

SOL/Query

Now let us see how we can generate Table 3-3 using some SQL queries on Table 3-1
along with the standard normal table, StdNormal, described in Appendix B. First, we
use Query 3_2 to calculate the sample mean and standard deviation. Next we execute
Query 3 3 to create a seven column temporary work table called TempWork. The first
column of TempWork is an interval identification number that is used as identify each
interval in sequence. The second and third columns correspond to the information in
Table 3-1. The fourth and fifth columns are the sample mean and standard deviation.
The sixth column is the normal variate, (X— X)/s. The last column is the value from the
StdNormal table for the normal variate. When we execute Query 3 3, it populates the
first six columns of TempWork table and temporarily fills the last column with zeros.
Notice that Query 3_3 extracts data from two different sources (i.e., Table 3 1 and
Query 3_2) without a join condition. Whenever the join condition is omitted, a cross
product is formed between the two sources. Since the result of Query 3 2 is a single
row, we are in effect appending the sample mean and standard deviation to the selected
rows from Table 3 1. Also notice the use of the function “Round(0, 3)” in place of “0”
for the value of StdNorm. We did this so that the data type for StdNorm would be a real
number rather than an integer. Table 3-4 illustrates the contents of TempWork after
executing Query 3_3. It should be pointed out that the last value (2.4648) of the normal
variate in the table is not used, so acts only as a place holder.

Query 3 2:

SELECT Avg(Miles) AS xBar, StDev(Miles) AS s, Count([Miles]) AS n
FROM [Limo Miles];

Query 3 3:

SELECT [Table 3_1].Interval,

[Table 3 _1].LowEnd, [Table 3 1].HiEnd,
[Table 3_1].CountOfMiles,

[Query 3_2].xBar, [Query 3 2].s,
([HiEnd] - [xbar]) / [s] AS Nvariate,
Round(0, 3) AS StdNorm

INTO TempWork

FROM [Query 3_2], [Table 3_1];

ﬁ%
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Table 3-4. Initial Contents of TempWork

INTERVAL  LOWEND HIEND COUNTOFMILES XBAR S NVARIATE  STDNORM
0 0 7 5 36.56 19.2471  -1.5358 0
1 7 14 7 36.56 19.2471  -1.1721 0
2 14 21 8 36.56 19.2471  -0.8084 0
3 21 28 11 36.56 19.2471  -0.4447 0
4 28 35 13 36.56 19.2471 -0.0811 0
5 35 42 15 36.56 19.2471 0.2826 0
6 42 49 14 36.56 19.2471 0.6463 0
7 49 56 11 36.56 19.2471 1.0100 0
8 56 63 7 36.56 19.2471 1.3737 0
9 63 70 5 36.56 19.2471 1.7374 0

10 70 77 2 36.56 19.2471 2.1011 0
11 77 84 2 36.56 19.2471 2.4648 0

Our next task is to update the StdNorm column in TempWork. Query 3 4 accomplishes
this task. Notice the WHERE clause and the use of the Round function to truncate both
values to three decimal places. This assures us of an equality match. Also the StdNormal
table was generated to three decimal places.

Query 3 4.

UPDATE TemphWork, StdNormal
SET TempWork.StdNorm = StdNormal.Area
WHERE Round(Nvariate,3) = Round(StdNormal.x,3);

Now that we have our normal values, we need to calculate the expected frequency
value for each interval. As you may have already observed, the first interval is every-
thing less than 7, and the last interval is everything greater than or equal to 77. All the
intervals between the first and last have specific beginning and ending values. Thus,
to calculate the expected value, we need to write three queries: one query for the first
interval, one query for all intervals between the first and last, and one query for the last
interval. Before we can write the queries, we need to know the lowest interval value
(i.e., 7) and the highest interval value (i.e., 77). Query 3_5 accomplishes this task by
extracting the interval number from the TempWork table.
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Query 3 5:

SELECT Min(Interval) AS Lowest, Max(Interval) AS Highest
FROM TempWork;

Using the lowest interval value found by Query 3 5, we write Query 3_6a to obtain
the expected frequency for the first interval. Notice how the expected frequency is
multiplied by the total number of data values (in this specific example,100) to convert
it to a number of observations, and then rounded to three decimal places.

Query 3 6a:

SELECT TempWork.Interval,
TempWork.LowEnd, TempWork.HiEnd,
TempWork.CountOfMiles AS 0,
Round([StdNorm] * 100, 3) AS E

INTO [Table 3_3]

FROM TempWork, [Query 3 5]

WHERE TempWork.Interval = [Lowest];

Our next task is to calculate the expected frequency for all of the in-between intervals.
Query 3_6b performs this task. Remember that the expected frequency is determined
by subtracting the normal value of the preceding interval from the normal value of the
current interval. We can match these two intervals by equating the number of the current
interval to its preceding interval’s number plus one. To do this we need to join the
TempWork table with itself. To make sure that we only work with the in-between intervals,
we select only those rows from TempWork with an interval number greater than the
lowest but less than the highest.

Query 3_6b:

INSERT INTO [Table 3 3] ([Interval], LowEnd, HiEnd, O, E)

SELECT TempWork.Interval,

TempWork.LowEnd, TempWork.HiEnd,

TempWork.CountOfMiles AS 0,

Round( ([TempWork].[StdNorm] - TempWork 1.StdNorm) * 100, 3) AS E
FROM TempWork, TempWork AS TempWork 1, [Query 3 5]

WHERE ((TempWork.Interval = ([TempWork 1].[Interval] + 1)

And TempWork.Interval > [Lowest]

And TempWork.Interval < [highest]));

