
1

CHAPTER 1

Fundamentals of
Wireless Development

REGARDLESS OF THE SUBJECT, having a firm grasp of the fundamentals is crucial.
Often, it’s what distinguishes the professional from the amateur. Also, a deep
understanding of the fundamentals may enable you to make an important contri-
bution to the state of the art. More importantly, you’re better prepared to fix
something in your own work when it goes wrong.

This chapter reviews the fundamentals of Wireless Web development, beginning
with the basics, including covering networks, client-server relationships, markup
languages, and even a few words on how you go about writing software. You’ll also
be introduced to the wireless application that is built throughout this book.

I encourage you to read this chapter, even if you’re familiar with some of the
material because you may find that it helps you expand your understanding of the
material, or that it presents things in a different light. If you find the material’s
already familiar to you, so much the better: you’ll read it that much more quickly!

The Network

Although it’s hard to believe, the notion of pervasive network computing is a rela-
tively new concept. As recently as five years ago, most computers were on small,
closed networks, or they didn’t talk to each other at all.

As you develop Wireless Web applications, it’s important to have at least a
nodding acquaintance with how your creations flow across the network between
service provider and user. Of course, you don’t often have to worry about the indi-
vidual bits and bytes as they fly through the air, but you’ll want to have a basic
understanding of how a network moves data from place to place.

�����������	
�����	����	��������������������������

Chapter 1

2

Protocols

Today’s computers are connected via networks that enable applications that run
on different computers to pass data, including documents such as Web pages,
movie clips, sounds, or application-dependent information such as database
records, user authentication, or electronic mail.

Computers on a network (often simply called hosts) operate according to a
well-defined specification called a protocol. Following a protocol ensures that dif-
ferent vendors’ computers and applications can talk to each other, a crucial part
of a network’s success. Protocols describe the format of the individual messages,
or packets, passed between applications. There’s a dizzying array of network pro-
tocols. These include the ubiquitous Transport Control Protocol / Internet Protocol
(TCP/IP), which is the backbone of the Internet, along with protocols such as
Apple’s AppleTalk, Microsoft Windows NetBIOS, and others. Fortunately, in most
cases, you don’t need to know the details behind the protocol you use, because the
applications and operating system you use hide the protocol’s implementation.

Most protocols are designed for use on a packet-switched network. In a
packet-switched network, the individual messages between computers are broken
up into small pieces called packets, and each packet is sent one at a time. In these
networks, some of the protocols are actually responsible for describing how
computers can split data into packets, how computers should put the packets
back together, and what to do when a computer discovers that some of the pieces
are missing. In contrast, a few networks are circuit switched. In a circuit-switched
network, the two computers exchanging data have a dedicated connection for the
lifetime of their conversation. The existing telephone network behaves as a circuit-
switched network; you pick up the handset, make a phone call, and for the duration
of your call, you’re occupying a single circuit.

Protocols can be layered, so that one protocol uses the capabilities provided
by another protocol. When system designers do this, it is said that the protocol
that uses the other protocol’s features is above, whereas the protocol providing the
base capabilities is below. For example, the TCP/IP protocol can sit above the
Ethernet protocol, which defines how computers can use electrical signals to
transmit data across wires. When protocols are layered such as this, each protocol
can build on the capabilities of the one below. Often, you’ll see pictures such as
that shown in Figure 1-1, which shows that the HyperText Transfer Protocol (HTTP)
sits on top of the Transmission Control Protocol, which sits on top of Internet
Protocol. (You’ll hear more about HTTP in the section “The HyperText Transport
Protocol.”) When talking about a group of protocols layered like this, the group is
often referred to as a stack because it visually resembles a stack of objects.

Layering protocols has several advantages. Chief among these is that when
applied properly, a given protocol—say, TCP/IP—can be used on top of several

�����������	
�����	����	��������������������������

Fundamentals of Wireless Development

33

other protocols. For example, TCP/IP can run on top of both the Ethernet and
Point-to-Point (PPP) protocols, enabling computers to use the same network
protocols to talk over different physical networks such as Ethernet and phone
lines. By doing this, each protocol can provide specific features, and the overall
stack can offer a suite of features through the protocols it contains.

Fortunately, you don’t often have to concern yourself with the details of a
protocol, unless you’ll be actually writing the software that implements the protocol.
What you will want to understand, however, are the kinds of messages the protocol
exchanges, and how these messages relate to what you need to do. For example,
HTTP provides messages for receiving a document from a host, and sending a
document to a host. You certainly don’t want to use the former message to send data!

Many protocols distinguish between a computer that provides a datum, called
a server, and a computer that consumes that datum, called a client. These protocols
are called client-server protocols to reflect this. Client-server protocols are often
used when the data being accessed is stored in a central repository, or when there’s
other obvious imbalances between one kind of host and another on the network.
Figure 1-2 shows a typical client-server relationship, in which the client first asks
the server for a document, and then the server returns the contents of the
requested document.

In addition to clients and servers, a computer may play a third role in a protocol:
that of a gateway. A gateway bridges a gap, such as between networks or different
protocols, between the client computers and the server. Figure 1-3 shows a client-
server relationship including a gateway.

Figure 1-1. The HyperText Transfer Protocol

�����������	
�����	����	��������������������������

Chapter 1

4

Figure 1-2. A client-server relationship

Figure 1-3. A client-server relationship via a gateway

�����������	
�����	����	��������������������������

Fundamentals of Wireless Development

55

A special kind of server called a proxy server is also a gateway that acts as a client
when talking to the server, and as a server when talking to its clients. Clients seeking
a datum make a request of the proxy, which in turn forwards the request to the
server, called the origin server, and then returns the response. (The name proxy
defines the proxy server’s responsibility as a host acting on behalf of other hosts,
the clients themselves.) Proxy servers are often used to provide additional pro-
cessing of server responses for clients, or to lessen the number of client requests a
server has to answer. Some gateways perform these functions as well as translating
between one protocol and another, blurring the distinction between proxy servers
and gateways. I’ll use the terms interchangeably, choosing to call a server a gateway
to emphasize it’s protocol translation or network bridging features, and calling the
server a proxy for you to think more about what it does on behalf of the server or
client. Figure 1-4 shows a client-server relationship including a proxy server.

Figure 1-4. A client-server relationship via a proxy server

�����������	
�����	����	��������������������������

Chapter 1

6

Anatomy of a Protocol

Let’s turn our attention from generalities to a specific protocol: the HyperText
Transfer Protocol (HTTP). As you’ll soon see, HTTP plays an integral role within
the Wireless Web.

Evolving from a research effort to speed the exchange of scientific documents,
HTTP has become the workhorse of the World Wide Web. In practice, knowing
how HTTP works enables you to understand how WAP handles sending informa-
tion from the handset to the server, how phones cache pages for fast access, and
other details.

With HTTP, clients send a message to make a request of a server. In turn, the
server processes the request and responds with its own message. While HTTP is a
general-purpose protocol, the lion’s share of HTTP client requests are from clients
seeking documents and the server’s response message is the document sought by
the client. Each message includes a unique identifier on the remote server called
Universal Resource Identifier (URI) of the document the client is seeking.

