
Part One

The Historical
Collection Classes

Zukow_02 4/2/01 10:10 AM Page 7

Zukow_02 4/2/01 10:10 AM Page 8

CHAPTER 2

Arrays

Arrays are the only collection support defined within the Java programming
language. They are objects that store a set of elements in an order accessible
by index, or position. They are a subclass of Object and implement both the
Serializable and Cloneable interfaces. However, there is no .java source file for
you to see how the internals work. Basically, you create an array with a specific
size and type of element, then fill it up.

9

Let’s take a look at what we can do with array objects—beginning with basic
usage and declaration and moving through to copying and cloning. We’ll also look
at array assignment, equality checking, and reflection.

Array Basics

Before going into the details of declaring, creating, initializing, and copying
arrays, let’s go over a simple array example. When creating a Java application, the
main() method has a single argument that is a String array: public static void
main(String args[]). The compiler doesn’t care what argument name you use,
only that it is an array of String objects.

Given that we now have the command-line arguments to our application as
an array of String objects, we can look at each element and print it. Within Java,
arrays know their size, and they are always indexed from position zero. Therefore,
we can ask the array how big it is by looking at the sole instance variable for an
array: length. The following code shows how to do this:

public class ArrayArgs {

public static void main (String args[]) {

for (int i=0, n=args.length; i<n; i++) {

System.out.println("Arg " + i + ": " + args[i]);

}

}

}

NOTE Since arrays subclass Object, you can synchronize on an array
variable and call its wait() and notify() methods.

Zukow_02 4/2/01 10:10 AM Page 9

Because an array’s size doesn’t change as we walk through the loop,
there is no need to look up the length for each test case, as in:
for (int i=0; i<args.length; i++). In fact, to go through the loop counting
down instead of up as a check for zero test case is nominally faster in most
instances: for (int i=args.length-1; i>=0; i—). While the JDK 1.1 and 1.2
releases have relatively minor performance differences when counting down ver-
sus counting up, these timing differences are more significant with the 1.3 release.
To demonstrate the speed difference on your platform, try out the program in
Listing 2-1 to time how long it takes to loop “max int” times:

Listing 2-1. Timing loop performance.
public class TimeArray {

public static void main (String args[]) {

int something = 2;

long startTime = System.currentTimeMillis();

for (int i=0, n=Integer.MAX_VALUE; i<n; i++) {

something = -something;

}

long midTime = System.currentTimeMillis();

for (int i=Integer.MAX_VALUE-1; i>=0; i—) {

something = -something;

}

long endTime = System.currentTimeMillis();

System.out.println("Increasing Delta: " + (midTime - startTime));

System.out.println("Decreasing Delta: " + (endTime - midTime));

}

}

This test program is really timing the for-loop and not the array access
because there is no array access.

Chapter 2

10

NOTE Array indices cannot be of type long. Because only non-negative inte-
gers can be used as indices, this effectively limits the number of elements in
an array to 2,147,483,648, or 231, with a range of indices from 0 to 231–1.

Zukow_02 4/2/01 10:10 AM Page 10

If you ever try to access before the beginning or after the end of an array,
an ArrayIndexOutOfBoundsException will be thrown. As a subclass of
IndexOutOfBoundsException, the ArrayIndexOutOfBoundsException is a runtime
exception, as shown in Figure 2-1. Thankfully, this means that you do not have to
place array accesses within try-catch blocks. In addition, since looking beyond
the bounds of an array is a runtime exception, your program will compile just
fine. The program will only throw the exception when the access is attempted.

Arrays

11

NOTE In most cases, the numbers calculated on my 400 MHz Windows NT
system were in the low 11,000s for JDK 1.1 and 1.2. However, under JDK 1.3
with the -classic option (no JIT), the timing numbers increased to around
250,000. Even using the HotSpot VM with 1.3, the numbers were between
19,000 and 30,000.

Exception

RuntimeException

IndexOutOfBoundsException

ArrayIndexOutOfBoundsException

Figure 2-1. The class hierarchy of ArrayIndexOutOfBoundsException.