To determine the expected frequency for the last interval, we need to subtract the sum
of all preceding expected frequencies (E) from the number of values, n. Query 3 _6c¢ and
Query 3_6d perform this task. Notice in the query the use of the Round function with
which we subtract the normal value from 1, and notice in the WHERE clause how we
select the interval just preceding the highest.
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Query 3 _6¢:
SELECT Sum([Table 3_3].E) AS Sum_Less Last
FROM [Table 3 3];
Query 3_6d:
INSERT INTO [Table 3 3] ([Interval], LowEnd, HiEnd, O, E)
SELECT TempWork.Interval, TempWork.LowEnd, 999 AS HiEnd,
TempWork.CountOfMiles AS 0,
[n] - [Sum Less Last] AS E
FROM TempWork, [Query 3 5], [Query 3 6c], [Query 3 2]
WHERE TempWork.Interval = [Highest];
The combined result of Query 3 _6a through Query 3_6d is shown in Table 3-5.
Table 3-5. Result of Query 3_6a Through Query 3_6d
INTERVAL LOWEND HIEND 0 E
0 0 7 5 6.227
1 7 14 7 5.833
2 14 21 8 8.895
3 21 28 11 11.861
4 28 35 13 13.956
5 35 42 15 14.369
6 42 49 14 12.945
7 49 56 11 10.289
8 56 63 7 7.153
9 63 70 5 4.353
10 70 77 2 2.337
11 77 999 2 1.782
Since we need the number of expected frequencies in each interval greater than or
equal to 5, we first combine all the adjacent intervals whose combined sum is less than
5. In Query 3_7, we save these combined intervals in a table called “Comblnterval.”
The results of Query 3 7 are given in Table 3-6.
55
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Query 3 7:

SELECT [Table 3 3].Interval,

[Table 3 3].LowEnd, [Table 3 3 1].HiEnd,

[Table 3 3].[0] + [Table 3 3 1].0 AS O,

[Table 3 3].[E] + [Table 3 3 1].F AS E

INTO CombInterval

FROM [Table 3 3], [Table 3 3] AS [Table 3 3 1]

WHERE ((([Table 3_3].HiEnd) = [Table 3_3_1].[LowEnd])
AND (([Table 3_3].[E] + [Table 3.3 1].[E]) < 5));

Table 3-6. Result of Query 3 7

INTERVAL LOWEND HIEND 0 E

10 70 999 4 4.119

Those intervals (rows) that were combined in Query 3 7 are replaced with the rows
in the Comblnterval table. To do this we first tag for deletion those rows in Table 3 3
that participated in forming the combined intervals, by setting the interval identification
number to —1 (Query 3_8). Afterward we execute Query 3_9 to delete the tagged rows
(intervals) from the table. Then we run Query 3 10 to append the newly formed combined
interval to Table 3_3. Repeat Query 3_7 through Query 3 10 until no more intervals
can be combined.

Query 3 8:

UPDATE CombInterval, [Table 3 3]

SET [Table 3 3].[Interval] = -1

WHERE ((([Table 3_3].LowEnd) >= [CombInterval].[LowEnd])
AND (([Table 3_3].HiEnd) <= [CombInterval].[HiEnd]));

Query 3 9:

DELETE [Table 3 3].Interval
FROM [Table 3_3]
WHERE [Table 3 3].Interval = -1;

Query 3_10:

INSERT INTO [Table 3 3]
SELECT CombInterval.*
FROM CombInterval;
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Next, we replace Query 3-7 with Query 3_7a and run repeatedly the query sequence

Query 3 7a, Query 3_8, Query 3 9, and Query 3 _10 until no more intervals are combined.
Table 3-7 shows Table 3_3 after the modifications.
Query 3 7a:
SELECT [Table 3 3].Interval,
[Table 3 3].LowEnd, [Table 3 3 1].HiEnd,
[Table 3 3].[0] + [Table 3 3 1].0 AS O,
[Table 3 3].[E] + [Table 3 3 1].E AS E
INTO CombInterval
FROM [Table 3 3], [Table 3 3] AS [Table 3 3 1]
WHERE (([Table 3 3].HiEnd = [Table 3 3 1].[LowEnd])
AND ([Table 3_3].E < 5) AND ([Table 3_3_1].E < 5));
Table 3-7. Table 3 3 After Combining Intervals
INTERVAL LOWEND HIEND COUNTOFMILES (0) EXPECTED FREQUENCY (E)

0 0 7 5 6.227

1 7 14 7 5.833

2 14 21 8 8.895

3 21 28 11 11.861

4 28 35 13 13.956

5 35 42 15 14.369

6 42 49 14 12.945

7 49 56 11 10.289

8 56 63 7 7.153

9 63 999 9 8.472

At this point we have combined all the adjacent intervals whose combined sum is
under 5 or whose individual values are under 5. This leaves us with a table in which we
still might have an interval with an expected frequency less than 5. If we combine this
interval with its adjacent row, the result is an interval frequency greater than or equal to 5.
Thus our next query extracts the row pairs that can be combined to yield intervals greater
than 5. These combined intervals are placed in the table “RemlInterval” as illustrated in
Table 3-8. However, since our example does not have any intervals to combine, the
entries in Table 3-8 are all zeros, but in reality the result of Query 3 11 is empty (no values).
57
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Query 3 11:

SELECT [Table 3 3].Interval,

[Table 3 3].LowEnd, [Table 3 3].HiEnd,
[Table 3 3].0, [Table 3 3].E

INTO RemInterval

FROM [Table 3 3]

WHERE ((([Table 3_3].E) < 5));

Table 3-8. Tuble RemInterval

INTERVAL LOWEND HIEND 0 E

0 0 0 0 0

Combine this remaining interval with its adjacent interval and place the result in the
table “Comblnterval” which is shown in Table 3-9. Again, we show all zeros since our
example produced an empty result.