The request message itself has several parts. The request method specifies
what the client is asking the server to do, and includes both a URI and the version
of HTTP supported by the client. Then comes a series of request modifiers, or
HTTP headers (often simply just called headers when the meaning is clear), which
provide information about the request, such as the kind of client making the request,
in what formats the request should be returned, and other information. After
these headers the client may send a document associated with the request if
appropriate. In return, the client sends a message that begins with a status line,
showing a numeric status code and a human-readable status message indicating
the success or failure of the request. Immediately following this status line is a
series of response modifiers, also often called HTTP headers, that includes infor-
mation such as the server’s identity, information about the entity of interest to the
client, and so on. After these headers, the server can send a document if requested
by the client.

HTTP headers are written as a single line consisting of a header description,
followed by a colon, and the value of the header, such as this:

User-Agent: Nokia7110/1.0 (04.78)

(You’ll see in a moment just what this header means.) This header is called
the User-Agent because the header’s description is the words User-Agent, and has
a value of Nokia7110/1.0 (04.78). In general, clients and servers can specify their
headers in any order.

Have you noticed that HTTP doesn’t specify what the actual messages are
about? That’s because the protocol is general purpose; it doesn’t care what kind of
stuff the client and server talk about. In fact, HTTP can just as easily be used to
exchange mail or news as Web pages. Moreover, in the process of supporting the

�����������	
�����	����	��������������������������

Fundamentals of Wireless Development

77

Web, HTTP already handles numerous file formats, including HTML, WML, WBMP,
GIF, JPEG, PNG, WAV, and even QuickTime and MPEG movies. In fact, HTTP is a
format-independent protocol.

Some HTTP servers don’t even serve files per se. These servers are often
referred to as active servers because they use scripts to generate content on the fly
in response to HTTP messages. Scripts can be written in a programming language
such as Java (using Java Servlets), or in a scripting language explicitly conceived
for the Web such as Microsoft’s Active Server Pages or PHP: Hypertext Processor.
Chapter 3 discusses how you can build Wireless Web sites that perform compli-
cated actions on behalf of the user using PHP, one of the most popular active
server technologies.

Listing 1-1, together with Figure 1-5, shows an HTTP request and response
from a screen phone and a Web server. Let’s look at each line of the exchange to
see what it says. (Figure 1-5 is a sequence diagram showing what happens between
the client and server. Time progresses vertically from top to bottom along the
diagram.) Figure 1-6 shows the screen phone display after downloading this doc-
ument, which prompts you to enter a weather station’s name.

 01: GET /~dove/wap/wxq.wml HTTP/1.1

 02: Host: kona.lothlorien.com

 03: Accept: application/vnd.wap.wmlc, application/vnd.wap.wmlscriptc,

 image/vnd.wap.wbmp, application/vnd.wap.wtls-ca-certificate,

 text/plain,text/vnd.wap.wmlscript,text/html,text/vnd.wap.wml

 04: Accept-Language: en

 05: Accept-Charset: ISO-8859-1, UTF-8; Q=0.8, ISO-10646-UCS-2; Q=0.6

 06: User-Agent: Nokia7110/1.0 (04.78)

 07: Via: Nokia WAP Server 1.0.2

 08: X-Network-Info: UDP,127.0.0.1,security=0

 09: Accept-Encoding:

 10: Connection: Close

Figure 1-5. A client-server exchange with HTTP (Sequence Diagram)

�����������	
�� ��	����	��������������������������

Chapter 1

8

 11:

 12: HTTP/1.1 200 OK

 13: Date: Wed, 06 Sep 2000 03:18:25 GMT

 14: Server: Apache/1.3.12 (Unix) PHP/4.0.1pl2

 15: Last-Modified: Wed, 06 Sep 2000 03:15:22 GMT

 16: ETag: "fb1c-1b0-39b5b6ca"

 17: Accept-Ranges: bytes

 18: Content-Length: 432

 19: Connection: close

 20: Content-Type: text/vnd.wap.wml

 21: <?xml version="1.0"?>

 22: <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

 "http://www.wapforum.org/DTD/wml_1.1.xml">

 23: <wml>

 24: <card id="entry" title="Weather">

 25: <p>Enter a station

 26: <input name="station" title="station"

 type="text" emptyok="false"/>

 27: </p>

 28: <do type="accept" label="Fetch">

 29: <go href="wx.php3" method="post">

 30: <postfield name="station" value="$station"/>

 31: </go>

 32: </do>

 33: </card>

 34: </wml>

Listing 1-1. A client-server exchange with HTTP

Figure 1-6. Screen phone display

�����������	
�����	����	��������������������������

Fundamentals of Wireless Development

99

The message sent by the client—the screen phone’s browser—is contained in
the first 12 lines. The first line is the HTTP request method, telling the server that
it should return the contents of the document named /~dove/wap/wx.wml using the
HTTP GET method using version 1.1 of the HTTP protocol. This method simply
instructs the server to fetch and return the requested document. The remaining
lines are the client’s HTTP headers.

The second line specifies the host that maintains the document requested using
the Host header. Together, the Host header’s contents and the URI form a network-
wide unique identifier for the document called a Universal Resource Locator, or URL.
In this example, the client is requesting the URL http://kona.lothlorien.com/
~dove/wap/wx.wml.

Lines 3–6 inform the server what document types the client can understand.
Line 3 uses the Accept header to specify which formats the client can display using
Multipurpose Internet Mail Extension (MIME) types. MIME is a well-established
standard used by the Web and electronic mail services to provide unique names
for document formats, such as HTML, WML, Microsoft Word, and so on. Line 3
says that this client can display documents formatted in any of the following ways:

• A compiled Wireless Markup Language application (application/vnd.wap.wmlc)

• A compiled WMLScript application (application/vnd.wap.wmlscriptc)

• A Wireless Application Protocol Bitmap image (image/vnd.wap.bmp)

• A secure Wireless Application Protocol certificate (application/
vnd.wap.wtls-ca-certificate)

• A plain text document (text/plain)

• A Wireless Markup Language document (text/vnd.wap.wml)

• A WMLScript application in text form (text/vnd.wap.wmlscript)

• An HTML document (text/html)

Line 4 uses the Accept-Language header to specify the human language the
document should be in; in this case, the client desires documents in English. The
International Standards Organization (ISO) has defined a multitude of (usually)
two-letter codes that are used by various protocols to specify natural languages in
the ISO-639 Standard. Table 1.1 shows some of the more commonly used codes
and their meaning.

�����������	
�����	����	��������������������������

Chapter 1

10

Line 5 contains the Accept-Charset header to tell the server which character
sets it can use to represent the characters in the document. A character set denotes
the relationship between characters and numbers. A multitude of different char-
acter sets for different languages exist. Two of the most common are ISO-8859,
which is a superset of the age-old ASCII character set, and Unicode, which supports a
number of non-English characters including the Cyrillic alphabet and characters for
Asian languages such as Japanese and Chinese. In this header, the client accom-
panies each character set it can support with a quality rating denoted by the Q, so
the server knows that ISO-8859 is preferable to ISO-10646-UCS-2. (ISO-10646-UCS-2
is actually the ISO standard describing Unicode, although Unicode has additional
features over ISO-10646-UCS-2.)