NOTE You cannot turn off array bounds checking. It is part of the security
architecture of the Java runtime to ensure that invalid memory space is
never accessed.

Zukow_02 4/2/01 10:10 AM Page 11

The following code demonstrates an improper way to read through the
command-line array elements:

public class ArrayArgs2 {

public static void main (String args[]) {

try {

int i=0;

do {

System.out.println("Arg " + i + ": " + args[i++]);

} while (true);

} catch (ArrayIndexOutOfBoundsException ignored) {

}

}

}

While functionally equivalent to the earlier ArrayArgs example, it is bad pro-
gramming practice to use exception handling for control flow. Exception handling
should be reserved for exceptional conditions.

Declaring and Creating Arrays

Remember that arrays are objects that store a set of elements in an index-
accessible order. Those elements can either be a primitive datatype, such as an
int or float, or any type of Object. To declare an array of a particular type, just
add brackets ([]) to the declaration:

int[] variable;

For array declaration, the brackets can be in one of three places:
int[] variable, int []variable, and int variable[]. The first says that the
variable is of type int[]. The latter two say that the variable is an array and that
the array is of type int.

Chapter 2

12

NOTE This might sound like we’re arguing semantics. However, there is a
difference when you declare multiple variables depending upon which
form you use. The form int[] var1, var2; will declare two variables that
are int arrays, whereas int []var1, var2; or int var1[], var2; will
declare one int array and another just of type int.

Zukow_02 4/2/01 10:10 AM Page 12

Once you’ve declared the array, you can create the array and save a reference
to it. The new operator is used to create arrays. When you create an array, you must
specify its length. Once this length is set, you cannot change it. As the following
demonstrates, the length can be specified as either a constant or an expression:

int variable[] = new int[10];

or

int[] createArray(int size) {

return new int[size];

}

You can combine array declaration and creation into one step:

int variable[] = new int[10];

Once an array has been created, you can fill it up. This is normally done with
a for-loop or with separate assignment statements. For instance, the following will
create and fill a three-element array of names:

String names = new String[3];

names[0] = "Leonardo";

names[1] = "da";

names[2] = "Vinci";

Arrays

13

NOTE If you try to create an array where the length is negative, the run-
time NegativeArraySizeException will be thrown. Zero-length arrays,
however, are valid.

WARNING In the event that the creation of an array results in an
OutOfMemoryError being thrown, all dimension expressions will already
have been evaluated. This is important if an assignment is performed
where the dimension is specified. For example, if the expression
int variable[] = new int[var1 = var2*var2] were to cause an
OutOfMemoryError to be thrown, the variable var1 will be set prior to the
error being thrown.

Zukow_02 4/2/01 10:10 AM Page 13

Arrays of Primitives

When you create an array of primitive elements, the array holds the actual values
for those elements. For instance, Figure 2-2 shows what an array of six integers
(1452, 1472, 1483, 1495, 1503, 1519) referred to from the variable life would look
like with regards to stack and heap memory.

Arrays of Objects

Unlike an array of primitives, when you create an array of objects, they are not
stored in the actual array. The array only stores references to the actual objects,
and initially each reference is null unless explicitly initialized. (More on initializa-
tion shortly.) Figure 2-3 shows what an array of Object elements would look like
where the elements are as follows:

* Leonardo da Vinci’s country of birth, Italy

* An image of his painting The Baptism of Christ

* His theories (drawings) about helicopters and parachutes

* An image of the Mona Lisa

* His country of death, France

Chapter 2

14

life

Stack

1452

1472

1483

1495

1503

1519

Heap

Figure 2-2. The stack and heap memory for an array of primitives.

Zukow_02 4/2/01 10:10 AM Page 14

The key thing to notice in Figure 2-3 is that the objects are not in the array:
only references to the objects are in the array.