Query 3 12:

SELECT [Table 3_1].LowEnd, RemInterval.HiEnd,

[Table 3_1].[0] + [RemInterval].[O] AS O,

[Table 3 _1].[E] + [RemInterval].[E] AS E

INTO CombInterval

FROM RemInterval, [Table 3 1]

WHERE ((([Table 3_1].HiEnd) = [RemInterval].[LowEnd]));

Table 3-9. Table ComblInterval

INTERVAL LOWEND HIEND 0 E

0 0 0 0 0

Repeat Query 3_8, Query 3 9, and Query 3_10 to replace those intervals, if any, that
have been combined with the newly combined intervals. The result of Query 3 10 is
given in Table 3-10. Notice in this case that the contents of Table 3-10 are identical to
Table 3-7 because there are no more intervals to combine.
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Table 3-10. Results of Query 3 10
INTERVAL LOWEND HIEND COUNTOFMILES E

0 0 7 5 6.227

1 7 14 7 5.833

2 14 21 8 8.895

3 21 28 11 11.861

4 28 35 13 13.956

5 35 42 15 14.369

6 42 49 14 12.945

7 49 56 11 10.289

8 56 63 7 7.153

9 63 999 9 8.472

Once these values are known, a chi-square (Xz) statistic is calculated by compar-
ing pairwise the observed (O) and expected (£) frequencies, as follows:

2 (0-E)°
S
2 2 2
_ (5-6.227) +(7—5.833) n +(9—8.472)
6.227 5.833 8.472
= 0.892

We find the number of degrees of freedom for the chi-square statistic in this case
by counting the number of terms in the above sum (which is 10), subtracting 2 (repre-
senting the number of parameters needed from the data to calculate the expected
frequencies—specifically the mean and standard deviation), then subtracting 1 (to
account for the use of sample data). The result is of course 7 degrees of freedom. If we
would like less than a 5% chance of reaching the wrong conclusion about the goodness
of fit of the normal distribution, we would choose 0.05 as our significance level for the
test, and either look up the X2 value in the appropriate statistical table in Appendix B,
Table B-2, or use the Visual Basic code in Appendix D. The table value is equal to
14.067. Obviously, the calculated X2 value is much less than this table value, so our
conclusion is that the distance data do appear to follow a normal distribution.
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SOL/Query

Writing an SQL query to calculate the X2 can be accomplished in a relatively straightfor-
ward manner. Query 3_13 uses the Sum function to tally measured differences

between the observed and expected frequencies. Either Query 3 _14a or Query 3_14b can
be used to obtain the x2 value. Query 3 14a looks up the Xz value from the chi-square
statistics table. Query 3_14b uses a Visual Basic function to link to Excel to obtain the

x2 value.
Query 3 _13:

SELECT Sum((([o] - [e]) ~ 2) / [e]) AS ChiSq
FROM [Table 3 2];

Query 3_14a:

SELECT ChiSquare.ChiSq

FROM ChiSquare

WHERE ChiSquare.Percent = 0.05

AND ChiSquare.Degress Of Freedom = 7;

Query 3_14b:

SELECT Chi_Sq(0.05, 7) AS [Chi Sq]
FROM [Query 3 _13];

NOTE In Query 3_14b the FROM clause is not used. However, SQL requires a FROM
clause in all queries.

The results of the X2 test may be used to lend credence to the previous calculations
in Chapter 2, and support the assumption of random distribution of distances. We can
also use the normal distribution to answer questions about the distances. For example,
what percentage of customers could be expected to call for limousine service say, more
than 40 miles from the headquarters at the airport? This question is illustrated in Figure 3-5.
The solution is to find the area under the normal curve to the right of 40 miles. To do
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this, we may find the area to the left of 40 and subtract the result from 100%, using the
normal table. Thus

40-36.56
19.25

=0.1787

The area to the left of this value in the normal table is 0.5709, so the shaded area in
Table 3-3 is equal to 1-0.5709, or 0.4291. Therefore, 42.9% of the customers could be
expected to call for service more than 40 miles from the limousine headquarters.

X = 36.56 hiles 40 miles

Figure 3-5. Theoretical normal distribution of limousine customer pick-ups, showing
the area under the curve to the right of 40 miles

SOL/Query

An SQL query that can be used to obtain the answer to the “more than 40 miles” question is
given in Query 3_15. Notice that there is no join condition, since Query 3 2 is a single
row, and that the Round function is used to assure proper matching.

Query 3 _15:

SELECT round((1.0 - [Area]) * 100, 1) AS Answer
FROM [Query 3 2], StdNormal
WHERE round([X], 3) = round((40.0 - [xBar]) / [s], 3);

61

&—




% é 542.book Page 62 Tuesday, July 31,2001 10:27 PM
Chapter 3

John’s Jewels
The Chance of an Accident Given the Opportunity

I recently had an opportunity to fit a statistical distribution to a set of data. We
were working in the field of risk analysis and were trying to relate a certain acci-
dent risk to the opportunity for the accident to occur. An analogy would be the
following: If you drove your car to work 1,000 times over a period of years, what
is the likelihood that you would have an accident? Of course, the data required to
develop such a model must come from past accident statistics. In our case, these
data were scarce, since the types of accidents we were interested in analyzing
were extremely rare. We ended up plotting the total accidents by years of occur-
rence, using a 7-year interval. The graph of the resulting data looked much like
the curve of the gamma statistical distribution (see Appendix C), as accident
occurrences became more infrequent in recent years. I tried the gamma as my
model and ran a standard chi-square test on the results. They showed the gamma
to be a pretty good fit for the data, so we were then able to use this information to
predict the chance of a future accident.

Fitting a Poisson Distribution to Observed Data

A small retailer maintains a Web site for ordering online. The owner is particularly
interested in the e-commerce sales of one high-profit item. The daily online sales of
each unit of this item are tracked for 75 days, with the results recorded in Table 3-11.
Each number represents the units per day in sales of this item.

Table 3-11. Number of Items Sold per Day for 75 Days

1 3 3 5 4 4 1 3 5 3 9 4 6 4 0

4 5 6 4 0 5 6 6 8 2 4 6 4 2 3

The owner desires to know if sales follow some random statistical distribution,
based on the sample data, so that predictions may be made regarding future sales. First,
a histogram is set up for the data. Since the values represent counts, the data are discrete,
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or based on attributes. Since so many individual values repeat themselves, a frequency
of occurrence may be determined for each value. After the counts are completed, the
histogram appears in Figure 3-6.
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Number of Units Ordered per Day
Figure 3-6. Histogram of daily sales
The shape of this histogram (rising fairly rapidly to a peak, then tapering gradually
to the right) and the nature of the phenomenon being observed, point to a well-known
statistical distribution called the Poisson. A Poisson distribution typically characterizes
the occurrence of a discrete “event,” such as ordering a retail item, when the number of
orders may be counted. However, the “nonoccurrence” of the event makes no sense
(i.e., the number of people who did not order on a given day is unknown and irrelevant).
The Poisson also commonly characterizes arrival and departure phenomena, and the
random spatial distribution of observations such as the number of trees per acre in a
forest, or prairie dog colonies per square mile in a wildlife habitat.
63
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Poisson Sets the Groundwork for Horse Kick Analysis