Table 1.1. Some ISO-639 Language Abbreviations

IDENTIFIER LANGUAGE

ar Arabic

bg Bulgarian

bo Tibetan

chi Chinese

da Danish

de German

en English

eo Esparanto

fi Finnish

fr French

he Hebrew

ia Interlingua

it Italian

ja Japanese

nl Dutch

ru Russian

swe Swedish

vi Vietnamese

x-klingon Klingon

zho Chinese

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

1111

Line 6 specifies the type of encoding the server may return content using the
Accept-Encoding header. This header is similar to the Accept header, except that while
the Accept header specifies a document’s format, the Accept-Encoding header specifies
any compression or other encoding scheme allowed. This client has left this field
blank, indicating that only the default coding for a specific type is acceptable.

The next two lines specify the type of client making the request. As discussed
in Chapter 2, this header is one of the most important for a content developer.
With this information, you can tailor your page’s formatting for a specific device,
such as taking advantage of a larger screen. Line 7 contains the User-Agent header,
describing the kind of client making the request. In this case, the client is a Nokia
7110 screen phone. Line 8, the Via header, says that the client request is coming
via a Nokia WAP gateway server. The term “user agent” that you often see in spec-
ifications and other documentation is actually a fancy way of saying client. It’s
derived from the notion that the client is an application agent operating on behalf
of a user, such as a Web browser or other application. Unless it’s important for you
to recognize that the client isn’t necessarily a browser, the simpler term client or
browser is used throughout this chapter.

Line 9 is an example of an extension header, one not explicitly defined by the
HTTP specification. All optional headers must begin with the letter X to indicate
that they are extensions to the HTTP protocol. This header, the X-Network-Info
header, specifies additional security information about the request. It specifies
the originator of the request and the network protocol the client used to make the
request. This request came from a client using the IP address 127.0.0.1 using the
User Datagram Protocol.

The last header, the Connection header on line 10 tells the server to close the
connection to the client after the request has been handled. Clients can use this
header to instruct the server to leave the network connection open after com-
pleting the current request. Some clients do this and leave the connection open in
anticipation of further requests because it’s more efficient to do so.

The message returned by the server is in the remaining lines, starting with
line 12. The first line of the response gives the version of HTTP supported by the
server, in this case HTTP 1.1, along with the status for the request. The status code
for this request is 200, indicating that the request completed successfully. The OK
message associated with the status code is a human-readable version of the status
code, which programmers can use when they’re debugging problems by watching
the protocol directly.

There are numerous status codes; you’ll probably recognize several of them
from using the Web. Each status code is a three-digit number followed by a human-
readable phrase giving a reason for the status. The first digit of the status code
represents the status type, and the remaining two digits represent a specific status
within the type of status indicated by the first digit. HTTP defines five status types:
“Informational,” “Success,” “Redirection,” “Client Error,” and “Server Error,” cor-
responding to the type codes 1-5, respectively. For example, the status code 200

�����������	
������	����	��������������������������

Chapter 1

12

shown in Listing 1-1 indicates that the class of status is “Success,” and the remaining
two digits 00 indicate that the request was OK. Table 1.2 shows some of the more
common status codes and their meanings.

Table 1.2. HTTP Status Codes and Their Meanings

CODE MEANING

101 Switching Protocols

200 OK

201 Created

202 Accepted

203 Nonauthoritative Information

204 No Content

205 Reset Content

206 Partial Content

300 Multiple Choices

301 Moved Permanently

302 Found

304 Not Modified

305 Use Proxy

307 Temporary Redirect

400 Bad Request

401 Unauthorized

402 Payment Required

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

407 Proxy Authentication Required

408 Request Time-out

413 Request Entity Too Large

414 Request URI Too Large

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

1313

Line 13 uses the Date header to report the date and time at which the server
handled the request. In HTTP, all dates and times are expressed using a twenty-
four hour clock in Greenwich Mean Time (GMT).

Line 14 contains the Server header. This header tells the client the type of
server handling the request. In Listing 1-1, it’s a build of the popular Apache
server running on a UNIX workstation with PHP enabled.

The Last-Modified header in line 15 shows the last time and date (again, always
using GMT) that the document was modified. Together with the ETag header in
line 16, the Last-Modified header enables a client to manage their cache, or local
copy, of documents. Clients can keep cache of documents stored locally to avoid
making lengthy network transactions to download identical copies of the same
document. Understanding how to control what gets cached is an important part
of Wireless Web development, which is addressed in greater detail in Chapters 2,
6, and 7. For now, you should know that when a client downloads a document, it
usually stores the document, its URL, its last modified date, and its entity tag. The
entity tag is constructed based on the document’s contents and changes when the
document changes. By including the last modified date and entity tag of a cached
document in a request, a client can ask for a new document only if it’s changed,
avoiding the need to download the same document over and over again.

The Accept-Ranges and Content-Length headers, shown in lines 16 and 17, give
hints as to the position and the number of the bytes in the response. Using the
Accept-Ranges header, a client can request individual chunks of a document. Line
16 states that the entire document was returned in this case, and that the server
providing the document can handle requests for parts of a document specified by
a range of bytes. While not often used by clients, this enables clients with severe
memory constraints to make requests such as “give me the first thirty-two bytes of
this document,” or “give me the contents of the document starting at byte 74 and

415 Unsupported Media Type

416 Unable to Satisfy Requested Range

500 Internal Server Error

501 Not Implemented

502 Bad Gateway

503 Service Unavailable

504 Gateway Time-out

505 HTTP Version not supported

Table 1.2. HTTP Status Codes and Their Meanings (Continued)

CODE MEANING

�����������	
������	����	��������������������������

Chapter 1

14

ending at byte 102.” The Content-Length header, on the other hand, tells the client
exactly how many bytes are in the response document. Bear in mind that the Content-
Length header refers to the length of the content, not the entire message.

The Connection header in line 18 informs the client that the server will close
the connection after this response, acknowledging the request Connection header
sent by the client.

The last header, the Content-Type header in line 19, tells the client about the
format of the requested document. The value of this header is the MIME type of
the content being returned. In this case, it states that the server is returning a text
document containing Wireless Markup Language because a client can request a
host of document types using the Accept header, and the content may not neces-
sarily contain an identification of the format.

After the Content-Type header, starting on line 20, is the contents of the requested
document. This is a simple WML document, which is examined in more detail in
the following chapter. The request and response you’ve seen here is typical of the
millions that occur over both the Wireless Web and the Web. In general, a user
requests a document using a client application (the user agent, generally a Web
browser of some kind) and a server returns the document’s contents. But another
kind of request can also occur and it’s worth the time to take a quick look at it
before moving on.

Some Web requests occur by submitting data to a remote server for processing,
such as when you fill out a form using a Web browser and send the results to the
server, or when you answer a questionnaire, or work with a Web application, or
buy something (this book, perhaps). Servers can accept your information in one
of the following two ways: as an extension to the document’s URI with a GET
method request, or as a document submitting using HTTP’s POST request method.

The first way to send content to a server—extending the document’s URI with
a GET request method—is the simplest, and dates back to the earliest days of the
World Wide Web. With this scheme, the client constructs a URI by appending the
document’s URI with a question mark and the content to be sent. While simple,
this method has disadvantages: it creates unwieldy URLs, is awkward to use for
long chunks of content, and challenges the built-in limits to the size of the URI
that many servers can handle. For these reasons, submitting data with GET has
been deprecated in HTTP, and isn’t often used.

The second way—using the POST request method—is far simpler. With this
scheme, the client sends a POST request, and includes the content as part of the
request. Listing 1-2 shows the client-server exchange where the client does this.
(Jumping ahead to our discussion of WML in following chapters, this exchange
took place after entering KF6GPE on the screen phone and pressing Options,
followed by pressing Fetch. Figure 1-7 shows the results.)