Multidimensional Arrays

Because arrays are handled through references, there is nothing that stops you
from having an array element refer to another array. When one array refers to
another, you get a multidimensional array. This requires an extra set of square
brackets for each added dimension on the declaration line. For instance, if you
wish to define a rectangular, two-dimensional array, you might use the following
line:

int coordinates[][];

As with one-dimensional arrays, if an array is one of primitives, you can
immediately store values in it once you create the array. Just declaring it isn’t suffi-
cient. For instance, the following two lines will result in a compilation-time error
because the array variable is never initialized:

int coordinates[][];

coordinates[0][0] = 2;

Arrays

15

life

Stack

Birth

Painting

Theory

Theory

Painting

Death

Heap

France

Mona Lisa

Parachute

Helicopter

The Baptism
of Christ

Italy

Figure 2-3. The stack and heap memory for an array of objects.

Zukow_02 4/2/01 10:10 AM Page 15

If, however, you created the array between these two source lines (with some-
thing like coordinates = new int[3][4];), the last line would become valid.

In the case of an array of objects, creating the multidimensional array pro-
duces an array full of null object references. You still need to create the objects to
store in the arrays, too.

Because each element in the outermost array of a multidimensional array is
an object reference, there is nothing that requires your arrays to be rectangular (or
cubic for three-dimensional arrays). Each inner array can have its own size. For
instance, the following demonstrates how to create a two-dimensional array of
floats where the inner arrays are sized like a set of bowling pins—the first row has
one element, the second has two, the third has three, and the fourth has four:

float bowling[][] = new float[4][];

for (int i=0; i<4; i++) {

bowling[i] = new float[i+1];

}

To help visualize the final array, see Figure 2-4.

When accessing an array with multiple dimensions, each dimension expression
is fully evaluated before the next dimension expression to the right is ever exam-
ined. This is important to know if an exception happens during an array access.

Chapter 2

16

bowling[0]

bowling[1]

bowling[2]

bowling[3]

bowling

bowling[0][0]

bowling[3][0] bowling[3][1] bowling[3][2] bowling[3][3]

bowling[2][0] bowling[2][1] bowling[2][2]

bowling[1][0] bowling[1][1]

Figure 2-4. A triangular, bowling-pin-like array.

NOTE While you can syntactically place square brackets before or after
an array variable when it is for a single dimension ([index]name or
name[index]), you must place the square brackets after the array variable
for multiple dimensions, as in name[index1][index2]. Syntactically,
[index1][index2]name and [index1]name[index2] are illegal and will
result in a compile-time error if found in your code. For declarations, it is
perfectly legal to place the brackets before (type [][]name), after
(type name[][]), or around (type []name[]) the variable name.

Zukow_02 4/2/01 10:10 AM Page 16

Keep in mind that computer memory is linear—when you access a multidi-
mensional array you are really accessing a one-dimensional array in memory. If
you can access the memory in the order it is stored, the access will be most effi-
cient. Normally, this wouldn’t matter if everything fit in memory, as computer
memory is quick to hop around. However, when using large data structures, linear
access performs best and avoids unnecessary swapping. In addition, you can sim-
ulate multidimensional arrays by packing them into a one-dimensional array.
This is done frequently with images. The two manners of packing the one-
dimensional array are row-major order, where the array is filled one row at a time;
and column-major order, where columns are placed into the array. Figure 2-5
shows the difference between the two.

Arrays

17

bowling[0][0] bowling[0][1] bowling[0][2]

bowling[1][0] bowling[1][1] bowling[1][2]

bowling[2][0]

bowling[0][0]

bowling[2][1] bowling[2][2]

bowling[0][1]bowling[0][2]bowling[1][0]bowling[1][1]bowling[1][2]bowling[2][0]bowling[2][1]bowling[2][2]

bowling[0][0]bowling[1][0]bowling[2][0]bowling[0][1]bowling[1][1]bowling[2][1]bowling[0][2]bowling[1][2]bowling[2][2]

Two-dimentional

row major

column major

Figure 2-5. Row-major versus column-major order.

Initializing Arrays

When an array is first created, the runtime-environment will make sure that the
array contents are automatically initialized to some known (as opposed to unde-
fined) value. As with uninitialized instance and class variables, array contents are
initialized to either the numerical equivalent of zero, the character equivalent of
\u0000, the boolean false, or null for object arrays, as shown in Table 2-1.