The great mathematician Simeon Denis Poisson was born in 1781 in Pithiviers,
France. He was first forced to study medicine, but later became a student of the
legendary mathematicians Laplace and Lagrange. During his lifetime, he excelled
in applications of mathematics to astronomy, electricity and magnetism, elasticity,
differential equations, potential theory, and mechanics. He published between
300 and 400 mathematical works. One of the most famous was entitled Recherches
sur la probabilite des jugements... (1837), in which Poisson first introduced to the
world the statistical distribution that still bears his name. Legend has it that one of the
first practical applications of the Poisson distribution was by von Bortkewitch in
1898 (some sources say 1880). He actually employed the distribution to analyze
the deaths due to horse kicks in the Prussian army. He found that, among 10 army
corps over a 20-year period, 122 men had died from being kicked by their horses.
When the number of such deaths per year is plotted against a theoretical Poisson
distribution with mean 0.61 deaths per corps per year (the actual average), they
coincide very closely. A chi-square goodness of fit test on the observed distribu-
tion shows great significance. This example has been used in many statistics texts
over the years. Its relevance has diminished in a practical sense (there aren’t as many
horse corps as there once were), but its importance in the history of statistics, along
with Poisson, is well assured. Incidentally, Poisson died in 1840 near Paris.

But do the sales data really follow a Poisson distribution? To find out, we first need
to know the density function (usually called “mass” function for discrete distributions)
for the Poisson. It is

et

x!

where U is the mean of the distribution (usually estimated as X from the sample data),
x is the count of the number of orders per day (x=1,2,3 K ), €* is the exponential
constant (= 2.71828) raised to the power -y, and x! is “x factorial” (defined as
1.2-3-4.5---x, with 0! defined as equal to 1). Although the expression may look horrible,
it’s easy to calculate on a hand calculator. First, though, we need to know the mean of
the 75 data values (the average number of orders per day). We can add all 75 values and
divide by 75, or take advantage of the work we already expended to develop the histo-
gram. Thus

4.0+4-1+6-2+14-3+18-4+10-5+11-6+3-7+1-8+2-9+1.10+1-12
75

X =

= 4.2 orders per day
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X is an estimate of L. Although it’s not a nice whole number, that’s O.K. It’s usually
quoted as a decimal fraction anyway. (Incidentally, the standard deviation of the 75 values
is 2.27 orders per day.) As a demonstration, let’s calculate the Poisson expression for
x = 6 orders per day, as follows:

e*2(4.2)° (0.0150)(5,489.0317)
6/ 123456

=0.1143

If this number is multiplied by 75, we obtain the number of days out of 75 we
could expect 6 orders, if the distribution of orders per day is exactly Poisson with mean
4.2 orders per day. The result is about 8.5741, or nearly 9 days. If we repeat this proce-
dure for x =0, 1, 2, etc., multiplying each result by 75 as above, we generate Table 3-12.
Now we have expected occurrences to compare to those actually observed in the sam-
ple. Notice that since no days were recorded in the sample when more than 12 orders
were placed, the observed value is 0. However, the theoretical Poisson is an infinite
distribution, so it requires a small estimate even beyond 12. This is equal to 75 less the
sum of all the expected values from 0 to 12, or about 0.0323.

Table 3-12. Observed and Expected Daily Sales Assuming a Poisson Model

NO. OF ORDERS NO. OF DAYS POISSON NO. OF DAYS CUMULATIVE POISSON
PER DAY (X) OBSERVED WITH EXPRESSION  EXPECTED WITH VALUES FROM COLUMN 3
X ORDERS FOR X X ORDERS
0 4 0.01500 1.1247 0.01500
1 4 0.06298 4.7236 0.07798
2 6 0.13226 9.9196 0.21024
3 14 0.18517 13.8874 0.39541
4 18 0.19442 14.5818 0.58983
5 10 0.16332 12.2487 0.75315
6 11 0.11432 8.5741 0.86747
7 3 0.06859 5.1444 0.93606
8 1 0.03601 2.7008 0.97207
9 2 0.01681 1.2604 0.98888
10 1 0.00706 0.5294 0.99594
11 0 0.00269 0.2021 0.99863
12 1 0.00094 0.0707 0.99957
>12 0 0.00043 0.0323 1.00000
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It is again recommended that contiguous expected values be combined to assure
that each expected number of days with x orders is at least 5. The observed days are
combined as well. This results in 7 comparisons of observed and expected values, as
shown in Table 3-13. In this case, only the mean is needed to calculate the Poisson
expression, so the number of degrees of freedom is equal to 7 —1—1 = E. Finally, chi-square
is calculated as before, from the combined intervals in Table 3-13:

2

. (8-5.85)° (6-9.92)° (8-9.94)°

+ +K +
5.85 9.92 9.94

=4.621

For a 5% significance level and 5 degrees of freedom, the tabulated %> =11.070.
Since the calculated value is less than the table value, the distribution of orders per day
is judged to be Poisson.

Table 3-13. Table 3-12 After Combining Intervals

NO. OF ORDERS NO. OF DAYS OBSERVED  POISSON EXPRESSION NO. OF DAYS EXPECTED

PER DAY (X) WITH X ORDERS FOR X WITH X ORDERS
<1 8 0.07798 5.8485

2 6 0.13226 9.9196

3 14 0.18517 13.8874

4 18 0.19442 14.5818

5 10 0.16332 12.2487

6 11 0.11432 8.5741

>7 8 0.13253 9.9401

With this information, we might want to ask the following questions:

* How many units of the item should be kept in daily inventory to meet 95% of
the demand?