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

1515

 01: POST /~dove/wap/wx.php3 HTTP/1.1

 02: Host: kona.lothlorien.com

 03: Content-Type: application/x-www-form-urlencoded

 04: Accept: application/vnd.wap.wmlc, application/vnd.wap.wmlscriptc,

 image/vnd.wap.wbmp, application/vnd.wap.wtls-ca-certificate,

 text/plain,text/vnd.wap.wmlscript,text/html,text/vnd.wap.wml

 05: Accept-Language: en

 06: Accept-Charset: ISO-8859-1, UTF-8; Q=0.8, ISO-10646-UCS-2; Q=0.6

 07: User-Agent: Nokia7110/1.0 (04.78)

 08: Via: Nokia WAP Server 1.0.2

 09: X-Network-Info: UDP,127.0.0.1,security=0

 10: Accept-Encoding:

 11: Content-Length: 14

 12: Date: Wed, 06 Sep 2000 03:15:28 GMT

 13: Connection: Close

 14:

 15: station=kf6gpe9

 16:

 17: 18 HTTP/1.1 200 OK

 18: Date: Wed, 06 Sep 2000 03:19:08 GMT

 19: Server: Apache/1.3.12 (Unix) PHP/4.0.1pl2

 20: X-Powered-By: PHP/4.0.1pl2

 21: Connection: close

 22: Transfer-Encoding: chunked

 23: Content-Type: text/vnd.wap.wml

 24: <wml>

 25: <card title="Weather">

 26: <p>Current readings at station kf6gpe

 27: Last reading at 09/01/2000 18:37

 28: Wind: 0 mph from 202

 29: Temperature: 57 F

 30: Humidity: 63

 31: Barometer: 1015.9

 32: Rain: 0.01/0.25 hr/day

 33: </p>

 34: </card>

 35: </wml>

Listing 1-2. A client-server exchange with HTTP using the POST request method

�����������	
������	����	��������������������������

Chapter 1

16

On line 1, you see that the request is a POST request. Most of the headers are
similar to those shown in the preceding example. The client’s POST request includes a
Content-Type header on line 3, indicating that the document being sent to the
server is a WWW form whose contents have been encoded to preserve the structure
of URL’s. The POST request also includes a Content-Length header, indicating that
the content enclosed in the client’s message is fourteen bytes long. After all the
headers, you can see the document being sent: the single line station=kf6gpe.

The server’s response headers are similar, too. Note, however, that when
handling this form, the server decided to include an HTTP extension to state that the
server was handling the form submission using PHP with the X-Powered-By header.

While HTTP supports other methods and header types, the two are typical
Wireless Web exchanges. In Chapter 3, you learn to write PHP scripts that serve
Wireless Web content, and you’ll learn how to set the server’s response headers to
control the remote client’s behavior. You’ll also learn how to see what headers the
client sends you, so you can make determinations about what should be sent back.

...

Seeing HTTP in Action

One of the best ways to get a firm grasp of how the Wireless Web works is to watch
the actual requests and responses, examining each header as you have in this
section. While it's not easy to do with real-world servers and screen phones (and
most users wouldn't want you eavesdropping as they use the Wireless Web any-
way!), it's fairly easy to do in a controlled environment.

For example, to capture the traces you’ve read about in this section, two machines
on their own networks were arranged in my office. One machine, called Client,
ran the Nokia SDK (see the following chapter), simulating a screen phone. The
other machine, called Kona, ran Linux, including the Apache Web server and
PHP processor (discussed in Chapter 3). After writing and testing the documents
that Client would download (wx.wml and wxq.php3), I used Linux's tcpdump

Figure 1-7. Screen phone display after form submission

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

1717

utility to save the packets exchanged between Client and Kona on my network.
The following was the actual command used:

tcpdump -i /dev/eth0 -w /tmp/result host kona

This command tells the tcpdump program to copy all packets to and from Kona
on its Ethernet port to the file /tmp/result.

Then with Client, I downloaded a document using the Nokia SDK's screen phone
emulator. When finished, I hit control-c on Kona to stop the tcpdump program.
Then, I could peruse the file /tmp/result at my leisure, seeing not just HTTP
messages, but the actual TCP/IP packets, too. (The TCP/IP packet contents
often appear as garbage or control characters; to see what they mean, you can
use tcpdump to parse the file you saved using the command tcpdump -r file.)

Because being able to see network traffic is an obvious security hole, you'll either
need to have super-user access on your Linux machine or have the permission
of your system administrator to use tcpdump. If you don't have access to a Linux
server and you want to do this, you can use one of the many network-monitoring
packages available for Microsoft Windows or Mac OS such as AG Group's EtherPeek.
You get a better understanding of how HTTP handles client-server interaction,
when you can both watch as you browse existing WAP sites with a simulator and

...

create your own pages to see what happens.

Markup Languages

In computing, just as in life, sometimes the oldest concepts pervade the newest
ideas. In printed publishing, authors have used markup in their documents, indi-
cating to publishers how things should be typeset. This practice predates desktop
publishing by years, perhaps even centuries. But as computers became more pow-
erful, they were used to format and typeset documents, using markup languages
derived from the ones publishers and typesetting machines accepted. Over the
last twenty years, several markup languages have become popular in various parts
of the computer and publishing industry, including TeX, nroff, LaTeX, Standard
Generalized Markup Language (SGML), and HTML (HyperText Markup Language).
More recently, the Wireless Markup Language (WML) has become the language
used by most of today’s Wireless Web clients.

History

By the mid-1960s, several groups were discussing a key aspect of document markup:
the need to separate content and its structure. A document’s content consists of the

�����������	
��� ��	����	��������������������������

Chapter 1

18

symbols it contains (words, punctuation, images, and so on), whereas its structure
is how the document itself is organized. Separation of content and structure has
many advantages, including freeing the author from worrying about both issues
at the same time. Other advantages include the capability of having a single docu-
ment’s contents appear to be uniform when printed in different venues (say, a
scientific paper in a journal and later in an anthology), and the capability to pre-
serve a document’s content over the lifetime of different markup languages.

As a result of numerous efforts SGML was created by designers who hoped it
would provide a lingua franca for all markup languages. As with many attempts to
unify a field, the results were broad, generally applicable, and, quite frankly, wholly
unfathomable to many of the people SGML was supposed to help. SGML’s wide
applicability made it complex. While relatively few computer professionals have
ever probed its depths, some have used SGML to create simpler markup languages,
relying on SGML as a foundation to meet specific needs.

The most widely known example of this is HTML. Derived from SGML (some
dialects of HTML are actually well formed markup languages that can be formally
defined in SGML), HTML gave scientists, authors, programmers, and artists a
simple markup language for creating richly formatted documents that could be
linked to other documents. HTML’s markup capabilities are vastly inferior to
other existing markup languages for printed document preparation, and they are
well suited to readers accessing documents over a network. With the advance of
HTTP and HTML, the World Wide Web was born.

As HTML evolved, numerous efforts were made to bring HTML browsers to
mobile and wireless devices. By 1995, a number of handheld computers used in
academic and corporate research institutions could view HTML; the trend con-
tinues today with Web browsers available for handheld computers from Palm,
Hewlett-Packard, Compaq, Psion, and many others.