NOTE In many of the image processing routines, such as setPixels() of
the ImageFilter class, you’ll find two-dimensional image arrays flattened
into row-major order, where Pixel (m, n) translates into a one-dimensional
position, n * scansize + m. This reads top-down, left-to-right through the
image data.

Zukow_02 4/2/01 10:10 AM Page 17

Table 2-1. Array Initial Values

DEFAULT VALUE ARRAY

0 byte

short

int

long

0.0 float

double

\u0000 char

false boolean

null Object

When you declare an array you can specify the initial values of the elements.
This is done by providing a comma-delimited list between braces [{ }] after an
equal sign at the declaration point.

For instance, the following will create a three-element array of names:

String names[] = {"Leonardo", "da", "Vinci"};

Notice that when you provide an array initializer, you do not have to specify
the length. The array length is set automatically based upon the number of ele-
ments in the comma-delimited list.

For multidimensional arrays, you would just use an extra set of parenthesis
for each added dimension. For instance, the following creates a 6 � 2 array of
years and events. Because the array is declared as an array of Object elements,
it is necessary to use the Integer wrapper class to store each int primitive value
inside. All elements within an array must be of the array’s declared type, or a sub-
class of that type, in this case, Object, even though all of the elements are sub-
classes.

Chapter 2

18

NOTE The Java language syntax permits a trailing comma after the last
element in an array initializer block, as in {“Leonardo”, “da”, “Vinci”,}. This
does not change the length of the array to four, but keeps it at three. This
flexibility is primarily for the benefit of code generators.

Zukow_02 4/2/01 10:10 AM Page 18

Object events[][] = {

{new Integer(1452), new Birth("Italy")},

{new Integer(1472), new Painting("baptismOfChrist.jpg")},

{new Integer(1483), new Theory("Helicopter")},

{new Integer(1495), new Theory("Parachute")},

{new Integer(1503), new Painting("monaLisa.jpg")},

{new Integer(1519), new Death("France")}

};

Arrays

19

Starting with the second dot-point Java release (Java 1.1), the concept of
anonymous arrays was introduced. While it was easy to initialize an array when
it was declared, you couldn’t reinitialize the array later with a comma-delimited
list unless you declared another variable to store the new array in. This is where
anonymous arrays step in. With an anonymous array, you can reinitialize an
array to a new set of values, or pass unnamed arrays into methods when you don’t
want to define a local variable to store said array.

Anonymous arrays are declared similarly to regular arrays. However, instead
of specifying a length within the square brackets, you place a comma-delimited
list of values within braces after the brackets, as shown here:

new type[] {comma-delimited-list}

To demonstrate, the following line shows how to call a method and pass to it
an anonymous array of String objects:

method(new String[] {"Leonardo", "da", "Vinci"});

You’ll find anonymous arrays used frequently by code generators.

Passing Array Arguments and Return Values

When an array is passed as an argument to a method, a reference to the array is
passed. This permits you to modify the contents of the array and have the calling
routine see the changes to the array when the method returns. In addition,
because a reference is passed around, you can also return arrays created within
methods and not worry about the garbage collector releasing the array’s memory
when the method is done.

NOTE In the event the type of the array is an interface, all elements in the
array must implement the interface.

Zukow_02 4/2/01 10:10 AM Page 19

Copying and Cloning Arrays

You can do many things when working with arrays. If you’ve outgrown the initial
size of the array, you need to create a new larger one and copy the original ele-
ments into the same location of the larger array. If, however, you don’t need to
make the array larger, but instead you want to modify the array’s elements while
keeping the original array intact, you must create a copy or clone of the array.

The arraycopy() method of the System class allows you to copy elements from
one array to another. When making this copy, the destination array can be larger;
but if the destination is smaller, an ArrayIndexOutOfBoundsException will be
thrown at runtime. The arraycopy() method takes five arguments (two for each
array and starting position, and one for the number of elements to copy):
public static void arraycopy (Object sourceArray, int sourceOffset, Object
destinationArray, int destinationOffset, int numberOfElementsToCopy).
Besides type compatibility, the only requirement here is that the destination
array’s memory is already allocated.