To answer this question, we can accumulate the Poisson values in the third column
of Table 3-12 until we reach a total of 0.95. The cumulative Poisson values are given in
the last column of Table 3-12. This occurs between 7 and 8 orders per day, so holding 8
items in daily inventory would satisfy at least 95% of the demand. We can also obtain

the answer to this question by executing Query 3_16, which is shown on the next page.

%
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SOL/Query
Query 3_16:

SELECT Min([Table 3_12].[Orders Per Day]) AS [Daily Inventory]
FROM [Table 3_12]
WHERE [Table 3_12].[Cumm Poisson] >= 0.95;

* What percent of daily sales fall between 2 and 6 units per day?

A similar approach may be used to answer this question. Add the Poisson values
from 2 through 6 to yield 0.78949. Thus about 79% of daily sales fall between 2 and 6
units. This can also be obtained by executing Query 3 17.

SOL/Query
Query 3 17:

SELECT Sum([Table 3_12].[Poisson])*100 AS [Percent of Daily Sales]
FROM [Table 3_12]

WHERE [Table 3_12].[Orders Per Day] Between 2 And 6;
* Is there a justification for keeping more than 15 units per day in inventory?

To answer this question, we need to calculate the Poisson expression for x = 13, 14,
and 15, which we don’t have yet. These will be very small numbers, as shown below:

e*? (4. )13

———>— =0.0003047
13!

e*? (4 )14

———2 - =0.0000914
14!

e*? (4. )15

———=— =0.0000256

15!

From Table 3-12, we know the chance that the daily orders are less than or equal to
12 is the sum of the Poisson expression from 0 through 12, or 0.99957. Adding the
three values above brings this total to 0.99999, so the likelihood of orders of more than
15 units in a day is 1-0.99999 = 0.00001, or 0.001% (a very slim chance). We can

obtain this result by running Query 3_18. The Poisson function is defined in Appendix D.
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SOL/Query
Query 3 _18:

SELECT

Round(1 - ([Cumm Poisson] + Poisson(13,4.2) +

Poisson(14,4.2) + Poisson(15,4.2)), 5) AS [More than 15 units]
FROM [Table 3 12]

WHERE [Table 3_12].[ Orders Per Day] = 12;

Fitting an Exponential Distribution to Observed Data

A service company maintains an Internet Web site to attract potential customers. The
webmaster is presently tracking the elapsed time (in minutes) between successive
“hits” on the site. Fifty observations during the day generated the data in Table 3-14.

Table 3-14. Fifty Random Observations of Elapsed Times (in Minutes) Between “Hits”
on an Internet Web Site

17 20 10 9 23 13 12 19 18 24
12 14 6 9 13 6 7 10 13 7
16 18 8 13 3 32 9 7 10 11
13 7 18 7 10 4 27 19 16 8
7 10 5 14 15 10 9 6 7 15

A histogram may be set up for these observations, as shown in Figure 3-7. We’ve
used a convenient interval width of 5 minutes, again with the left-hand endpoint inclu-
sive and the right-hand endpoint exclusive for each interval.

We note from the histogram that there were two occurrences where the time
between successive hits was less than 5 minutes. The most representative elapsed time,
however, appears to be between 5 and 20 minutes. The mean is calculated by summing
the 50 observations and dividing the result by 50. This yields X =12.32 minutes as the
average time between “hits.” Since the data are continuous (variables data), an appro-
priate model should be selected from among the continuous models available. At first
glance, the data values seem to be exponentially decreasing. Consequently, an expo-
nential distribution is chosen initially to characterize the data. The density expression
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[0-5)
Figure 3-7. Histogram of times between hits from Table 3-14

for such a model is defined below in terms of the estimated mean X and the random
variable x:

1 v

—e %( , x=20

X

However, this is not the most convenient expression to yield the expected frequen-
cies. In practice, we are required to integrate the above expression and multiply by 50
(the number of observations) to obtain the expected frequency in any particular interval
of the histogram. Instead of that cumbersome approach, we can use the following
expression instead:

50(1— ey)

This yields the cumulative expected frequency at any point (x value) on the histogram.
The expression in parentheses is obtained by integrating

1%
X

from O to x. It is known as the cumulative exponential distribution function.
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To use it, we begin with the first interval from 0 to 5. Substituting X =5 and
X =12.32 into the cumulative distribution function, we obtain

50(1— e’512-32) ~16.68

This is the expected number of observations between 0 and 5 minutes. Next we cal-
culate the expected number of observations between 0 and 10 minutes, as shown below:

50 (1— e’%-sz) =27.79

By subtracting the expected number between 0 and 5 minutes from the expected
number between 0 and 10 minutes, we obtain the expected number between 5 and 10
minutes, as follows:

27.79-16.68=11.11

Proceeding in this manner, we can generate Table 3-15.

Table 3-15. Observed and expected frequencies of times between successive “hits”

HISTOGRAM INTERVAL OBSERVED FREQUENCY EXPECTED FREQUENCY
[0 - 5) 2 16.68
[5—10) 17 11.11
[10 - 15) 16 7.41
[15 - 20) 10 4.94
[20 - 25) 3 3.29
[25 - 30) 1 2.19
[30 - 35) | 146
>35 0 2.92
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Combining expected frequencies to insure each interval has a total of at least 5, we
obtain Table 3-16. It also shows the Xz terms for each resulting interval.

Table 3-16. Calculation of Terms for the X2 Statistic

2

HISTOGRAM INTERVAL OBSERVED FREQUENCY (0) EXPECTED FREQUENCY (E) (OiTE)
[0-5) 2 16.68 12.920
[5 - 10) 17 11.11 3.123
[10 - 15) 16 7.41 9.958
[15-25) 13 8.23 2.765
>25 2 6.57 3.179

The X2 statistic is the sum of the last column in Table 3-16, or about 31.94. The
number of degrees of freedom is equal to 5 intervals (from Table 3-16) less one param-
eter (the mean) less one, or 3. For a 5% significance level and 3 degrees of freedom, the
table X2 value is 7.815. Since the calculated value exceeds the table value, we conclude
that the distribution of times between successive “hits” is significantly different from
the exponential distribution. (That’s statistician jargon to simply say “it didn’t fit.””) We
therefore might want to try a different model for better characterization. It turns out that
a gamma distribution of the form

0.00162x>*°g %3

is a reasonably good fit. This could have been foreseen from the original histogram,
since the shape was not continually decreasing (a characteristic of the exponential dis-
tribution). Rather, it started low, rose to a maximum, then tapered down to the right.

