
Preface

Books on a technical topic – like linear programming – without exercises ignore the principal
beneficiary of the endeavor of writing a book, namely the student – who learns best by doing
exercises, of course. Books with exercises – if they are challenging or at least to some extent so
– need a solutions manual so that students can have recourse to it when they need it. Here we
give solutions to all exercises and case studies of M. Padberg’s Linear Optimization and Exten-
sions (second edition, Springer-Verlag, Berlin, 1999). In addition we have included several new
exercises and taken the opportunity to correct and change some of the exercises of the book.
Here and in the main text of the present volume the terms “book”, “text” etc. designate the
second edition of Padberg’s LP book and the page and formula references refer to that edition as
well. All new and changed exercises are marked by a star * in this volume. The changes that
we have made in the original exercises are inconsequential for the main part of the original text
where several of the exercises (especially in Chapter 9) are used on several occasions in the proof
arguments. None of the exercises that are used in the estimations, etc. have been changed.
Quite a few exercises instruct the students to write a program in a computer language of their
own choice. We have chosen to do that in most cases in MATLAB without any regard to efficiency,
etc. Our prime goal here is to use a macro-language that resembles as closely as possible the
mathematical statement of the respective algorithms. Once students master this first level, they
can then go ahead and discover the pleasures and challenges of writing efficient computer code
on their own.

To make the present volume as self-contained as possible, we have provided here summaries
of each chapter of Padberg’s LP book. While there is some overlap with the text, we think that
this is tolerable. The summaries are –in almost all cases– without proofs, thus they provide a
“mini-version” of the material treated in the text. Indeed, we think that having such summaries
without the sometimes burdensome proofs is an advantage to the reader who wants to acquaint
herself/himself with the material treated at length in the text. To make the cross-referencing with
the text easy for the reader, we have numbered all chapters (and most sections and subsections)
as well as the formulas in these summaries exactly like in the text. Moreover, we have reproduced
here most of the illustrations of the text as we find these visual aids very helpful in communicating
the material. Finally, we have reproduced here the appendices of the text as the descriptions of
the cases contained therein would have taken too much space anyway.

We have worked on the production of this volume over several years and did so quite frequently
at the Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) in Berlin, Germany, where
Alevras was a research fellow during some of this time. We are most grateful to ZIB’s vice-
president, Prof. Dr. Martin Grötschel, for his hospitality and tangible support of our endeavor.
Padberg’s work was also supported in part through an ONR grant and he would like to thank
Dr. Donald Wagner of the Office of Naval Research, Arlington, VA, for his continued support.

New York City, January, 2001 Dimitris Alevras
Manfred Padberg

9. Ellipsoid Algorithms
Divide et impera!1

Niccolo Machiavelli (1469-1527 A.D.)

Here we summarize the essentials of Chapter 9 of the text. We consider the linear optimization
problem over a rational polyhedron P ⊆ Rn of facet complexity φ

max{cx : x ∈ P} .

In Chapter 7.5.3 we reduced the problem of polynomial solvability of this problem to the question
of the existence of subroutines FINDXZ(P ,n,φ,Φ,c,zk,x,FEAS) or FINDZX(P ,n,φ,c,zk,x,FEAS) that
solve a feasibility problem in polynomial time. The ellipsoid algorithm settles this existence
question in a theoretically satisfactory way for any rational polyhedron P ⊆ Rn.

By point 7.5(d), we can replace P by a rational polytope PΦ of equal dimension without chan-
ging the optimization problem. We assume that we have a linear description Ax ≤ b of PΦ with
rational data A, b and initially, that either PΦ = ∅ or dimPΦ = n. The case of flat polyhedra is dis-
cussed separately. It follows from point 7.5(d) that the ball B(0, R) contains PΦ, where R =

√
n2Φ

and
Φ = 〈c〉+ 8nφ+ 2n2φ+ 2 .

The center of B(0, R) is x0 = 0. Checking x0 ∈ PΦ we either find an inequality a0x ≤ a0 of the
linear description of PΦ such that a0x0 > a0 or x0 ∈ PΦ and we are done. If a0x0 > a0 then
PΦ ⊆ B(0, R) ∩ {x ∈ Rn : a0x ≤ a0} . Replacing a0 by a0x0 we have that

PΦ ⊆ S1 = B(0, R) ∩ {x ∈ R
n : a0x ≤ a0x0} ⊆ E1 ,

where E1 is an ellipsoid (of minimum volume) that contains S1. Let x1, the center of E1, be the
next “trial” solution: if x1 ∈ PΦ we are done. Otherwise, we find an inequality a1x ≤ a1 from the
linear description of PΦ such that a1x1 > a1 and iterate. At the kth iteration of this algorithm we
have the center xk of an ellipsoid Ek = EQk(x

k, 1), where Qk = F kF
T
k is a positive definite matrix

defining Ek. By construction PΦ ⊆ Ek. Either xk ∈ PΦ – in which case we are done – or we find
an inequality aTx ≤ a0 belonging to the linear description of P or PΦ such that aTxk > a0. In this
case we set

xk+1 = xk −
1

n+ 1
F kd where d =

F Tk a

‖F Tk a‖
, (9.1)

F k+1 =

√
n2

n2 − 1
F k

(
In −

(
1−

√
n− 1

n+ 1

)
ddT

)
. (9.2)

We get an ellipsoid Ek+1 = EQk+1(x
k+1, 1) with center xk+1 and positive definite matrix Qk+1 =

F k+1F
T
k+1 defining Ek+1. As shown in Chapter 9.2, Ek+1 ⊇ PΦ and

vol(Ek+1) ≤ e
−1/2nvol(Ek) . (9.3)

1Divide and conquer!

264 9. ELLIPSOID ALGORITHMS

Iterating k times, we get vol(Ek) ≤ V0e−k/2n for k ≥ 0, where V0 is the volume of B(0, R). Unless
the algorithm stops with xk ∈ PΦ for some k, it suffices to iterate at most

kE = �2n(log V0 − log VPΦ)�

times to conclude that PΦ = ∅, where VPΦ is the volume of PΦ. By assumption P is either empty
or full-dimensional. If P �= ∅, we can bound VPΦ from below because P is a rational polyhedron.

In the left part of Figure 9.1 we show the iterative application of the ellipsoid algorithm when
applied to the data of Exercise 8.2 (ii) without the objective function. We start at the point
x0 = (60, 60) as the center of the initial ball with radius ‖x0‖ which contains all of the feasible set.
We select as the “next” inequality aTx ≤ a0 the one for which the slack aTx0 − a0 is largest, to get
x1; etc.

The above formulas yield polynomial step complexity, but not polynomial time complexity of
the calculation. For the latter it is necessary that the digital sizes of 〈xk〉 and 〈F k〉 of the iterates
stay bounded by a polynomial function of n, φ and 〈c〉. It must also be shown that all necessary
calculations can be carried out in approximate arithmetic, i.e. on a computer with limited word
size. In the left part of Figure 9.1 we pretended that we can compute (9.1) and (9.2) “perfectly” –
even though we divide, take square roots and calculate on a computer with a word size of merely
64 bits. To be correct, we have to replace the equality signs in (9.1) and (9.2) by the ≈ sign and
specify the precision with which we need to calculate the corresponding numbers.

The geometric idea for the way to deal with the problem of approximate calculations is shown
in the right part of Figure 9.1 for the ellipsoid E1: since we cannot compute the center x1 of E1
by formula (9.1) exactly, we get an approximate center xA by committing round-off errors. To
approximate the matrix F 1 given by (9.2) we multiply the right-hand side by some factor β ≥ 1, i.e.
we scale all elements of it up to make them bigger. An approximate computation with round-off
errors yields a matrix FA that is used in lieu of F 1. This corresponds to “blowing up” the perfect
arithmetic ellipsoid E1 concentrically to the ellipsoid Eβ of Figure 9.1, i.e. Eβ is a homothetic
image of E1 with a factor β ≥ 1 of dilatation. The approximate calculation of FA is then carried
out with a sufficient precision to guarantee that the ellipsoid EA with center xA and defining
matrix QA = FAF

T
A contains the ellipsoid E1 completely. In Chapter 9.2 we show that a blow-up

factor of
β = 1 + 1/12n2

works, where n is the number of variables of the optimization problem. Our graphical illustration
in Figure 9.1 is “artistic”. We used β ≈

√
1.5 to produce the figure and not β = 49/48, which is

a lot smaller and works in R2.
In every iteration the ellipsoid algorithm needs only one inequality that is violated or the

message that a violated inequality does not exist, i.e., at every iteration we have to solve a
separation problem (or constraint identification problem) for the polyhedron P like the one we
discussed in point 7.5(h). So far we have assumed that the number of constraints of the linear
description of P does not matter and that the problem of finding a violated inequality can e.g.
be done by listing and checking every single one of them. We call this method LIST-and-CHECK.
LIST-and-CHECK does not give a polynomial algorithm for the linear optimization over rational
polyhedra if the number of constraints of the linear description of P is exponential in n. But
assuming the existence of some polynomial-time algorithm for the separation problem we get the
existence of a polynomial-time algorithm for the optimization problem over rational polyhedra –
namely the ellipsoid algorithm. It is a nontrivial result that the reverse statement holds as well:

9.1. MATRIX NORMS, APPROXIMATE INVERSES, MATRIX INEQUALITIES 265

x0

x1x2

E0

E1

E2

x1

x2

x0

x1

xA

E0

E1

EA

Eβ

x1

x2

Fig. 9.1. The ellipsoid algorithm: “perfect” and approximate arithmetic

if for some rational polyhedron P the optimization problem can be solved in polynomial time,
then the separation problem for P can be solved in polynomial time as well. This equivalence
of optimization and separation for rational polyhedra is of fundamental importance in itself and
particularly important for the field of combinatorial optimization: it constitutes the theoretical
backbone of the algorithmic approach to combinatorial optimization problems called branch-and-
cut.

9.1 Matrix Norms, Approximate Inverses, Matrix Inequalities

We have to “truncate” numbers in the ellipsoid algorithm and thus to replace e.g. a matrix F by
some matrix FA, say, satisfying FA ≈ F . To analyze such an approximation we need a norm.
The Frobenius norm of an m× n matrix F of real numbers f ij is

‖F ‖F =

√√√√ m∑
i=1

n∑
j=1

(f ij)
2 . (9.4)

Other norms that are frequently encountered in numerical linear algebra are

‖F ‖1 = max
1≤j≤n

m∑
i=1

|f ij | , ‖F ‖2 = max{‖Fx‖ : ‖x‖ = 1} , ‖F ‖∞ = max
1≤i≤m

n∑
j=1

|f ij | .

‖F ‖2 is the spectral norm and its value equals the square root of the largest eigenvalue of F TF . If
F is nonsingular, then ‖F−1‖2 = λ−1(F), i.e., it is the reciprocal of the square root of the smallest
eigenvalue of F TF . There are a number of relationships between these various matrix norms,
e.g.

‖F ‖2 ≤ ‖F ‖F ≤
√
n‖F ‖2 .

The spectral norm yields probably the most elegant proofs for what is to follow, but it is also the
hardest one to compute. To avoid issues of computation we will not use it. We use the Frobenius
norm and simply drop the subscript F for notational convenience. In Exercise 9.2 most of the

266 9. ELLIPSOID ALGORITHMS

properties of the Frobenius norm that we need are stated. In particular, for any two m × n real
matrices we have

‖FR‖ ≤ ‖F ‖‖R‖ , ‖F (In − αrr
T)‖2 = ‖F ‖2 − α(2− α‖r‖2)‖Fr‖2 . (9.5)

Remark 9.1 Let R be any n× n matrix of reals with ‖R‖ < 1. Then (In −R)−1 exists and

‖(In −R)
−1‖ ≤

1

1− ‖R‖
. (9.6)

Let the elements of FA be obtained by truncating the elements of some nonsingular matrix F ,
i.e., FA ≈ F , and FA = F + R. Thus R is the matrix of “errors” due to the rounding or the
truncation and the Frobenius norm is the sum of the squared errors for each element of FA. We
need to know when FA is nonsingular and how the errors “propagate” into the inverse of FA.

Remark 9.2 Let F be any nonsingular matrix of size n × n and R be any n × n matrix with
‖F−1R‖ < 1. Then (F +R)−1 exists and satisfies the inequalities

‖(F +R)−1‖ ≤
‖F−1‖

1− ‖F−1R‖
, (9.7)

‖(F +R)−1 − F−1‖ ≤
‖R‖ ‖F−1‖2

1− ‖F−1R‖
. (9.8)

To carry out the analysis of the ellipsoid algorithm using approximate arithmetic, we need the
following two inequalities for the determinant and the norm of the inverse of a nonsingular matrix
repeatedly.

Remark 9.3 (i) Let F be any n× n matrix of reals. Then we have the inequality

|detF | ≤ n−n/2‖F ‖n . (9.9)

(ii) If F is nonsingular and n ≥ 2, then we have the inequality

‖F−1‖ ≤ n(n− 1)−
n−1
2
‖F ‖n−1

|detF |
. (9.10)

9.2 Ellipsoid “Halving” in Approximate Arithmetic

To carry out the various constructions analytically, we drop the index k and denote by F the
nonsingular matrix defining the “current” ellipsoid E0 and by x0 its center, i.e.,

E0(x
0, 1) = {x ∈ Rn : ‖F−1(x− x0)‖ ≤ 1} . (9.11)

Let aTx ≤ a0 be the linear inequality that the algorithm identifies and denote by xP and F P
the updates (9.1) and (9.2) that result if calculated in perfect arithmetic, i.e. with an infinite
precision:

xP = x0 −
1

n+ 1
Fd where d =

F Ta

‖F Ta‖
(9.12)

9.2. ELLIPSOID “HALVING” IN APPROXIMATE ARITHMETIC 267

F P =

√
n2

n2 − 1
F

(
In −

(
1−

√
n− 1

n+ 1

)
ddT

)
. (9.13)

Assuming that F P is nonsingular, we get in perfect arithmetic an ellipsoid EP with center xP

which in the iterative scheme of the introduction is the “next” ellipsoid, i.e.

EP (x
P , 1) = {x ∈ Rn : ‖F−1P (x− x

P)‖ ≤ 1} . (9.14)

For any “blow-up” factor β ≥ 1 denote by Eβ the enlarged ellipsoid with center xP , i.e.,

Eβ = EP (x
P , β) = {x ∈ Rn : ‖F−1P (x− x

P)‖ ≤ β} . (9.15)

Thus the enlarged ellipsoid Eβ is defined with respect to the matrix

F β = βF P . (9.16)

Because of the finite wordlength of the computer we commit round-off errors and compute
approximately

xA ≈ xP , FA ≈ F β . (9.17)

Assume that the error in the approximate calculation satisfies

‖xA − xP ‖ ≤ δ and ‖FA − F β‖ ≤ δ where δ ≤ p(n)
|detF |

‖F ‖n−1
, p(n) = 10−4n−2 . (9.18)

From inequality (9.9) it follows that the error of the approximation is less than ‖F ‖ because by
(9.9) e.g. ‖xA−xP ‖ ≤ p(n)n−n/2‖F ‖ . Condition (9.18) is translated in Chapter 9.3 into the number
of digits of each component of xA and FA that need to be calculated correctly – before and after
the “decimal” point in binary arithmetic. The calculations (9.17) yield an approximation EA

EA(x
A, 1) = {x ∈ Rn : ‖F−1A (x− x

A)‖ ≤ 1} , (9.19)

to Eβ which is an ellipsoid if FA is “close enough” to F β so as to guarantee the nonsingularity of
FA.
The “battle-plan” of the proof is as follows:

• Establish that F P is nonsingular if F is nonsingular and that (9.3) remains correct.

• Show that if E0 contains P or PΦ then so does the ellipsoid EP .

• Show that if (9.18) is satisfied neither xA nor FA “grow” too much in size.

• Assuming (9.18) show that FA is nonsingular and that EA ⊇ EP .

• Assuming (9.18) show that vol(EA)
vol(E0)

satisfies a relation like (9.3) to conclude a polynomial
running time of the approximate calculations.

• Establish a lower bound on the volume VPΦ if dimPΦ = n and prove inductively that (9.18)
is satisfied for all necessary iterations. This is done in the next section.

268 9. ELLIPSOID ALGORITHMS

The first step is easy because

detF P =

(
1 +
1

n

)−n+12 (
1−
1

n

)−n−12
detF . (9.20)

The factor appearing in (9.20) satisfies

(
1 +
1

n

)−n+12 (
1−
1

n

)−n−12
≤ e−

1
2n for all n ≥ 1. (9.21)

Computing the volumina of E0 and EP we get from (7.23) and (9.20)

vol(EP)

vol(E0)
=

(
1 +
1

n

)−n+12 (
1−
1

n

)−n−12
≤ e−

1
2n

by (9.21) and (9.3) follows. By (9.20) F P is nonsingular and its inverse in terms of F−1 is

F−1P =

√
n2 − 1

n2

(
In −

(
1−

√
n+ 1

n− 1

)
ddT

)
F−1 . (9.22)

For notational convenience define Q = FF T and QP = F PF
T
P , i.e. Q and QP are the positive

definite matrices defining E0 and EP .

QP =
n2

n2 − 1
Q

(
In −

2

n+ 1

aaTQ

aTQa

)
, Q−1P =

n2 − 1

n2

(
Q−1 +

2

n− 1

aaT

aTQa

)
. (9.23)

Remark 9.4 (i) For all x ∈ E0 and a ∈ Rn, a �= 0, −
√
aTQa ≤ aT (x− x0) ≤

√
aTQa .

(ii) Let aTx ≤ a0 with a �= 0 be any inequality such that aTx0 ≥ a0 and X ⊆ E0 be any subset of E0
such that aTx ≤ a0 for all x ∈ X . Then X ⊆ EP .

By inductive reasoning it follows that PΦ ⊆ Ek if B(0, R) has a large enough radius to contain PΦ
initially.

To justify the approximate calculations of xA and FA, we compute like in Exercise 9.2 (iii)
from (9.16), (9.13) and (9.22)

‖F β‖ ≤ β

√
n2

n2 − 1
‖F ‖ , ‖F−1β ‖ ≤ β

−1n+ 1

n
‖F−1‖ , (9.24)

where we have used ‖d‖ = 1, see (9.12). In the following we use the inequality

2x ≥ 1 +
2

3
x+
2

9
x2 for all x ≥ 0 . (9.25)

Remark 9.5 If (9.18) is satisfied, then for β = 1 + 1/12n2 and all n ≥ 2

‖xA‖ ≤ ‖x0‖+
1

n
‖F ‖ , ‖FA‖ ≤ 2

1/n2‖F ‖ . (9.26)

9.3. POLYNOMIAL-TIME ALGORITHMS FOR LINEAR PROGRAMMING 269

The following inequality is readily verified for all n ≥ 2

1 + 2(n+ 1)(n− 1)−
n−1
2 n−210−4 ≤ 1 +

1

12n2
. (9.27)

Remark 9.6 If (9.18) is satisfied and detF �= 0, then for β = 1 + 1/12n2 and all n ≥ 2 the matrix FA
is nonsingular and EA(xA, 1) ⊇ EP (xP , 1).

The main point in the proof that EP (xP , 1) ⊆ EA(xA, 1) is the estimation

‖F−1A (x− x
A)‖ ≤ (1 + ‖F−1A ‖ ‖F β − FA‖)(‖F

−1
β (x− x

P)‖+ ‖F−1β (x
P − xA)‖) . (9.28)

By Remark 9.4 the feasible set is contained in the approximate ellipsoid if (9.18) is satisfied. The
verification of (9.18) will be done by induction.

To estimate next vol(E0)
vol(EA)

we calculate using (9.4), (9.13), (9.16) and (9.22)

‖F−1F β‖ = β

√
n

(
1−

1

(n+ 1)2

)
, ‖F−1β F ‖ =

√
n3 + n+ 2

βn
. (9.29)

Remark 9.7 If detF �= 0 and (9.18) is satisfied, then for β = 1 + 1/12n2 and for all n ≥ 2

2−1/n|detF | ≤ |detFA| ≤ 2
−1/4n|detF | . (9.30)

If (9.18) is satisfied at every iteration we can calculate the number of iterations required by the
ellipsoid algorithm using approximate arithmetic, i.e. when (9.1) and (9.2) are replaced by (9.17).
From (7.23) we compute

vol(EA)

vol(E0)
=
|detFA|

|detF |
≤ 2−1/4n < e−1/6n

using Remark 9.7 and (9.25). Denoting the ellipsoid at the kth iteration again by Ek, we get
vol(Ek) < V0e

−k/6n and consequently, after at most

kA = �6n(log V0 − log VPΦ)�

iterations the ellipsoid algorithm with approximate arithmetic stops with the message that PΦ = ∅
– unless for some k < kA the corresponding iterate xk belongs to PΦ. Here we have assumed that
(9.18) is satisfied at every iteration and that PΦ �= 0 implies dimPΦ = n and that vol(PΦ) ≥ VPΦ –
assumptions that we will have to remove later.

9.3 Polynomial-Time Algorithms for Linear Programming

Having settled the analytical problem of calculating the “perfect” arithmetic ellipsoid approxima-
tely by permitting round-off errors let us consider the linear program

(LP) max{cx : Ax ≤ b} ,

where c ∈ Rn, A ∈ Rm×n, b ∈ Rm all have integer components only, m ≥ 1, n ≥ 2 and A �= O
to rule out trivialities. The problem (LP) has only inequalities, i.e. any equations have been
eliminated or replaced by their corresponding pairs of inequalities.

270 9. ELLIPSOID ALGORITHMS

From Chapter 7.5.1 we know that the integrality assumption is polynomially equivalent to
assuming that the data are rational. So the integrality assumption is convenient, but not neces-
sary. Other than this one we make no assumption. The rank of A can be anywhere between
1 and min{m,n} and the feasible set

X = {x ∈ Rn : Ax ≤ b} (9.31)

can be a solid, flat, pointed or blunt polyhedron of Rn. Nonnegativity requirements are part of
(A, b).

To demonstrate the polynomial solvability of (LP) – polynomial in terms of m, n, the digital size
〈c〉 of the vector c and the facet complexity φ of X – we proceed in three steps:
• We assume that X is either empty or bounded and full dimensional. By running the “basic”

ellipsoid algorithm we decide whether or not X = ∅ by producing a rational vector x ∈ X if
X �= ∅.

• We remove the assumptions and show that by embedding any X into a somewhat larger
polyhedron Xh we can answer the question in polynomial time for any rational X .