Chapter 2

20

To demonstrate, Listing 2-2 takes an integer array and creates a new array
that is twice as large. The doubleArray() method in the following example does
this for us:

Listing 2-2. Doubling the size of an array.
public class DoubleArray {

public static void main (String args[]) {

int array1[] = {1, 2, 3, 4, 5};

int array2[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

System.out.println("Original size: " + array1.length);

System.out.println("New size: " + doubleArray(array1).length);

System.out.println("Original size: " + array2.length);

System.out.println("New size: " + doubleArray(array2).length);

}

static int[] doubleArray(int original[]) {

int length = original.length;

int newArray[] = new int[length*2];

WARNING When copying elements between different arrays, if the source or
destination arguments are not arrays or their types are not compatible, an
ArrayStoreException will be thrown. Incompatible arrays would be where
one is an array of primitives and the other is an array of objects; or the
primitive types are different; or the object types are not assignable.

Zukow_02 4/2/01 10:10 AM Page 20

System.arraycopy(original, 0, newArray, 0, length);

return newArray;

}

}

After getting the length of the original array, a new array of the right size is
created before the old elements are copied into their original positions in the new
array. After you learn about array reflection in a later section, you can generalize
the method to double the size of an array of any type.

When executed, the program generates the following output:

Original size: 5

New size: 10

Original size: 9

New size: 18

Arrays

21

Since arrays implement the Cloneable interface, besides copying regions of
arrays, you can also clone them. Cloning involves creating a new array of the same
size and type and copying all the old elements into the new array. This is unlike
copying, which requires you to create and size the destination array yourself. In
the case of primitive elements, the new array has copies of the old elements, so
changes to the elements of one are not reflected in the copy. However, in the case
of object references, only the reference is copied. Thus, both copies of the array
would point to the same object. Changes to that object would be reflected in both
arrays. This is called a shallow copy or shallow clone.

To demonstrate, the following method takes one integer array and returns a
copy of said array.

static int[] cloneArray(int original[]) {

return (int[])original.clone();

}

Array cloning overrides the protected Object method that would normally
throw a CloneNotSupportedException with a public one that actually works.

NOTE When copying arrays with arraycopy(), the source and destination
arrays can be the same if you want to copy a subset of the array to another
area within that array. This works even if there is some overlap.

Zukow_02 4/2/01 10:10 AM Page 21

Array Immutability

It is useful to return an array clone from a method if you don’t want the caller of
your method to modify the underlying array structure. While you can declare
arrays to be final, as in the following example:

final static int array[] = {1, 2, 3, 4, 5};

declaring an object reference final (specifically, an array reference here) does not
restrict you from modifying the object. It only limits you from changing what the
final variable refers to. While the following line results in a compilation error:

array = new int[] {6, 7, 8, 9};

changing an individual element is perfectly legal:

array[3] = 6;

Chapter 2

22

Array Assignments

Array assignments work like variable assignments. If variable x is a reference to an
array of y, then x can be a reference to z if a variable of type z can be assigned to y.
For instance, imagine that y is the AWT Component class and z is the AWT Button
class. Because a Button variable can be assigned to a Component variable, a Button
array can be assigned to a Component array:

Button buttons[] = {

new Button ("One"),

new Button("Two"),

new Button("Three")};

Component components[] = buttons;

When an assignment like this is made, both variables’ buttons and compo-
nents refer to the same heap space in memory, as shown by Figure 2-6. Changing
an array element for one array changes the element for both.

TIP Another way to “return” an immutable array from a method is to
return an Enumeration or Iterator into the array, rather than returning
the actual array. Either interface provides access to the individual elements
without exposing the whole array to changes or requiring you to make a
copy of the entire array. You’ll learn more about these interfaces in later
chapters.