At the same time, other developers were examining how the human-machine
interface for handheld computers differed from that used by conventional
computers, and the impact that these differences had on a document’s content
and structure. As you’ll see in Chapter 2, many limitations exist such as small
screens, limited bandwidth, and limited memory. Plus, a number of differences
arise from the way users interact with wireless devices and their desktop kin. For
many, these differences require a different approach. One company, Phone.com
(previously Unwired Planet) developed a markup language to meet the needs of
mobile devices.

Phone.com created the Handheld Device Markup Language (HDML), which
is a markup language largely based on HTML that provides structure elements
uniquely tailored to small-screen devices. Phone.com also aggressively marketed
both their HDML specification and a browser implementation to a number of
phone vendors. Over time, Phone.com and these vendors worked together, forming

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

1919

the Wireless Application Protocol Forum (WAP Forum), a forum of telecommuni-
cation companies working in concert to establish inter-operating standards for
wireless data exchange.

Among the standards maintained by the WAP Forum is the Wireless Markup
Language. WML’s roots are in HDML, just as HDML’s roots are in HTML. Readers
familiar with any one of these markup languages—SGML, HTML, or HDML—will
doubtless find much that they recognize in WML, although new elements exist as
well. In addition, WML is a well-formed markup language when viewed from the
perspective of XML, the eXtensible Markup Language. Many view XML as the suc-
cessor to SGML, albeit with significantly less complexity and a corresponding
improvement in public adoption.

Anatomy of a Markup Language

Markup languages such as HTML and WML share basic conceptual building
blocks. These blocks include tags, attributes, comments, and entities.

A marked-up document contains text and tags dictating the document’s
structure. These tags are special groups of characters with well-understood
meanings, such as “make the enclosed text a page title” or “make the following
text stand out.” In HTML, XML, and WML, greater-than and less-than symbols
enclose tags, such as this <TAG>. Listing 1-3 shows an example of a marked-up
document using WML.

 01: <?xml version="1.0"?>

 02: <!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

 "http://www.wapforum.org/DTD/wml_1.1.xml">

 03: <wml>

 04: <card title="Weather">

 05: <p>Current readings at station kf6gpe

 06: Last reading at 09/01/2000 18:37

 07: Wind: 0 mph from 202

 08: Temperature: 57 F

 09: Humidity: 63

 10: Barometer: 1015.9

 11: Rain: 0.01/0.25 hr/day

 12: </p>

 13: </card>

 14: </wml>

Listing 1-3. A marked-up document in WML

�����������	
������	����	��������������������������

Chapter 1

20

For now, the tags themselves aren’t important, but in reading Listing 1-3, you
see three things:

• Many tags, such as the <wml> tag shown in line 3, contain content between
the beginning tag and a corresponding closing tag, consisting of the same
tag name with a preceding solidus (/) character. (For consistency, the pair
of tags, opening and closing, are referred to as a single tag, even though
there are really two components.)

• Other tags are empty, that is, they have no corresponding closing tag. The

 tag found in line 5 is an example of an empty tag.

• Some tags, such as the <card> tag in line 4, have attributes that modify the
tag’s behavior. The title attribute of the card tag supplies the card the
browser presents with a title of Weather.

Although Listing 1-3 doesn’t show it, a marked-up document can also contain
comments. A comment is a markup element that’s meant for human readers of the
marked-up content, rather than either the software that’s responsible for showing
the markup or the end-user reading the markup. Comments usually refer to
aspects of the markup, rather than the content of the document. See how to make
comments in WML in Chapter 2.

Most markup languages also provide entities, atomic character units built
from separate characters. An entity is a primitive element of the markup language
that stands for something else. For example, because you have to use the greater-
than and less-than symbols in WML to create a tag, WML provides the > and
< entities to represent the < and > symbols in the final document.

Programs

Writing programs of any kind is part craft and part engineering. Even though a
body of knowledge has been accumulated about how to make computers do
things, writing a program still requires an ineffable skill that’s only acquired with
practice, effort, and experience. While distilling the essence behind the craft of
software development exceeds the limits of this chapter, some of the important
things you need to know to write a program are discussed. If after reading this section,
you still feel you’re out of your league, don’t panic. After discovering how to write
scripts in PHP and WMLScript, you’ll have ample opportunity to hone your skills.
Rome wasn’t built in a day, and it generally takes more than a one-chapter lesson
to learn how to write a program.

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

2121

For more reading about the craft of software development, look at Dan
Appleman’s How Computer Programming Works or Kernigan & Pike’s The Practice
of Programming.

Anatomy of a Program

Software, or a computer program, is a collection of instructions that you write in a
language the computer understands that tells the computer what to do. In the
simplest sense, markup languages such as the ones discussed in the last section
can be considered programs because they tell a computer how to present words
and images to the user. In the case of a markup language, the program is the
marked-up document, which is presented by another program such as a Web
browser or document viewer. Other times, however, the program may be translated
directly into a representation that the computer understands that controls the
computer’s hardware directly.

Both approaches have their advantages. Interpreted languages—those languages
that are interpreted by a separate program when they are run—are often easy to
learn quickly. As you learn an interpreted language, you can quickly make small
changes to your program to see what happens. In addition, interpreted languages are
easily ported from one computer to another. By comparison, compiled languages—
those languages that require additional steps to translate the human-readable
language to a compact machine-readable form—generally create programs that
run faster and are more flexible. This book focuses on two interpreted languages
(three, if you count WML as a programming language): WMLScript, the scripting
language used by the Wireless Web, and PHP, a scripting language used to create
active Web pages.

Interpreted and compiled languages share common elements such as literals,
statements, operations, variables, blocks, comments, flow control, and functions.
Programs are made up of these basic building blocks. At the heart of the differences
between programming languages is how these building blocks are expressed.
Listing 1-4 shows a simple program written in PHP. In Chapter 3, you learn what
each line actually does; for now, let’s just look at some of the elements in the
program itself.

 01: <?php

 02: /*

 03: * SaveAndShowHeaders

 04: * Iterates over the given array and prints each header to

 05: * the client and a log file.

 06: */

 07: function SaveAndShowHeaders($header)

�����������	
������	����	��������������������������

Chapter 1

22

 08: {

 09: $f = fopen("hdr", "a");

 10: fputs($f, date("Y-M-d H:i\n"));

 11: for (reset($header); $index=key($header);

 12: next($header))

 13: {

 14: $value = $header[$index];

 15: print("$index: $value
\n");

 16: fputs($f, "$index: $value\n");

 17: }

 18: fputs($f, "\n");

 19: fclose($f);

 20: }

 21:

 22: header("Content-type: text/vnd.wap.wml");

 23: echo("<?xml version=\"1.0\"?>\n");

 24: echo("<!DOCTYPE wml PUBLIC ");

 25: echo("\"-//WAPFORUM//DTD WML 1.1//EN\" ");

 26: echo("\"http://www.wapforum.org/DTD/wml_1.1.xml\">\n");

 27: echo("<wml>\n");

 28: echo("<card title=\"Headers\">\n");

 29: echo("<p>");

 30: $header=getallheaders();

 31: SaveAndShowHeaders($header);

 32: echo("</p></card></wml>\n");

 33: ?>

Listing 1-4. A simple PHP program

The program shown in Listing 1-4 defines a single function, SaveAndShowAllHeaders,
and uses several PHP functions to obtain a client’s HTTP headers and log them to
a file on the server and show them on the client, as shown in Figure 1-8.