• We use binary search like in Chapter 7.5.3 to prove the existence of a polynomial-time
algorithm for the linear program (LP).

To carry out the first step we make the following assumption.
Assumption A: There exists R ≥ 1, i.e. some radius, such that X ⊆ B(0, R). Moreover, if X �= ∅
then there exist x ∈ relintX and a radius r > 0 such that B(x, r) ⊆ X .

To state the basic ellipsoid algorithm, we denote by xPj , xkj the components of xP , xk and by

βf
i
j , kf

i
j the elements of F β, F k for 1 ≤ i, j ≤ n and k ≥ 0. The input consists of m, n, A and b, the

parameters R, T and p and if X �= ∅, x is the output of the algorithm.

Basic Ellipsoid Algorithm (m, n, R, T , p, A, b, x)
Step 0: Set x0 := 0, F 0 := RIn, k := 0.

Step 1: if k ≥ T , stop “X is empty”.
if aixk ≤ bi for all 1 ≤ i ≤ m, stop “x := xk”.
Let (ai, bi) for some i ∈ {1, . . . ,m} be such that aixk > bi and set aT := ai.

Step 2: Calculate approximately xk+1 ≈ xP and F k+1 ≈ F β where

xP := xk −
1

n+ 1

F kF
T
k a

‖F Tk a‖
, (9.32)

F β :=
n+ 1/12n
√
n2 − 1

F k

(
In −

1−
√
(n− 1)/(n+ 1)

aTF kF
T
k a

(F Tk a)(a
TF k)

)
, (9.33)

such that the binary representation of each component of xk+1 and F k+1 satisfies
|xk+1j − xPj | ≤ 2

−p and |k+1f ij − βf
i
j | ≤ 2

−p for 1 ≤ i, j ≤ n. Replace k + 1 by k and go to Step 1.

Remark 9.8 (Correctness and finiteness) If Assumption A is true, then the basic ellipsoid algorithm
finds a rational vector x ∈ X or concludes correctly that X = ∅ when it is executed with the
parameters

T = �6n2 log
R

r
� , p = 14 + n2 + �15n log

R

r
� . (9.34)

9.3. POLYNOMIAL-TIME ALGORITHMS FOR LINEAR PROGRAMMING 271

The proof uses Remarks 9.5, 9.6 and 9.7 to estimate inter alia

‖F k‖ ≤
√
nR2

k

n2 , ‖xk‖ ≤ kR2
k

n2 , Rn2−
k
n ≤ |detF k| ≤ R

n2−
k
4n . (9.35)

We are now ready to drop Assumption A. Denote by φ the facet complexity of X , i.e.

φ ≥ max
1≤i≤m

{〈ai〉+ 〈bi〉} , φA = max
1≤i≤m

〈ai〉 . (9.36)

It follows that n+1 ≤ φA < φ since A �= O and moreover, we can choose φ such that φ ≤ φA + 〈b〉,
where 〈b〉 is the digital size of b. For any integer h ≥ 1 we denote by h−1 ∈ Rm the vector having
m components equal to 1/h and let

Xh = {x ∈ R
n : Ax ≤ b+ h−1} , (9.37)

which corresponds to “perturbing” the feasible set X of (LP).

Remark 9.9 (i) X �= ∅ if and only if Xh �= ∅ for all h ≥ p2pφA where p = 1 +min{m,n}.
(ii) If X �= ∅, then for all u ≥ 2nφ and all integers h ≥ 1 the set X uh of solutions to

Ax ≤ b+ h−1 , −u− 1/h ≤ xj ≤ u+ 1/h , for 1 ≤ j ≤ n (9.38)

is bounded, full dimensional and B(x, rh) ⊆ X uh for all x ∈ X where

rh = h
−12−φA+n . (9.39)

To visualize the construction of Remark 9.9 take for instance

X = {x ∈ R2 : 1 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 1}

and bring it into the form (9.37). Graphing the corresponding solution set, one sees that the
introduction of the perturbation 1/h in each inequality corresponds to a “tearing apart” of the
solution set to obtain a full dimensional set of solutions; see also Figure 9.8 below. If X is empty
then there is nothing to tear apart and as the first part of Remark 9.9 shows, the emptiness of
Xh is preserved if the perturbation is “small enough”. Running the basic ellipsoid algorithm with
R = 2nφ, T = 20n3φ and p = 55n2φ we conclude like in point 7.6(g):

Remark 9.10 Every m× n system of linear inequalities Ax ≤ b with rational data can be “solved”
in time that is polynomial in the digital size of its input.

There are several ways to deal with the optimization aspect of the linear program (LP). The
simplest way is to use linear programming duality and to reduce the optimization problem to the
problem of finding a solution to a system of linear inequalities – like we did in Remark 6.5. The
second way uses binary search and a “sliding objective” function; see the text.

Remark 9.11 Every linear program with rational data can be “optimized” in time that is polynomial
in the digital size of its input.

Neither the radius R of the ball circumscribing X or X uh nor the radius r of the ball that
is inscribed into X or X uh , see (9.39), depend on the number m of linear inequalities of (LP).
Consequently, none of the other two parameters T and p of the basic ellipsoid algorithm depends

272 9. ELLIPSOID ALGORITHMS

on the number m. They are polynomial functions of φ, n and 〈c〉 only. The dependence of the
basic ellipsoid algorithm on the number m of the inequalities of (LP) enters in Step 1 when we
have to find a violated inequality for the system (9.43) or prove that none exists. The same is true
for the auxiliary computations. For the time being we assume that we find violated inequalities
by the “algorithm” LIST-and-CHECK that we discussed in the introduction. If m is of the order
of n, i.e. m = O(n), then the total effort to solve (LP) becomes a polynomial function of n, φ and
〈c〉 only, whereas in the general case we need, of course, note the dependence on m explicitly.
Before coming back to the question of how to deal with the case of possibly exponentially many
constraints defining X we first discuss some “practical” variants of the basic ellipsoid algorithm.

9.4 Deep Cuts, Sliding Objective, Large Steps, Line Search

Going back to Figure 9.1 we see that instead of cutting Ek with aTx ≤ a0 – where the right-hand
side equals a0 and which is valid for all x ∈ X – we replaced a0 by the larger quantity aTxk. This
replacement forces the cut to pass through the center of the current ellipsoid and the resulting
algorithm is therefore called central cut ellipsoid algorithm. It is not overly difficult to work out
the formulas corresponding to (9.1) and (9.2) when instead of aTx ≤ aTxk we use the deep cut
aTx ≤ a0. They are given below.

A less obvious modification of the basic algorithmic idea concerns the optimization aspect of
(LP). Let

z = max{cxk : xk feasible} ,

where initially z = −∞. Then we can use the objective function as a “sliding constraint” of the
form cx ≥ z where the value of z increases during the course of the calculations. This gives
rise to a sliding objective and thereby to a device that speeds the convergence of the procedure
considerably.

A third modification to the basic idea goes as follows. Suppose the current iterate xk is
feasible. Then the point x∗ = xk + F kF

T
k c
T /‖cF k‖ maximizes the linear function cx over the

current ellipsoid Ek = {x ∈ Rn : ‖F
−1
k (x − x

k)‖ ≤ 1}; see Remark 9.4(i). Consequently, we can
determine by a least ratio test the largest λ ≥ 0 such that

x(λ) = xk + λ(x∗ − xk) is feasible

and thereby make a large step towards optimality by “shooting” through the interior of the
feasible set. We calculate the largest λ, the corresponding feasible x(λ) and its objective function
value zλ, say. If zλ > z, then we update the current best solution to be x(λ), replace z by zλ and
use in one of the subsequent iterations the objective function as a cut to reduce the volume of
the ellipsoid.

The fourth modification of the basic algorithmic idea is aimed at improving the chances of
the algorithm to find feasible solutions to (LP). The algorithm generates a sequence of individual
points and their probability to fall into the feasible set is rather small. Consider two consecutive
centers xk and xk+1 of the ellipsoids generated by the algorithm. They determine a line

x(µ) = (1− µ)xk + µxk+1 where −∞ < µ < +∞ .

We can decide the question of whether or not x(µ) meets the feasible set by a line search that
involves again a simple least ratio test. If the test is negative, we continue as we would do without

9.4. DEEP CUTS, SLIDING OBJECTIVE, LARGE STEPS, LINE SEARCH 273

it. If the test comes out positive, then we get an interval [µmin, µmax] such that x(µ) is feasible
for all µ in the interval. Computing the objective function we find cx(µ) = cxk + µ(cxk+1 − cxk).
Consequently, if cxk+1 > cxk then µ = µmax yields the best possible solution vector while µ = µmin
does so in the opposite case. The rest is clear: we proceed like we did in the case of large steps.

We are now ready to state an ellipsoid algorithm for linear programs in canonical form

(LPC) max{cx : Ãx ≤ b̃ , x ≥ 0} ,

where (Ã, b̃) is an m × (n + 1) matrix of rationals. We assume that Ã contains no zero row and

denote by (ai, bi) for 1 ≤ i ≤ m+ n the rows of the matrix (A, b) =

(
Ã b̃

−In 0

)
.

The DCS ellipsoid algorithm takes m, n, A, b, c as inputs. zL is a lower bound, zU an upper
bound on the optimal objective function value. R is a common upper bound on the variables
of (LPC) and ε a perturbation parameter to ensure full dimensionality of the feasible set when
intersected with the sliding objective function constraint cx ≥ z. Since we are perturbing the
constraint set of (LPC) by a parameter ε > 0 we shall call solutions to the perturbed constraint
set nearly feasible or ε-feasible solutions and correspondingly, we shall utilize the term ε-optimal
solution to denote a nearly feasible, nearly optimal solution to (LPC). VF is a positive lower bound
on the volume of a full dimensional, ε-optimal set. In other words, if the current ellipsoid has
a volume less than VF we shall conclude that either ε-optimality is attained – if a feasible solution
x with objective function value z was obtained – or else that the feasible set of (LPC) is empty. As
we know from Chapters 7.5 and 9.3 we can always find theoretical values for ε and R and by
consequence for zL, zU and VF as well that the algorithm needs to converge.

In practice, we set the perturbation parameter e.g. ε = 10−4 and use a rough data dependent
estimate for the common upper bound R on the variables. Similarly, we use e.g. VF = 10−2 to fix
the stopping criterion and from R we estimate zL and zU e.g. as follows

zL = −1 + nc
−R , zU = 1 + nc

+R ,

where c− = min{cj : 1 ≤ j ≤ n} and c+ = max{cj : 1 ≤ j ≤ n}.
“DCS” stands for deep cut, sliding objective, large steps and line search, i.e. all of the devices

that we discussed above to speed the empirical rate of convergence of the underlying basic
algorithmic idea. For this “practical” version of the ellipsoid algorithm we ignore the blow-up
factor β ≥ 1 that is necessary to obtain the theoretical result since β − 1 = 1/12n2 is a horribly
small positive number for reasonably sized n.

In the DCS ellipsoid algorithm we assume c �= 0. If c = 0 then some modifications and
simplifications impose themselves the details of which we leave as an exercise for you to figure
out.

DCS Ellipsoid Algorithm (m, n, zL, zU , ε, R, VF , A, b, c, x, z)

Step 0: Set k := 0, x0j := R/2 for 1 ≤ j ≤ n, z := zL, z0 := zL,

R0 :=
√
n(1 +R/2), H0 := R0In, f0 :=

(
1 + 1

n

)−n+12 (1− 1
n

)−n−12 , V0 := Rn0π
n/2/Γ(1 + n/2).

Step 1: Set mxv := bj + ε− ajxk where bj − ajxk ≤ bi − aixk for all 1 ≤ i ≤ n+m.
if mxv < 0 go to Step 2.
Set x∗ := xk +HkH

T
k c
T /‖cHk‖, λ := max{λ : λai(x∗ − xk) ≤ bi + ε− aixk, 1 ≤ i ≤ n+m}.

if λ ≥ 1 stop “(LPC) is unbounded.”

274 9. ELLIPSOID ALGORITHMS

if c(xk + λ(x∗ − xk)) ≤ z go to Step 2.
Set x := xk + λ(x∗ − xk), z := cx.

Step 2: if (cxk > z or (mxv < 0and z0 − z > mxv)) then

Choose Θ so that bj + ε ≤ Θ ≤ ajxk. Set αk :=
ajxk −Θ

‖ajHk‖
, rT := aj.

else
Set αk := (z − cxk)/‖cHk‖, rT := −c, z0 := z.

endif
Step 3: if αk < 1 and Vk ≥ VF go to Step 4.

if zL < z < zU stop “x is an ε-optimal solution to (LPC).”
stop “(LPC) is infeasible or unbounded.”

Step 4: Set

xk+1 := xk −
1 + nαk

(n+ 1)‖HTk r‖
HkH

T
k r , (9.44)

Hk+1 := n

√
1− α2k
n2 − 1

Hk

(
In −

(
1−

√
(n− 1)(1− αk)

(n+ 1)(1 + αk)

)
(HTk r)(r

THk)

‖HTk r‖
2

)
, (9.45)

Vk+1 := (1− α
2
k)
n−1
2 (1− αk)f0Vk . (9.46)

Let I := {µ ∈ R : µai(xk+1 − xk) ≤ bi + ε− aixk for 1 ≤ i ≤ n+m}.
if I �= ∅ and cxk �= cxk+1 then

if cxk+1 > cxk then set µ := max{µ : µ ∈ I} else µ := min{µ : µ ∈ I}.
if |µ| =∞ stop “(LPC) is unbounded.”
if cxk + µ(cxk+1 − cxk) > z then set x := xk + µ(xk+1 − xk), z := cx.

endif
Replace k + 1 by k and go to Step 1.

9.4.1 Linear Programming the Ellipsoidal Way: Two Examples

In Figures 9.2, 9.3, 9.4 we show the first nine iterations that result when we use the data of
Exercise 8.2 (ii) and minimize x2 without the use of the line search, i.e. we assume in Step 4
that always I = ∅. In Figures 9.5, 9.6, 9.7 we show the corresponding 12 first iterations when
we maximize x2 with line search. To make the corresponding pictures more readable we have
depicted every third ellipse by a “dashed” curve, whereas all the others are drawn solidly. The
first ellipse shown in Figures 9.3, 9.4 and Figures 9.6, 9.7, respectively, are the “last” ellipse
of the respective preceding picture. “Dashed” lines correspond to using the original constraints
to cut the ellipse in half, while “dotted” lines correspond to cuts using the sliding objective. In
Figure 9.3 the arrows show the “large” steps that the algorithm takes, while there are none in
Figures 9.5, 9.6, 9.7. Note that in Step 2 we use – like in Step 1 – a “most violated” constraint:
a sliding objective cut is executed only if the objective cut is a most violated constraint. Note
the different convergence behavior of the algorithm that results from the existence of alternative
optima; see the text for a detailed discussion of the computer runs.

9.4. DEEP CUTS, SLIDING OBJECTIVE, LARGE STEPS, LINE SEARCH 275

0

1

2

3

x1

x2
E0

E1

E2

E3

a

b

c

Fig. 9.2. Deep cuts, sliding objective, large steps (minimize x2)

3

d

e

f

45

6

E3

E4

E5

E6

x1

x2

Fig. 9.3. Deep cuts, sliding objective, large steps for iterations 3, . . . , 6

276 9. ELLIPSOID ALGORITHMS

x1

E6

E7

E8

E9

6

7

8

9
g, h . . .

Fig. 9.4. Proving optimality of a face of dimension 1 in R2 the ellipsoidal way

x1

x2

0

1

2

3 4

a

b

c

d

E0

E1

E2

E3

E4

Fig. 9.5. Deep cuts, sliding objective, line search (maximize x2)

x1

x2

4

E4

5

E5

6

E6

7

E7

8
E8

e, h

f

g

Fig. 9.6. Deep cuts, sliding objective, line search for iterations 4, . . . , 8

9.4. DEEP CUTS, SLIDING OBJECTIVE, LARGE STEPS, LINE SEARCH 277

8

E8
9

E9

10 E1011
E11

12

E12

i, �

k

j

Fig. 9.7. Proving optimality of a face of dimension 0 in R2 the ellipsoidal way

9.4.2 Correctness and Finiteness of the DCS Ellipsoid Algorithm

By assumption the parameter R is a common upper bound on the variables of (LPC) that is large
enough so that the hypercube

{x ∈ Rn : 0 ≤ xj ≤ R for 1 ≤ j ≤ n}

contains all of the feasible set of (LPC) if (LPC) is bounded and enough of the unbounded portion
of the feasible set to permit us to conclude unboundedness via the value of the objective function;
see point 7.5(d) and the discussion of binary search in Chapter 9.3. We start the algorithm at
the center x0 = 1

2Re of this hypercube and by choice of R0 in Step 0 the initial ball B(x0, R0) does
the job.

The validity of the DCS ellipsoid algorithm is established inductively like in Chapter 9.2. Using
formula (9.45) for the update Hk+1 we compute its determinant in terms of the determinant Hk

detHk+1 =

(
1 +
1

n

)−n+12 (
1−
1

n

)−n−12
(1− α2k)

n−1
2 (1− αk) detHk . (9.47)

To establish the containment of the feasible set in the updated ellipsoid, we form the positive
definite matrix Gk+1 =Hk+1H

T
k+1 and compute its inverse

G−1k+1 =
n2 − 1

n2(1− α2k)

(
G−1k +

2(1 + nαk)

(n− 1)(1− αk)

rrT

rTGkr

)
; (9.48)

see Exercise 9.6. Let Ek = Ek(xk, 1) be the ellipsoid that the DCS algorithm constructs at iteration
k

Ek(x
k, 1) = {x ∈ Rn : (x− xk)TG−1k (x− x

k) ≤ 1} . (9.49)

It follows using (7.23) from (9.47) that

vol(Ek+1)

vol(Ek)
=

(
1− αk
1 + 1/n

)n+1
2
(
1 + αk
1− 1/n

)n−1
2

≤ e−αk−
1
2n

for all k ≥ 0. Setting Vk+1 = vol(Ek+1) and f0 = (1− 1/n)−
n+1
2 (1 + 1/n)−

n−1
2 we get

Vk+1 = V0f0

k∏
�=0

(1− α2�)
n−1
2 (1− α�) , (9.50)

278 9. ELLIPSOID ALGORITHMS

which shows that the DCS algorithm updates the volume of the current ellipsoid correctly in
formula (9.46). Moreover, it shows the “deflating” effect of the deep cuts on the volume of the
ellipsoid quite clearly.

It is shown in the text that the DCS ellipsoid algorithm is correct if the bound R is “large
enough” and the perturbation ε is “small enough”. From (9.50) and the formula for the ratio of
the volumina it follows that the stopping criterion Vk < VF is satisfied after at most

�2n log
V0
VF
�

iterations. The α�’s introduce a data-dependency into the stopping criterion that does, however,
not change the theoretical worst-case behavior of the algorithm.

9.5 Optimal Separators, Most Violated Separators, Separation
�Hxeis �f�xeis o� jn�xeis �n pol�m�	 2

Pythia, High priestess of Delphi.

Throughout the rest of this chapter we will deal mostly with rational polytopes P ⊆ Rn rather
than with polyhedra. From Chapter 7.5 we know that we can always do so while preserving
polynomiality of the facet complexity and vertex complexity in terms of the original parameters.
We are interested in the linear optimization problem max{cx : x ∈ P} where the vector c is some
row vector with rational coefficients and P has a linear description with possibly exponentially
many linear inequalities. To approach this problem we start with a partial linear description of
the rational polytope P having O(n) constraints, which gives us a larger polytope P0 that contains
P . Solving the linear program

max{cx : x ∈ P0}

we either conclude that P0 and thus P is empty or we get an optimal solution x0 ∈ P0, e.g.
an optimal extreme point of P0. Now we check the constraint set of P by some “separation
algorithm” - other than LIST-and-CHECK – to find a violated constraint, i.e. we solve something
like the separation problem of Chapter 7.5.4 algorithmically. If the separation problem does not
produce a violated constraint, then x0 is an optimal solution to the problem max{cx : x ∈ P} – see
the outer inclusion principle of Chapter 7.5.4 which works with a “local” description of P in the
neighborhood of a maximizer xmax, say, of cx over P rather than the complete linear description
of P .

To stress the point that we wish to make once again, suppose that the feasible set of our
linear program is given by a convex polygon in R2 with, say, 1010

10

or more “corners” and just as
many facets: all you need are at most three of its facet defining constraints to prove optimality
of some corner that maximizes your linear function in R2, see Figure 9.8. The problem is to find
the “right” ones and almost nothing else matters.

Suppose that the separation algorithm finds a constraint h1x ≤ h10, say, such that h1x0 > h10.
Then

P ⊆ P1 = P0 ∩ {x ∈ R
n : h1x ≤ h10} ⊂ P0

2“You will depart, you will arrive, you will not die in the war” or is it “you will depart, you will not arrive, you will die
in the war”?

9.5. OPTIMAL SEPARATORS, MOST VIOLATED SEPARATORS, SEPARATION 279

x1

x2

xmax

cx

P (H,h)

OC(xmax,H)

Fig. 9.8. The outer inclusion principle in R2

and we can iterate. The question: does this iterative scheme converge “fast enough” to permit
linear optimization over any rational polytope in polynomial time?

This is where the (basic) ellipsoid algorithm enters: neither its running time T nor the required
precision p, see e.g. (9.34), depend on the number m of the constraints of the linear program. So
if we can find a constraint defining P that is violated by the current iterate xk or prove that no
such constraint exists in time that is polynomial in n, φ, 〈xk〉 and 〈c〉, then the polynomiality of
the entire iterative scheme follows from the polynomiality of the ellipsoid algorithm.

Let us discuss first what kind of a violated constraint we wish to find ideally to obtain “fast”
convergence of this iterative scheme. We shall forget what other authors have called “the sepa-
ration problem” and first determine what it is that we really want.