Zukow_02 4/2/01 10:10 AM Page 22

If, after assigning an array variable to a superclass array variable (as in the
prior example of assigning the button array to a component array variable)
you then try to place a different subclass instance into the array,
an ArrayStoreException is thrown. To continue the prior example, an
ArrayStoreException would be thrown if you tried to place a Canvas into the
components array. Even though the components array is declared as an array
of Component objects, because the components array specifically refers to an
array of Button objects, Canvas objects cannot be stored in the array. This is a run-
time exception as the actual assignment is legal from the perspective of a type-
safe compiler.

Checking for Array Equality

Checking for equality between two arrays can be done in one of two manners
depending upon the type of equality you are looking for. Are the array variables
pointing to the same place in memory and thus pointing to the same array? Or
are the elements of two arrays comparatively equivalent?

Checking for two references to the same memory space is done with the
double equal sign operator ==. For example, the prior components and buttons
variables would be equal in this case since one is a reference to the other:

components == buttons // true

However, if you compare an array to a cloned version of that array then these
would not be equal as far as == goes. Since these arrays have the same elements
but exist in different memory space, they are different. In order to have a clone of
an array be “equal” to the original, you must use the equals() method of the
java.util.Arrays class.

Arrays

23

Heap
Button w/
label “One”

Button w/
label “Three”

Button w/
label “Two”

Stack

buttons

components

Figure 2-6. Shared memory after an array assignment.

Zukow_02 4/2/01 10:10 AM Page 23

String[] clone = (String[]) strarray.clone();

boolean b1 = Arrays.equals(strarray, clone); // Yes, they're equal

This will check for equality with each element. In the case where the argu-
ments are arrays of objects, the equals() method of each object will be used to
check for equality. Arrays.equals() works for arrays that are not clones, too. For
more information on the Arrays class, see Chapter 13.

Array Reflection

If for some reason you are ever unsure whether an argument or object is an
array, you can retrieve the object’s Class object and ask it. The isArray() method
of the Class class will tell you. Once you know you have an array, you can ask the
getComponentType() method of Class what type of array you actually have.
The getComponentType() method returns null if the isArray() method returns
false. Otherwise, the Class type of the element is returned. You can recursively
call isArray() if the array is multidimensional. It will still have only one compo-
nent type. In addition, you can use the getLength() method of the Array class
found in the java.lang.reflect package to discover the length of the array.

To demonstrate, Listing 2-3 shows that the argument to the main() method is
an array of java.lang.String objects where the length is the number of command-
line arguments specified:

Listing 2-3. Using reflection to check array type and length.
public class ArrayReflection {

public static void main (String args[]) {

printType(args);

}

private static void printType (Object object) {

Class type = object.getClass();

if (type.isArray()) {

Class elementType = type.getComponentType();

System.out.println("Array of: " + elementType);

System.out.println(" Length: " + Array.getLength(object));

}

}

}

Chapter 2

24

NOTE If printType() was to be called with the previously defined buttons
and components variables, each would state that the array is of the
java.awt.Button type.

Zukow_02 4/2/01 10:10 AM Page 24

If you don’t use the isArray() and getComponentType() methods and you try
to print the Class type for an array, you’ll get a string that includes a [followed by
a letter and the class name (or no class name if a primitive). For instance, if you
tried to print out the type variable in the printType() method above, you would
get class [Ljava.lang.String; as the output.

In addition to asking an object if it is an array and what type of array it is, you
can also create arrays at runtime with the java.lang.reflect.Array class. This
might be helpful to create generic utility routines that perform array tasks such as
size doubling. (We’ll return to that shortly.)

To create a new array, use the newInstance() method of Array, which comes
in two varieties. For single dimension arrays you would normally use the simpler
version, which acts like the statement new type[length] and returns the array as
an object: public static Object newInstance(Class type, int length). For
instance, the following creates an array with room for five integers:

int array[] = (int[])Array.newInstance(int.class, 5);

Arrays

25

The second variety of the newInstance() method requires the dimensions to
be specified as an array of integers: public static Object newInstance(Class
type, int dimensions[]). In the simplest case of creating a single dimension
array, you would create an array with only one element. In other words, if you
were to create the same array of five integers, instead of passing the integer value
of 5, you would need to create an array of the single element 5 to pass along to the
newInstance() method:

int dimensions[] = {5};

int array[] = (int[])Array.newInstance(int.class, dimensions);

As long as you only need to create rectangular arrays, you can fill up the
dimensions array with each array length. For example, the following is the equiva-
lent of creating a 3 � 4 array of integers:

int dimensions[] = {3, 4};

int array[][] = (int[][])Array.newInstance(int.class, dimensions);

If, however, you need to create a non-rectangular array, you would need to
call the newInstance() method several times. The first call would define the length

NOTE To specify the Class object for a primitive, just add .class to the end
of the primitive type name. You can also use the TYPE variable of the wrap-
per classes, like Integer.TYPE.

Zukow_02 4/2/01 10:10 AM Page 25

of the outer array and would have what looks like a funny-looking class argument
(float[].class for an array of floats). Each subsequent call would define the
length of each inner array. For instance, the following demonstrates how to create
an array of floats where the inner arrays are sized like a set of bowling pins: the
first row with one element, the second with two, the third with three, and the
fourth with four. To help you visualize this, recall the triangular array shown
earlier in Figure 2-4.

float bowling[][] = (float[][])Array.newInstance(float[].class, 4);

for (int i=0; i<4; i++) {

bowling[i] = (float[])Array.newInstance(float.class, i+1);

}

Once you’ve created your arrays at runtime, you can also get and set the ele-
ments of the array. This isn’t normally done unless your square bracket keys on
your keyboard aren’t working or you’re working in a dynamic programming envi-
ronment where the array names were unknown when the program was created.
As shown in Table 2-2, the Array class has a series of getter and setter methods for
getting and setting the array elements. Which method you use depends upon the
type of array you’re working with.

Table 2-2. Array Getter and Setter Methods

GETTER METHODS SETTER METHODS

get(Object array, int index) set(Object array, int index, Object value)

getBoolean(Object array, int index) setBoolean(Object array, int index, boolean value)

getByte(Object array, int index) setByte(Object array, int index, byte value)

getChar(Object array, int index) setChar(Object array, int index, char value)

getDouble(Object array, int index) setDouble(Object array, int index, double value)

getFloat(Object array, int index) setFloat(Object array, int index, float value)

getInt(Object array, int index) setInt(Object array, int index, int value)

getLong(Object array, int index) setLong(Object array, int index, long value)

getShort(Object array, int index) setShort(Object array, int index, short value)

Chapter 2

26

NOTE You can always use the get() and set() methods. If the array is one
of primitives, the return value of the get() method or the value argument
to the set() method would be wrapped into the wrapper class for the
primitive type, as in an Integer with an int array.

Zukow_02 4/2/01 10:10 AM Page 26

Listing 2-4 provides a complete example of how to create, fill up, and display
information about an array. Square brackets are used only in the main() method
declaration.

Listing 2-4. Using reflection to create, fill, and display an array.
import java.lang.reflect.Array;

import java.util.Random;

public class ArrayCreate {

public static void main (String args[]) {

Object array = Array.newInstance(int.class, 3);

printType(array);

fillArray(array);

displayArray(array);

}

private static void printType (Object object) {

Class type = object.getClass();

if (type.isArray()) {

Class elementType = type.getComponentType();

System.out.println("Array of: " + elementType);

System.out.println("Array size: " + Array.getLength(object));

}

}

private static void fillArray(Object array) {

int length = Array.getLength(array);

Random generator = new Random(System.currentTimeMillis());

for (int i=0; i<length; i++) {

int random = generator.nextInt();

Array.setInt(array, i, random);

}

}

private static void displayArray(Object array) {

int length = Array.getLength(array);

for (int i=0; i<length; i++) {

int value = Array.getInt(array, i);

System.out.println("Position: " + i + ", value: " + value);

}

}

}

Arrays

27

Zukow_02 4/2/01 10:10 AM Page 27

When run, the output will look like the following (although the random num-
bers will differ):