Conclusion

There are many distributions, either discrete or continuous, that are candidates for sample
data characterization. The nature of the data and shape of the histogram are clues that
help guide the data miner toward a possible model. The xz test is then helpful in com-
paring the observed data distribution to a theoretical model. In Appendix C we present
a list of some of the more common distributions and their characteristics, in a table format
for easier use. There are many models available. Please understand that in some cases
the mechanics of calculating expected frequencies for certain models might be quite
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complicated, unless tables or cumulative distribution expressions are available. In addition,
some of the distributions presented (such as Xz’ F, and Student’s #) are more commonly
associated with hypothesis testing than with characterizing data sets. Their density

function expressions are pretty intimidating, as you can see from the table in Appendix C.

John’s Jewels
The Godfather of Statistical Distributions

"1l tell you something you probably won’t believe. There are dozens of statistical
distributions, both discrete and continuous. However, there is one umbrella distri-
bution that can be used to derive any of these known distributions. It is called the
H function distribution. By substituting appropriate values for its parameters, we
obtain the binomial, the Poisson, the normal, the exponential, and in fact any
other statistical distribution, discrete or continuous. The procedure for accom-
plishing this, however, is quite complex, so the H function is little known and
rarely encountered. It’s like the godfather of the statistical family of distributions.

T-SQL Source Code

There are three T-SQL source code listings for performing the chi-square goodness
of fit test for the normal distribution described in this chapter. The first listing is called
Make Intervals. Make Intervals takes a table of values, groups the values based on the
range (interval width), and counts the number of values within each interval. The second
listing is called Combine Intervals. Combine Intervals takes the result of Make Intervals,
finds those intervals with a count value less than 5, and combines these smaller intervals
with respect to their adjacent intervals until all intervals have a count greater than

or equal to 5. The last listing is called Compare Observed And Expected.
Compare_Observed And Expected takes the results of Combine Intervals and
performs the statistical calculations necessary to compare the observed values to

the expected values. Following the procedure listings is a section illustrating the

call statements to each procedure with parameter specifications.
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Make Intervals
SET QUOTED_IDENTIFIER OFF
0]
SET ANSI_NULLS OFF
0]
CREATE PROCEDURE Make Intervals
@Interval Size smallint = 7,
@SourceTblName VarChar(50) = '[Limo Miles]',
@SourceColName VarChar(50) = '[Miles]’',
@ResultTblName VarChar(50) = '[Table 3 1]
AS
/************************************************************/
/* */
/* MAKE INTERVALS */
/* */
/*  This procedure takes a table of values, groups the */
/* values into intervals of a specified width, and then */
/* counts the number of values within each interval. */
/* */
/* INPUTS: */
/*  SourceTblName - table containing sample data */
/*  SourceColName - column containing sample data values  */
/*  ResultTblName - table to receive intervals */
/* */
/* NOTE: */
/* The result table has four columns: */
/*  Interval - interval ID number begins with zero */
/*  LowEnd - lower bound of interval */
/*  HiEnd - upper bound of interval */
/*  ResultColName - (see INPUTS above) */
/* */
/************************************************************/
/* Clear the result table */
EXEC('DELETE FROM ' + @ResultTblName)
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/* This query forms the intervals */
EXEC('INSERT INTO '+ @ResultTblName +
"SELECT Floor((' + @SourceColName + ')/' +
@Interval Size + ') AS Interval, ' +
"(Floor((" + @SourceColName + ')/' + @Interval Size +
"))*'+@Interval Size + ' AS LowEnd, ' +
"(Floor((' + @SourceColName + ')/' + @Interval Size +
"+1))*' + @Interval Size + 'AS HiEnd, ' +
"Count(" + @SourceTblName + '.' + @SourceColName +
") AS CountOf ' +
'"FROM ' + @SourceTbIName + ' ' +
"GROUP BY Floor((' + @SourceColName + ')/' +
@Interval Size + '), ' +
"(Floor((' + @SourceColName + ')/' + @Interval Size +
"))*' + @Interval Size + ', ' +
"(Floor((' + @SourceColName + ')/' + @Interval Size +
"+1))*' + @Interval Size + ' ' +
'ORDER BY Floor((' + @SourceColName + ')/' +
@Interval Size + ")")
@0
SET QUOTED_IDENTIFIER OFF
€0
SET ANSI_NULLS ON
0]
Combine _Intervals
SET QUOTED_IDENTIFIER ON
a0
SET ANSI_NULLS ON
€0
CREATE PROCEDURE Combine Intervals
@Src1TbIName VarChar(50) = 'Limo Miles',
@SrciColName VarChar(50) = 'Miles',
@Src2TblName VarChar(50) = 'Table 3 1',
@RstTblName VarChar(50) = 'Table 3 3'
AS
74
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/************************************************************/
/* */
/* COMBINE INTERVALS */
/* */
/*  This procedure takes the result table from the */
/* Make Interval procedure and combines those intervals */
/* with an expected frequency less than 5 with their */
/* adjacent intervals until all intervals have values */
/* greater than or equal to 5. */
/* */
/* INPUTS: */
/*  SrciTbIName - table name for sample data */
/*  SrciColName - column name for sample data */
/*  Src2TbIName - result table name from Make Interval */
/*  RstTblName - result table name from combined interval */
/* */
/************************************************************/
/* Local Variables */
DECLARE @Q Varchar(500) /* Query string */
DECLARE @Xbar Float /* Sample mean */
DECLARE @SD Float /* Sample Standard deviation */
DECLARE @N Int /* Number of sample data values */
DECLARE @ID Int /* Interval counter */
DECLARE @LO Int /* Lower bound of interval being combined */
DECLARE @HI Int /* Upper bound of interval being combined */
DECLARE @Lowest Int /* Lower bound of all intervals */
DECLARE @Highest Int /* Upper bound of all intervals */
DECLARE @SumO Int /* Sum of the sum of observed vallues */
DECLARE @SumE Float /* Sum of the expected frequencies */
DECLARE @Sum_Less Last Float /* Sum E's except last one */
/* SETUP FOR INTERVALS */
/* Obtain sample mean and standard deviation */
SET @ = 'SELECT Avg(Convert(Float, [' + @SrciColName + '])) AS Xbar, ' +

"StDev(["' + @SrciColName + ']) AS SD, ' +

"Count([" + @SrciColName + ']) AS N ' +

"INTO ##TempXbar_SD N ' +

"FROM [' + @SrciTblName + '] '
EXEC(@Q)
SELECT @Xbar = Xbar, @SD = SD, @N = N FROM ##TempXbar SD N
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/* Establish intermediate work table */
CREATE TABLE ##TempWork (Interval Int,
LowEnd Int, HiEnd Int, CountOf Int,
Xbar Float, SD Float, NVariate Float, StdNorm Float null)

/* Populate the work table */
SET @0 = "INSERT INTO #t#TemphWork (Interval, LowEnd, HiEnd, ' +
"CountOf, Xbar, SD, NVariate, StdNorm) ' +
'SELECT Interval, LowEnd, HiEnd, CountOf, ' +
str(@Xbar,8,3) + ' AS Xbar, ' +
str(@sD,8,3) + 'AS SD, ' +
"(HiEnd - ' + str(@xbar,8,3) + ')/' +
str(@sD,8,3) + ' AS Nvariate, 0.0 AS StdNorm ' +
"FROM [' + @Src2TbIlName + ']
EXEC(@Q)

/* Update work table with Standard Normal */
UPDATE ##TempWork
SET StdNorm =
(Select Area FROM StdNormal
WHERE Str(Nvariate,9,3) = Str(StdNormal.X,9,3))

/* Get lowest, highest interval values */
SELECT @Lowest = Min([Interval]),
@Highest = Max([Interval])
FROM ##TempWork

/* Establish table of observed (0) and */

/* expected frequencies (E) and insert */

/* the first interval */

SET @Q = 'SELECT ##TempWork.Interval As Interval, ' +
"##TempWork. LowEnd AS LowEnd, ' +
"##TempWork.HiEnd AS HiEnd, ' +
'#HiTempWork.CountOf AS 0, ' +
'##Temphork. StdNorm * ' + str(@N,8,1) + ' ASE ' +
"INTO ##TempTable3 3 ' +
'FROM ##TempWork ' +
"WHERE ##TemplWork.Interval = ' + Convert(Varchar(20), @Lowest)

EXEC(@Q)
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/* Calculate the expected frequency for */
/* all of the in-between intervals */
SET @Q = "INSERT INTO ##TempTable3 3 (Interval, LowEnd, HiEnd, O, E) ' +
'SELECT ##TempWork.Interval AS Interval, ' +
'#HiTempWork. LowEnd AS LowEnd, ' +
"##Temphork .HiEnd AS HiEnd, ' +
"##Temphork.CountOf as 0, ' +
' (##TempWork.StdNorm - #ffTempWork 1.StdNorm) * ' +
str(an,8,1) + ' AS E ' +
"FROM ##TempWork, ##TempWork ##TempWork 1 ' +
"WHERE ##TempWork.Interval = (##TempWork 1.Interval + 1) ' +
'AND #ffTempWork.Interval > ' + Convert(Varchar(20), @Lowest) + ' ' +
'AND ##TempWork.Interval < ' + Convert(Varchar(20), @Highest)

EXEC(@0)

/* Sum all the preceding expected frequences (E) */
/* before appending the last interval */
SELECT @Sum_Less Last = Sum(E) FROM ##TempTable3 3

/* Determine expected frequency for last interval */
/* and then append the last interval */
SET @Q = "INSERT INTO ##TempTable3 3 (Interval, LowEnd, HiEnd, 0, E) ' +
'SELECT ##TempWork.Interval AS Interval, ' +
"##Temphork.LowEnd AS LowEnd, ' +
'999 AS HiEnd, ' +
'#HiTempWork.CountOf as 0, ' +
Convert(Varchar(20), @N) + ' - ' +
str(@Sum Less last,8,3) + ' AS E ' +
'FROM ##TempWork ' +
"WHERE ##TempWork.Interval = ' + Convert(Varchar(20), @Highest)

EXEC(@Q)
/* COMBINE INTERVALS */

/* If result table exists, then drop it */
IF exists (SELECT id FROM ..sysobjects
WHERE name = @RstTblName)
Begin
SET @ = 'DROP TABLE [' + @RstTbIName + ']’
EXEC(@Q)
End
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/* Create the result table */

SET @Q = 'CREATE TABLE [' + @RstTblName + '] (Interval Int, '+
"LowEnd Int, HiEnd Int, O Float, E Float)'

EXEC(@Q)

/* Define the cursor and the local */
/* variables to receive the row values */
DECLARE Cra INSENSITIVE SCROLL CURSOR
FOR SELECT Interval, LowEnd, HiEnd, O, E
FROM ##TempTable3 3
ORDER BY Interval
DECLARE @Intvi Int, @Lowl Int, @Hi1 Int, @01 Float, @E1 Float

OPEN Cr1

/* Set cursor to first record */
FETCH NEXT FROM Cri
INTO @Intvi, @Lowl, @Hi1, @01, @E1

/* Initialize */
SET @ID = 0

/* Go through the table and combine those */
/* intervals that have a count less than 5 */

WHILE @@FETCH Status = O
Begin
If @1 >= 5
Begin
/* Do not combine, just copy over */
/* the interval and move cursor */
/* ahead one row and get next row. */
SET @ = 'INSERT INTO [' + @RstTblName + '] ' +
'VALUES(' + str(@ID,8,0) + ', ' +
str(@Low1,8,0) + ', ' +
str(@Hi1,8,0) + ', ' +
str(@01,12,5) + ', ' +
str(@1,12,5) + ')’
EXEC(@Q)