Denote by Pk the polytope that we have after k iterations and by xk the current optimizer.
Denote by

SP = {(h, h0) ∈ R
n+1 : P ⊆ {x ∈ Rn : hx ≤ h0}} (9.51)

the set of all candidates for a solution of the separation problem e.g. as defined in Chapter 7.5.4.
The set SP is the h0-polar of the polytope P , see (7.13) in Chapter 7.4 where Y is void because
P by assumption is a polytope. Ideally, we wish to find a constraint that “moves” the objective
function “down” as fast as possible because we know that P ⊆ Pk. So we want ideally a solution
to the problem

min
(h,h0)∈SP

max
x∈Rn

{cx : x ∈ Pk ∩ {x ∈ R
n : hx ≤ h0}} . (9.52)

Since P is a polytope this min-max problem has a solution if P �= ∅ and if P = ∅ we simply
declare an arbitrary “violated” inequality to be the solution, e.g. hx = cx ≤ h0 = cxk − 100. If
the objective function value of (9.52) is greater than or equal to cxk, then by the outer inclusion
principle the current iterate xk solves the linear optimization problem max{cx : x ∈ P} and we are
done. Otherwise, the objective function value is less than cxk and let us call any (h, h0) ∈ Rn+1

that solves (9.52)

280 9. ELLIPSOID ALGORITHMS

an optimal separator for P with respect to the objective function cx

that we wish to maximize over P . It follows that hxk > h0 and we can iterate. What we like to
have ideally is not necessarily what we can do in computational practice and indeed, we are not
aware of any linear optimization problem for which a solution to the min-max problem (9.52) is
known. We refer to this problem sometimes as the problem of “finding the right cut” because we
are evidently cutting off a portion of the polytope Pk by an optimal separator hx ≤ h0 and the cut
is “right” because it moves the objective function value as much as possible. A general solution
to (9.52) does not seem possible, but for certain classes of optimization problems an answer to
this problem may be possible.

Since a solution to (9.52) seems elusive, we have to scale down our aspirations somewhat and
approximate the problem of finding the right cut. The next best objective that comes to one’s
mind is to ask for (h, h0) ∈ SP such that the amount of violation hxk−h0 is maximal. So we want
to solve

max{hxk − h0 : (h, h0) ∈ SP , ‖h‖∞ = 1} , (9.53)

where ‖h‖∞ = max{|hj | : 1 ≤ j ≤ n} is the �∞-norm. Because we normalized by ‖h‖∞ = 1 the
maximum in (9.53) exists if P �= ∅. If P = ∅, then any inequality hx ≤ h0 with hxk − h0 > 0 is
simply declared to be a “solution” to (9.53). If the objective function value in (9.53) is less than
or equal to zero, we stop: the current iterate xk maximizes cx over P . Otherwise, any solution to
(9.53) is

a most violated separator for P .

It follows that hxk > h0 and we can iterate. Indeed, in all of the computational work that preceded
as well as that followed the advent of the ellipsoid algorithm the constraint identification (or
separation) problem was approached in this and no other way. Posing the separation problem that
we need to solve iteratively the way we have done it solves the separation problem of Chapter 7.5.4:
the objective function value of (9.53) provides a “proof” that all constraints of P are satisfied by
the current iterate xk of the overall iterative scheme. Of course, problem (9.53) has one nonlinear
constraint, but we can get around the nonlinearity easily.

We consider in the separation step of the basic ellipsoid algorithm, i.e. in Step 1, only
most violated separators. This agrees not only with computational practice, but it also alleviates
certain theoretical difficulties that arise when the separation step is not treated as an optimization
problem on its own.

If one merely asks for some separator as we do in the first part of point 7.5(j), then – in case
that dimP = k < n – it can happen that the separation subroutine always returns a hyperplane
that is parallel to the affine hull of P , see e.g. Figure 9.4, and, of course, the volumina of the
ellipsoids tend to zero. Thus if the volume falls below a certain value VF , say, we can no longer
conclude that P = ∅ because – even though P �= ∅ – the n-dimensional volume of P is zero if
dimP < n.

9.6 ε-Solidification of Flats, Polytopal Norms, Rounding

For any ε > 0 define the ε-solidification P∞ε of a polytope P ⊆ Rn with respect to the �∞-norm by

P∞ε = {z ∈ R
n : ∃x ∈ P such that ‖x− z‖∞ ≤ ε} , (9.54)

9.6. ε-SOLIDIFICATION OF FLATS, POLYTOPAL NORMS, ROUNDING 281

x2

x1

x2

x1

x2

x1

Fig. 9.9. ε-Solidification (9.54) with ε = 0.5 of three rational flats in R2

where ‖x− z‖∞ = max{|xj − zj | : 1 ≤ j ≤ n} is the �∞-norm.

Remark 9.12 (i) For every ε > 0 and nonempty polytope P ⊆ Rn the set P∞ε ⊆ Rn is a full dimen-
sional polytope.
(ii) If hx ≤ h0 for all x ∈ P , then hx ≤ h0 + ε ‖h‖1 for all x ∈ P∞ε . If hx ≤ h0 for all x ∈ P∞ε , then
hx ≤ h0 − ε ‖h‖1 for all x ∈ P , where ‖h‖1 =

∑n
j=1 |hj | is the �1-norm.

(iii) Let Hx ≤ h be any linear description of P∞ε . Then Hx ≤ h − εd is a linear description of P
where d is the vector of the �1-norms of the rows of H.

Suppose P is a rational flat. Then P ⊆ {x ∈ Rn : hx = h0} for some (h, h0) ∈ Rn+1. Consequently,
hx ≤ h0 and −hx ≤ −h0 for all x ∈ P . Thus

P∞ε ⊆ {x ∈ Rn : hx ≤ h0 + ε ‖h‖1 , −hx ≤ −h0 + ε ‖h‖1} ,

which corresponds to “tearing apart” the equations defining the affine hull of P . Since for every
x ∈ P the hypercube x + {z ∈ Rn : |zj | ≤ ε for 1 ≤ j ≤ n} is contained in P∞ε and this hypercube
contains B(x, r = ε) the n-dimensional volume of P∞ε satisfies

if P �= ∅ then vol(P∞ε) ≥ 2
nεn >

εnπn/2

Γ(1 + n/2)
for all ε > 0 . (9.55)

Since dimP∞ε = n if P �= ∅ the polytope P∞ε has a linear description that is unique modulo
multiplication by positive scalars. Thus if Hx ≤ h is some linear description of P then the set
{x ∈ Rn :Hx ≤ h+ εd} contains P∞ε by Remark 9.12 (ii), where d is defined in part (iii). But the
containment can be proper.

Let x∗ ∈ Rn be arbitrary and suppose that we have a separation subroutine for the polytope
P that finds a most violated separator hx ≤ h0. If hx∗ ≤ h0, then x∗ ∈ P∞ε where ε > 0 is
arbitrary. From Remark 9.12 it follows that for a point outside of P∞ε there exists at least one of
the representations of some facet of P that is violated by it; see the text for more detail.

Remark 9.13 Let Hx ≤ h and φ ≥ n + 1 be such that 〈hi〉 + 〈hi〉 ≤ φ for all rows (hi, hi) of (H h).
Let xa ∈ Rn and (H1 h

1), (H2 h
2) be a partitioning of (H h) such that

h1 − εd1 ≤H1x
a ≤ h1 + εd1 , H2x

a < h2 − εd2 , (9.56)

where d1, d2 are the vectors of the �1-norms of the corresponding rows ofH1,H2. If 0 ≤ ε ≤ 2−5(n+1)φ

then the system H1x = h
1, H2x ≤ h

2 is solvable.

282 9. ELLIPSOID ALGORITHMS

In Figure 9.9 we have illustrated the ε-solidification of three flats in R2. Exercise 9.7 shows
that solidification works for polyhedra and states various facts about P∞ε . It shows also that we
can replace the �∞-norm in the definition of the ε-solidification of a polyhedron P by the �1-norm
without changing the basic properties.

The �1-norm and the �∞-norm are special polytopal norms on Rn in the sense that their
respective “unit spheres” {x ∈ Rn : ‖x‖p ≤ 1} where p ∈ {1,∞} are full dimensional polytopes in
R
n. Moreover, the polytopes {x ∈ Rn : ‖x‖1 ≤ 1} and {x ∈ Rn : ‖x‖∞ ≤ 1} are dual polytopes in

the sense that there is an one-to-one correspondence between the facets of either of them and
the extreme points of the other. More generally, let ‖ · ‖P be any polytopal norm on Rn, i.e. the
unit sphere with respect to ‖ · ‖P is a polytope. Given ‖ · ‖P define for y ∈ Rn the “length” of y in
the dual norm ‖ · ‖∗P by

‖y‖∗P = max{y
Tx : x ∈ Rn , ‖x‖P ≤ 1} . (9.57)

The maximum exists because {x ∈ Rn : ‖x‖P ≤ 1} is a polytope, i.e. a compact convex subset of
R
n, and yTx is continuous in x. You prove that ‖·‖1 and ‖·‖∞ is a pair of dual norms. Exercise 9.8

shows that ‖ · ‖∗P is a polytopal norm on Rn and that it satisfies Hölder’s inequality

yTx ≤ ‖y‖∗P ‖x‖P for all x,y ∈ Rn . (9.58)

It also shows that an ε-solidification of polyhedra can be defined with respect to any polytopal
norm on Rn. Moreover, if we have a separation subroutine for any polyhedron P that finds a most
violated separator then we can separate points from it using the corresponding ε-solidification of
P .

9.6.1 Rational Rounding and Continued Fractions

Rational rounding is the process of approximating a real number Θ ∈ R as a ratio of two integer
numbers p/q with q ≥ 1. If the denominator q = 1 then p = �Θ� or p = �Θ� are the only “reasonable”
choices with a maximum error of 1/2. We denote by

[Θ] = min{Θ− �Θ�, �Θ� −Θ} (9.59)

the smaller of the two fractional parts of Θ and pronounce [Θ] as “frac of Θ.”

Remark 9.14 Let Θ and Q > 1 be any real numbers. Then there exists an integer q such that
1 ≤ q ≤ Q and [qΘ] ≤ Q−1.

A ratio p/D with integers p and D ≥ 1 is a best approximation to Θ ∈ R if

[DΘ] = |DΘ− p| and [qΘ] > [DΘ] for all 1 ≤ q < D . (9.60)

Two sequences of integers q1 = 1 < q2 < q3 < · · · and p1, p2, p3, . . . such that pn/qn is a best
approximation to Θ for all 1 ≤ q ≤ D = qn can be constructed inductively as follows. Initially,
we let q1 = 1 and find an integer p1 such that |q1Θ − p1| = [Θ] ≤ 1/2. By definition p1/q1 is a best
approximation of Θ with D = 1. If p1 = q1Θ, i.e. if Θ is an integer, the inductive process stops.
So suppose that we have constructed the n ≥ 1 first, best approximations to Θ and that the
process does not stop. Then we have integers pn and qn such that pn �= qnΘ, i.e. [qnΘ] > 0. From
Remark 9.14 when applied with Q > [qnΘ]−1 it follows that there exist integer numbers q ≥ 1 such

9.6. ε-SOLIDIFICATION OF FLATS, POLYTOPAL NORMS, ROUNDING 283

that [qΘ] < [qnΘ]. Let qn+1 be the smallest integer and pn+1 be a corresponding integer number
such that

[qn+1Θ] = |qn+1Θ− pn+1| (9.61)

[qn+1Θ] < [qnΘ] (9.62)

[qΘ] ≥ [qnΘ] for all 1 ≤ q < qn+1. (9.63)

Since by the inductive hypothesis pn/qn is a best approximation to Θ with D = qn we have from
(9.62) that qn+1 > qn and from (9.63) and (9.62) that the ratio pn+1/qn+1 is a best approximation
to Θ with D = qn+1. Consequently, the induction works, the numbers pn and qn have the stated
properties and either the process continues or it stops.

Several important properties of this sequence of best approximations to Θ can be established
that lead to a polynomially bounded algorithm for finding best approximations to rational num-
bers when the denominator is bounded by a prescribed number. Since qn < qn+1 and applying
Remark 9.14 with Q = qn+1 it follows from (9.63) that

qn[qnΘ] < qn+1[qnΘ] ≤ 1 . (9.64)

Moreover, the signs of qnΘ− pn and qn+1Θ− pn+1 alternate, i.e.

(qnΘ− pn)(qn+1Θ− pn+1) ≤ 0 . (9.65)

All numbers in the sequence are integers and

pnqn+1 − pn+1qn = qn(qn+1Θ− pn+1)− qn+1(qnΘ− pn) , (9.66)

pnqn+1 − pn+1qn = ±1 , (9.67)

sign(pnqn+1 − pn+1qn) = −sign(qnΘ− pn) (9.68)

pnqn+1 − pn+1qn = −(pn−1qn − pnqn−1) (9.69)

for all pn, qn that the inductive process generates. From (9.69) pn(qn+1 − qn−1) = qn(pn+1 − pn−1).
From (9.67) g.c.d.(pn, qn) = 1 and since the coprime representation of a rational is unique, there
exists some positive integer an such that qn+1 − qn−1 = anqn and pn+1 − pn−1 = anpn. So for all
n ≥ 2 of the inductive process there exist integers an ≥ 1 such that

qn+1 = anqn + qn−1 , pn+1 = anpn + pn−1 . (9.70)

Multiply the first part of (9.70) by Θ, subtract the second and use the alternating signs (9.65).
We get

|qn−1Θ− pn−1| = an|qnΘ− pn|+ |qn+1Θ− pn+1| . (9.71)

Now |qn+1Θ− pn+1| = [qn+1Θ] < [qnΘ] = |qnΘ− pn| by (9.62). Hence

an =

⌊
|qn−1Θ− pn−1|

|qnΘ− pn|

⌋
, (9.72)

which together with (9.70) gives a procedure to calculate pn+1, qn+1 once the values of pn and qn
are known for k ≤ n where n ≥ 2.

284 9. ELLIPSOID ALGORITHMS

To start the procedure to calculate pn and qn iteratively from (9.70) and (9.72) we have to know
what the first two iterations of the inductive process produce in terms of pn and qn or prescribe
a start that is consistent with the inductive hypothesis that we have made to derive the above
properties.

If |Θ| ≥ 1 and Θ is not an integer, then we can always write Θ = �Θ� +Θ′ with 0 < Θ′ < 1 and
a best approximation to Θ′ yields instantaneously a best approximation to Θ. So we can assume
WROG that 0 < Θ < 1. If 0 < Θ ≤ 1/2 then p1 = 0, q1 = 1 yields a best approximation to Θ for D = 1
and by Exercise 9.9 (ii) p2 = 1, q2 = �Θ−1� does the same for D = �Θ−1�. So if we initialize

p0 = 1 , q0 = 0 , p1 = 0 , q1 = 1 , (9.73)

then formulas (9.70) and (9.72) produce precisely the respective best approximations to Θ for
n ≤ 2, the inductive hypothesis applies and so we can continue to use the formulas until the
process stops, i.e. Θ = pn+1/qn+1, if it stops at all. If 1/2 < Θ < 1 then the initialization (9.73)
produces p1 = 0, q1 = 1 which is, of course, not a best approximation to Θ > 1/2. Calculating
we get from (9.70) and (9.72) p2 = 1, q2 = 1 because a1 = 1, which gives a best approximation of
Θ > 1/2 for D = 1. Carrying out one more step in the iterative application of (9.70) and (9.72)
with the initialization (9.73) we get a2 = � Θ

1−Θ�, p3 = a2 and q3 = a2+1. By Exercise 9.9 (iii) p3/q3 is
a best approximation to Θ for all 1 ≤ q < D = � Θ

1−Θ�+ 1. Now the inductive hypothesis applies to
p2, q2 and p3, q3, we ignore the first iteration and thus we can continue to use the formulas like
in the first case.

If the number Θ equals r/s with integers r, s ≥ 1 and g.c.d(r, s) = 1, then r/s is itself a best
approximation to Θ for all 1 ≤ q < s, the qn are strictly increasing and thus qn = s, pn = r at
some point and the process stops. If Θ is irrational then lim

n→∞

pn
qn
= Θ because by (9.64) we have

|Θ − pn/qn| < q−2n and 1 = q1 ≤ q2 < q3 < · · · for any 0 < Θ < 1. With the initialization (9.73) it
follows from (9.65) and (9.67) that for all n ≥ 0

(−1)n+1(qnΘ− pn) ≥ 0 , pnqn+1 − pn+1qn = (−1)
n . (9.74)

Consider now the best approximation problem for Θ ∈ R relative to a prescribed integer
number D ≥ 2: we wish to find integer numbers p and 1 ≤ q ≤ D such that |Θ− p/q| is as small as
possible.

Best Approximation Algorithm (Θ, D)

Step 0: Set a0 := �Θ�, Θ := Θ− a0, p0 := 1, q0 := 0, p1 := 0, q1 := 1, n := 1.
Step 1: if qnΘ = pn stop “pn/qn is a best approximation”.

if qn > D go to Step 3. Set an :=
⌊
|qn−1Θ− pn−1|

|qnΘ− pn|

⌋
.

Step 2: Set pn+1 := anpn + pn−1, qn+1 := anqn + qn−1. Replace n+ 1 by n, go to Step 1.
Step 3: Set k := �D−qn−1

qn
�, p′n := pn−1 + kpn, q

′
n := qn−1 + kqn.

if |Θ− pn/qn| ≤ |Θ− p′n/q
′
n| stop “pn/qn is a best approximation”.

stop “p′n/q
′
n is a best approximation”.

Remark 9.15 (Correctness and finiteness) For rationalΘ and integerD ≥ 2 the best approximation
algorithm’s run time is polynomial in the digital size of its input.

9.7. OPTIMIZATION AND SEPARATION 285

Θ = Θ1 =
1

a1 +Θ2
=

1

a1 +
1

a2 +Θ3

= · · · =
1

a1 +
1

a2 +
1

...

aN−1 +
1

aN

Fig. 9.10. Continued fractions for a rational number

To relate the preceding to the continued fraction process define

Θn =
|qnΘ− pn|

|qn−1Θ− pn−1|
for n ≥ 1 ,

where we assume again like in the algorithm that the integer part of the original data has been
cleared away, i.e. 0 < Θ < 1. It follows from the initialization (9.73) that Θ1 = Θ and 0 ≤ Θn < 1
for n ≥ 1 from (9.62). From (9.71) we get

Θ−1n = an +Θn+1 for all n ≥ 1 with Θn > 0 . (9.75)

Now suppose that Θ is a rational number. Then by the above Θ = pN+1/qN+1, say, so that
ΘN+1 = 0 and thus by (9.75) Θ−1N = aN . Consequently we can write Θ like in Figure 9.10, which
explains the term “continued fraction.” IfΘ is irrational thenΘn > 0 for all n ≥ 1 and the continued
fraction goes on “forever”, which permits one to find high-precision rational approximations of
irrational numbers.

Rational rounding can e.g. be used in the context of establishing the polynomiality of li-
near programming via the combination of the binary search algorithm 2 and the basic ellipsoid
algorithm, see Chapter 9.3.1, to find the optimal objective function value zP exactly; see the text.

9.7 Optimization and Separation

Here the fundamental polynomial-time equivalence of optimization and separation for rational po-
lyhedra is established. It is shown that for any rational polyhedron P ⊆ Rn the linear optimization
problem

max{cx : x ∈ P}

can be solved in time that is polynomial in n, the facet complexity φ of P and 〈c〉 if and only if
the separation problem (9.53) is solvable in time that is polynomial in n, φ and 〈xk〉.

The geometric idea of our construction is simple and illustrated in Figures 9.11 and 9.12
for a full dimensional polyhedron in R2. In Figure 9.11 we depict the situation when cx with
c = (−1,−1) is maximized, while Figure 9.12 illustrates the basic idea for finding direction vectors
in the asymptotic cone of a polyhedron. For any integer u ≥ 1 denote

Pu = P ∩ {x ∈ R
n : −u ≤ xj ≤ u for 1 ≤ j ≤ n} . (9.76)

286 9. ELLIPSOID ALGORITHMS

x1

x2

Pu

P

u = 2Λ

2Λ

Fε

Pu

P εu

Fig. 9.11. Locating the optimum and proving optimality

Its ε-solidification P εu with respect to the �1-norm is either empty or a full dimensional polytope
in Rn. To find direction vectors in the asymptotic cone we define

Λ = φ+ 5nφ+ 4n2φ+ 1 . (9.77)

Setting u = 2Λ > 24nφ it follows from point 7.5(b) that all extreme points of P are properly
contained in Pu. Moreover, we get a sufficiently large portion of the “unbounded” region of P by
doubling this value of u which permits us to find direction vectors in the asymptotic cone of P by
solving two linear optimization problems rather than one.

At the outset the polyhedron P ⊆ Rn may be empty, it may have none or several optimal
extreme points or the objective function may be unbounded. To encompass all possibilities,
we perturb the original objective function so as to achieve uniqueness of the maximizer over the
larger polytope Pu where u = 2Λ+1. To locate the unique maximizer xmax of the perturbed objective
function over Pu where u ∈ {2Λ, 2Λ+1} we let the algorithm run until xmax is the only rational point
in the remaining ε-optimal set with components that have denominators qj ≥ 1 and qj ≤ 26nφ. We
have illustrated the basic idea in the second part of Figure 9.11 which “zooms” into the area of the
first part depicted by a square and that contains xmax. Running the algorithm “long enough” we
find an ε-optimal rational vector x ∈ P εu “close” to xmax. Using the best approximation algorithm
of Chapter 9.6 we can round x componentwise to obtain xmax, see Remark 9.16. If the maximizer
xmax obtained this way satisfies |xmaxj | < 2Λ for all 1 ≤ j ≤ n, then we are done and an optimal
extreme point of P for the original objective function has been located. If the maximizer xmax

satisfies |xmaxj | = 2Λ for some 1 ≤ j ≤ n, then either the linear optimization problem over P has
an unbounded objective function value or an optimal extreme point of P may still exist. In either
case, we execute the algorithm a second time to optimize the same perturbed objective function
over Pu where u = 2Λ+1. We get a second, unique maximizer ymax, say, over the larger polytope
and – since we have used identical objective functions – the difference vector y = ymax − xmax

belongs to the asymptotic cone of the polyhedron P . This will let us decide whether the objective
function is unbounded or bounded and in the latter case we find an optimizing point as well.
Exercise 9.10 reviews the perturbation technique of Chapter 7.5.4 and summarizes part of what
we need to establish the validity of our construction. The last part of Exercise 9.10 shows in
particular that we can assume WROG that every nontrivial linear inequality hx ≤ h0 belonging to
a linear description of a rational polyhedron P of facet complexity φ satisfies ‖h‖∞ = 1.