Array of: int

Array size: 3

Position: 0, value: -54541791

Position: 1, value: -972349058

Position: 2, value: 1224789416

Let’s return to our earlier example of creating a method that doubles the size
of an array. Now that you know how to get an array’s type, you can create a
method that will double the size of any type of array. This method ensures that we
have an array before getting its length and type. It then doubles the size of a new
instance before copying over the original set of elements.

static Object doubleArray(Object original) {

Object returnValue = null;

Class type = original.getClass();

if (type.isArray()) {

int length = Array.getLength(original);

Class elementType = type.getComponentType();

returnValue = Array.newInstance(elementType, length*2);

System.arraycopy(original, 0, returnValue, 0, length);

}

return returnValue;

}

Character Arrays

One last thing to mention before we wrap up our look at Java arrays: unlike C and
C++, character arrays in Java are not strings. While you can easily go back and
forth between a String and a char[]with the String constructor (which takes an
array of char objects) and the toCharArray() method of String, they are definitely
different.

Byte arrays are another case though. While they too are not strings, trying to
go back and forth between a byte[] and a String involves a bit of work, since
strings in Java are Unicode-based and 16 bits wide. You need to tell the String
constructor what the encoding scheme is. Table 2-3 shows the primary available
encoding schemes with the 1.3 platform. For a list of the extended set, see the
online list at http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html.
These vary by JDK version.

Chapter 2

28

Zukow_02 4/2/01 10:10 AM Page 28

Table 2-3. Primary Byte-to-Character Encoding Schemes

NAME DESCRIPTION

ASCII American Standard Code for Information Interchange

Cp1252 Windows Latin-1

ISO8859_1 ISO 8859-1, Latin alphabet No. 1

UnicodeBig Sixteen-bit Unicode Transformation Format, big-endian

byte order, with byte-order mark

UnicodeBigUnmarked Sixteen-bit Unicode Transformation Format, big-endian

byte order

UnicodeLittle Sixteen-bit Unicode Transformation Format, little-endian

byte order, with byte-order mark

UnicodeLittleUnmarked Sixteen-bit Unicode Transformation Format, little-endian

byte order

UTF16 Sixteen-bit Unicode Transformation Format, byte order

specified by a mandatory initial byte-order mark

UTF8 Eight-bit Unicode Transformation Format

If you do specify an encoding, you must place the call to the String construc-
tor within a try-catch block because an UnsupportedEncodingException can be
thrown if the specified encoding scheme is invalid.

If you are working only with ASCII characters, you really don’t have to worry
much here. Passing a byte[] to the String constructor without any encoding
scheme argument uses the platform’s default encoding, which is sufficient. Of
course, to be safe, you can always just pass “ASCII” as the scheme.

Arrays

29

Summary

Arrays in Java seem easy to work with, but there are many things to be aware of to
fully utilize their capabilities. While basic array declaration and usage can be con-
sidered simple, there are different things to be concerned about when working
with arrays of primitives and objects, as well as multidimensional arrays. Array
initialization doesn’t have to be complicated, but throw in anonymous arrays and
things get more involved.

Once you have an array, it takes a little thought to figure out how best to work
with it. You need to take special care when passing arrays to methods as they are

NOTE To check the default on your platform, look at the “file.encoding”
system property.

Zukow_02 4/2/01 10:10 AM Page 29

passed by reference. If you outgrow the original array size, you’ll need to make a
copy with additional space. Array cloning lets you pass around a copy without
worrying about the idiosyncrasies of the final keyword. When assigning arrays to
other variables, be careful not to run across an ArrayStoreException as it can be
ugly to deal with at runtime. Equality checking of arrays can involve either check-
ing for the same memory area or checking for equivalently valued elements.
Through the magic of Java reflection, you can manipulate objects that happen to
be arrays. The last thing you learned in this chapter was how to convert between
byte arrays and strings, and how byte arrays are not strings by default as they are
in other languages.

In the next chapter, we’ll explore the many facets of working with vectors in
Java. We’ll learn about the inner workings of vectors and how best to deal with
concerns like type safety.

Chapter 2

30

Zukow_02 4/2/01 10:10 AM Page 30