SELECT @ID = @ID + 1

FETCH NEXT FROM Cr1
INTO @Intvi, @Lowl, @Hil, @01, @FE1
End
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Else

Begin
/* Combine the two or more intervals into */
/* one interval until we have @Sumk >= 5, */
/* also remember low point of this interval */
SELECT @LO = @Lowl
SELECT @SumO = 0.0
SELECT @SumE = 0.0

While (@@Fetch Status = 0 and @SumE < 5)
Begin

SELECT @SumO = @SumO + @01

SELECT @SumE = @SumE + @E1

SELECT @HI = @Hi1

FETCH NEXT FROM Cr1
INTO @Intvi, @Lowl, @Hi1, @01, @E1
End

/* Did we exit the loop */

/* because End-Of-Table? */

If @@Fetch Status <> 0 and @SumE < 5

Begin
/* Combine with the last row since */
/* there are no more intervals to */
/* combine to get a value >= 5 */
SET @ = 'UPDATE [' + @RstTbIName + '] ' +
"SET 0 = 0 + ' + str(@5um0,12,5) + ', ' +
'"E=E+ ' + str(@umE,12,5) + ', ' +
'HiEnd = ' + str(@HI,8,0) + ' ' +
"WHERE HiEnd = ' + Convert(varchar(20), @LO)
EXEC(@Q)

+

End
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Else

Begin
/* Save the combined interval */
SET @Q = "INSERT INTO [" + @RstTblName + '] ' +
"VALUES(" + str(@ID,8,0) + ', ' +
str(@Lo,8,0) + ', '+
str(@HI,8,0) + ', ' +
str(@sum0,12,5) + ', ' +
str(@Sume,12,5) + ')
EXEC(@Q)

End

End
End /* End While loop */

Close Cr1
Deallocate Cri

/* Replace CombInterval with the RemInterval */
Delete FROM [CombInterval]
INSERT INTO [CombInterval]

SELECT * FROM RemInterval

GO

SET QUOTED_IDENTIFIER OFF
GO

SET ANSI_NULLS ON

GO

Compare Observed And Expected

SET QUOTED IDENTIFIER OFF
GO

SET ANSI_NULLS ON

GO

CREATE PROCEDURE [Compare Observed And Expected]
@Alpha Float = 0.05,

@v Int = 7,

@Src1TblName VarChar(50) = 'Table 3 3'

AS
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/************************************************************/
/* */
/* COMPARE OBSERVED AND EXPECTED FREQUENCIES */
/* FOR A GOODNESS OF FIT */
/* TO THE NORMAL DISTRIBUTION */
/* */
/*  This procedure takes the result table from the */
/* Combine Intervals procedure and determines whether or */
/* not the data fits a normal distribution. This is */
/* accomplished by performing a Chi-square test between the */
/* observed frequencies and the expected frequencies. */
/* */
/* INPUTS: */
/*  SrciTblName - result table from Combine Intervals */
/* */
/* TABLES: */
/*  TableChiSQ - Chi square values */
/* Contents: */
/* CalcChiSq - float, calculated chi square */
/* TableChSq - float, table value of chi square */
/*  ChiSquare -- the statistical table of Chi Squares. */
/* Contents: */
/*  Alpha - significance level */
/* v - degrees of freedom */
/* ChiSq - chi square for Alpha and v */
/* */
JFRROolollolllooololoolksllcoolololokskelskioloolololokolksliolokoiololoksfolsksolokokokok /
/* Local Variables */
DECLARE @CalcChiSq float /* Calculate Chi Square */
DECLARE @TableChiSq float /* Table Chi Square value */
/* Calculate Chi Square */
EXEC('SELECT Sum(Power(([0]-[E]),2)/[E]) AS V ' +

"INTO ##TmpChiSQCalcTable ' +

"FROM [' + @SrciTbIName + '] ")
SELECT @CalcChiSq = V

FROM ##TmpChiSQCalcTable

81




\
é 542.book Page 82 Tuesday, July 31,2001 10:27 PM

Chapter 3

/* Look up the Chi Square table value */
EXEC('SELECT ChiSquare.ChiSq AS TableChiSq ' +
"INTO ##TmpChiSQTblTable ' +
"FROM ChiSquare ' +
"WHERE ((ChiSquare.[Percent]=' + @Alpha + ') ' +
'"AND (ChiSquare.Degress Of Freedom=' + @v + '))")
SELECT @TableChiSq = TableChiSq
FROM ##TmpChiSQTblTable

/* Save the Chi Square values, */
/* but first clear the table */
DELETE [ChiSq For Data]
INSERT INTO [ChiSq For Data]

SELECT @CalcChiSq, @TableChiSq

GO

SET QUOTED IDENTIFIER OFF
GO

SET ANSI_NULLS ON

GO

Procedure Calls

Below are the call statements for calling the procedures Make Intervals,
Combine_Intervals, and Compare Observed And Expected.

DECLARE @RC int

DECLARE @Interval Size int

DECLARE @SourceTbIName varchar(50)

DECLARE @SourceColName varchar(50)

DECLARE @ResultTblName varchar(50)

EXEC @RC = [CH3].[dbo].[Make Intervals] @Interval Size=7,
@SourceTblName="[Limo Miles]', @SourceColName="'[Miles]',
@ResultTblName="[Table 3 1]'

82




\
é 542.book Page 83 Tuesday, July 31,2001 10:27 PM é

Goodness of Fit

DECLARE @RC int

DECLARE @Src1TblName varchar(50)

DECLARE @Src1ColName varchar(50)

DECLARE @Src2TblName varchar(50)

DECLARE @RstTb1lName varchar(50)

EXEC @RC = [CH3].[dbo].[Combine Intervals] @SrciTbIName ='Limo Miles',
@SrciColName="'Miles",

@Src2TbIName ='Table 3 1', @RstTblName='Table 3 3'

DECLARE @RC int

DECLARE @Alpha float

DECLARE @v int

DECLARE @Src1TblName varchar(50)

EXEC @RC = [CH3].[dbo].[Compare Observed And Expected]
@Alpha=0.05, @v=7, @SrciTblName='Table 3 3'
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