9.7. OPTIMIZATION AND SEPARATION 287

x1

x2

Pv

v = 2Λ+1

2Λ+1

Pu

u = 2Λ

2Λ

x1

x2

x3

u1 u2

u3

v1 v2

v3

y

P

Fig. 9.12. Finding a direction vector in the asymptotic cone of P

9.7.1 ε-Optimal Sets and ε-Optimal Solutions

The following remark makes the first part of the construction precise and gives an analytical
meaning to the terms “ε-optimal set” and “ε-optimal solution”: the set Fε defined in (9.78) is an
ε-optimal set and any rational x ∈ Fε is an ε-optimal solution to the linear optimization problem
over Pu.

Remark 9.16 Let P ⊆ Rn be a rational polytope of facet complexity φ, Pu be as defined in (9.76) with
integer u ≥ 24nφ and let P εu be the ε-solidification of Pu with respect to the �1-norm. Let xmax ∈ Pu
be the unique maximizer of dx over Pu and zP = dxmax, where d has rational components and
‖d‖∞ = 1. Define

Fε = P
ε
u ∩ {x ∈ R

n : dx ≥ zP − ε} , (9.78)

where 0 < ε ≤ 2−Ψ and Ψ = 9nφ + 12n2φ + 〈d〉. Then Fε is a full dimensional polytope, vol(Fε) ≥
2nεn/n! and every extreme point y ∈ Fε satisfies |yj − xmaxj | < 2−6nφ−1 for 1 ≤ j ≤ n. Moreover,
rounding any rational x ∈ Fε componentwise by the best approximation algorithm with Θ = xj and
D = 26nφ we obtain xmaxj and thus the maximizer xmax in time polynomial in n, φ and 〈x〉.

9.7.2 Finding Direction Vectors in the Asymptotic Cone

The following remark makes the second part of the construction precise; see also Exercise 9.11 (i)
below.

Remark 9.17 Let P ⊆ Rn be a rational polyhedron of facet complexity φ, let v > u ≥ 2Λ be any
integers where Λ is defined in (9.77), let Pv and Pu be defined as in (9.76) with respect to v and
u, respectively, and let C∞ be the asymptotic cone of P . Then every extreme point xv ∈ Pv can
be written as xv = x + vt where x, t ∈ Rn are rational vectors, t ∈ C∞, 〈t〉 ≤ 4n2φ and moreover,

288 9. ELLIPSOID ALGORITHMS

xu = x + ut ∈ Pu is an extreme point of Pu. Likewise, if xu ∈ Pu is an extreme point of Pu and
xu = x+ ut, say, then xv = xu + (v − u)t ∈ Pv is an extreme point of Pv.

9.7.3 A CCS Ellipsoid Algorithm

The CCS ellipsoid algorithm is a central cut, sliding objective version of the basic ellipsoid algo-
rithm. It takes the number of variables n, a rational vector d with ‖d‖∞ = 1, the facet complexity φ
and P as input. “P ” is an identifier of the polyhedron over which we optimize the linear function
dx and used to communicate with the separation subroutine SEPAR(x,h, h0, φ, P). u specifies
the hypercube with which we intersect P ; see (9.76). ε, p and T are the parameters for the
ε-solidification of P in the �1-norm, the required precision for the approximate calculation in
terms of binary positions and the number of steps of the algorithm, respectively.

The subroutine SEPAR(xk,h, h0, φ, P) of Step 1 returns a most violated separator, i.e., a so-
lution (h, h0) to (9.53). The normalization requirement ‖h‖∞ = 1 is no serious restriction at all;
see Exercise 9.10 (v). It shows why we use the ε-solidification of Pu or P in the �1-norm: by
Exercise 9.7(vi) we get hTx ≤ h0 + ε ‖h‖∞ = h0 + ε as the corresponding inequality for P εu or P ε if
hTx ≤ h0 for all x ∈ P and (h, h0) was returned by the separation subroutine. So, we “perturb”
the feasible set like in Chapter 9.3 by adding a “small enough” ε > 0 to the right-hand side h0
of every most violated separator (h, h0) that the separation subroutine returns. h is a column
vector and uj ∈ Rn is the j-th unit vector.

CCS Ellipsoid Algorithm (n, d, φ, P , u, ε, p, T)
Step 0: Set k := 0, x0 := 0, F 0 := nuIn, zL := −nu‖d‖ − 1, z := zL.
Step 1: if |xkj | > u+ ε for some j ∈ {1, . . . , n} then

set h := uj if xkj > 0, h := −u
j otherwise.

else
call SEPAR(xk,h, h0, φ, P).
if hTxk ≤ h0 + ε then

Set h := −dT . if dxk > z then set x := xk, z := dxk.
endif

endif
Step 2: if k = T go to Step 3. Set

xk+1 ≈ xk −
1

n+ 1

F kF
T
k h

‖F Tk h‖
,

F k+1 ≈
n+ 1/12n
√
n2 − 1

F k

(
In −

1−
√
(n− 1)/(n+ 1)

hTF kF
T
k h

(F Tk h)(h
TF k)

)
,

where ≈ means that componentwise the round-off error is at most 2−p.
Replace k + 1 by k and go to Step 1.

Step 3: if z = zL stop “zP = −∞. P is empty.”
Round x componentwise to the nearest rational x∗ such that each component of x∗

has a positive denominator less than or equal to 26nφ. stop “x∗ is an optimal extreme
point of Pu.”

9.7. OPTIMIZATION AND SEPARATION 289

Remark 9.18 (Correctness and finiteness) Let P ⊆ Rn be a rational polyhedron of facet complexity
φ. Let d ∈ Rn be a rational vector with ‖d‖∞ = 1 such thatmax{dx : x ∈ Pu} has a unique maximizer
xmax ∈ Pu with objective function value zP = dxmax if P �= ∅, where Pu is defined in (9.76) and
u ≥ 24nφ is any integer. If the subroutine SEPAR(xk,h, h0, φ, P) returns a most violated separator
hx ≤ h0 for xk and P satisfying ‖h‖∞ = 1, then the CCS ellipsoid algorithm concludes correctly that
Pu = P = ∅ or it finds xmax if it is executed with the parameters

ε = 2−Ψ , T = �6n2 log
n2u

ε
� , p = 14 + n2 + �15n log

n2u

ε
� ,

where Ψ = 9nφ+ 12n2φ+ 〈d〉.

9.7.4 Linear Optimization and Polyhedral Separation

For any polyhedron P ⊆ Rn with a linear description Hx ≤ h, say, we denote by

P∞ = {y ∈ R
n :Hy ≤ 0 , ‖y‖∞ ≤ 1}

the intersection of the asymptotic cone C∞ of P with the unit sphere in the �∞-norm.
Linear optimization problem: Given a rational polyhedron P ⊆ Rn of facet complexity φ and
a rational vector c ∈ Rn (i) conclude that P is empty or (ii) find xmax ∈ P with cxmax ≥ cx for all
x ∈ P or (iii) find t ∈ P∞ with ct > 0 and ct ≥ cy for all y ∈ P∞.
Polyhedral separation problem: Given a rational polyhedron P ⊆ Rn of facet complexity φ and
a rational vector z ∈ Rn (i) conclude that z ∈ P or (ii) find a most violated separator for z and P , i.e.
find a rational vector (h, h0) ∈ Rn+1 that solves the problem

max{hz − h0 : (h, h0) ∈ SP , ‖h‖∞ = 1} ,

where SP = {(h, h0) ∈ Rn+1 : P ⊆ {x ∈ Rn : hx ≤ h0}}.
Neither problem specifies the way in which the polyhedron P ⊆ Rn is given: all we need is the

information that the polyhedron is a subset of Rn, that its facet complexity is at most φ and some
“identifier” for P that permits us to communicate to some subroutine for instance.

Remark 9.19 Let P ⊆ Rn be any rational polyhedron of facet complexity φ. If there exists an
algorithm A, say, that solves the polyhedral separation problem in time that is bounded by a poly-
nomial in n, φ and 〈z〉, then the linear optimization problem can be solved in time that is bounded
by a polynomial in n, φ and 〈c〉.

To outline the proof that the statement of Remark 9.19 can be reversed as well let

S = {x1, . . . ,xp} and T = {y1, . . . ,yr}

be any minimal generator of P and denote by X the n× p matrix with columns xi, by Y the n× r
matrix with columns yi. Either X or Y or both may be void. The set SP = {(h, h0) ∈ Rn+1 : P ⊆
{x ∈ Rn : hx ≤ h0}} of separators for P satisfies

SP = {(h, h0) ∈ R
n+1 : hX − h0g ≤ 0 , hY ≤ 0} , (9.80)

where g ∈ Rp is a row vector with p components equal to 1. It follows that SP is a polyhedral
cone in Rn+1 of facet complexity at most φ∗ = 4n2φ+ 3. Denote by

SP∞ = {(h, h0) ∈ R
n+1 : hX − h0g ≤ 0 , hY ≤ 0 , −e ≤ h ≤ e} (9.81)

290 9. ELLIPSOID ALGORITHMS

the polyhedron in Rn+1 over which we need to maximize hz − h0 in order to find a most violated
separator for z and P , where e ∈ Rn is a row vector with n components equal to 1. The polyhedron
SP∞ contains the halfline defined by (0, 1) ∈ Rn if X is nonvoid, it contains the line defined by
(0,±1) ∈ Rn+1 if and only if X is void and every nonzero extreme point (h, h0) of SP∞ satisfies
‖h‖∞ = 1. By Remark 9.19 we can optimize the linear function hz − h0 over SP∞ in polynomial
time provided that the polyhedral separation problem for SP∞ and any rational (f , f0) ∈ Rn+1,
say, can be solved in time that is bounded by a polynomial in n, φ and 〈f〉+ 〈f0〉. So we need to
identify the set of separators for SP∞. We will do so in two steps: first we identify the set SP ∗,
say, of separators for SP .

Since SP is a polyhedral cone in Rn+1, its set SP ∗ of separators is a subset of all halfspaces of
R
n+1 that contain the origin, i.e.

SP ∗ = {(x, xn+1) ∈ R
n+1 : SP ⊆ {(h, h0) ∈ R

n+1 : hx− h0xn+1 ≤ 0}} ,

because SP contains the origin of Rn+1 and with every nonzero point the cone SP contains the
entire halfline defined by it. It follows that

SP ∗ = {(x, xn+1) ∈ R
n+1 : hx− h0xn+1 ≤ 0 for all (h, h0) ∈ SP}

= {(x, xn+1) ∈ R
n+1 :Hx− hxn+1 ≤ 0 , −xn+1 ≤ 0} ,

whereHx ≤ h is any linear description of the polyhedron P ⊆ Rn. The inequality xn+1 ≥ 0 follows
because SP contains the halfline noted above. If P �= ∅ and X is void, i.e. if P contains lines,
then we must replace xn+1 ≥ 0 by the equation xn+1 = 0, because SP contains the line defined by
(0,±1) ∈ Rn+1 in this case. So if P �= ∅ and X is nonvoid, then the set SP ∗ of separators for SP is
the homogenization of the polyhedron P – see (7.5). If P �= ∅ and X is void, then the set SP ∗ of
separators in question is simply the asymptotic cone of P – see (7.3). Define

SP ∗∞ = {(x, xn+1) ∈ R
n+1 :Hx− hxn+1 ≤ 0 , −e ≤ x ≤ e , 0 ≤ xn+1 ≤ 1} , (9.82)

where e ∈ Rn has n components equal to 1. So the set SP ∗∞ of all separators is a nonempty
polytope in Rn+1, every nonzero extreme point of which has an �∞-norm of 1.

Consider now (x0, x0n+1) �= (x
1, x1n+1) ∈ SP

∗
∞ with x0n+1 > 0 and x1n+1 > 0. Then (x1n+1x

0, x0n+1x
1
n+1)

∈ SP ∗∞ and (x0n+1x
1, x0n+1x

1
n+1) ∈ SP

∗
∞. If for some (f , f0) ∈ Rn+1 we have

f(x1n+1x
0)− f0x

0
n+1x

1
n+1 > f(x

0
n+1x

1)− f0x
0
n+1x

1
n+1 > 0 ,

then the point (x0, x0n+1) is a “more violated” separator for (f , f0) and SP than (x1, x1n+1), because
for all λ ≥ 0 (λx1n+1x

0, λx0n+1x
1
n+1) ∈ SP

∗, (λx0n+1x
1, λx0n+1x

1
n+1) ∈ SP

∗ and the previous inequalities
remain true for the entire open halfline, i.e. for all λ > 0.

Thus even if fx1 − f0x1n+1 > fx
0 − f0x0n+1 > 0, rather than fx0 − f0x0n+1 > fx

1 − f0x1n+1,
for the “original” points (x0, x0n+1), (x

1, x1n+1) ∈ SP
∗
∞ it can happen that (x0, x0n+1) defines a more

violated separator. It follows that we have to scale the “homogenizing” components of two violated
separators (x0, x0n+1) and (x1, x1n+1) with x0n+1 > 0 and x1n+1 > 0 to have equal values if we want to
decide which one of the two is more violated than the other; see also Exercise 9.12 (iii) below.

Suppose that (f , f0) ∈ Rn+1 is given, that P �= ∅ and that algorithm B, say, solves the linear
optimization problem over P ⊆ Rn. We run the algorithm with the objective function vector c = f .

Assume that algorithm B finds xmax ∈ P with fxmax ≥ fx for all x ∈ P . If fxmax ≤ f0 then
we conclude that (f , f0) ∈ SP . Otherwise, fxmax − f0 > 0 and fxmax − f0 ≥ fx− f0 for all x ∈ P .

9.7. OPTIMIZATION AND SEPARATION 291

Then

x0 = αxmax , x0n+1 = α where α−1 =

∥∥∥∥∥
(
xmax

1

)∥∥∥∥∥
∞

(9.83)

solves the polyhedral separation problem for (f , f0) and SP ; see the text.
Suppose that algorithm B finds t ∈ P∞ with ft > 0 and ft ≥ fy for all y ∈ P∞. Then

x0 = t , x0n+1 = 0 (9.84)

solves the polyhedral separation problem for (f , f0) ∈ Rn+1 and SP ; see the text.
It follows that if P �= ∅ we can solve the polyhedral separation problem for any rational (f , f0) ∈

R
n+1 and the cone SP in time that is polynomially bounded in n, φ and 〈f〉 + 〈f0〉 by solving
max{fx : x ∈ P}. If we conclude that (f , f0) ∈ SP define (x0, x0n+1) = (0, 0); otherwise the most
violated separator (x0, x0n+1) for (f , f0) ∈ Rn+1 and SP is given by (9.83) or (9.84), respectively.

It remains to show that we can solve the separation problem for (f , f0) ∈ Rn+1 and SP∞.
The polyhedron SP∞ differs from the cone SP by exactly 2n constraints of the form −1 ≤ hj ≤ 1

for all 1 ≤ j ≤ n, which we can check by LIST-and-CHECK in polynomial time. Given (x0, x0n+1)
define

α = fx0 − f0x
0
n+1 , β = max

1≤j≤n
{0, 1− fj} , γ = max

1≤j≤n
{0, 1 + fj} ,

where fj is the j-th component of f ∈ Rn. If max{α, β, γ} = 0 we conclude that (f , f0) ∈ SP∞.
Otherwise, if max{α, β, γ} = α then (x0, x0n+1) is a most violated separator for (f , f0) and SP∞. If
max{α, β, γ} = β then (x0, x0n+1) = (u

k, 1) ∈ Rn+1 is a most violated separator for (f , f0) and SP∞
where k ∈ {1, . . . , n} is such that β = 1−fk. Likewise, ifmax{α, β, γ} = γ then (x0, x0n+1) = (−u

k, 1) ∈
R
n+1 is a most violated separator for (f , f0) and SP∞ where k ∈ {1, . . . , n} is such that γ = 1 + fk.

The preceding combination of some algorithm B for the linear optimization problem and of
LIST-and-CHECK yields a separation routine SEPAR∗(f , f0,x0, x0n+1, φ, SP∞) that solves the po-
lyhedral separation problem for rational (f , f0) ∈ Rn+1 and SP∞ if the underlying polyhedron
P ⊆ Rn is nonempty. Moreover, if the running time for algorithm B is bounded by a polynomial
in n, φ and 〈c〉, then the running time of SEPAR∗ is evidently bounded by a polynomial in n, φ
and 〈f〉+ 〈f0〉.

To complete the outline of the proof that we can solve the problem

max{hz − h0 : (h, h0) ∈ SP∞}

for any rational z ∈ Rn in polynomial time if a polynomial-time algorithm B for the linear
optimization problem is known, we proceed as follows.

We run the algorithm B a first time with the objective function c = 0. If algorithm B concludes
that P = ∅ then we declare hz = z1 > h0 = z1 − 1 to be a solution to the polyhedral separation
problem. Since P is empty, any inequality that is violated by z is evidently a most violated
inequality for z and P .

So suppose that we conclude that P �= ∅. Now the separation subroutine SEPAR∗ applies and
thus by Remark 9.19 we can solve the linear optimization problem

max{hz − h0 : (h, h0) ∈ SP∞}

in time that is polynomially bounded in n, φ and 〈z〉.

292 9. ELLIPSOID ALGORITHMS

If (hmax, hmax0) with hmaxx− hmax0 ≥ hz − h0 for all (h, h0) ∈ SP∞ is obtained, then we conclude
that z ∈ P if hmaxz ≤ hmax0 and otherwise, a most violated separator for z and P has been obtained.

If a finite maximizer (hmax, hmax0) ∈ SP∞ does not exist, then the solution to the above linear
optimization problem provides a direction vector in the asymptotic cone of SP∞. The polyhedron
SP∞ contains the halfline defined by (0, 1) ∈ Rn+1 along which the objective function tends to −∞.
Consequently, if the unbounded case arises, then SP∞ contains the line defined by (0,±1) ∈ Rn+1

and the finite generator of P consists only of halflines, i.e. the matrix X in the definition of SP∞
is void.

So we solve the linear optimization problem

max{hz − h0 : (h, h0) ∈ SP∞ , h0 = 0}

using the separation subroutine SEPAR∗, i.e. we iterate the whole procedure a second time.
Now the unbounded case cannot arise and we find a new (hmax, 0) ∈ Rn+1 with ‖hmax‖∞ = 1 such
that hmaxz ≥ hz for all (h, 0) ∈ SP∞. If hmaxz ≤ 0 then we conclude that z ∈ P , whereas otherwise
(hmax, 0) is a most violated separator for z and P since every separator (h, h0) for P satisfies h0 = 0
in this case.

The concatenation of polynomials in some variables yields a polynomial in the same variables.
Thus the entire procedure can be executed in time that is bounded by some polynomial in n, φ
and 〈z〉.

Remark 9.20 For any rational polyhedron P ⊆ Rn and n ≥ 2 the linear optimization problem and
the polyhedral separation problem are polynomial-time equivalent problems.

So if either one of the two problems above is solvable in polynomial time, then so is the other.
From a theoretical point of view we may thus concentrate on anyone of the two problems to study
the algorithmic “tractability” of linear optimization problems over rational polyhedra P in Rn.

Remark 9.19 has several important implications which we do not prove in detail. Among these
are that if either problem is polynomially solvable for some rational polyhedron P ⊆ Rn, then we
can find

• the dimension dimP of P ,

• a linear description of the affine hull aff(P) of P ,

• a linear description of the lineality space LP of P ,

• extreme points and extreme rays of P if there are any,

• facet-defining linear inequalities for P , etc

in polynomial time. The latter is of particular importance for the branch-and-cut approach to
combinatorial optimization problems which rely on finding (parts of) ideal descriptions of the
corresponding polyhedra.

9.8. EXERCISES 293

9.8 Exercises

Exercise 9.1
Show that for n = 1 the ellipsoids Ek are intervals and that the updating formulas (9.1) and (9.2)

become xk+1 = xk − 1
2Fk sign(a), Fk+1 = 1

2Fk for k ≥ 0 where ax ≤ b is any inequality that is violated
by xk and sign(a) = 1 if a ≥ 0, −1 otherwise. (Hint: Note that ddT = 1, In = 1 and thus the terms
n− 1 cancel.)

The inequality ‖F−1(x− x0)‖ ≤ 1 in one dimension becomes |x− x0| ≤ |F |, since x, x0 and F are
scalars. WROG we assume that F is positive. Then the inequality corresponds to the interval
[x0−F, x0+F]. Let ax ≤ b be a violated inequality by x0. We can assume that a = ±1 (the case a = 0
is meaningless), since every inequality can be brought in that form. Then the vector d becomes
a scalar Fa/|Fa|, i.e. d = sign(a) = ±1. Thus the updating formula for the center is given by

xk+1 = xk −
1

2
Fksign(a) .

Note that ddT becomes d2 = 1 and In becomes I1 = 1. Then we calculate from the updating
formula for F

Fk+1 =

√
n2

n2 − 1
Fk

(
1− 1 +

√
n− 1

n+ 1

)
=

√
n2(n− 1)

(n− 1)(n+ 1)2
Fk =

n

n+ 1
Fk =

1

2
Fk .

Exercise 9.2
Let F , R be two m× n matrices of reals.

(i) Show ‖F ‖ = 0 if and only if F = O, ‖αF ‖ = |α|‖F ‖ for all α ∈ R, ‖F +R‖ ≤ ‖F ‖+ ‖R‖.

(ii) Show ‖In‖ =
√
n and ‖F ‖2 = trace(FF T).

(iii) Show ‖F ‖2 ≤ ‖F ‖ ≤
√
n‖F ‖2. (Hint: Use trace(F TF) =

∑
λi.)

(iv) For F as before, R of size n× p, r ∈ Rn and α ∈ R show

‖FR‖ ≤ ‖F ‖‖R‖ , ‖F (In − αrr
T)‖2 = ‖F ‖2 − α(2− α‖r‖2)‖Fr‖2 .

(i) We have ‖F ‖ =
√∑m

i=1

∑n
j=1(f

i
j)
2 = 0, which is equivalent to f ij = 0 for all 1 ≤ i ≤ m and

1 ≤ j ≤ n. Thus F = O.

294 9. ELLIPSOID ALGORITHMS

To prove that ‖αF ‖ = |α|‖F ‖ we calculate

‖αF ‖ =

√√√√ m∑
i=1

n∑
j=1

(αf ij)
2 =

√√√√α2
m∑
i=1

n∑
j=1

(f ij)
2 = |α|‖F ‖

To prove that ‖F +R‖ ≤ ‖F ‖ + ‖R‖ we prove the equivalent inequality (since both parts are
nonnegative) ‖F +R‖2 ≤ (‖F ‖+ ‖R‖)2. We calculate

‖F +R‖2 =
m∑
i=1

n∑
j=1

(f ij)
2 +

m∑
i=1

n∑
j=1

(rij)
2 + 2

m∑
i=1

n∑
j=1

f ijr
i
j

(‖F ‖+ ‖R‖)2 =
m∑
i=1

n∑
j=1

(f ij)
2 +

m∑
i=1

n∑
j=1

(rij)
2 + 2

√√√√(
m∑
i=1

n∑
j=1

(f ij)
2)(

m∑
i=1

n∑
j=1

(rij)
2)

and thus the inequality to prove becomes

m∑
i=1

n∑
j=1

f ijr
i
j ≤

√√√√ m∑
i=1

n∑
j=1

(f ij)
2

√√√√ m∑
i=1

n∑
j=1

(rij)
2

which follows from the Cauchy-Schwarz inequality.

(ii) The first part follows directly from the definition of the Frobenius norm:

‖In‖ =

√√√√ n∑
k=1

n∑
j=1

δkj =

√√√√ n∑
i=1

1 =
√
n ,

where δjj = 1, δ
k
j = 0. To prove the second part, let G = FF T . Then gkk =

∑n
j=1(f

k
j)
2. Now we have

trace(FF T) =
m∑
k=1

gkk =
m∑
k=1

n∑
j=1

(fkj)
2 = ‖F ‖2 .

(iii) The matrix F TF is symmetric. Thus trace(F TF) =
∑n
i=1 λi where λi are the eigenvalues of

F TF . Since F TF is also positive semi-definite we have λi ≥ 0 for all 1 ≤ i ≤ n. Let Λ = max{λi :
1 ≤ i ≤ n}. Then we calculate

‖F ‖2 =
√
Λ ≤

√√√√ n∑
i=1

λi = ‖F ‖

where we have used the second part of (ii) for the last equality. Moreover,

‖F ‖ =

√√√√ n∑
i=1

λi ≤
√
nΛ =

√
n‖F ‖ .

9.8. EXERCISES 295

(iv) From the Cauchy-Schwarz inequality we have (f irj)2 ≤ ‖f
i‖2‖rj‖2, where f i is the i-th row

of F and rj the j-th column of R. Summing over j first and over i next, we get

m∑
i=1

p∑
j=1

(f jrj)
2 ≤

m∑
i=1

‖f i‖2
p∑
j=1

‖rj‖
2

which using f irj =
∑n
k=1 f

i
kr
k
j gives

m∑
i=1

p∑
j=1

(
n∑
k=1

f ikr
k
j)
2 ≤


 m∑
i=1

n∑
j=1

(f ij)
2




 p∑
j=1

n∑
i=1

(rij)
2


 .

Using the definition of the Frobenius norm we get ‖FR‖2 ≤ ‖F ‖2‖R‖2 which proves ‖FR‖ ≤
‖F ‖‖R‖, since ‖ · ‖ ≥ 0. To prove the second relation, we calculate

‖F (In − αrr
T)‖2 = trace(F (In − αrr

T)(In − αrr
T)F T) = trace((F − αFrrT)(F T − αrrTF T))

= trace(FF T − αFrrTF − αFrrTF T + α2FrrTrrTF T)

= trace(FF T)− 2α‖Fr‖2 + α2‖r‖2‖Fr‖2 = ‖F ‖2 − α(2− α‖r‖2)‖Fr‖2 .

Exercise 9.3
Let Q = FF T and QP = F PF

T
P where

F P =

√
n2

n2 − 1
F

(
In −

(
1−

√
n− 1

n+ 1

)
ddT

)
.

Show that

QP =
n2

n2 − 1
Q

(
In −

2

n+ 1

aaTQ

aTQa

)
,

Q−1P =
n2 − 1

n2

(
Q−1 +

2

n− 1

aaT

aTQa

)
.

For QP we calculate using (9.13)

QP = F PF
T
P =

n2

n− 1
F

(
In −

(
1−

√
n− 1

n+ 1
ddT

))(
In −

(
1−

√
n− 1

n+ 1
ddT

))
F T

=
n2

n2 − 1


FF T − 2

(
1−

√
n− 1

n+ 1

)
FddTF T +

(
1−

√
n− 1

n+ 1

)2
FddTddTF T




296 9. ELLIPSOID ALGORITHMS

or factoring out the scalar dTd = ‖d‖2 = 1 from the last term

=
n2

n2 − 1

[
Q−

(
2− 2

√
n− 1

n+ 1
− 1−

n− 1

n+ 1
+ 2

√
n− 1

n+ 1

)
FddTF T

]

and since FddTF = QaaTQ
aTQa

because d = F Ta/‖F Ta‖ and ‖d‖ = 1

=
n2

n2 − 1
Q

(
In −

2

n+ 1

aaTQ

aTQa

)
.

For Q−1P we calculate using the formula (9.22) for F−1P

Q−1P = (F
−1
P)

TF−1P =
n− 1

n2
(F−1)T

(
In −

(
1−

√
n+ 1

n− 1
ddT

))(
In −

(
1−

√
n+ 1

n− 1
ddT

))
F−1

=
n2 − 1

n2


(F−1)TF−1 − 2

(
1−

√
n+ 1

n− 1

)
(F−1)TddTF−1 +

(
1−

√
n+ 1

n− 1

)2
(F−1)TddTddTF−1




or factoring out the scalar dTd = ‖d‖2 = 1 from the last term

=
n2 − 1

n2

[
Q−1 −

(
2− 2

√
n+ 1

n− 1
− 1−

n+ 1

n− 1
+ 2

√
n+ 1

n− 1

)
(F−1)TddTF−1

]

=
n2 − 1

n2
Q−1

(
In +

2

n+ 1

aaT

aTQa

)

where we have used ‖d‖ = 1 and dTF−1 = aT /‖F Ta‖ which follows from the definition of d; see
(9.12).

Exercise 9.4
Let Qk = F kF

T
k be the positive definite matrix that defines the ellipsoid Ek. Denote by λkmin

the smallest and by λkmax the largest eigenvalue of Qk. Prove that λkmin ≤ R
22−k/2n

2

and λkmax ≥
R22−2k/n

2

for all k of the basic ellipsoid algorithm. (Hint: Use (9.35).)

Since Qk is positive definite and nonsingular we have λkmin > 0. From Qk = F kF
T
k we have that

the eigenvalues of F k are |µi| =
√
λi and thus |detF | =

∏n
i=1

√
λi. It follows that

(λkmin)
n/2 ≤ |detF | ≤ (λkmax)

n/2 .

From (9.35) we have
(λkmin)

n/2 ≤ |detF | ≤ Rn2−
k
4n ⇒ λkmin ≤ R

22−
k

2n2

9.8. EXERCISES 297

and similarly
(λkmax)

n/2 ≥ |detF | ≥ Rn2−
k
n ⇒ λkmax ≥ R

22−
2k
n2 .

Exercise 9.5

(i) Write a computer program of the DCS ellipsoid algorithm in a computer language of your choice
for the linear programming problem (LP).

(ii) Solve the problems of Exercises 5.1, 5.9 and 8.2(ii) using your computer program.

(i) The following listing is an implementation of the algorithm in MATLAB. The required input is
as in the simplex algorithm; see Exercise 5.2.

%%%
%% This is the implementation of the DCS Ellipsoid algorithm
%% as found on pages 309-310.
%%
%% NAME : dcsel
%% PURPOSE: Solve the LP: max {cx: a~x <= b, x >=0}
%% INPUT : The matrix a~and the vectors c and b.
%% OUTPUT : z : the optimal value
%% x : the optimal solution
%% k : the number of iterations
%%%

[m,n]=size(A);
A = [A;-eye(n)];
b = [b zeros(1,n)];
[m,n]=size(A);
zl=-10000;
zu=10000;
eps=10^(-9);
R=500;
Vf=10^(-6);

R0=sqrt(n)*(1+R/2);
veps=eps*ones(m,1);
z=zl+1;
z0=z;
x = (R/2)*ones(n,1);
H=R0*eye(n);

298 9. ELLIPSOID ALGORITHMS

k=0;
f0=(1+1/n)^(-(n+1)/2) * (1-1/n)^(-(n-1)/2);
V=R0^n * pi^(n/2) / gamma(1+n/2);

while (1<2)
slack=b’+veps- A*x ;
[mxv,j]=min(slack);
if (mxv >= 0)
xstar=x+H*H’*c’/norm(c*H);
help=A*(xstar-x);
if (all(help <= 0)), error(’Unbounded’), end;
lambda=10000;
for i=1:m,

if (help(i) > 0)
if (slack(i) /help(i) <= lambda)
lambda=slack(i)/help(i);

end;
end;

end;
if (lambda >= 1), error(’Unbounded’), end;

if (c*(x+lambda*(xstar-x)) > z)
xbar=x+lambda*(xstar-x);
z=c*xbar;

end;
end;
if ((c*x > z & z0 > zl+1) | (mxv <0 & z0-z > mxv))

theta=b(j)+eps;
alpha=(A(j,:)*x-theta)/norm(A(j,:)*H);
r=A(j,:)’;

else
alpha=(z-c*x)/norm(c*H);
r=-c’;
z0=z;

end;
if ((alpha >=1 | V < Vf) & (z < zu & z > zl))

fprintf(’Optimal solution found in %d iterations, Vol= %8.4f\n’,k-1,V);
fprintf(’%8.4f’,xbar);
fprintf(’\nz=%8.4f\n’,z);
return;

elseif (z <= zl)
fprintf(’Infeasible’);
return;

elseif (z >= zu)
fprintf(’Unbounded’);
return;

end;

9.8. EXERCISES 299

xold=x;
x=x-(1+n*alpha)*H*H’*r/((n+1)*norm(H’*r));
quan1=sqrt(((n-1)*(1-alpha))/((n+1)*(1+alpha)));
quan2=n*sqrt((1-alpha^2)/(n^2-1));
H=quan2*H*(eye(n)-(1-quan1)*H’*r*r’*H/norm(H’*r)^2);
V=(1-alpha)*f0*V*(1-alpha^2)^((n-1)/2);
fprintf(’%10.5f ’,x);
fprintf(’ cx=%10.5f, z=%10.5f\n’,c*x,z);
z1=c*(x-xold);
help1=A*(x-xold);
if (all(help1 < 0) & z1 > 0), error(’Unbounded’), end;
slack1=b’+veps-A*xold;
mumax=-10000;
mumin=10000;
substep=1;
for i=1:m,

if (help1(i) > 0)
if (slack1(i)/help1(i) <=mumin)

mumin=slack1(i)/help1(i);
end;

elseif (help1(i) < 0)
if (slack1(i)/help1(i) >= mumax)

mumax=slack1(i)/help1(i);
end;

else
if (slack(i) < 0)

substep=0;
end;

end;
end;
if (mumin < mumax & substep > 0)

substep=0;
end;
if (substep > 0)

if (z1 < 0)
mubar=mumax;

else
mubar=mumin;

end;
if (c*xold+mubar*z1 > z)

xbar=xold+mubar*(x-xold);
z=c*xbar;

end;
end;
k=k+1;

end;

300 9. ELLIPSOID ALGORITHMS

(ii) For the data of Exercise 5.1 we get

>> clear
>> psdat
>> dcsel
-4.03134 165.32289 -88.70846 80.64577 cx= 294.36367, z=-9999.00000
-10.02109 30.06256 -30.06291 10.02074 cx= -30.06467, z=-9999.00000
-52.62810 42.08574 12.86073 -5.27118 cx= 61.90156, z=-9999.00000
9.55652 35.42522 -3.34090 -46.70324 cx= 18.61864, z=-9999.00000
3.54364 -1.94823 -14.64155 9.78702 cx= -37.74956, z=-9999.00000
-3.83235 -9.72340 3.63685 4.58637 cx= -13.11476, z=-9999.00000
-8.02842 7.99811 2.99137 -2.24117 cx= 15.42061, z=-9999.00000
3.97518 4.26213 1.43981 -7.85914 cx= 10.77769, z=-9999.00000
2.39358 -1.88535 -0.05693 4.51311 cx= 7.92960, z=-9999.00000
2.06213 2.37324 0.89350 4.29667 cx= 23.41133, z= 8.96852
-0.41061 5.66114 -1.79996 2.86110 cx= 14.68454, z= 8.96852
-2.33922 3.31667 2.20371 1.33717 cx= 16.76076, z= 8.96852
2.51569 1.14168 1.38714 -0.54868 cx= 12.90763, z= 8.96852
2.19221 5.93326 1.48589 -1.14267 cx= 25.84241, z= 14.90422

...
0.00350 9.34385 0.65380 0.00101 cx= 30.65576, z= 30.64666
0.00065 9.33560 0.66299 -0.00319 cx= 30.65366, z= 30.64666
-0.00233 9.32698 0.66508 0.00744 cx= 30.65146, z= 30.64666
0.00564 9.32288 0.66461 0.00532 cx= 30.64897, z= 30.64666
0.00410 9.33853 0.65410 0.00306 cx= 30.64632, z= 30.65073
0.00258 9.34019 0.65755 0.00082 cx= 30.65757, z= 30.65073
0.00066 9.33448 0.66385 -0.00201 cx= 30.65616, z= 30.65073

Optimal solution found in 119 iterations, Vol= 0.0000
0.0021 9.3386 0.6593 0.0000

z= 30.6572
>>

For Exercise 5.9 with n = 3, a = b = 2 and c = 5, we get

>> clear
>> psdat
>> dcsel
-85.49883 82.25058 208.06265 cx= 30.56848, z=-9999.00000
11.12853 -64.29617 171.42596 cx= 87.34772, z=-9999.00000
1.20391 12.52250 126.74039 cx= 156.60104, z=-9999.00000

-10.39740 2.76268 74.50551 cx= 38.44128, z=-9999.00000
1.90067 -6.57926 24.50713 cx= 18.95129, z=-9999.00000
1.38161 3.95126 -6.60592 cx= 6.82304, z=-9999.00000
0.58555 2.21549 17.22113 cx= 23.99432, z=-9999.00000
-0.03957 0.85243 9.95152 cx= 11.49810, z=-9999.00000
-0.53385 -0.22534 29.23529 cx= 26.64921, z= 19.92770
1.33403 -1.70743 24.00886 cx= 25.93012, z= 19.92770

9.8. EXERCISES 301

0.98365 -3.93039 26.10890 cx= 22.18273, z= 19.92770
0.15010 1.90863 13.56085 cx= 17.97850, z= 19.92770
-0.29774 1.49264 22.51259 cx= 24.30692, z= 20.09956
-0.92891 0.90634 24.64934 cx= 22.74638, z= 20.09956
0.71750 -0.20129 18.03809 cx= 20.50551, z= 20.09956
0.55850 -0.93332 23.94083 cx= 24.30821, z= 21.48207
0.29328 1.24644 19.78129 cx= 23.44728, z= 21.48207

..
-0.00120 -0.00039 25.00568 cx= 25.00008, z= 24.99545
0.00141 -0.00352 25.00029 cx= 24.99888, z= 24.99545
0.00057 0.00211 24.99013 cx= 24.99661, z= 24.99545
-0.00020 0.00127 24.99280 cx= 24.99452, z= 24.99545

Optimal solution found in 68 iterations, Vol= 0.0000
0.0002 0.0017 24.9913

z= 24.9957
>>

For the data of Exercise 8.2(ii) we get

>> clear
>> psdat
>> dcsel
194.74376 -26.28120 cx= 26.28120, z=-9999.00000
-0.42637 25.28755 cx= -25.28755, z=-9999.00000
-20.12962 -1.44852 cx= 1.44852, z= -14.24470
34.80955 1.12224 cx= -1.12224, z= -14.24470
11.15640 9.73883 cx= -9.73883, z= 0.00000
-8.55908 -8.48696 cx= 8.48696, z= 0.00000
14.71900 -5.87632 cx= 5.87632, z= 0.00000
6.88480 -1.39700 cx= 1.39700, z= 0.00000
14.14111 5.56176 cx= -5.56176, z= 0.00000
6.40835 -1.85392 cx= 1.85392, z= 0.00000
8.98593 0.61797 cx= -0.61797, z= 0.00000
8.12674 -0.20599 cx= 0.20599, z= 0.00000
8.41314 0.06866 cx= -0.06866, z= 0.00000
8.31767 -0.02289 cx= 0.02289, z= 0.00000
8.34949 0.00763 cx= -0.00763, z= 0.00000
8.33889 -0.00254 cx= 0.00254, z= 0.00000
8.34242 0.00085 cx= -0.00085, z= 0.00000
8.34124 -0.00028 cx= 0.00028, z= 0.00000
8.34164 0.00009 cx= -0.00009, z= 0.00000
8.34151 -0.00003 cx= 0.00003, z= 0.00000
8.34155 0.00001 cx= -0.00001, z= 0.00000
8.34153 -0.00000 cx= 0.00000, z= 0.00000
8.34154 0.00000 cx= -0.00000, z= 0.00000
8.34154 -0.00000 cx= 0.00000, z= 0.00000
8.34154 0.00000 cx= -0.00000, z= 0.00000

302 9. ELLIPSOID ALGORITHMS

8.34154 -0.00000 cx= 0.00000, z= 0.00000
8.34154 0.00000 cx= -0.00000, z= 0.00000
8.34154 -0.00000 cx= 0.00000, z= 0.00000

Optimal solution found in 27 iterations, Vol= 0.0000
10.8264 -0.0000
z= 0.0000
>>

Exercise 9.6

(i) Let Hk+1 be as defined in (9.45), i.e.,

Hk+1 = n

√
1− α2k
n2 − 1

Hk

(
In −

(
1−

√
(n− 1)(1− αk)

(n+ 1)(1 + αk)

)
(HTk r)(r

THk)

‖HTk r‖
2

)
.

Like we proved (9.20) show that

detHk+1 =

(
1 +
1

n

)−n+12 (
1−
1

n

)−n−12
(1− α2k)

n−1
2 (1− αk) detHk .

(ii) Define Gk =HkH
T
k and show using (9.45) that

Gk+1 =
n2(1− α2k)

n2 − 1
Gk

(
In −

2(1 + nαk)

(n+ 1)(1 + αk)

rrTGk
rTGkr

)
,

G−1k+1 =
n2 − 1

n2(1− α2k)

(
G−1k +

2(1 + nαk)

(n− 1)(1− αk)

rrT

rTGkr

)
.

(iii) Show Γ(1 + n/2) = (n/2)! for all even n ≥ 1, Γ(1 + n/2) =
n!
√
π

�n2 �!2
n

for all odd n ≥ 1.

(i) Letting α = 1−

√
(n− 1)(1− αk)

(n+ 1)(1 + αk)
the proof of (9.20) applies unchanged since 0 ≤ αk < 1. Thus

replacing F P by Hk+1, F by Hk and d by HTk r/‖H
T
k r‖, since ‖d‖ = 1 we get

detHk+1 =

(
n2(1− α2k)

n2 − 1

)n/2√
(n− 1)(1− αk)

(n+ 1)(1 + αk)
detHk .

To bring this to the required form we have
√
(n− 1)(1− αk)

(n+ 1)(1 + αk)
=

√
(n− 1)n(1− αk)2

(n+ 1)n(1− α2k)
=

(
1−
1

n

)1/2(
1 +
1

n

)−1/2
(1− αk)(1− α

2
k)
−1/2

9.8. EXERCISES 303

and
n2

n2 − 1
(1− α2k) =

n

n+ 1

n

n− 1
(1− α2k) =

(
1 +
1

n

)−1(
1−
1

n

)−1
(1− α2k) .

Thus after grouping of terms we get

detHk+1 =

(
1 +
1

n

)−n+12 (
1−
1

n

)−n−12
(1− α2k)

n−1
2 (1− αk)detHk .

(ii) Using the definition of Hk+1 we calculate:

Gk+1 =Hk+1H
T
k+1 = n

2 1− α
2
k

n2 − 1

(
Hk −

(
1−

√
(n− 1)(1− αk)

(n+ 1)(1 + αk)

)
HkH

T
k rr

THk

‖HTk r‖
2

)

(
HTk −

(
1−

√
(n− 1)(1− αk)

(n+ 1)(1 + αk)

)
HTk rr

THkH
T
k

‖HTk r‖
2

)

= n2
1− α2k
n2 − 1

[
HkH

T
k − 2

(
1−

√
(n− 1)(1− αk)

(n+ 1)(1 + αk)

)(
HkH

T
k rr

THkH
T
k

‖HTk r‖
2

)

+

(
1−

√
(n− 1)(1− αk)

(n+ 1)(1 + αk)

)2
HkH

T
k rr

THkH
T
k rr

THkH
T
k

‖HTk r‖
4




and factoring out the term rTHkH
T
k r = ‖H

T
k r‖

2 from the numerator of the last fraction

=
n2(1−α2k)

n2 − 1


Gk−


2
(
1−

√
(n− 1)(1− αk)

(n+ 1)(1 + αk)

)
−

(
1−

√
(n− 1)(1− αk)

(n+ 1)(1 + αk)

)2
HkHTk rrTHkHTk

‖HTk r‖
2




=
n2(1− α2k)

n2 − 1

(
Gk −

2(1 + nαk)

(n+ 1)(1 + αk)

Gkrr
TGk

rTGkr

)
=
n2(1− α2k)

n2 − 1
Gk

(
In −

2(1 + nαk)

(n+ 1)(1 + αk)

rrTGk
rTGkr

)

For the inverse G−1k+1 we have

G−1k+1 =
n2 − 1

n2(1− α2k)

(
In −

2(1 + nαk)

(n+ 1)(1 + αk)

rrTGk
rTGkr

)−1
G−1k .

Using Exercise 4.1 (ii) with u = −
2(1 + nαk)

(n+ 1)(1 + αk)(rTGkr)
r and v = Gkr we calculate vTu �= −1

because αk �= 1 and thus(
In −

2(1 + nαk)

(n+ 1)(1 + αk)

rrTGk
rTGkr

)−1
= In +

1

1−
2(1 + nαk)

(n+ 1)(1 + αk)

rTGkr

rTGkr

2(1 + nαk)

(n+ 1)(1 + αk)

rrTGk
rTGkr

= In +
2(1 + nαk)

n+ nαk + 1 + αk − 2− 2nαk

rrTGk
rTGkr

= In +
2(1 + nαk)

(n− 1)(1− αk)

rrTGk
rTGkr

.

304 9. ELLIPSOID ALGORITHMS

It follows that

G−1k+1 =
n2 − 1

n2(1− α2k)

(
G−1k +

2(1 + nαk)

(n− 1)(1− αk)

rrT

rTGkr

)
.

(iii) For n > 1 and even, i.e. n = 2k with k ≥ 1 is integer we have

Γ(1 + n/2) = Γ(1 + k) = kΓ(k) = k! =
(n
2

)
!

where we have used elementary properties of the gamma function; see Chapter 7.7. For n ≥ 1
and odd, i.e. n = 2k + 1 where k ≥ 0 is integer we have

Γ

(
2k + 1

2

)
= Γ

(
2k − 1

2
+ 1

)
=
2k − 1

2
Γ

(
2k − 1

2

)
,

where the last equality follows from the fact that 2k − 1 is even. Thus we get

Γ
(
1 +
n

2

)
= Γ

(
2k + 3

2

)
=
1

2k+1
Γ

(
1

2

) k∏
�=0

(2�+ 1) .

Using the identity
k∏
�=0

(2�+ 1) =
(2k + 1)!

k!2k
and that Γ(12) =

√
π we get Γ

(
1 +
n

2

)
=

n!

�n2 �!2
n

√
π .

Exercise 9.7
Let P ⊆ Rn be a polyhedron and define P∞ε = {z ∈ R

n : ∃x ∈ P such that ‖x− z‖∞ ≤ ε}.

(i) Show that P∞ε is a polyhedron in Rn and that P �= ∅ implies dimP∞ε = n for ε > 0.

(ii) Show that if z ∈ P∞ε is an extreme point then there exists an extreme point x ∈ P such that
zi − xi = ±ε for all 1 ≤ i ≤ n.

(iii) Let y ∈ Rn. Show that x+(y) ∈ P∞ε for some x ∈ P∞ε if and only if there exists x̃ ∈ P such that
x̃+ (y) ∈ P . Show that the asymptotic cone C∞ of P is the asymptotic cone of P∞ε .

(iv) Show that P∞ε has at most p2n extreme points where p is the number of extreme points of P .

(v) Suppose that the facet complexity of P is φ and its vertex complexity is ν. Show that for
rational ε ≥ 0 the polyhedron P∞ε has a vertex complexity of 2ν + 2n〈ε〉 and a facet complexity
of 3φ+ 2〈ε〉.

(vi) Define P 1ε by
P 1ε = {z ∈ R

n : ∃x ∈ P such that ‖x− z‖1 ≤ ε} .

Show that P 1ε is a polyhedron, hx ≤ h0 + ε ‖h‖∞ for all x ∈ P 1ε if hx ≤ h0 for all x ∈ P and
hx ≤ h0 − ε ‖h‖∞ for all x ∈ P if hx ≤ h0 for all x ∈ P 1ε . (Hint: Use that

∑n
j=1 |xj | ≤ ε if and

only if
∑n
j=1 δjxj ≤ ε for the 2n vectors (δ1, . . . , δn) with δj ∈ {+1,−1} for all 1 ≤ j ≤ n.)

9.8. EXERCISES 305

(vii) Show that if z ∈ P 1ε is an extreme point then z = x± εui where x ∈ P is an extreme point of P
and ui ∈ Rn is the i-th unit vector for some 1 ≤ i ≤ n. Show that P 1ε has at most 2np extreme
points if P has p extreme points.

(iix) Suppose P has a facet complexity of φ and a vertex complexity of ν. Show that P 1ε has vertex
complexity of 2ν + 2〈ε〉 and a facet complexity of 3φ+ 2〈ε〉.

(ix) Prove that

if P �= ∅ then vol(P 1ε) ≥
2nεn

n!
>

εnπn/2

nnΓ(1 + n/2)
for all ε > 0 .

(Hint: Use that P 1ε ⊇ x+ {z ∈ R
n : ‖z‖1 ≤ 1} and P 1ε ⊇ B(x, r = ε/n) for every x ∈ P .)

(x) Show that Remark 9.13 remains correct if we replace the �1-norm by the �∞-norm.

(i) Let S = {x1, . . . ,xp}, T = {r1, . . . , rt} be any finite generator of P . Then every x ∈ P can be
written as x = Xµ+Rν where X = (x1 . . . xp) is an n× p matrix, R = (r1 . . . rt) an n× t matrix,
µ ≥ 0, fµ = 1, ν ≥ 0 and f = (1, . . . , 1) ∈ Rp. If P is pointed, then x1, . . . ,xp are the extreme points
and r1, . . . , rt are the direction vectors of the extreme rays of P . Let eT = (1, . . . , 1) ∈ Rn. Then
P∞ε is the image of the polyhedron

PPε = {(z,µ,ν) ∈ R
n+p+t : −εe ≤Xµ+Rν − z ≤ εe , fµ = 1 , µ ≥ 0 , ν ≥ 0}

under the linear transformation with the matrix L = (In Op Ot), i.e. P∞ε is the image of PPε when
we project out the variables µ and ν. By point 7.3(g) it follows that P∞ε is a polyhedron. To prove
the dimension of P∞ε , suppose that P �= ∅ and let x ∈ P . Then the points x, x+εu1, . . . ,x+εun are
n+ 1 affinely independent points in P∞ε where ui is the i-th unit vector in Rn. Thus dimP∞ε = n.

(ii) Let z ∈ P∞ε and x ∈ P be such that zi−xi = ±ε for all 1 ≤ i ≤ n and suppose that z is an extreme
point of P∞ε but x is not an extreme point of P . It follows that x = µx1+(1−µ)x2 where 0 < µ < 1,
x1,x2 ∈ P and x1 �= x2, x1 �= x �= x2. We then get z = x ± εe = µx1 + (1 − µ)x2 ± (µ + 1 − µ)εe =
µ(x1 ± εe) + (1 − µ)(x2 ± εe). From the definition of Pε it follows that z1 = x1 ± εe ∈ P∞ε and
z2 = x2 ± εe ∈ P∞ε . Moreover, z1 �= z2 and thus z = µz1 + (1− µ)z2 with 0 < µ < 1 contradicts the
assumption that z is an extreme point of P∞ε .

(iii) From Remark 9.12 (ii) we have that the asymptotic cones of P and P∞ε are the same, since
every valid inequality hx ≤ h0 for one of the polyhedra gives rise to a valid inequality of the form
hx ≤ h′0 for the other and vice versa. An inequality is valid for P , if it is satisfied by every x ∈ P .
To prove the first part suppose that (y) ∈ P∞ε is a halfline of P∞ε , i.e. hy ≤ 0 for all h such that
hx ≤ h0 is valid for P∞ε . By part (ii) of Remark 9.12 we have that hx ≤ h0− ε ‖h‖1 is valid for P for
all such h. Suppose that (y) is not a halfline of P , i.e., there exists a valid inequality hx ≤ h0 for
P∞ε such that for some x ∈ P there exists α > 0 such that h(x+ αy) > h0 − ε ‖h‖1. Then αhy > 0
for some α > 0, i.e., hy > 0 which contradicts the assumption that (y) is a halfline of P∞ε . On
the other hand, suppose that (y) is a halfline of P . Then hy ≤ 0 for all h such that hx ≤ h0 is
valid for P . By point (ii) of Remark 9.12 we have that hx ≤ h0 + ε ‖h‖1 for all x ∈ P 1ε for all such
(h, h0). Suppose that (y) is not a halfline of P∞ε . Then there exists a valid inequality hx ≤ h0 for
P such that for some x ∈ P∞ε there exists α > 0 such that h(x+ αy) > h0 + ε ‖h‖1. Consequently

306 9. ELLIPSOID ALGORITHMS

we have h0 ≤ h0 + ε ‖h‖1 < h(x + αy) ≤ h0 + αhy, i.e. αhy > 0 for some α > 0 which contradicts
the assumption that (y) is a halfline of P .

(iv) From part (ii) we have that for each extreme point x of P there exists an extreme point z of
P∞ε such that zi = xi ± ε, for 1 ≤ i ≤ n. That is each component of x can be either increased or
decreased by ε. So for each extreme point of P there are at most 2n different points z that can be
constructed as above. Thus if P has p extreme points, then P∞ε has at most p2n extreme points.

(v) From Remark 9.12 (ii) we have that hz ≤ h0 + ε is a valid inequality for P∞ε if hx ≤ h0 is valid
for P . Thus for the facet complexity of P∞ε we calculate

〈h〉+〈h0+ε ‖h‖1〉 = 〈h〉+2〈h0〉+2ε+2〈‖h‖1〉 ≤ 3〈h〉+2〈h0〉+2〈ε〉+2(1−n) ≤ 3(〈h〉+〈h0〉)+2〈ε〉 ≤ 3φ+2〈ε〉

where we have used 〈‖h‖1〉 ≤ 〈h〉 − n + 1; see Chapter 7.5. For the vertex complexity, from part
(ii) of this exercise we have that if z is an extreme point of P∞ε then zi = xi ± ε for 1 ≤ i ≤ n where
x is an extreme point of P . We calculate

〈z〉 =
n∑
i=1

〈zi〉 =
n∑
i=1

〈xi ± ε〉 ≤ 2
n∑
i=1

(〈xi〉+ 〈ε〉) ≤ 2
n∑
i=1

〈xi〉+ 2n〈ε〉 = 2〈x〉+ 2n〈ε〉 ≤ 2ν + 2n〈ε〉 .

(vi) Let ∆ = (δk)2
n

k=1 be the matrix with rows the 2n vectors with components ±1. The constraint
‖x − z‖1 ≤ ε is written as ‖x − z‖1 =

∑n
i=1 |xi − zi| ≤ ε and it is equivalent to the constraints

∆(x− z) ≤ εe; see also Exercise 2.2(ii). So we have that

P 1ε = {z ∈ R
n : ∃x ∈ P with ∆(x− z) ≤ εe} .

Since P is a polyhedron, let like in part (i)X,R be the matrices corresponding to a finite generator
of P . Then

x =Xµ+Rν where µ ≥ 0 , fµ = 1 , ν ≥ 0

and f = (1, . . . , 1)T ∈ Rp. P 1ε is the image of the polyhedron

PP 1ε = {(z,µ,ν) ∈ R
n+p+t :∆(Xµ+Rν − z) ≤ εe , fµ = 1 , µ ≥ 0 , ν ≥ 0}

under the linear transformation L = (In Op Ot) where Op is n × p and Ot is n × t, i.e. when we
project out µ and ν. It follows by point 7.3(g) that P 1ε is a polyhedron.

Suppose now that z ∈ P 1ε . Then there exists x ∈ P such that
∑n
i=1 |xi − zi| ≤ ε. We calculate

hz−hx = h(x− z) ≤
∑n
i=1 |hi||zi− xi| ≤

∑n
i=1 ‖h‖∞|zi− xi| ≤ ε ‖h‖∞. Since for every x ∈ P we have

hx ≤ h0 it follows that hz ≤ h0 + ε ‖h‖∞ for all z ∈ P 1ε . On the other hand, suppose that hz ≤ h0
for all z ∈ P 1ε but there exists x ∈ P such that hx > h0 − ε ‖h‖∞. Let z be such that zi = xi for all
i �= k and zk = xk + ε if hk ≥ 0, zk = xk − ε if hk < 0, where 1 ≤ k ≤ n is such that |hk| = ‖h‖∞ and
1 ≤ i ≤ n. Thus if hk ≥ 0 we have

hz = hx+ hkε = hx+ ε ‖h‖∞ > h0 − ε ‖h‖∞ + ε ‖h‖∞ = h0

and if hk < 0 that

hz = hx− ε hk = hx+ ε ‖h‖∞ > h0 − ε ‖h‖∞ + ε ‖h‖∞ = h0 ,

9.8. EXERCISES 307

i.e., hz > h0 for some z ∈ P which is a contradiction.

(vii) Suppose that z = x ± εui is an extreme point of P 1ε but x ∈ P is not an extreme point of P .
Then there exist 0 < µ < 1 and x1 �= x �= x2 �= x1 such that x = µx1 + (1− µ)x2. But then we have

z = x± εui = µx1 + (1− µ)x2 ± εui = µx1 + (1− µ)x2 ± µεui ± (1− µ)εui

= µ(x1 ± εui) + (1− µ)(x2 ± εui) = µz1 + (1− µ)z2

where zk = xk ± εui for k = 1, 2. From the definition of P 1ε it follows that z1,z2 ∈ P 1ε and since
z1 �= z2, because x1 �= x2, we have that z is the convex combination of two points in P 1ε which
contradicts the assumption that z is an extreme point.

For each extreme point x ∈ P there are 2n distinct points of the form z = x ± εui. Thus if P
has p extreme points, P 1ε has at most 2np extreme points.

(iix) From the previous part we have that the extreme points of P 1ε are of the form z = x ± εui

where x is an extreme point of P . Since the vertex complexity of P is 〈x〉 ≤ ν, we compute

〈z〉 = 〈x± εui〉 = 〈
n∑
j=1

j �=i

xj〉+ 〈xi ± ε〉 ≤ 2
n∑
j=1

〈xj〉+ 2〈ε〉 = 2〈x〉+ 2〈ε〉 ≤ 2ν + 2〈ε〉 .

For the facet complexity we have that for any valid inequality hz ≤ h0 + ε ‖h‖∞ we have
〈h〉+ 〈h0〉 ≤ φ and thus we compute

〈h〉+ 〈h0 + ε ‖h‖∞〉 ≤ 〈h〉+ 2〈h0〉+ 2〈ε〉+ 2〈‖h‖∞〉 ≤ 2(〈h〉+ 〈h0〉) + 2〈ε〉+ 〈‖h‖∞〉

≤ 2(〈h〉+ 〈h0〉) + 2〈ε〉+ 〈h〉 ≤ 3(〈h〉+ 〈h0〉) + 2〈ε〉 ≤ 3φ+ 2〈ε〉 .

(ix) Since P 1ε ⊇ x+ {z ∈ R
n : ‖z‖1 ≤ 1} and P 1ε ⊇ B(x, ε/n) we have like in (9.55)

vol(P 1ε) ≥ vol(B
1) > vol(B(x, ε/n)) =

πn/2εn

Γ(1 + n/2)nn
.

Thus, we have to show that the volume of the sphere in �1-norm, Bε is given by 2nεn/n!. To this
end, it suffices to show that Vn = vol(B1) = 2n/n!. We have

Vn =

∫ 1
−1
Vn−1(1− |xn|)dxn =

∫ 1
−1
fn−1(1− |xn|)

n−1dxn = fn−1

n−1∑
j=0

(−1)j
(
n− 1

j

)∫ 1
−1
|xn|

jdxn

= fn−1

n−1∑
j=0

(−1)j
(
n− 1

j

)
2

j + 1
= 2fn−1

n−1∑
j=0

(−1)j
(n− 1)!

j!(n− 1− j)!

1

j + 1

= 2fn−1

n−1∑
j=0

(−1)j
n!

(j + 1)!(n− 1− j)!

1

n
= 2fn−1

n−1∑
j=0

(−1)j
(
n

j + 1

)
1

n
= 2
fn−1
n

n∑
�=1

(−1)�−1
(
n

�

)

= 2
fn−1
n
(−1)

n∑
�=1

(−1)�
(
n

�

)
= −2

fn−1
n

(
n∑
�=0

(−1)�
(
n

�

)
− (−1)0

(
n

0

))

= −2
fn−1
n
((1− 1)n − 1) = 2

fn−1
n
.

308 9. ELLIPSOID ALGORITHMS

So we have fn = 2
n
fn−1 and thus fn = 2n/n!.

(x) The proof of Remark 9.13 goes through unchanged when the vectors d1, d2 are the vectors
of the �∞-norms (rather than the �1-norms) of the corresponding rows of H1, H2. This follows
because the estimation (7.17) applies as well to ‖hi‖∞ and thus the assertion follows.

*Exercise 9.8
Let ‖ · ‖P be a polytopal norm on Rn, i.e., ‖ · ‖P is a norm in Rn and its “unit sphere” BP = {x ∈

R
n : ‖x‖P ≤ 1} is a polytope.

(i) Show that the “dual norm” ‖y‖∗P = max{y
Tx : ‖x‖P ≤ 1} is a norm on Rn.

(ii) Let ãix ≤ bi for 1 ≤ i ≤ m be any linear description of BP = {x ∈ Rn : ‖x‖P ≤ 1} and
ai = ãi/‖ãi‖∗P for 1 ≤ i ≤ m. Show that BP = {x ∈ Rn : aix ≤ 1 , 1 ≤ i ≤ m}, that 0 ∈ relintBP
and dimBP = n.

(iii) Show that ‖ · ‖∗P is a polytopal norm on Rn.

(iv) Prove Hölder’s inequality yTx ≤ ‖y‖∗P ‖x‖P .

(v) Let PPε be defined by PPε = {z ∈ Rn : ∃x ∈ P such that ‖z − x‖P ≤ ε}. Show that PPε is
a polyhedron. Show that hx ≤ h0 + ε ‖h‖∗P for all x ∈ PPε if hx ≤ h0 for all x ∈ P . Show that
hx ≤ h0 − ε ‖h‖∗P for all x ∈ P if hx ≤ h0 for all x ∈ PPε .

(i) For any y ∈ Rn, let y′ = y/‖y‖P . Then y ∈ Rn, by the homogeneity of ‖ · ‖P ‖y′‖P ≤ 1 and
‖y′‖P ≤ 1 and thus from the definition of ‖ · ‖P we have that ‖y‖∗P ≥ y

Ty′ = yTy/‖y‖P = ‖y‖2/‖y‖P
where ‖y‖ is the Euclidean norm of y, i.e. ‖y‖∗P is the ratio of two nonnegative numbers and thus it
is nonnegative which is zero if and only if ‖y‖ = 0, i.e. if and only if y = 0. The homogeneity follows
trivially since ‖αy‖∗P = max{αy

Tx : x ∈ Rn , ‖x‖P ≤ 1} = αmax{yTx : x ∈ Rn , ‖x‖P ≤ 1} = α‖y‖∗P
for all y ∈ Rn and α ≥ 0. Finally we have ‖y+z‖∗P = max{(y+z)

Tx : x ∈ Rn , ‖x‖P ≤ 1} ≤ max{yTx :
x ∈ Rn , ‖x‖P ≤ 1}+max{zTx : x ∈ Rn , ‖x‖P ≤ 1} = ‖y‖∗P + ‖z‖

∗
P , i.e. the triangle inequality holds

and thus ‖ · ‖∗P is a norm.

(ii) We are given that BP = {x ∈ Rn : ã
i
x ≤ bi for i = 1, . . . ,m}. From the definition (9.57) of the

dual norm we have ‖ai‖∗P = max{a
ix : x ∈ BP } ≤ bi and thus ãix ≤ ‖ãi‖∗P for all x ∈ BP and all

1 ≤ i ≤ m. Since ‖ · ‖∗P ≥ 0 and ãi �= 0 we have that ‖ãi‖∗P > 0 and thus dividing by ‖ãi‖∗P we
get aix ≤ 1 for all x ∈ BP and 1 ≤ i ≤ m, i.e. BP = {x ∈ Rn : aix ≤ 1 for 1 ≤ i ≤ m}. Since
ai0 < 1 for 1 ≤ i ≤ m, 0 ∈ relintBP . Let ‖a‖ = max{‖ai‖ : 1 ≤ i ≤ m} and ε = 1/‖a‖. By the
Cauchy-Schwarz inequality, aix ≤ ‖ai‖‖x‖ ≤ ‖ai‖/‖a‖ ≤ 1 for 1 ≤ i ≤ m and for all x ∈ Rn with
‖x‖ ≤ ε. Consequently, BP ⊇ B(0, r = ε), i.e., BP contains a ball with center 0 ∈ Rn and radius
r = ε > 0, and thus dimBP = n.

(iii) Since ‖ · ‖P is a polytopal norm the set BP = {x ∈ Rn : ‖x‖P ≤ 1} is a polytope with dimBP = n
and 0 ∈ relintBP . Let SP = {x1, . . . ,xp} be the set of the extreme points of BP and Ax ≤ b be
a linear description of BP . Then we have that ‖y‖∗P = max{y

Tx : Ax ≤ b} = yTx′ where x′ ∈ SP .

9.8. EXERCISES 309

Thus B∗P = {y ∈ R
n : ‖y‖∗P ≤ 1} = {y ∈ R

n : yTxi ≤ 1 for all 1 ≤ i ≤ p}. Since dimBP = n and
0 ∈ relintBP it follows that there exists µ ∈ Rp, µ ≥ 0 such that

∑p
i=1 µix

i = ±ui where ui is the
i-th unit vector in Rn and 1 ≤ i ≤ n. Consequently, by the duality theorem of linear programming
0 ≤ max{yT (±ui) : yTxi ≤ 1 for i = 1, . . . , p} = min{eTµ :

∑p
i=1 µix

i = ±ui,µ ≥ 0} < ∞ for 1 ≤ i ≤ n
and thus B∗P is a bounded set of Rn, i.e., the “unit sphere” in the ‖ · ‖∗P -norm is a polytope.

(iv) The inequality holds trivially as equality if x = 0. From the homogeneity of ‖ · ‖P we have that
for every x ∈ Rn, x �= 0, x′ = x/‖x‖P satisfies x′ ∈ Rn and ‖x′‖P ≤ 1. Thus from the definition
(9.57) of the dual norm it follows that yTx′ ≤ ‖y‖∗P , i.e. yTx/‖x‖P ≤ ‖y‖∗P and since ‖x‖P > 0 we
get yTx ≤ ‖y‖∗P ‖x‖P for all x ∈ Rn and y ∈ Rn.

(v) Let PPε = {z ∈ R
n : ∃x ∈ P such that ‖z−x‖P ≤ ε}. Since ‖ · ‖P is a polytopal norm there exists

a linear description of the set {x ∈ Rn : ‖x‖P ≤ ε} and thus, like in the proof of Remark 9.12, PPε
is the image of a polyhedron and thus a polyhedron itself. Suppose that hx ≤ h0 for all x ∈ P
and let z ∈ PPε . Then there exists x ∈ P such that ‖z − x‖P ≤ ε. From Hölder’s inequality we get
h(z−x) ≤ ‖h‖∗P ‖z−x‖P ≤ ε‖h‖

∗
P and thus hz ≤ hx+ε‖h‖∗P ≤ h0+ε‖h‖

∗
P for all z ∈ PPε . Suppose now

that hz ≤ h0 for all z ∈ PPε and let x∗ ∈ Rn be such that ‖h‖∗P = max{hx : ‖x‖P ≤ 1} = hx
∗. Assume

that there exists y ∈ P such that hy > h0− ε‖h‖∗P . Let z = y+ εx∗ and thus ‖z−y‖P = ε‖x∗‖P ≤ ε,
i.e., z ∈ PPε . But then hz = hy + εhx∗ > h0 − ε‖h‖∗P + ε‖h‖

∗
P = h0 is a contradiction.

*Exercise 9.9
Let 0 < Θ < 1.

(i) Show that Θ ≤ �Θ−1�−1 < 2Θ and Θ�Θ−1� > 1−Θ.

(ii) Show that �Θ−1�−1 is a best approximation to Θ for all 1 ≤ q < �Θ−1�.

(iii) Suppose 1/2 < Θ < 1. Show that r/swhere r = � Θ
1−Θ� and s = � Θ

1−Θ�+1 is a best approximation
to Θ for all 1 ≤ q < s.

(iv) Show that qn ≥ 2(n−1)/2 for n ≥ 2 for the integers qn generated by the inductive process.

(v) Suppose 0 < Θ �= Θ′ < 1 and that the integers pn, qn and p′n, q
′
n generated by the respective

inductive processes are such that pn = p′n and qn = q′n for 1 ≤ n ≤ N , say. Show that
|Θ−Θ′| ≤ 2−N+1.

(i) From the definition of the lower integer part of a number we have �Θ−1� ≤ Θ−1 and since
0 < Θ < 1, we get Θ ≤ �Θ−1�−1 and the left part of the first inequality follows. For the right part we
have: Θ−1 < �Θ−1�+ 1 ≤ �Θ−1�+ �Θ−1� = 2�Θ−1� and thus �Θ−1�−1 < 2Θ, where we have used the
definition of the lower integer part of a number in the first inequality and the inequality �Θ−1� ≥ 1
in the second. To prove that Θ�Θ−1� > 1−Θ we have from the definition of the lower integer part
of a number that Θ−1 < �Θ−1� + 1. Multiplying both sides by Θ > 0 we get 1 < Θ�Θ−1� + Θ and
thus Θ�Θ−1� > 1−Θ.

(ii) Applying the definition (9.60) of the best approximation with p = 1 and D = �Θ−1� we have
to show that (a) [Θ�Θ−1�] = |Θ�Θ−1� − 1| and (b) [qΘ] > [Θ�Θ−1�] for all 1 ≤ q < �Θ−1�. From the

310 9. ELLIPSOID ALGORITHMS

first inequality of part (i) we have that 12 < Θ�Θ
−1� ≤ 1 and thus [Θ�Θ−1�] = �Θ�Θ−1�� −Θ�Θ−1� <

Θ�Θ−1� − �Θ�Θ−1��, i.e. [Θ�Θ−1�] = 1−Θ�Θ−1� and (a) follows. To prove (b) we have to show that
[qΘ] > 1−Θ�Θ−1� for all 1 ≤ q < �Θ−1�. First we note that qΘ < �Θ−1�Θ for all 1 ≤ q < �Θ−1� since
Θ > 0. Thus, in particular, 0 < qΘ < 1 and �qΘ� = 0, �qΘ� = 1. If [qΘ] = 1 − qΘ then we have
[qΘ] = 1− qΘ > 1− �Θ−1�Θ. If [qΘ] = qΘ, we have [qΘ] = qΘ ≥ Θ > 1−Θ�Θ−1� where we have used
the second inequality of part (i) and thus (b) follows, and the proof of (ii) is complete.

(iii) To show that r
s

with r = � Θ
1−Θ�, s = �

Θ
1−Θ�+ 1 is a best approximation to Θ for all 1 ≤ q < s if

1/2 < Θ < 1 we have to prove

(a) [sΘ] = |sΘ− r| and (b) [qΘ] > [sΘ] for all integer q with 1 ≤ q < s.

We observe first, from Θ
1−Θ ≥ �

Θ
1−Θ� and 1 − Θ > 0, that sΘ ≥ � Θ

1−Θ� and thus �sΘ� ≥ � Θ
1−Θ�. On

the other hand, sΘ < s = r + 1 since Θ < 1 and thus �sΘ� = r. To prove (a) we have to show
that min{sΘ − �sΘ�, �sΘ� − sΘ} = sΘ − �sΘ�. This is equivalent to sΘ − �sΘ� ≤ �sΘ� − sΘ, which
is true if sΘ is integer, and so we can assume that sΘ is not integer. Thus we need to show

sΘ ≤ �sΘ� + 1/2, i.e.,
(
1 + � Θ

1−Θ�
)
Θ ≤ � Θ

1−Θ� + 1/2. Let x = Θ
1−Θ . Then Θ = x

1+x and the assertion

reads (1 + �x�) x1+x ≤ �x� + 1/2 or equivalently, x ≤ 2�x� + 1 which is trivially true for all x ≥ 0.
Consequently, part (a) follows.

To prove part (b), we first prove

(b1) qΘ− �qΘ� > sΘ− r for all integer q with 1 ≤ q ≤ r .

We claim qΘ − �qΘ� ≥ (q + 1)Θ − �(q + 1)Θ� or equivalently, �(q + 1)Θ� ≥ �qΘ� + Θ for all integer
q ∈ [1, r]. Since q ≤ � Θ

1−Θ� we have q ≤ Θ
1−Θ and thus q ≤ (q + 1)Θ. Since q is integer we get

q ≤ �(q + 1)Θ� and thus �(q + 1)Θ� ≥ qΘΘ−1 ≥ �qΘ�Θ−1 > �qΘ� since 0 < Θ < 1 if �qΘ� > 0. If
�qΘ� = 0 then q = 1 and the assertion is true as well because Θ > 1/2. Consequently, the claim
follows and thus, it suffices to prove (b1) for q = r, i.e., rΘ− �rΘ� > (r+ 1)Θ− r because s = r+ 1.
But r > Θ+ �rΘ� is trivially true since r ≥ 1 is integer and 0 < Θ < 1. Hence (b1) follows. We are
left with proving

(b2) �qΘ� − qΘ > sΘ− r for all integer q with 1 ≤ q ≤ r.

Suppose first that � Θ
1−Θ� =

Θ
1−Θ . Then sΘ − r = 0 and assume(b2) is wrong. Let q ∈ [1, r] be the

smallest integer with �qΘ� − qΘ = 0. It follows that Θ = p/q where 1 ≤ p = �qΘ� < q. But Θ = 1
r+1

and thus p(r + 1) = rq. Hence we get r = p
q−p and r + 1 = q

q−p , i.e., both p and q are divisible by
the integer q − p ≥ 1. If q − p = 1, then p = r and q = r + 1. Otherwise, q − p ≥ 2 contradicts our
assumption that q is the smallest integer with the required property. Consequently, such q does
not exist in the range 1, . . . , r and (b2) follows. Now suppose Θ

1−Θ is not integer. Like in the proof of
part (b1) we conclude q ≤ �(q+1)Θ�. If (q+1)Θ is integer, then from 0 < Θ < 1, we get q = (q+1)Θ,
i.e., q = Θ

1−Θ , which contradicts the assumption that Θ
1−Θ is not integer. Consequently, (q + 1)Θ

is not integer. Thus �qΘ� ≤ �Θ�(q + 1)Θ�� ≤ �(q + 1)Θ� < �(q + 1)Θ� and hence from 0 < Θ < 1,
�(q+ 1)Θ� − (q+ 1)Θ ≥ �qΘ� − qΘ for all integer q ∈ [1, r]. Consequently, it suffices to prove (b2) for

q = 1, i.e., 1−Θ >
(
1 + � Θ

1−Θ�
)
Θ− � Θ

1−Θ�. Using x = Θ
1−Θ the assertion is equivalent to 1 + �x� > x

which is trivially true because x is a positive noninteger. Thus (b2) follows in this case as well,
and hence the proof of part (iii) is complete.

(iv) We prove the assertion by induction. From the construction of the sequence of integers qi
we have q1 = 1 < q2 < · · · . Thus since q2 > 1 and integer, q2 ≥ 2 > 21/2 and the assertion is

9.8. EXERCISES 311

true for n = 2. Suppose that for n = k ≥ 2 we have qk ≥ 2(k−1)/2. By (9.70) qk+1 = akqk + qk−1 ≥
qk + qk−1 ≥ 2(k−1)/2 + 2(k−2)/2 = 2(k−2)/2(21/2 + 1) > 2(k−2)/22 = 2k/2 and thus the assertion follows
for n = k + 1 and the inductive proof is complete. (Note that here we use the inductive process
without the particular initialization (9.73), which “shifts” the index n of the inductive process by
1 if 1 > Θ > 1/2.)

(v)Assume WROG that 0 < Θ < Θ′ < 1 and that the inductive process carries out at least
N ≥ 1 iterations. By (9.65), i.e., because the signs of qnΘ − pn and q′nΘ

′ − p′n alternate, we
have either Θ′ ≤ pN/qN or pN/qN ≤ Θ. Since Θ′ �= Θ, the process continues for at least one
more iteration for either Θ or Θ′ or both. Suppose that Θ′ ≤ pN/qN . Then pN+1/qN+1 ≤ Θ
and 0 < Θ′ − Θ ≤ pN

qN
− pN+1
qN+1

= 1
qNqN+1

≤ 2−N+
1
2 , by part (iv). Suppose that pN/qN ≤ Θ. Then

p′N+1/q
′
N+1 ≥ Θ

′ and 0 < Θ′−Θ ≤
p′N+1
q′N+1

− p′N
q′N
= 1
q′N+1q

′
N
≤ 2−N+

1
2 by part (iv) as well because p′N = pN

and q′N = qN by assumption. Thus |Θ−Θ′| ≤ 2−N+
1
2 ≤ 2−N+1 as we have asserted.

*Exercise 9.10
Let P ⊆ R

n be a rational polyhedron of facet complexity φ, let Pu = P ∩ {x ∈ Rn :
−u ≤ xj ≤ u for 1 ≤ j ≤ n} for some integer u ≥ 1 and let c ∈ Rn be any rational vector.

(i) Every extreme point x ∈ Pu is a rational vector with components xj = pj/qj with integers
0 ≤ |pj | < u26nφ+1 and 1 ≤ qj < 26nφ for 1 ≤ j ≤ n.

(ii) Any two extreme points x, y ∈ Pu with cx > cy satisfy cx > cy + 2−12n
2φ−〈c〉.

(iii) For ∆ ≥ 1 + u26nφ+12n
2φ+〈c〉+1 let d̃j = ∆ncj + ∆n−j for 1 ≤ j ≤ n and d̃ = (d̃1, . . . , d̃n). Then

the linear optimization problem max{d̃x : x ∈ Pu} has a unique maximizer xmax ∈ Pu and
cxmax = max{cx : x ∈ Pu}.

(iv) Define d = d̃/‖d̃‖∞ where d̃ is defined in part (iii). Then 〈d〉 ≤ 3.5n(n− 1)�log2∆�+ 2(n− 1)〈c〉
and thus for u = 2Λ+1 and the smallest ∆ satisfying the condition of part (iii) we have 〈d〉 ≤
3.5n(n− 1)φ(16n2 + 11nφ+ 1) + (3.5n+ 2)(n− 1)〈c〉+ 14n(n− 1), where Λ = φ+ 5nφ+ 4n2φ+ 1.

(v) Let (h, h0) belong to a linear description of P , ‖h‖∞ > 0 and 〈h〉 + 〈h0〉 ≤ φ. Show that
〈h̃〉+ 〈h̃0〉 ≤ nφ+ 2 where h̃ = h/‖h‖∞ and h̃0 = h0/‖h‖∞.

(i) If x ∈ Pu is an extreme point of P , then the assertion follows from point 7.5(b). So suppose
that x ∈ Pu is an extreme point of Pu that is not an extreme point of P . Then by point 7.2(b) x is
determined uniquely by a system of equations

(
Ik O

F 1 F 2

)(
x1

x2

)
=

(
ug∗

f∗

)

where Ik is the k × k identity matrix with 1 ≤ k ≤ n, F 1, F 2 are (n − k) × k and (n − k) × (n − k)
matrices, g∗ is a vector with entries +1 if xj = u, −1 if xj = −u and f∗ has n − k components.

312 9. ELLIPSOID ALGORITHMS

Moreover, every row (f i, fi) of
(
F 1 F 2 f

∗
)

satisfies 〈f i〉 + 〈fi〉 ≤ φ and if k < n then detF2 �= 0. If

k = n then F2 is empty and we define detF 2 = 1. Denote by G the n × n matrix of this equation
system and suppose the components of x are indexed to agree with the above partitioning into

x1 and x2. By gj we denote the j-th column of
(
Ik O

)
, by f j the j-th column of

(
F 1 F 2

)
and by

uj the j-th unit vector in Rn. If we let

Gj = G+ u
T
j

((
ug∗

f∗

)
−

(
gj
f j

))
,

then by Cramer’s rule xj = detGj/detG and we need to estimate the digital sizes of the determi-
nants. From formula (7.18) we get 〈detG〉 ≤ 2〈G〉 − n2 ≤ 2nφ − n2. Moreover, detG is a rational
number of digital size less than 2nφ and thus there exist integers p, q with 0 ≤ |p| < 22nφ,
1 ≤ qj < 22nφ such that detG = p/q. Suppose that 1 ≤ j ≤ k. We calculate detGj = ±udetF 2.
Moreover, by the same reasoning as before 〈detF 2〉 < 2nφ is correct and thus there exist integers
pj, qj with 0 ≤ |pj | < 2nφ, 1 ≤ qj < 22nφ such that detF 2 = pj/qj. It follows that xj = ±upjq/qjp
satisfies upjq integer, 0 ≤ |upjq| < u24nφ < u26nφ+1 and 1 ≤ |qjp| < 24nφ < 26nφ since u is integer and
thus the assertion follows in this case. Suppose now that k+1 ≤ j ≤ n. From the formula for the
determinant of a partitioned matrix of Chapter 2.2 we calculate

detGj = det(F 2 + v
T
j (f

∗ − f j)− uF 1v
T
j g
∗)

= (detF 2)(det(Ik + F
−1
2 v

T
j (f

∗ − f j)− uF
−1
2 F 1v

T
j g
∗))

= (detF 2)(f∗ − ug∗) ,

where vj ∈ Rn−k is the j-th unit vector, f∗ = vTj F
−1
2 f

∗ and g∗ = vTj F
−1
2 F 1g

∗. We calculate

f∗ detF 2 = det(F 2 + v
T
j (f

∗ − f j))

by factoring out F 2 and thus by (7.18) 〈f∗ detF 2〉 < 2nφ is correct, i.e., there exist integer pj, qj
with 0 ≤ |pj | < 22nφ, 1 ≤ qj < 22nφ such that f∗ detF 2 = pj/qj. We calculate also

−g∗ detF 2 = det

((
Ik O

F 1 F 2

)
+ uTj

(
g∗

−f j

))

by applying the determinant formula for partitioned matrices first and then factoring out F 2.
Since φ ≥ n+1 it follows that the matrix on the right is a rational number of digital size less than
2nφ and thus there exist integers r, swith 0 ≤ |r| < 22nφ and 1 ≤ s < 22nφ such that −g∗ detF 2 = r/s.
Consequently, since u ≥ 1 is integer xj = q(spj + u+ qj)/psqj satisfies the assertion and the proof
of (i) is complete.

(ii) By part (i) of this exercise we have xj = pj/qj and yj = rj/sj with integer numbers pj, qj, rj, sj
satisfying 0 ≤ |pj |, |rj | < u26nφ+1 and 1 ≤ qj , sj < 26nφ for 1 ≤ j ≤ n. Let cj = aj/bj with integer aj
and bj ≥ 1 for 1 ≤ j ≤ n since c is rational. Since cx > cy it follows that c(x−y) ≥ (

∏n
j=1 qjsjbj)

−1 >

2−12n
2φ−〈c〉 because

∏n
j=1 bj < 2

〈c〉.

(iii) The proof of this part of the exercise goes like the proof of Exercise 7.14(iii).

9.8. EXERCISES 313

(iv) The proof follows from Exercise 7.14(iv) and by a simple substitution of the values for ∆, Λ,
u and the rough estimation 1 + 23+α < 24+α for α ≥ 0.

(v) Let hj =
pj
qj

with integer pj, qj satisfying 0 ≤ |pj | < 2φ, 1 ≤ qj < 2φ and |p�
q�
| ≥ |pj

qj
| for 1 ≤ j ≤ n.

Then h̃j =
pjq�
qjp�

, h̃� = 1, 〈h̃j〉 ≤ 〈pj〉+ 〈qj〉+ 〈p�〉+ 〈q�〉 and 〈h̃�〉 = 2 where 0 ≤ j �= � ≤ n. Consequently,

〈h̃〉+ 〈h̃0〉 ≤ 〈h〉+ 〈h0〉+ (n− 1)(〈p�〉+ 〈q�〉) + 2 ≤ nφ+ 2.

*Exercise 9.11

(i) Let P = {x ∈ R2 : −4x1 + 2x2 ≤ 1 , x1 + x2 ≥ 2 , −x1 + 2x2 ≤ 4 , 2x2 ≥ 1} and Pu be as defined
in (9.76). Find the maximizer xmax of max{x1 + x2 : x ∈ Pu} for u = 3 and the corresponding
ymax for v = 2u. Does ymax − xmax belong to the asymptotic cone of P? If not, what is the
smallest possible value of u that works? What is the theoretical value that you get for u using
Λ = φ+ 5nφ+ 4n2φ+ 1?

(ii) Suppose that the direction vector t ∈ P∞ of the proof of Remark 9.19 satisfies ct = 0 and let
T= = {y ∈ T : cy = 0, ‖y‖∞ = 1} where (S, T) is a minimal generator of the polyhedron P ⊆ Rn

such that 〈xj〉 ≤ 4nφ for all j and x ∈ S ∪ T . Prove that t y for all y ∈ T=, i.e. that t is
lexicographically greater than or equal to every y ∈ T=.

(iii) Determine the facet and vertex complexity of the polytopes Sn and Cn of Exercise 7.2 and of
Hn and On of Exercise 7.7.

(iv) Find polynomial-time algorithms that solve the polyhedral separation problem over Sn, Cn, Hn
and On.

(i) The polytopes P3 and P6 are shown in the figure. Maximizing the function x1 + x2 over P3
x2

x1

Pu
Pv

3

3

6

6

we get xmax = (3, 3) while maximizing it over P6 we get ymax =
(6, 5). The difference vector ymax − xmax = (3, 2) and it is not in
the asymptotic cone C∞ of P , where C∞ = {y ∈ R2 : −4x1 + 2x2 ≤
0 , x1 + x2 ≥ 0 , −x1 + 2x2 ≤ 0 , 2x2 ≥ 0} since it violates the third
inequality. Selecting u ≥ 4 we have the maximizer lying on the
extreme ray −x1 + 2x2 = 4 of the polyhedron P and thus u = 4
and v = 2u = 8 will give xmax = (4, 4) and ymax = (8, 6), and thus
ymax−xmax = (4, 2) ∈ C∞. To compute the theoretical value of u, we
first calculate φ for the polyhedron P . Since 〈0〉 = 1, 〈1〉 = 〈−1〉 = 2,
〈2〉 = 3 and 〈4〉 = 〈−4〉 = 4, we have that φ ≥ max{〈−4〉 + 〈2〉 +
〈1〉, 〈1〉 + 〈1〉 + 〈2〉, 〈−1〉 + 〈2〉 + 〈4〉, 〈0〉 + 〈2〉 + 〈1〉} = 9. So selecting
φ = 9 we get from Λ = φ + 5nφ + 4n2φ + 1 with n = 2 that Λ = 244

and thus u = 2244 which is a horribly big number and evidently much bigger than required in this
case.

(ii) By assumption the unique maximizer xmax of dx over the polytope Pu for u = 2Λ satisfies
xmaxj = ±u for at least one j ∈ {1, . . . , n} and thus xmax is the unique solution to a system of

314 9. ELLIPSOID ALGORITHMS

equations of the form
(
±Ik O

F 1 F 2

)(
xmax1

xmax1

)
=

(
uek

f∗

)
, (1)

where ±Ik is some k × k matrix with 1 ≤ k ≤ n having +1 or −1 on its main diagonal (according
to xj = u or xj = −u), zeros elsewhere, F 1, F 2 are (n − k) × k and (n − k) × (n − k) matrices, ek
is a vector of k ones and f∗ has n − k components. Every row (f i, fi) of

(
F F 2 f

∗
)

satisfies

〈f i〉 + 〈fi〉 ≤ φ and detF 2 �= 0, where by convention detF 2 = 1 if F 2 is empty. Moreover, ymax

satisfies (1) with u replaced by v = 2Λ+1 and t = 2−Λ(ymax − xmax) ∈ C∞ satisfies 〈tj〉 ≤ 4nφ for
1 ≤ j ≤ n. (For more detail than given in the proof of Remark 9.17 on the estimation of 〈tj〉 see
the proof of Exercise 9.10(i).) From the uniqueness of the respective maximizers xmax, ymax and
the assumptions that xj = ±u for at least one index j and Λ > 4nφ, it follows that every basis
defining xmax is of the form (1) and thus by the duality theory of linear programming

d = λ

(
±Ik O

F 1 F 2

)
with λ ≥ 0 (2)

for some such basis defining xmax and ymax, respectively. Consequently, a basis satisfying (1)
and (2) exists. Since by construction t ∈ C∞ and t �= 0, it follows that t̃ = t/‖t‖∞ ∈ P∞ is an
extreme point of P∞. More precisely, by dropping some of the constraints of P∞ we have

P∞ ⊆ OC (̃t, H̃) =

{
y ∈ Rn :

(
±Ik O

F 1 F 2

)
y ≤

(
ek

0

)}
,

i.e., OC (̃t, H̃) is the displaced outer cone with apex at t̃ containing all of P∞ (see the end of
Chapter 7.5.4), and t̃ is an extreme point of OC (̃t, H̃). From (2) it follows that t̃ maximizes dy
over OC (̃t, H̃) and thus by the outer inclusion principle, t̃ maximizes dy over P∞. The matrix H̃
defining P∞ is given by H, In and −In and thus P∞ has a facet complexity of φ – just like the
polyhedron P . Hence 〈t̃j〉 ≤ 4nφ for 1 ≤ j ≤ n. Since dt̃ ≥ dy for all y ∈ P∞, it follows like in
Exercise 7.14(iii) that t̃ is the unique maximizer of d over P∞ because the number ∆ that we use
to prove Remark 9.19 is greater than the number 1 + 24nφ+8n

2φ+〈c〉+1 that suffices to guarantee
uniqueness. But then by Exercise 7.14(v) t̃ y for all y ∈ T= and the proof of part (ii) is complete.

(iii) The digital size of the inequality −xj ≤ 0 equals n + 2 since we also store zero coefficients.
Likewise the digital size of xj ≤ 1 is n + 3 and of

∑n
j=1 xj ≤ 1 is 2(n + 1). Consequently, the facet

complexity of the polytope Sn is φ = 2(n+ 1) and that of Cn is φ = n+ 3, where n ≥ 1 is arbitrary.
The polyhedronHn of Exercise 7.7(i) has the same facet complexity as Sn, i.e., φ = 2(n+1), while
the polytope On of Exercise 7.7(ii) has φ = 2n+ 1 + �log2 n�.

(iv) Since Sn has n + 1 constraints and Cn has 2n constraints, the (trivial) algorithm LIST-and-
CHECK is a polynomial-time separation algorithm for Sn and Cn, respectively, no matter what
rational y ∈ Rn is given as input. (LIST-and-CHECK is just that; you list all inequalities and check
them one by one for violation.) Since both Hn and On have exponentially many inequalities, LIST-
and-CHECK does not work in either case since it may, in the worst case, require exponential time

9.8. EXERCISES 315

in n to execute it. In the case of Hn every constraint is of the form hx =
∑n
j=1 δjxj ≤ 1 where

δj ∈ {0, 1} for 1 ≤ j ≤ n and ‖h‖∞ = 1, except for the trivial constraint 0x ≤ 1 which is never
violated. The polyhedral separation problem for Hn is

max{
n∑
j=1

δjzj − 1 : δj ∈ {0, 1} for 1 ≤ j ≤ n}

where z ∈ Rn is a rational vector. To solve the problem we scan the vector z and set δj = 1 if zj > 0,
δj = 0 otherwise. This separation algorithm is linear in n and 〈z〉 and thus a polynomial-time
algorithm for the polyhedral separation problem for Hn.

In the case of the polytope On we can check the 2n constraints 0 ≤ xj ≤ 1 for 1 ≤ j ≤ n by
the algorithm LIST-and-CHECK in polynomial time. So we can assume WROG that the rational
vector z ∈ Rn for which we want to solve the polyhedral separation problem satisfies 0 ≤ zj ≤ 1.
The separation problem for the remaining exponentially many constraints of On is

max{
∑
j∈N1

zj −
∑

j∈N−N−1

zj − |N1|+ 1 : N1 ⊆ N, |N1| even}

= 1−min{
∑
j∈N1

(1− zj) +
∑

j∈N−N1

zj : N1 ⊆ N, |N1| even} ,

and a violated constraint is obtained if the objective function of the minimization problem is less
than one. To solve the problem we order the components of z in decreasing order which requires
time that is polynomial in n and 〈z〉. E.g. the sorting algorithm HEAPSORT requires O(n log n)
operations in the worst case. So we can assume WROG that 1 ≥ z1 ≥ z2 ≥ · · · ≥ zk ≥ 1/2 > zk+1 ≥
· · · ≥ zn ≥ 0, where 0 ≤ k ≤ n. Finding the index k or verifying that k = 0 can be done by scanning
the ordered vector z once, i.e., in time that is linear in n and 〈z〉. If the index k is even we set
N∗1 = {1, . . . , k}. If k is odd we set N∗1 = {1, . . . , k− 1} if zk + zk+1 < 1, N∗1 = {1, . . . , k+1} otherwise.
By construction |N∗1 | is even, zi1 + zi2 < 1 for all i1 �= i2 �∈ N∗1 and zi1 + zi2 ≥ 1 for all i1, i2 ∈ N∗1 in
all cases. We claim that N∗1 solves the minimization problem. Suppose not and let S ⊆ N be an
optimal solution. Then |S| is even, S �= N∗1 and

z(S) =
∑
j∈S

(1− zj) +
∑
j∈N−S

zj <
∑
j∈N∗1

(1− zj) +
∑

j∈N−N∗1

zj = z(N
∗
1) .

If |S| = |N∗1 | then by construction
∑
j∈S zj ≤

∑
j∈N∗1

zj and
∑
j∈N−N∗1

zj ≤
∑
j∈N−S zj. But then

z(N∗1) ≤ z(S) and thus if z(S) < z(N∗1) then |S| − |N∗1 | is an even number different from zero.
Suppose first that |S| ≥ 2 + |N∗1 |. Then there exists i1 �= i2 ∈ S such that i1, i2 �∈ N∗1 . Let
S′ = S − {i1, i2}. We compute z(S′) = z(S)− 2(1− zi1 − zi2) ≥ z(S) by the optimality of S and thus
zi1 + zi2 ≥ 1 which is a contradiction because i1 �= i2 �∈ N∗1 . Suppose now that |S| + 2 ≤ |N∗1 |.
Then there exists i1 �= i2 ∈ N∗1 such that i1 �∈ S, i2 �∈ S. Let S′ = S ∪ {i1, i2}. We compute
z(S′) = z(S) + 2(1− zi1 − zi2) ≥ z(S) by the optimality of S and thus zi1 + zi2 ≤ 1. Since i1, i2 ∈ N∗1
we get zi1 + zi2 = 1 and thus z(S′) = z(S). Consequently, S′ is optimal as well as |S| < |S′| ≤ |N∗1 |,
we can reappply the reasoning and after finitely many steps we arrive at a contradiction because
the cardinality of an optimal S is bounded by |N∗1 | in this case. Consequently, the claim follows.
The polyhedral separation problem for On can thus be solved in O(〈z〉n log n) time for any rational
z ∈ Rn.

316 9. ELLIPSOID ALGORITHMS

x1

x2

P

� �

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

Fig. 9.13. ε-solidifications of P for ε = 0, 1/2 and 1

*Exercise 9.12

(i) Consider the polytope P = {x ∈ R2 : 2x1+x2 ≤ 2 , x1 ≥ 0 , x2 ≥ 0}. Find minimal generators for
the corresponding SP , SP∞ and SP ∗∞ as defined in (9.80), (9.81) and (9.82). Show that every
nonzero extreme point (h, h0) of SP∞ defines a facet hx ≤ h0 + ε of the ε-solidification P 1ε of
P in the �1-norm and vice versa, that every facet hx ≤ h0 + ε with ‖h‖∞ = 1 of P 1ε defines an
extreme point (h, h0) of SP∞ where ε > 0.

(ii) Do the same as in part (i) of this exercise for the polyhedron P = {x ∈ R2 : 2x1−x2 = 0 , x1 ≥ 1}.

(iii) Do the same as in part (i) of this exercise for the polyhedron P = {x ∈ R2 : 2x1 + x2 ≥
5 , x1 − x2 ≥ −2 , x2 ≥ 1}. In addition, let (f , f0) = (−1,−1,−6) and solve the linear program
max{−x1 − x2 + 6x3 : (x1, x2, x3) ∈ SP ∗∞}. Does its optimal solution yield a most violated
separator for (f , f0) and SP? If not, what is the most violated separator in this case?

(iv) Let P ⊆ Rn be any nonempty, line free polyhedron and P 1ε its ε-solidification with respect
to the �1-norm where ε > 0. Show that the extreme points of SP∞ as defined in (9.81) are
in one-to-one correspondence with the facets of P 1ε . What happens if P is permitted to have
lines?

(i) The polytope P , see Figure 9.13, has three extreme points x1 = (1, 0), x2 = (0, 2) and x3 = (0, 0).
Consequently, the h0-polar SP of P is given by SP = {(h1, h2, h0) ∈ R3 : h1 − h0 ≤ 0, 2h2 − h0 ≤

9.8. EXERCISES 317

0, −h0 ≤ 0}. Running the double description algorithm (or by hand calculation) we find that SP is
pointed and has three extreme rays (−1, 0, 0), (0,−1, 0) and (2, 1, 2). SP is the set of all separators
for P and the set of normed separators SP∞ for P is obtained from SP by intersecting SP with the
constraints −1 ≤ hj ≤ 1 for j = 1, 2 as we are working with the �1-norm. Using the homogenization
(7.5) and running the double description algorithm (or by hand calculation) we find that SP∞ is
pointed and has a minimal generator consisting of the eight extreme points

(0, 0, 0), (−1, 0, 0), (0,−1, 0), (−1,−1, 0), (1, 1, 2), (1,−1, 1), (1, 12 , 1), (−1, 1, 2)

and the extreme ray given by (0, 0, 1). The set of normed separators SP ∗∞ for SP given by (9.82) is
the polytope

SP ∗∞ = {x ∈ R
3 : 2x1 + x2 − 2x3 ≤ 0,−x1 ≤ 0,−x2 ≤ 0,−1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1} .

Using the double description algorithm (or by hand calculation) we find that a minimal generator
has the following six extreme points

(0, 0, 0), (0, 0, 1), (0, 1, 12), (0, 1, 1), (1, 0, 1), (
1
2 , 1, 1) .

To answer the second part of this problem we first calculate the ε-solidification P 1ε in the �1-norm.
To do so we proceed like in the proof of Exercise 9.7(vi). To calculate P 1ε we thus have to project
out the µ-variables from the polyhedron

PP 1ε ={(z,µ) ∈ R
4 : −z1 − z2 + µ1 + 2µ2 ≤ ε,−z1 + z2 + µ1 − 2µ2 ≤ ε, z1 − z2 − µ1 + 2µ2 ≤ ε,

z1 + z2 − µ1 − 2µ2 ≤ ε, µ1 + µ2 ≤ 1, µ1 ≥ 0, µ2 ≥ 0}

where we have used that x = 0 is an extreme point of P . To do so we need a minimal generator
of the cone (for the general definition see(7.8))

C = {u ∈ R7 : u1 − u2 + u3 − u4 + u5 − u6 = 0, 2u1 + 2u2 − 2u3 − 2u4 + u5 − u7 = 0,u ≥ 0} .

Running the double description algorithm we find that C is pointed and has the following ten
extreme rays

(1, 0, 0, 1, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 2, 0), (0, 0, 1, 0, 2, 3, 0), (0, 0, 0, 0, 1, 1, 1),

(0, 0, 0, 1, 2, 1, 0), (0, 1, 0, 3, 4, 0, 0), (0, 1, 0, 0, 1, 0, 3), (1, 1, 0, 0, 0, 0, 4), (1, 0, 0, 0, 0, 1, 2) .

Consequently, we find (besides some trivial redundant inequalities) that P 1ε is given by

P 1ε ={x ∈ R
2 : 2x1 + x2 ≤ 2 + 2ε, x1 + x2 ≤ 2 + ε,−x1 + x2 ≤ 2 + ε,

x1 − x2 ≤ 1 + ε,−x1 − x2 ≤ ε,−x1 ≤ ε,−x2 ≤ ε} .

From Figure 9.13, we see that every inequality of the linear description of P 1ε corresponds to
a nonzero extreme point of SP∞ and vice versa. Note, however, that you have to normalize the
first inequality of P 1ε to get the correspondence. The extreme points of P 1ε for ε ≥ 0 are

(−ε, 0), (0,−ε), (1,−ε), (1 + ε, 0), (ε, 2), (0, 2 + ε), (−ε, 2) .

318 9. ELLIPSOID ALGORITHMS

x1

x2

��

�

��

�

�

Fig. 9.14. ε-solidifications of P for ε = 0, 1/2 and 1

(ii) The polyhedron P , see Figure 9.14, is a flat consisting of the extreme point x = (1, 2) and the
direction vector y = (1, 2). Consequently, the h0-polar SP of P is the cone SP = {(h1, h2, h0) ∈ R3 :
h1+2h2−h0 ≤ 0, h1+2h2 ≤ 0}. Running the double description algorithm (or by hand calculation)
we find that SP is a blunt cone, the basis of the lineality space of SP is given by (−2, 1, 0) and
the conical part of SP is generated by (0, 0, 1), (−1, 0,−1). So a minimal generator of SP is given
by {(−2, 1, 0), (2,−1, 0), (0, 0, 1), (−1, 0,−1)}. The set SP∞ of normed separators for P is obtained by
intersecting SP with the constraints −1 ≤ hj ≤ 1 for j = 1, 2 as we are working with the �1-norm.
Using the homogenization (7.5) and running the double description algorithm, we find that SP∞
is a pointed polyhedron. Its minimal generator consists of the four extreme points (−1, 12 , 0),
(1,−12 , 0), (−1,−1,−3), and (1,−1,−1), and the extreme ray given by (0, 0, 1). The set of normed
separators SP ∗∞ for SP is the polytope

SP ∗∞ = {x ∈ R
3 : 2x1 − x2 = 0,−x1 + x3 ≤ 0, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1} .

Using the double description algorithm we find that a minimal generator of SP ∗∞ has the following
three extreme points (0, 0, 0), (12 , 1, 0), and (12 , 1,

1
2). To answer the second part of this problem we

calculate the ε-solidification P 1ε of P in the �1-norm. To do so we proceed like in part (i). To
calculate P 1ε we thus have to project out variable ν1 from the polyhedron

PP 1ε ={(z, ν1) ∈ R
3 : −z1 − z2 + 3ν1 ≤ −3 + ε, z1 − z2 + ν1 ≤ −1 + ε,−z1 + z2 − ν1 ≤ 1 + ε,

z1 + z2 − 3ν1 ≤ 3 + ε, ν1 ≥ 0}

where we have simply eliminated the µ variable since it must equal one. We thus need a minimal
generator of the cone

C = {u ∈ R5 : 3u1 + u2 − u3 − 3u4 − u5 = 0,u ≥ 0} .

Running the double description algorithm we get the following six extreme rays

(1, 0, 0, 1, 0), (1, 0, 3, 0, 0), (0, 1, 0, 0, 1), (0, 3, 0, 1, 0), (0, 1, 1, 0, 0), (1, 0, 0, 0, 3) .

9.8. EXERCISES 319

Consequently, we find that (up to some redundant inequalities) P 1ε is given by

P 1ε = {x ∈ R
2 : −2x1 + x2 ≤ 2ε, 2x1 − x2 ≤ 2ε,−x1 − x2 ≤ −3 + ε, x1 − x2 ≤ −1 + ε} .

From Figure 9.14 we see that after normalization every inequality of the linear description of P 1ε
corresponds to a nonzero extreme point of SP∞ and vice versa. Note that as in part (i) you have
to normalize the first and second inequalities of P 1ε to get the correspondence. The three extreme
points of P 1ε for ε ≥ 0 are (1 − ε, 2), (1, 2 − ε), (1 + ε, 2). In addition we need the direction vector
y = (1, 2) of the extreme ray of P for a minimal pointwise description of P 1ε .

(iii) The polyhedron P , see Figure 9.15, is an unbounded set having two extreme points (1, 3) and
(2, 1), and two direction vectors (1, 0), and (1, 1) for its extreme rays. Consequently, the h0-polar SP
of P is the cone SP = {(h1, h2, h0) ∈ R3 : h1−3h2−h0 ≤ 0, 2h1−h2−h0 ≤ 0, h1 ≤ 0, h1+h2 ≤ 0}. Running
the double description algorithm we find that SP is a pointed cone having four extreme rays
(0, 0, 1), (0,−1, 3), (−2, 1,−5) and (−1, 1,−3). The set SP∞ of the normed separators for P is obtained
by intersecting SP with the constraints −1 ≤ hj ≤ 1 for j = 1, 2. Using the homogenization (7.5)
and running the double description algorithm we find that SP∞ is a pointed polyhedron. Its
minimal generator consists of the five extreme points

(0, 0, 0), (0,−1, 3), (−1,−1, 2), (−1, 12 ,−
5
2), (−1, 1,−3)

and the extreme ray given by the direction vector (0, 0, 1).The set of normed separators SP ∗∞ for
SP is the polytope SP ∗∞ = {x ∈ R

3 : 2x1 + x2 − 5x3 ≥ 0, x1 − x2 + 2x3 ≥ 0, x2 − x3 ≥ 0, 0 ≤ x1 ≤ 1, 0 ≤
x2 ≤ 1, 0 ≤ x3 ≤ 1}. Running the double description algorithm we find that the (quasi-unique)
minimal generator of SP ∗∞ has the six extreme points

(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 12 ,
1
2), (1, 1,

3
5), (

1
3 , 1,

1
3) .

To answer the second part of this problem, we calculate the ε-solidification P 1ε of P in the �1-norm.
To do so we proceed like in parts (i) and (ii). To calculate P 1ε we thus have to project out the
µ and ν variables from the polyhedron

PP 1ε ={(z,µ,ν) ∈ R
6 : z1 + z2 − 4µ1 − 3µ2 − ν1 − 2ν2 ≤ ε,−z1 + z2 − 2µ1 + µ2 + ν1 ≤ ε,

z1 − z2 + 2µ1 − µ2 − ν1 ≤ ε,−z1 − z2 + 4µ1 + 3µ2 + ν1 + 2ν2ε, µ1 + µ2 = 1,µ ≥ 0,ν ≥ 0} .

To carry out the projection we calculate the cone (7.8):

C ={(u,v) ∈ R9 : −4u1 − 2u2 + 2u3 + 4u4 − u5 + v1 = 0,−3u1 + u2 − u3 + 3u4 − u6 + v1 = 0,

− u1 + u2 − u3 + u4 − u7 = 0,−2u1 + 2u4 − u8 = 0,u ≥ 0} .

Running the double description algorithm we get the seven extreme rays

(1, 0, 0, 1, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, 0, 0, 1), (0, 1, 0, 0, 0, 3, 1, 0, 2),

(0, 0, 0, 1, 1, 0, 1, 2,−3), (0, 1, 0, 3, 0, 0, 4, 6,−10), (0, 0, 1, 1, 4, 0, 0, 2,−2) ,

and thus we calculate

P 1ε = {x ∈ R
2 : 2x1 + x2 ≥ 5− 2ε, x1 − x2 ≥ −2− ε, x2 ≥ 1− ε, x1 + x2 ≥ 3− ε} .

320 9. ELLIPSOID ALGORITHMS

P

x1

x2

�

�

�

�

�

�

�

�

Fig. 9.15. ε-solidifications of P for ε = 0, 1/2 and 1

From Figure 9.15 we see that after normalization every inequality of the linear description of P 1ε
corresponds to a nonzero extreme point of SP∞ and vice versa. The extreme points of P 1ε are
(1− ε, 3), (2− ε, 1), (2, 1− ε). In addition we need the two direction vectors of the extreme rays of
P for a minimal pointwise description of P 1ε .

From the above pointwise description of SP ∗∞ we find that x̃ = (1, 1, 35) is the unique optimal
solution to max{fx − f0xn+1 : (x, xn+1) ∈ SP ∗∞} and since f1x1 + f2x2 − f0x3 = 1.6 > 0 the point x̃
separates (f , f0) from the cone SP . To find the most violated separator for (f , f0) and SP , we apply
the procedure described on pages 344-346; see (9.83) and (9.84). Solving max{fx : x ∈ P} we find
the (unique) optimizer xmax = (2, 1) and thus (9.83) applies. We get α = 1/2 and thus x0 = (1, 12 ,

1
2)

is a most violated separator for (f , f0) and SP , i.e., a most violated separator for (f , f0) and the
cone SP cannot be found by solving the linear program max{fx− f0xn+1 : (x, xn+1) ∈ SP ∗∞}.

(iv) Let (h, h0) be an extreme point of SP∞. Then hx ≤ h0 for all x ∈ P and by Exercise 9.7(iv)
hx ≤ h̃0 = h0 + ε for all x ∈ P 1ε since ‖h‖∞ = 1. Since ε > 0 and by Exercise 9.7(ix) dimP 1ε = n,
there exists (f , f̃0) ∈ Rn+1 such that ‖f‖∞ = 1, fx ≤ f̃0 defines a facet of P 1ε and A = {x ∈ P 1ε :
hx = h̃0} ⊆ B = {x ∈ P 1ε : fx = f̃0}. By Exercise 9.7(vi) fx ≤ f0 = f̃0 − ε for all x ∈ P and thus
(f , f0) ∈ SP∞. From A ⊆ B it follows that hxi = h0 implies fxi = f0 for 1 ≤ i ≤ p and likewise
hyi = 0 implies fyi = 0 for 1 ≤ i ≤ r. Suppose hj = ±1 for some j ∈ {1, . . . , n}. Since P is
pointed, hxi = h0 for some i ∈ {1, . . . , p}. But xi ± εuj ∈ P 1ε , h(xi ± εuj) = h0 ± εhj = h̃0 and thus
f(xi ± εuj) = f0 ± εfj = f̃0 = f0 + ε implies fj = hj. Since (h, h0) is an extreme point it follows that
(h, h0) = (f , f0), i.e., hx ≤ h0 + ε defines a facet of P 1ε . To show the reverse statement, suppose
(h, h̃0) ∈ Rn+1 defines a facet of P 1ε . We can assume WROG that ‖h‖∞ = 1 and thus (h, h0) ∈ SP∞
where h0 = h̃0 − ε. Denote by (hi, hi0) for 1 ≤ i ≤ s the extreme points of SP∞. Since SP∞ has
exactly one halfline, it follows that (h, h0) =

∑s
i=1 µi(h

i, hi0) + λ(0, 1) with µi ≥ 0,
∑s
i=1 µi = 1 and

λ ≥ 0. Suppose λ > 0. Then hx ≤ h0 − λ for all x ∈ P , because (h, h0 − λ) is a nonnegative
combination of hix ≤ hi0 – which by the first part define facets of P . But then hx ≤ h0 − λ+ ε < h̃0
for all x ∈ P 1ε shows the contradiction. Consequently, λ = 0 and thus (h, h̃0) =

∑s
i=1 µi(h

i, h̃i0) with

9.8. EXERCISES 321

µi ≥ 0,
∑s
i=1 µi = 1, where h̃i0 = h

i
0 + ε for 1 ≤ i ≤ s. Since dimP 1ε = n it follows that (h, h̃0) = (h

i, h̃i0)
for some i ∈ {1, . . . , s} since the linear description of a full dimensional polyhedron by its facets
is unique modulo the multiplication by positive scalars; see page 129 of the book. Consequently,
(h, h0) defines an extreme point of SP∞ and the proof is complete.

As we did not utilize the extremality of x1, . . . ,xp in the above argument it follows that the
statement about the correspondence remains correct if P contains lines. If p = 0, then the feasible
xi needed to prove that fj = hj can be chosen to equal 0 since 0 ∈ P in this case.