Figure 1-8. Listing 1-4 executed on a server when accessed by a screen phone

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

2323

A literal is a token with an atomic meaning. In line 29, for example, you see
the literal "<p>", which represents the characters <, p, and >. This is an example of a
string literal, commonly called a string. Strings contain groups of characters
between delimiters (in this case, quote marks) that can be searched, combined,
separated, and displayed. Literals also represent numbers such as integers and
floating-point numbers, although Listing 1-4 doesn’t have any of these examples.

In conjunction with literals, statements tell the computer to do something,
such as make a decision or exit the current program. Line 11 is an example of a
flow control statement, the for statement. This statement directs the computer to
perform an action a specific number of times, until a desired situation occurs. You
separate each statement by a specific character. In the case of PHP, statements are
separated by the semicolon ;. For clarity, I usually put each statement on its own
line, although there’s no requirement to do this in most languages.

Programs are broken up into blocks of statements. In the case of PHP, blocks
are enclosed by the curly braces { and }. Blocks are used to indicate the scope of
another statement’s behavior. For example after the for statement on line 11, you
can see a group of statements in a block. When the computer executes the for
statement, it repeats the block starting on line 13 and ending at line 17.

Some statements are actually operations, instructions to do something to
something else. An operation usually represents a single step that the computer
takes, such as an mathematical operation (addition, subtraction, multiplication,
or division), or comparison, and so on. Operations are used sparsely in Listing 1-4,
but you see one operation, the = or assignment operator, on line 11.

As it turns out, the assignment operator is closely related to the use of a variable.
A variable is a named container that stores something. The notion of computer
variable is similar to the notion of a variable in mathematics, but there are important
differences. You can assign values, either literals or the contents of another variable,
to a variable using the assignment operator. On line 30, you can see that some-
thing’s being assigned to the variable $header. In the following line, the value of the
variable $header is being used. Unlike mathematical variables, the value of a com-
puter variable can change, and you can use one computer variable in different
ways. You also can’t solve for the values of computer variables.

Variables play an important role in functions. A function is a block of state-
ments that you’ve given a unique name. Later, you can use this name to cause
the statements to be executed. Lines 7 through 20 define a single function,
SaveAndShowAllHeaders. This function has one input, the variable $h. When you use
the function SaveAndShowAllHeaders, you must include a value for $h. In Line 29, I call
the function, giving it the value of the $header variable, which is assigned to the
variable $h for the duration of the function. It is said that $h has scope over the
function SaveAndShowAllHeaders, meaning that $h only contains a valid value while
the function is executing. Elsewhere, $h simply doesn’t exist—if you try to access it,
you get an error or a meaningless value.

�����������	
������	����	��������������������������

Chapter 1

24

When you write a program, most of what you write is intended for the computer.
Sometimes, though, you want to make a note to yourself, explaining why you did
what you did, or so you can understand what you’re doing later. To do this, you
can use a comment, which is a bit of text that the computer ignores that you can
read. A comment is used in lines 2–6 to describe what the SaveAndShowAllHeaders
function does in a human-readable way, so the next time this program is examined,
it won’t be necessary to stop and figure out what the code is doing. Comments are
a very important and oft-overlooked part of programming. By liberally commenting
your program (and keeping your comments up-to-date with what your program
does) you won’t spend your time trying to think as a computer to understand
what you’ve already written.

A great deal of the work behind writing a program is simply deciding what
steps the computer must take to accomplish your desired action. Making these
decisions becomes an exercise in decomposition, that is, taking a big problem and
breaking it into smaller problems. For example, Listing 1-4 started with a problem
that could be phrased as the question “How do I see what headers my screen phone
sends?” Then it was broken into several smaller questions, which were answered
with specific pieces of the program as follows:

• “How do I show and save the headers?” This question was answered with
the function SaveAndShowAllHeaders, used on line 31.

• “How do I tell the client what kind of document I’m displaying?” This was
answered with the statement on line 22.

• “How do I start the document?” This was answered with the series of calls to
PHP’s echo function starting on line 23.

• “How do I end the result document?” This question was answered with the
call to PHP’s echo function on line 33.

Two popular approaches to decomposition are functional decomposition
and object decomposition. In functional description, you break a problem down
into smaller and smaller problems, each of which can be addressed by a specific
function. In object decomposition, you break a problem down by looking at different
objects in the problem, such as clients, records of data, and so on. Then you define
parts of your program to model the behavior of each kind of object. Some languages,
such as Smalltalk, C++, or Java, have special facilities to make object decomposition
easier, although with discipline you can use the practice with any language. Much of
what separates experienced programmers from novices is that as you gain expe-
rience, you learn how to decompose problems more efficiently�

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

2525

The Program

Throughout the remainder of this book, most of the listings shown are from parts
of a single program. While the users and constraints of this program are imaginary,
the program itself is real; you’ll find a copy of it on the CD-ROM that accompanies
this book. Before jumping headlong into developing content for the Wireless Web,
let’s take a closer look at the application itself.

MobileHelper

This book’s application addresses one of the most common mobile application
targets: organizing the efforts of people serving the needs of other people. The
MobileHelper application on the accompanying CD-ROM is designed to meet the
needs of small volunteer organizations that track volunteers as they proceed to
and from assigned stations at particular dates and times.

MobileHelper was written for an imaginary volunteer organization, the
Mountain Neighbors Network (MNN), located in a quaint rural community. Members
of the MNN check on each other and their neighbors after regional incidents such
as earthquakes and floods. In the process, they often provide much-needed first-
tier relief before larger organizations such as the county’s emergency response
services or the Red Cross can deploy their staff to provide services.1

Volunteers in the MNN perform two roles: emergency coordinator and relief
volunteer. Members may fulfill either role, although additional training is necessary
to fulfill the role of emergency coordinator. After an incident begins, the emergency
coordinator is responsible for directing the tasks and responsibilities of each relief
volunteer. Typically, relief volunteers check in with their neighbors, making sure
that people are okay and determining what, if any help (such as medical attention,
additional shelter, food, or water) may be required. Presently, MNN has one emer-
gency coordinator, Sandy, and a handful of relief volunteers, including Chris and Pat.

Sandy uses MobileHelper to assign Chris and Pat specific tasks to perform
such as checking with neighbors at a set time or visiting the local Red Cross shelter.
Sandy can do this either at home using her PC or in the field from her screen phone.
Similarly, Chris and Pat can check with MobileHelper to determine what they
need to do or where they need to be at a particular time. Once they’ve completed
a task, they check with MobileHelper to inform Sandy, rather than having to con-
tact Sandy directly.

1. Imaginative readers are encouraged to believe that this neighborhood is quite like the one I live
in, albeit with an improved and fault-tolerant wireless service supporting the application.

�����������	
������	����	��������������������������

Chapter 1

26

MobileHelper itself must meet the following needs:

• Store a list of tasks (dates, times, locations, and status) for volunteers.

• Provide access at two levels: an administrative access where a user can create
new tasks, assign tasks to volunteers, obtain reports regarding the status of
tasks, and so on.

• Be accessible to handheld phones and Web browsers running on a desktop
computer.

• Send messages between volunteers.

These needs are similar to that for a number of wireless services, including
field dispatch tools, wireless mail clients and personal information systems, sales
force automation applications, and so on. However, by restricting MobileHelper’s
scope to that of a volunteer organization, it avoids many of the messy details
involved in creating a larger system as you focus on learning how to write Wireless
Web content.2

Software Notation

To help software developers visualize how a program operates, they use a variety
of higher-level techniques. These techniques enable them to think in more abstract
ways about how a program operates, rather than at the level of variables, state-
ments, and operations.

The three techniques are to use cases, deployment diagrams, and sequence
diagrams. Each technique provides a level of precision and brevity that’s hard to
achieve in a natural language such as English, and gives a level of abstraction you
won’t find in a programming language. And each is a valuable tool you may want
to learn to use when describing how your own programs operate. These diagrams
are all part of a formal notation called the Unified Modeling Language (UML),
which aims to provide developers with a common language for representing
system behaviors of all kinds.

2. I admit to an ulterior motive in selecting a scenario for volunteer applications as well: it may
remind you that volunteering your time for public service, with whatever skills you have, can
be deeply rewarding.

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

2727

Use Cases

A use case is a pictorial diagram that shows the rela-
tionship between those that depend on part of an
application, the actors, and the tasks performed by
the application. An actor is anything outside the
application that interacts with the application in
some way. You can identify actors by making a list of
the kinds of things—people or other applications—
that will use your application. Divide them up into
similar groups, such as “system administrators,” “end users,” “power users,”
“managers,” and so on. Each group represents a single actor. Figure 1-9 shows the
symbol used to represent an actor in a use case.

Let’s look at an actual use case and see what the different symbols mean.
Figure 1-10 is a use case used by two actors: the Coordinator and the Volunteer.
The Coordinator actor represents MNN volunteers that are emergency coordinators,
whereas the Volunteer actor represents the relief volunteers. This use case
demonstrates how users prove their identity to MobileHelper. All users must
prove who they are; volunteers can simply use their mobile phone number (called
a Mobile Identification Number, or MIN), whereas a Coordinator must also enter
a private Personal Identification Number (PIN) before performing administrative
functions. In the figure, you see that the Volunteer actor uses the Auth use case.
This use case relies on two other use cases, the Check MIN use case and the Reject
User use, which the diagram shows with the dashed arrow and the <<include>>
label. In contrast, the Coordinator actor relies on the AuthAdmin use case to per-
form administration tasks (as well as the Auth use case to access MobileHelper
when the Coordinator is simply accessing the system as a volunteer does). The
AuthAdmin use case is an extension of the Auth use case; alternately, it can be said
that the Auth use case is a generalization of the Authenticate Coordinator use
case. Regardless, a solid line with a hollow error is used, pointing to the more general
of the two use cases. In the AuthAdmin use case, a simple description of the nature of
the extension is also included. Finally, the little sticky-note-like box in the bottom
left-hand corner is a comment; it holds a note for readers pointing out that the
Coordinator actor only uses the AuthAdmin use case when it needs to perform an
administrative function.

Figure 1-9. An actor

�����������	
��� ��	����	��������������������������

Chapter 1

28

Use case diagrams are often accompanied by a textual description of the use
case, including the name of the use case, what actors use the use case, and the
steps the actor and system must perform in order to fulfill the use case. For example,
the Auth use case is shown in Listing 1-5.

Figure 1-10. Login use case for MobileHelper

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

2929

 01: Use Case: Auth

 02: Purpose: Used by actors to prove their identity to the

 03: system.

 04: Includes: Check MIN, Reject User

 05: Flow of Events:

 06: 1. The user accesses the main page for MobileHelper.

 07: 2. The MobileHelper application obtains the MIN from the

 08: client's HTTP headers.

 09: 3. If no MIN is available, the MobileHelper application

 10: redirects the client to a page prompting the user for

 11: their MIN.

 12: 4. Use the Check MIN use case to verify the identify of

 13: the user.

 14: 5. If the identify of the user cannot be validated, use

 15: the Reject User use case and return to step 1.

 16: Otherwise show the user the main page.

Listing 1-5. The Auth use case

The listing begins with the name of the use case and its description. Even
though you can look at the diagram to see who uses the use case, it is displayed in
the use case as well, so you don’t have to flip back and forth. A list of the use cases
that use this use case is also included.

After that, the use case lists the flow of events that make up the use case. These
are a natural language description of what the user and application do to complete
the use case. It’s helpful if you number the steps because you can have steps
pointing at each other, the way it’s done in step 5. Listing 1-5 looks as if it’s a program a
little bit more than Figure 1-10 does. As you learn in following chapters, the text of
a use case is often where you start converting a description of how the program
should behave into the program itself.

Deployment Diagrams

While a use case shows how someone uses an application, a deployment diagram
shows how you’ve organized the computers that run the application. You’ve seen
three examples of deployment diagrams in Figures 1-2, 1-3, and 1-4. Figure 1-11
shows yet another deployment diagram, that of how a wireless network can be
organized.

�����������	
������	����	��������������������������

Chapter 1

30

Deployment diagrams represent each computer as a three-dimensional box.
The solid lines between each box show how the computers are connected. In
Figure 1-11, you see that the HTTP Server computer is connected to the Gateway
Server via TCP/IP, whereas individual wireless clients connect to the Gateway
Server via the wireless network. The little symbols by the individual solid lines
show how many individual machines are on a specific side of the connection. For
example, the figure shows two Gateway Servers serving the clients. The * by the
Wireless Web Clients and HTTP Server boxes indicates that there can be any
number of these machines.

Sometimes you want to show in greater detail the individual components
within a given computer and how they relate in the context of a deployment diagram.
Figure 1-12 shows such a diagram, in which MobileHelper is actually a bunch of
PHP scripts that the Apache Web server accesses. The smaller boxes contained in
the HTTP server cube refer to specific system components: the Apache Web
server and the PHP script interpreter.

Figure 1-11. A wireless network

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

3131

Sequence Diagrams

You’ve seen an example of a sequence diagram, too, back in Figure 1-5. Sequence
diagrams show the progression of a series of activities over time as objects take
action. Within a sequence diagram, each object that participates in the activity is
shown as a box along the top of the diagram, while time increases as you look from
top to bottom. The vertical line below an object is called its lifeline, and shows
how long the object exists. Objects send messages to each other. These messages
are shown as solid arrows with labels describing the message. Figure 1-13 shows a
sequence diagram for the two HTTP requests examined in Listings 1-1 and 1-2.
Here, the Wireless Web Client is shown, as are the network connection (called a
socket) that’s used for each request, and the HTTP server.

Figure 1-12. MobileHelper deployment diagram

�����������	
������	����	��������������������������

Chapter 1

32

This diagram shows the Wireless Web Client first fetching the page using a GET
request, and the server sending the response. A single network socket is used to
carry this request and response; after the messages are passed, the server closes
the socket, and the socket’s lifeline ends. Later, when the Wireless Web Client
wants to submit user input, it creates a new socket, and uses the new socket to
send the second message (the POST message) to the server, which in turn processes
the POST message and returns a response. You can see clearly from the diagram the
impact of the HTTP Connection header: two different network sockets are used
between client and server. After each message, the socket object disappears,
shown by the end of its lifeline.

Software Development Process

While many people have the impression that programmers simply sit down at a
keyboard and write programs, nothing could be further from the truth. In fact,
programming is an orchestrated harmony of planning, investigation, experimen-
tation, documentation, and construction. Ask most professional programmers

Figure 1-13. Sequence diagram of HTTP GET followed by HTTP POST

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

3333

what they do most in their jobs and they’re apt to tell you that they spend most of
their time either thinking or writing. Determining what a program should do, how
it should look, and decomposing the problem are all steps you have to take before
writing the program itself.

Understanding how to organize a software project—the collection of tasks
that constitutes writing a program—enables you to write better programs. This
understanding gives you a framework for organizing your thoughts. By viewing
the writing of a simple program as a software project instead of simply a handful
of lines of code you’ll write, you gain the ability to organize your thoughts and
create a better program. Later, as you gain experience with this method, you’ll
have greater confidence and the skills you need to attack the problems that arise
when you create a larger program.

To reflect this aspect of programming, people refer to the software development
life cycle. There are a number of life cycle models; each emphasizing particular kinds
of activities that you undertake as you create a software product. One especially suc-
cessful life cycle is the iterative life cycle, also known as the Rational Model.

In the iterative life cycle, creating a program is broken into four phases: inception,
elaboration, construction, and transition. In each step, you focus on only some of the
tasks you need to accomplish to create an application. In one sense, the software life
cycle is simply another example of decomposition: it’s an exercise in decomposing
how people write programs.

A key aspect of the iterative life cycle is that you don’t stop after one pass
through each phase. Many large software projects go through this lifecycle over
and over again. With each pass through the life cycle, a new set of features is
added, enhancing the overall application. In fact, that’s how you’ll write the program
that comes with the CD-ROM in this book. In Chapters 2 and 3, you begin building
the basic parts of wireless application using a combination of simple programs
and throwaway prototypes that demonstrate principles of Wireless Web develop-
ment. As you proceed further, each of these parts is tested. Then new features are
added over the subsequent chapters, working through the life cycle in each chapter.

Let’s take a closer look at each of the phases in the iterative life cycle.

Inception

During inception, you explain to yourself and others what the program is, and
why it’s important. This is the make-or-break period where you decide whether or
not it’s worth the time and effort to write the program in the first place. When
you’re working with others, you outline what the program does at a high level, find
out what you think it costs to write the program, and whether or not the program will
repay the cost. (When working on a personal project, you look at the same issues,
but your measurements may not be the same. For instance, you can ask yourself,

�����������	
������	����	��������������������������

Chapter 1

34

“Is it worth it for me to spend a month’s worth of evenings so I can balance my
checkbook on my screen phone?”)

One of the best ways to do this is to write a short description of the project.
This description should include notes about whom the program is for and what
the program will do. You want to keep this description short—less than a page if
possible. If you’re working with a team, it’s important to get everybody involved in
this stage to share ideas about what the project will accomplish and what the pro-
gram will do.

A good outline for the project description is as follows:

1. Problem Description

2. Requirements

3. Risks & Assumptions

In the problem description, you describe the problem you’re trying to solve.
Then you describe what requirements the application will have: what computers
it will run on, how many users the application needs to support, and so on. Finally,
you describe the assumptions and risks that impact your ability to succeed.

Once you write the project description, you’re better able to ask yourself whether
or not you should attempt the project. You can weigh the risks and the size of the
project, and look at what you’ll achieve by solving the problem you describe.

Elaboration

During elaboration, you refine your understanding of what your application does,
and what problems you need to solve before finishing your program. Of course,
you started this refinement when you wrote your project description, but now you
will find you have more questions than answers.

A key part of elaboration is determining how your application works. To answer
this question, you can use the technique of use cases described in the preceding
section to outline how people will use your application. In turn, these use cases
help you understand how you can decompose your problem further, either by
creating the functions that implement the use cases, or by determining what
kinds of objects can model the behavior your use cases describe. Be careful,
though, because you’re elaborating, not coding! It’s sufficient now to simply give
yourself a description of the functions or objects and their responsibilities as you
discover them.

But you may actually spend some time programming as you elaborate your
project, too. Most of the time, the programs you write at this stage are to determine
how something works. In some cases, you write small programs called prototypes

�����������	
������	����	��������������������������

Fundamentals of Wireless Development

3535

that simulate different ways your program can work. Some of these prototypes
show possible user interfaces; other prototypes enable you to test different ways
you might actually build your application. Often, these prototypes are ways to
mitigate the risks you uncovered in the project description.

Speaking of risks, you also add to your lists of risks as you spend time in the
elaboration phase. You will doubtless come across new risks, and resolve some of
the risks you identified earlier. As you do so, you should track these risks, and ask
yourself what you can do to keep their likelihood to a minimum.

Construction

Once you have a thorough understanding of your application from elaboration,
you begin the construction phase. By now, you have a good grasp of how your pro-
gram works, what functions you need to write, what objects you need to model,
and so on. As a result, you actually spend most of your time writing your program
in this phase. You also build tests to validate your program, or if you’re part of a
larger group, you may work with other people responsible for building the tests
that validate your program.

Construction itself is best approached in iterations. Start by identifying the
core pieces of your application that demonstrate some initial functionality, and
construct just those pieces. Once you’ve built them, you can test and demonstrate
your application in limited ways. Not only does this give you a feeling of accom-
plishment, but also it provides a firm foundation on which to add functionality.

You write more than just your program during construction, however. It’s
important that you write tests that verify your program at the same time. Some of
these tests are called unit tests, because they test a specific piece of your applica-
tion. Other times, your tests exercise your entire application. If you’re working
with a group, you have other people testing your work, and you need to work with
them to determine how best to test your program.

Transition

As you finish writing your program, you enter the transition phase, and your program
moves from active development to active use. During transition, you teach the
people who will use your program how to use it, how to maintain it, and what to do
if it needs to be changed. You may be responsible for assisting with the production
of manuals, training materials, or other information. You may also simply set the
program aside, so you can use it when you work on something else.

As with construction, transition is iterative. You’ll probably transition your
software several times, after adding set features. Some of these will be formal

�����������	
������	����	��������������������������

Chapter 1

36

releases to other organizations such as testers, friends, family, or customers.
Others may be informal; you may simply snapshot a working version and set it
aside so you can use it as you continue adding features.

Food for Thought

• What kinds of protocols do you follow in daily life? Think about how you
exchange information with people in different ways. How would you
describe one of these protocols?

• Can you think of other protocols that may be client-server protocols?
How are they similar to HTTP? How are they different?

• Use the technique shown in the sidebar on page 16 to eavesdrop on an
exchange between a desktop Web client and a Web server. Find out what
each header means. (You may want to refer to the Internet Engineering
Task Force’s documentation on HTTP at http://www.ietf.org/.)

• List the markup languages you know—either that you’ve used to create
content, or that you can understand. What do they have in common?
What is different?

• If you wanted to create your own programming language, what would it
look like? What kind of statements would it have? What kind of operators
would it offer?

• Can you think of other areas of your life—your job, your responsibilities at
home, or elsewhere—where using the approach in the iterative life cycle
would help? Why or why not?

• Draw a use case diagram showing use cases for a common household appli-
ance, such as a VCR, microwave, or toaster oven. Who are the actors? What
are the use cases?

• Draw a deployment diagram for the computers on the network in your office.

• Draw a sequence diagram showing what happens when you make a credit
card payment.

�����������	
������	����	��������������������������

