
363

CHAPTER 5

JSP Tag Libraries

THE TERM TAG IS CENTRAL to markup languages such as HTML and XML. A markup
document grants meaning to text by surrounding or preceding it with a set of
characters collectively called a tag. In HTML and XML documents, tags have the form
<text> where text defines the meaning of the tag. For instance, a HTML first-level
header may be created simply by surrounding the text with header tags: (<h1>This is a
first-level header</h1>). JSP technology provides a standard mechanism whereby a
programmer can create his/her own server-side tags. These JSP tags are evaluated on
the server, and their results are sent back to the client browser.

This chapter describes how to create, use, and structure JSP tag libraries for
the three existing types of JSP tags: standalone, iterative, and body content tags.

Describing Tags

Tags are displayed by a rendering engine on the client, which converts the cryptic
text to a layout presented to the user. All HTML browsers contain a rendering
engine—even the text-only browser Lynx highlights text made “bold” by a HTML
tag pair. One may, therefore, regard the tag as an encapsulation of client-side
rendering information; it is much simpler for the HTML author to include a tag
than a full specification of what the client-side rendering engine should do with
the text.

Pondering the situation a minute, you may quickly realize that the same
principle holds true for encapsulating server-side information. Many server-side
documents contain complex data manipulation instructions; hiding the
complexity behind a simpler construct makes for a simpler overview of the
document. Figure 5-1 illustrates two ways of inserting a string of characters into
a JavaServer Pages (JSP) document; although both versions perform the same
task, the custom tag hides most of the complexity (or, more to the point, the code
mass) shown in the code block. In general, it is simpler to quickly get an overview
of a JSP document containing several custom tags than multiple code blocks.

Of course, there has to be a catch to the beautiful story of the custom JSP tag.
You may rightfully wonder where the information logic invoked by the custom
tag illustrated in Figure 5-1 is placed. If it’s not in the JSP document, then where is it?
The simple answer is that you may create libraries of tag handler classes, which must
be placed in the classpath of the Web application to be usable. Frequently, one copies
such a tag library—in the form of a JAR file—to the WEB-INF/lib directory of the Web

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

364

application. Using custom tags ensures low-impact portability between Web
applications because the full functionality of a set of custom JSP tags resides in
the JAR file. As an alternative, the bytecode files of the tag handler classes may be
placed in the classpath of the Web application.

As a conclusion, there are several good reasons to use custom JSP tags in JSP
documents, instead of raw code blocks:

• Simplicity. Custom JSP tags have better encapsulation and expose only the
most relevant information. Reducing information clutter improves efficiency in
learning and usage.

• Protection. Custom JSP tags hide the code statements; an information
editor altering the text of a JSP document may accidentally modify text
within a block of code—with disastrous effects on the Web application.
Custom tags prevent such accidental modification.

• Portability. Custom JSP tags grant portability because their functionality
(normally placed within an archive) may be moved between Web
applications and/or Web application servers in a simple manner.

• Familiarity. Custom tags are well-known building blocks to information
architects and HTML hackers—Java code is generally not. Presenting
another building block that looks similar to a normal tag is likely not to
summon a storm of protests; adding “strange code” in JSP documents may.

Figure 5-1. Compare the two ways to specify printing a set of characters to
the browser. If both ways accomplished the same thing, which notation
would be simplest?

��������	

��
�
���

��������
�������
���
����

����
��

Describing Tags

365

...

What Is a Custom Action?

You may have heard the phrase custom action, which is another name for a JSP
custom tag. Because custom JSP tags look similar to a standard JSP action, it is

...

plain to see how the nickname arose.

Having seen an example of a custom tag in Figure 5-1, let us now investigate
how to describe custom JSP tags in general.

There are two custom JSP tag types: empty actions, which are standalone and
contain no bodies, and non-empty actions, which are containers that have a
body (see Figure 5-2). Of course, the body of a non-empty tag may be completely
empty—but it must exist for a non-empty tag. To facilitate things, the terminology
used within this book is the same as used within the Tag Library API (in other
words, package javax.servlet.jsp.tagext).

Now investigate how to create powerful, platform-independent, and reusable
custom JSP actions. In fact, creating a tag library is one of the better uses of
encapsulation to guide developers in creating reusable JSP custom tags. In turn,
custom tags reduce the amount of errors generated by JSP developers in server-
side documents.

Figure 5-2. The definitions pertaining to the structure of empty (standalone) and
non-empty (container) JSP tags. The definitions in this image (that follows the JSP
1.2 specification terms) will be used throughout this chapter.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

366

The JSP tag library system has four parts:

• The tag handler class implements the life-cycle methods required for all tag
handlers by the JSP specification. The methods of the tag handler perform
whatever custom behavior the developer has created. The tag handler class
must be deployed into the classpath of the Web application which uses it;
normally the tag handler classes are deployed into the WEB-INF/classes
directory or packaged into a JAR file in the WEB-INF/lib directory.

• The tag library descriptor (TLD) document contains XML definitions
mapping tag handler classes to logical tag names. Such logical names are the
equivalent of an internal servlet name in the web.xml configuration
document and must be unique within each TLD. The TLD document may
have any name but is frequently called taglib.tld. In the JSP 1.1 specification,
the TLD file must be placed in the META-INF directory and named taglib.tld,
but the JSP 1.2 specification permits arbitrary placement and name.

• The web.xml configuration document may define several taglib constructs.
Each taglib construct maps a TLD document to a logical Uniform Resource
Identifier (URI) that must be unique within the Web application.

• The JSP document may contain one or more JSP TLD directives that map a
URI defined in the web.xml to a unique prefix string for use within the
document. This mapping is generally convenient because URIs may be
rather long and awkward to type repeatedly within the JSP document; a
prefix may be shorter and, consequently, more convenient.

...

XML in the J2EE World

Configuration settings used by Java 2 Enterprise Edition (J2EE) components and
servers are frequently XML-formatted documents. XML documents, like HTML,
are markup documents containing a set of tags that are defined in a document
type definition (DTD). The DTD document is used as a template that defines an
XML data tree, such as which tags are permitted within other tags. Although most
of the XML examples within this book are explained in detail, you may want to

...

visit http://www.xml.org for more information on XML.

Figure 5-3 shows a skeleton content version of the four files mentioned in the
preceding bulleted list. A JSP document containing a particular <%@ taglib … %>
directive uses the uri attribute of the taglib directive to locate the archive
containing the TLD file. Unless the uri is a hyperlink to an actual TLD document,

��������	

��
�
���

��������
�������
���
����

����
��

Describing Tags

367

the hyperlink contains a logical name for the TLD file. The web.xml configuration
document is consulted to find the physical location of the TLD file requested.
Using the definitions in the TLD file, a tag handler class is located. Moreover, the
taglib directive defines a prefix (“apress” in the image) used in the JSP file to
identify all tags from a particular TLD—when that prefix is encountered in a
custom tag in a JSP document, the JSP engine knows which TLD to query for a
tag definition. The class is resolved and instantiated to enable a method call to
its life-cycle method.

Figure 5-3. The tag handler class, TLD, web.xml document, and JSP document work
together. The JSP engine creates an instance of the correct tag handler class and
invokes a set of methods within it whenever a particular tag is found within the
JSP document. This figure shows the conversion between the name and prefix of
the custom JSP tag and the tag handler class.

��������	

��
�
��

��������
�������
���
����

����
��

Chapter 5

368

The taglib directive may use four different URI attribute types to locate the
TLD file. Those attributes may contain the following items:

• URL to a Web server from which the TLD file may be downloaded. An
example of such a taglib URI is
<%@ taglib uri="http://www.apress.com/servletbook/tlds/examples.tld"

prefix=”dummy” %>.

• An absolute local Web application path, which originates from the root of
the local Web application. Such URI attributes must start with a forward
slash (/); an example is
<%@ taglib uri="/some/path/theExamples.tld" prefix="examples" %>.

• Relative local Web application path, which originates from the directory
where the JSP document resides. Such URI attributes may neither start with
a forward slash nor a http:// prefix. An example of a relative address taglib
directive is <%@ taglib uri="aDir/theExamples.tld" prefix="moreExamples” %>.

• Arbitrary string, provided that the string is defined as a <taglib-uri>
in the web.xml configuration file. Note that the uri attribute in the
taglib directive must match the web.xml definition exactly, as in
<%@ taglib uri="accountingTags" prefix="accTags" %>, providing
that the web.xml file contains a taglib entry with the taglib-uri entry
being <taglib-uri>accounting Tags</taglib-uri>.

The first of these options, loading the TLD document directly from a URL address
somewhere on the Web, is considerably slower and more unpredictable than the other
three options that loads the TLD from a file in the local file system. For industrial-
strength systems, therefore, the second and fourth are used more frequently.

The JSP definition is quite liberal regarding the deployment placement of
most documents described previously. Apart from the web.xml document that
must be placed in the WEB-INF directory, all other documents may be placed
arbitrarily. As the tag handler classes must reside in the CLASSPATH to be loaded by
the Java Virtual Machine (JVM) running the servlet engine, they are frequently
found in WEB-INF/classes or packaged in a JAR file in WEB-INF/lib.

You can see an example of a simple JAR file structure containing a full tag
library in Figure 5-4. The FirstTag.class is a compiled tag handler class, which is
invoked whenever a particular tag is found within the JSP document. Although it
may be good practice to place TLD files in the META-INF directory, the JSP specification
permits placing the TLD file in an arbitrary directory.

��������	

��
�
���

��������
�������
���
����

����
��

The Life Cycle of a Tag Handler Class

369

When developing an industrial-strength library of custom tag handler classes,
you should strive for providing a tag handler class name that would let the
developer realize what function the tag performs. In the example shown in
Figure 5-4, however, the main concern is to grant understanding for the
deployment of all files being part of the custom JSP tag system, so we have
relaxed the demand for usability in this example.

The Life Cycle of a Tag Handler Class

JSP tag handler classes behave much like servlets; they have a strict life cycle where
methods are called in a specific order. The life cycle of JSP tag handlers is more difficult
to grasp because the methods are found in four different interfaces/classes:

• The Tag interface defines life-cycle methods common to all tag handler
classes. These life cycle methods define methods doStartTag and doEndTag
that are called by the JSP engine to start and stop the evaluation of a tag.
Also, the Tag interface defines JavaBean accessor methods to get and set
pageContext and parent variables. The Tag interface should be implemented
for empty tags.

• The IterationTag interface extends the Tag interface and provides an extra
method (doAfterBody), which may be called repeatedly by the JSP engine
when iterating over the body of the IteratorTag. Use the IterationTag to
create a JSP custom tag that requires body iteration. IterationTags are
frequently used when generating HTML or XML lists that should be output
to the client.

• The BodyTag interface extends the Tag interface and provides additional
methods for non-empty tags only. The JSP tag handler class should
implement the BodyTag interface if you want to manipulate the body
content of the JSP tag.

Figure 5-4. The content of a JAR file containing a tag library definition (taglib.tld)
and the tag handler class (FirstTag.class). In addition to the two files previously,
the normal MANIFEST.MF file of a JAR is present. This structure is compliant with the
JSP 1.1 deployment requirement because the TLD file is named taglib.tld and
placed in the META-INF directory.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

370

• The tag handler implementation class provides implementations for the
standard Tag life-cycle methods in addition to standard methods for setting
(and getting) JavaBean properties. Such properties are automatically set by
the JSP engine if the TLD file defines attributes for a tag. You’ll learn more
about tag attributes in sections “The Ideal Life Cycle for an Empty Tag with
Attributes,” “The Ideal Life Cycle for an IterationTag with Attributes,” and
“Tag Definitions.”

The life cycle of a tag differs slightly depending on its type; empty tags
without any attributes have a simpler life cycle than non-empty container tags
with many attributes. Let’s take a look at each type in turn to investigate the
effect on tag life cycle that different constructs have.

Tag Interface

Figure 5-5 shows the life cycle of a handler class implementing the
javax.servlet.jsp.tagext.Tag interface. During initialization, the tag
handler class is created and configured, where all its JavaBean setter methods are
called with the values provided in the TLD configuration document (taglib.tld,
for instance). JavaBean setter methods are represented with the message
“setXXX()”. During runtime, the doStartTag and doEndTag methods are called and
the actual processing of the tag is done. The four states of a tag handler class are:

• Created. This is the state entered after the default (parameterless)
constructor is invoked. All internal variables in the tag handler instance
just created have their default values, as set programmatically in the
constructor. The created state is transient, in the sense that the tag handlers
need additional setup methods called to be properly configured.

• Configured. Having created the tag handler instance, the JSP engine must
configure it according to the directions found in the TLD configuration file.
Configuration is performed by calling the default setter methods of a JSP
engine, as well as any setter methods for JavaBean properties defined for the
tag in the TLD configuration file.

• Executing. In runtime, the JSP engine invokes the doStartTag and doEndTag
methods in the tag handler class. The return value of the doStartTag method
indicates whether the body text (if existent) should be included in the JSP
output. The doStartTag method is called before and the doEndTag after
including the body text in the output, if applicable.

��������	

��
�
� �

��������
�������
���
����

����
��

The Life Cycle of a Tag Handler Class

371

• Undefined. Having being released to an instance pool, the tag handler
instance is set in an undefined state and cannot be used before again being
properly configured by calls to setParent, setPageContext, and the declared
JavaBean property setter methods. The JSP engine guarantees that the
release method will be called in a tag handler before garbage collection sets in.

The Ideal Life Cycle for an Empty Tag without Attributes

State diagrams are wonderful for visualizing all possible scenarios for a particular
instance. However, the simplicity of code may occasionally be lost in the wonderful
box-and-line landscape of the Unified Modeling Language (UML). The ideal life
cycle of a tag handler for a standalone tag without attributes is rather simple (see
Figure 5-6).

The two first method calls provide the tag handler instance with references
to the PageContext of the JSP document and the handler instance of a tag
container being the parent of theTagHandler. A tag handler class is a parent of
another if its JSP tag contains the second tag. In the following example, calling

Figure 5-5. The life cycle for empty tags, where the tag handler class implements the
javax.servlet.jsp.tagext.Tag interface

��������	

��
�
� �

��������
�������
���
����

����
��

Chapter 5

372

getParent in the handler instance for theChildTag would return a reference to the
handler instance for theParentTag:

<x:theParentTag>

 <!-- This is the body of theParentTag -->

 <x:theChildTag />

</x:theParentTag>

Methods 3 and 4, doStartTag and doEndTag from in Figure 5-6 are called when the
JSP engine encounters the tag start and end respectively. For empty tags, there is no
real difference between the two—but for non-empty tags the difference is obvious.

When done processing, the JSP engine calls the release method. This method has
the same purpose as the finalize method of java.lang.Object in that it provides a
standard place where the developer may free all objects held during the tag
evaluation. Also, in the release method, the internal state of the tag handler
instance is released, as shown in Figure 5-6.

The Ideal Life Cycle for an Empty Tag with Attributes

The typical life cycle of a tag handler for an empty tag accepting attributes differs
slightly from the life cycle of an empty tag lacking attributes. In the case illustrated
in Figure 5-7, the tag descriptor for the tag handler attributeTag has declared that

Figure 5-6. The life cycle of a standalone tag without any attributes, drawn as a
UML collaboration diagram

��������	

��
�
� �

��������
�������
���
����

����
��

The Life Cycle of a Tag Handler Class

373

the tag has an attribute (in other words, a JavaBean property) called output. The
state chart diagram in Figure 5-7 is identical for empty tags with and without
attributes.

Thus, between the setParent and the doTagStartTag methods, the JSP engine
calls all JavaBean setter methods (in our case, setOutput) to initialize the state of
the handler. Should any other JavaBean properties be declared in the tag library
descriptor, the corresponding setter methods are invoked accordingly. Such
setter methods are only invoked if an attribute is actually supplied within the JSP
document, for example:

<!-- Setter method invoked. -->

<x:someTagName output="Some output" />

<!-- Setter method not invoked. -->

<x:someTagName />

From Figure 5-7 and the preceding listing, it is assumed that the tag
<x:someTagName /> name will invoke the life-cycle method calls on an instance
of the AttributeTag class. However, the TLD linking the two for usage in the

Figure 5-7. The life cycle of a standalone tag accepting one attribute (in other
words, JavaBean property), drawn as a UML collaboration diagram. Note that the
only difference between the two life cycles described in Figures 5-6 and 5-7 is the
call to the setOutput method, corresponding to setting a JavaBean property.

��������	

��
�
� �

��������
�������
���
����

����
��

Chapter 5

374

previous code snippet is not provided here; the syntax of the TLD file will be
discussed in “Tag Library Descriptors,” later in this chapter.

Having dealt with tag handlers implementing the Tag interface that may or
may not have registered attributes, proceed to study the life cycle for tag handlers that
implement the IterationTag interface.

IterationTag Interface

The life cycle of a handler class implementing the
javax.servlet.jsp.tagext.IterationTag interface is similar to the life cycle for tag
handlers implementing the Tag interface. As shown in Figure 5-8, the initialization
states of the Tag implementation class depend on the exact type of tag. The five states
of an IterationHandler class are as follows:

• Created. This is the state entered after the default (parameterless) constructor
is invoked. All internal variables in the tag handler instance just created
have their default values, as set programmatically in the constructor. The
created state is transient, in the sense that the tag handlers need additional
setup methods called to be properly configured.

• Configured. Having created the tag handler instance, the JSP engine must
configure it according to the directions found in the TLD configuration file.
Configuration is performed by calling the default setter methods of a JSP
engine, as well as any setter methods for JavaBean properties defined for the
tag in the TLD configuration file.

• Executing. In runtime, the JSP engine invokes the doStartTag and doEndTag
methods in the tag handler class. The return value of the doStartTag method
indicates whether the body text (if existent) should be included in the JSP
output. The doStartTag method is called before and the doEndTag after
including the body text in the output, if applicable.

• Undefined. Having being released to an instance pool, the tag handler
instance is set in an undefined state and cannot be used before again being
properly configured by calls to setParent, setPageContext, and the declared
JavaBean property setter methods. The JSP engine guarantees that the
release method will be called in a tag handler before garbage collection sets in.

• Evaluating body. If the doStartTag method invoked in the configured state
returned Tag.EVAL_BODY_INCLUDE, the body of the non-empty tag is evaluated.
Having evaluated the body, the doAfterBody method is called—and the
IterationTag will keep evaluating the body as long as the doAfterBody returns
IteratorTag.EVAL_BODY_AGAIN. When done iterating, the doAfterBody method
should return Tag.SKIP_BODY.

��������	

��
�
� �

��������
�������
���
����

����
��

IterationTag Interface

375

Figure 5-8. The five states of the IterationTag handler class shown with the return
values required to enter a given state. As shown, the evaluating body state will be
preserved as long as the doAfterBody method returns
IterationTag.EVAL_BODY_AGAIN. The main purpose of IterationTags is to simplify
generating lists of output in the JSP view.

��������	

��
�
� �

��������
�������
���
����

����
��

Chapter 5

376

The Ideal Life Cycle for an IterationTag without Attributes

The ideal life cycle of a tag handler for a non-empty tag (implementing the
IterationTag interface) without attributes is rather simple (see Figure 5-9).

Identical to the case of an empty custom JSP tag whose handler implements
the Tag interface, the two first method calls provide the IterationTag handler
instance with references to the PageContext of the JSP document and its parent.
Methods 3 and 5 (doStartTag and doEndTag from Figure 5-9) are called when the
JSP engine encounters the opening tag of the IterationTag and when the last
iteration is just performed, respectively.

The major difference between tag handler classes that implement the
Tag and IterationTag interfaces is, of course, the call to doAfterBody that is
performed once after every evaluation of the body content. The return value
of the doAfterBody method defines if the IterationTag will continue looping
(IterationTag.EVAL_BODY_AGAIN is returned) or not (Tag.SKIP_BODY is returned).

When done iterating over the body text, the JSP engine calls the release
method in the tag handler class, in an identical manner to the Tag handler.

Figure 5-9. The life cycle of an IterationTag without any declared attributes, drawn
as a UML collaboration diagram. If you compare the ideal lifecycle to the one
drawn for tag handler classes implementing the Tag interface, the doAfterBody
method is added for IterationTags.

��������	

��
�
� �

��������
�������
���
����

����
��

IterationTag Interface

377

The Ideal Life Cycle for an IterationTag with Attributes

As can be expected, the only difference between the ideal life cycles of
IterationTags with and without attributes is that the JSP engine will attempt
to call all setter methods for non-null JavaBean properties (see Figure 5-10).

Identical to the case for a handler class implementing the Tag interface, all
registered attributes for the IterationTag are set before the JSP engine calls the
doTagStartTag method. The setter method, setOutput, is invoked to make the
handler class do a state transition from created to configured, as shown in Figure 5-8.
Of course, the setter methods are only invoked if an attribute is actually supplied
within the JSP document. Assuming that the someIterationTagName is mapped to
the ListTagHandler class shown in Figure 5-10, only the first of the two following
code snippets will cause the JSP engine to call the setMap method:

<!-- Setter method invoked. -->

<x:someIterationTagName map=”<%= aMap %>” />

<!-- Setter method not invoked. -->

<x: someIterationTagName />

Figure 5-10. The life cycle of an IterationTag with one declared attribute (the
JavaBean property map of type Map), drawn as a UML collaboration diagram

��������	

��
�
�

��������
�������
���
����

����
��

Chapter 5

378

The last subinterface to the Tag class is the BodyTag interface, which adds
functionality that provides control over the body content.

BodyTag Interface

The life cycle of a handler class implementing the javax.servlet.jsp.tagext.BodyTag
interface is similar to the life cycle for tag handlers implementing the
IterationTag interface. As shown in Figure 5-11, the initialization states of
the BodyTag handler are as follows:

• Created. This is the state entered after the default (parameterless) constructor
is invoked. All internal variables in the tag handler instance just created
have their default values, as set programmatically in the constructor. The
created state is transient, in the sense that the tag handlers need additional
setup methods called to be properly configured.

• Configured. Having created the tag handler instance, the JSP engine must
configure it according to the directions found in the TLD configuration file.
Configuration is performed by calling the default setter methods of a JSP
engine, as well as any setter methods for JavaBean properties defined for the
tag in the TLD configuration file.

• Executing. In runtime, the JSP engine invokes the doStartTag and doEndTag
methods in the tag handler class. The return value of the doStartTag method
indicates whether or not the body text (if existent) should be included in the
JSP output. The doStartTag method is called before and the doEndTag after
including the body text in the output, if applicable.

• Undefined. Having being released to an instance pool, the tag handler
instance is set in an undefined state and cannot be used before again being
properly configured by calls to setParent, setPageContext, and the declared
JavaBean property setter methods. The JSP engine guarantees that the
release method will be called in a tag handler before garbage collection sets in.

��������	

��
�
� �

��������
�������
���
����

����
��

IterationTag Interface

379

• Setting body content. If the doStartTag method returns
BodyTag.EVAL_BODY_BUFFERED, the tag handler class proceeds to
creating a buffer containing the body content of the tag, encapsulated
in a javax.servlet.jsp.tagext.BodyContent object. The BodyTag handler
class may then modify the buffered contents of the BodyContent and
output the result to the JSP document, replacing the original body text.
The setBodyContent method is not to be overridden by developers.

• Preparing body. The doInitBody method is called after the body content is
set but before evaluation of the tag body has started. Thus, you may modify
the buffered body text as retrieved from the JSP custom tag before starting to
iterate and evaluate in the Evaluating body state.

• Evaluating body. If the doStartTag method invoked in the configured state
returned Tag.EVAL_BODY_INCLUDE, the body of the non-empty tag is evaluated.
Having evaluated the body, the doAfterBody method is called—and the
IterationTag will keep evaluating the body as long as the doAfterBody returns
IteratorTag.EVAL_BODY_AGAIN. When done iterating, the doAfterBody
method should return Tag.SKIP_BODY.

For a non-empty tag, the state diagram and typical life cycle of its handler
class differs from what has been described for IterationTags earlier in this
chapter. Two new methods, setBodyContent and doInitBody are introduced; you
are wise to leave the setBodyContent method as is, and focus on providing your
own implementation for the doInitBody method only. The three methods
setBodyContent, doInitBody, and doAfterBody are defined in the BodyTag interface,
and the respective methods are called in order by the JSP engine.

��������	

��
�
� �

��������
�������
���
����

����
��

Chapter 5

380

Figure 5-11. The seven states of the BodyTag handler class illustrated with the return values
required to enter a given state. The state of the tag handler class is largely controlled by the
return value from the doEndTag of the executing state. The BodyTag handler class may either
skip the body, evaluate identical to an IterationTag, or create a buffer containing the tag
body content usable for further evaluation.

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

381

As shown in Figure 5-12, some methods in the life-cycle pattern return
integers. Take a look at Table 5-1 to see which values are legal to return and what
effect the return value has on further JSP evaluation.

Figure 5-12. The life cycle of a body tag without any attributes, drawn as a UML
collaboration diagram

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

382

Table 5-1. Values Returned from Lifecycle Methods of the BodyTag Interface

METHOD NAME RETURN VALUE EFFECT

doStartTag Tag.EVAL_BODY_INCLUDE The body contents of the container tag

are evaluated into the existing out

stream (in other words, unbuffered).

This value is illegal if the tag handler

class implements BodyTag; such tag

handler classes must instead return

BodyTag.EVAL_BODY_BUFFERED.

BodyTag.EVAL_BODY_BUFFERED A new BodyContent object (which

contains a buffered copy of the original

tag body content) is created and readied

for evaluation. Note that

BodyTag.EVAL_BODY_BUFFERED only is a

legal return value from the doAfterBody

method if the tag handler class

implements BodyTag.

BodyTag.EVAL_BODY_TAG Deprecated in the JSP 1.2 specification;

use BodyTag.EVAL_BODY_BUFFERED

instead.

Tag.SKIP_BODY The body content of the non-empty tag

is skipped and not evaluated. This value

must be returned by empty tags (in

other words, non-container tags).

doAfterBody BodyTag.EVAL_BODY_TAG Deprecated in the JSP 1.2 specification;

use IterationTag.EVAL_BODY_AGAIN

instead.

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

383

Figure 5-13 provides a more detailed activity flow and state chart for custom
tag evaluation.

The activity states from the flow diagram in Figure 5-13 represent activities
performed by the JSP engine. The first activity state “Finding taglib definitions
for tag” is completely handled by the JSP engine. The activities include reading
metadata class definitions, instantiating metadata objects and calling methods
within them to create the proper Java code placed within the servlet.

In the second activity state, “Evaluating body content,” the JSP engine
performs normal variable substitution in the body content of the current
IterationTag or BodyTag. When done substituting within the current iteration
over the tag body, the method doAfterBody is called. As indicated in Figure 5-13,
the iteration and substitution continues as long as the doAfterBody method
returns IterationTag.EVAL_BODY_AGAIN. Iteration over the tag body is aborted
when the doAfterBody method returns Tag.SKIP_BODY; the JSP engine then
proceeds to invoke the doEndTag method.

IterationTag.EVAL_BODY_AGAIN Return this value to re-evaluate the

body content of the IterationTag or

BodyTag. For backwards compatibility

with the JSP 1.1 version, the value of (the

deprecated) BodyTag.EVAL_BODY_TAG is

identical to

IterationTag.EVAL_BODY_AGAIN.

Tag.SKIP_BODY Return this value to quit re-evaluation

of the IterationTag or BodyTag and

proceed with the JSP output

generation.

doEndTag Tag.EVAL_PAGE Further contents of the JSP document

are evaluated normally.

Tag.SKIP_PAGE No more JSP document content is

evaluated; effectively returns from the

service method of the generated servlet.

Use this method to skip any output to the

client browser after this tag.

Table 5-1. Values Returned from Lifecycle Methods of the BodyTag Interface (Continued)

METHOD NAME RETURN VALUE EFFECT

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

384

Figure 5-13. UML activity flow and state chart diagram for the life-cycle method of
a tag handler class

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

385

The most common value returned by doEndTag is Tag.EVAL_PAGE, which instructs
the JSP engine to keep parsing and evaluating the rest of the JSP document,
found after the tag just evaluated. If, on the other hand, Tag.SKIP_PAGE is returned, the
execution of the JSP document is aborted.

Before plunging into the details and principles of creating customized tag
libraries, start with a small, warm-up example.

The firstTag.jsp Example

The objective of the firstTag.jsp example shown in Figure 5-14 is to create an
empty custom JSP tag without any attributes that prints, “This is the First Tag.” to
the standard JspWriter.

Study the four documents involved in the process:

• firstTag.jsp contains the view and the JSP taglib directive.

• WEB-INF/web.xml contains the mapping between the URI provided in the
firstTag.jsp document and the taglib definition file.

• WEB-INF/taglibs/APressTags contains the tag library definitions.

• WEB-INF/classes/se/jguru/tags/FirstTag.class contains the compiled
bytecode for the tag handler class.

Figure 5-14. The output result of the firstTag.jsp document

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

386

The JSP document is the origin of all tag library activity, and its relevant parts
are shown in Listing 5-1. Note that the taglib directive pinpoints a JAR file, and
identifies the tags defined within using the prefix “apress”.

Listing 5-1. firstTag.jsp

<%--

 Include all tags defined in the Tag Library identified by the

 URI APressServletBookTags. To distinguish them from

 tags defined in other places, we identify them with the name "apress".

--%>

<%@ taglib uri="APressServletBookTags" prefix="apress" %>

<HTML>

...

<tr>

 <td>

<%--

 Output the HTML equivalent of the tag to invoke.

 This is done only for viewing purposes; to identify

 on the client view what is being invoked within

 the JSP document.

--%>

 <apress:FirstTag/>

 </td>

 <td>

<%--

 Invoke the handler class for the tag FirstTag, defined

 In the taglib having the prefix apress.

--%>

 <apress:firstTag />

 </td>

...

The JSP document uses the <apress:firstTag /> tag and provides a URI for
the prefix apress. The next document in the definition chain that leads to the Tag
implementation is the web.xml descriptor document, as shown in Figure 5-3
previously.

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

387

...

Including a TLD Archive

If your custom tag libraries are distributed in a JAR file, you are recommended to
name the TLD file taglib.tld and place it in the directory META-INF within the
JAR. When packaging your custom tag handler classes in a JAR file, you may skip
providing a mapping in the web.xml configuration file.

The JSP file would pinpoint the tag library definition file in the following way:

<%--

 Include all tags defined within the META-INF/taglib.tld file of

 The JAR file /taglibs/APressTags.jar. To distinguish them from

 tags defined in other places, we identify them with the name "apt".

--%>

<%@ taglib uri="/taglibs/APressTags.jar" prefix="apt" %>

...

<%--

 Invoke the handler class for the tag firstTag, defined

 In the taglib having the prefix dummy.

--%>

 <apt:FirstTag />

...

All other properties of the JSP custom tags (such as attributes and validators)

...

apply identically to tags deployed outside of a JAR file.

The web.xml Configuration File

When the JSP file has defined a taglib URI that cannot be found as a file in the Web
application’s file system, the web.xml configuration file is consulted. The web.xml
file may contain several tag library mappings, similar to Listing 5-2, that map a
taglib URI defined in the JSP page to a TLD file.

Listing 5-2. The web.xml deployment descriptor

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

��������	

��
�
��

��������
�������
���
����

����
��

Chapter 5

388

<web-app>

 <taglib>

 <taglib-uri>

 APressServletBookTags

 </taglib-uri>

 <taglib-location>

 /WEB-INF/taglibs/ApressTagLibs.tld

 </taglib-location>

 </taglib>

</web-app>

The URI “APressServletBookTags” in the JSP taglib directive is mapped to the
taglib definition file /WEB-INF/taglibs/ApressTagLibs.tld. That tag library
definition file is consulted to find the tag handler classes used for each found
custom JSP tag.

The Tag Library Definition File

The TLD file contains all mappings between custom JSP tags and tag handler
classes. The TLD may either be referenced directly from the URI attribute of the
<%@ taglib %> directive, or by using a logical name (<taglib-uri>) defined in the
web.xml configuration file.

In this example, the TLD (/WEB-INF/taglibs/ApressTagLibs.tld) is defined in
the web.xml file. See Listing 5-3.

Listing 5-3. The taglib definition file, ApressTagLibs.tld

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE taglib PUBLIC

 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.2</tlib-version>

 <jsp-version>1.2</jsp-version>

NOTE The Tomcat reference implementation engine uses the default name
taglib.tld to identify a taglib definition file, unless another name is specified.

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

389

 <short-name>

 J2EE frontend technologies; servlets, JSPs and

 EJBs tutorial tag library

 </short-name>

 <uri>http://localhost/taglib/tagz.jar</uri>

 <description>Sample Tutorial Tag Library</description>

 <tag>

 <name>FirstTag</name>

 <tag-class>se.jguru.tags.FirstTag</tag-class>

 <body-content>empty</body-content>

 <description>The first tutorial tag</description>

 </tag>

</taglib>

Note that the DOCTYPE element provides the version specification for this
taglib (JSP tag library 1.2) and that the versions required by the tag handlers of
this TLD are included in the <tlib-version> and <jsp-version> tags.

The taglib.tld file contains three sections:

• Standard XML header, defining this document to adhere to the XML JSP Tag
Library 1.2 DTD. If you are interested in taking a closer peek at this DTD, it
can be downloaded from the URI provided in the header.

• Tag library container tag (<taglib>), which contains:

• Metadata section providing information about the tag library itself,
rather than any of its defined tags.

• A <tag> definition linking this custom tag called FirstTag (which is empty
and has no body content) to the tag handler class se.jguru.tags.FirstTag.
Thus, whenever this tag library is used and a FirstTag tag is encountered by
the JSP engine, an instance of se.jguru.tags.FirstTag is created and life-
cycle methods are invoked in that instance to produce any desired output.

TIP If you are deploying your tag handler classes into a JAR file, be sure to use
the name taglib.tld for the TLD file, as some commercial implementations of
Web containers will start searching for the TLD assuming its Web application
path to be META-INF/taglib.tld. For convenience, the JAR file should be placed
in WEB-INF/lib. That way, all tag handler classes will always be included in the
Web application classpath.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

390

Tag library definition files will be discussed in greater detail in “Tag Library
Descriptors,” later in this chapter.

...

The TLD File for JSP version 1.1

Should you be using a JSP engine that does not support version 1.2, you must
create a TLD file complying with JSP version 1.1. Refer to “Tag Libraries in JSP

...

1.1,” later in this chapter, for information on TLD under JSP version 1.1.

Having defined a mapping between the tag handler class and the tag name,
you must now examine the Tag handler class for the FirstTag custom JSP tag.

The Tag Handler Class

The last part of the four-file system is the handler class, se.jguru.tags.FirstTag,
which is a JavaBean with the structure you see in Figure 5-15.

The FirstTag class is a tag handler because it implements the interface
javax.servlet.jsp.tagext.Tag, which contains the life-cycle methods of a tag
handler class. These methods are automagically called in a certain order by the
JSP engine whenever a custom tag is encountered, as shown in Figure 5-15.

Taking a quick peek at a pseudo-code compilation of the relevant parts of
the generated JSP servlet reveals the order in which these methods are called (see
Listing 5-4). Note that the variable name has been abbreviated (to theTag) and the
absolute class name se.jguru.tags.FirstTag has been abbreviated to FirstTag, for

Figure 5-15. The UML diagram of the tag handler class FirstTag

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

391

purposes of readability. In Listing 5-4 the Tag life-cycle methods have been
highlighted in bold.

Listing 5-4. The generated servlet code for a JSP document containing the
<apress:firstTag /> tag

// begin

/* ---- dummy:firstTag ---- */

 FirstTag theTag = new FirstTag();

 theTag.setPageContext(pageContext);

 theTag.setParent(null);

 try

 {

 int eval = theTag.doStartTag();

 if (eval == BodyTag.EVAL_BODY_BUFFERED)

 throw new JspTagException("Since tag handler class "

 + "se.jguru.tags.FirstTag does not implement BodyTag, it can't

 + "return BodyTag.EVAL_BODY_TAG");

 if (eval != Tag.SKIP_BODY)

 {

 do {

 // end

 // begin

 } while (false);

 }

 if (theTag.doEndTag() == Tag.SKIP_PAGE)

 return;

 }

 finally

 {

 theTag.release();

 }

// end

...

The JSP 1.1 Code Equivalent

If you are using a JSP 1.1-compliant engine, the code generated by the JSP engine
to call the life-cycle methods of the FirstTag handler class becomes slightly
different than the 1.2 equivalent. Refer to “Tag Libraries in JSP 1.1,” later in this

...

chapter, for a discussion of JSP 1.1-compliant tag library definition files.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

392

You may simplify the pseudo-code further to reveal the principal life cycle of
a tag handler class for an empty tag without attributes. See Listing 5-5.

Listing 5-5. Servlet code for invoking a JSP 1.1-style taglib tag

// ### 1) Create the tag instance, and set its internal

// handler objects, which allow communication with

// the pageContext and any enclosing(parent) tags,

// should this tag be placed within another.

FirstTag theTag = new FirstTag();

theTag.setPageContext(pageContext);

theTag.setParent(null);

// ### 2) Call the doStartTag() method in the handler class.

// (For non-empty tags, this method is called prior

// to evaluating any body content).

theTag.doStartTag();

// ### 3) Call the doEndTag() method in the handler class.

// (For non-empty tags, this method is called after

// evaluating the body content).

theTag.doEndTag();

// ### 4) Call the release() method to free up any used resources

/ after the tag has been completely processed.

theTag.release();

Thus, you can see that the JSP engine calls most of the available methods of
the tag handler class. Most of those methods are defined in the interface
javax.servlet.jsp.tagext.Tag, which must be implemented by all tag handler
classes. A better walkthrough of the java.servlet.jsp.tagext package and its
interfaces and classes will be done in “Touring the javax.servlet.jsp.tagext Package,”
later in this chapter. Listing 5-6 provides the complete code of the tag handler.

Listing 5-6. The FirstTag implementation class. Life-cycle methods are
highlighted in bold.

/*

 * Copyright (c) 2000 jGuru Europe AB

 * All rights reserved.

 */

package se.jguru.tags;

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

393

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

/**

 * Tag handler class which simply replaces the

 * occurrence of the tag with the text "This is

 * the First Tag.".

 *

 * This tag is empty (i.e. it does not have a

 * body or body content).

 */

public class FirstTag implements Tag

{

 // Internal state

 private PageContext ctx;

 private Tag parent;

 /**

 * Method called by the JSP engine before the tag body is

 * evaluated. Since this is a standalone tag, simply return

 * Tag.SKIP_BODY to indicate that we will not evaluate any

 * body content.

 */

 public int doStartTag() throws JspException

 {

 // Do not do anything when the tag starts.

 return SKIP_BODY;

 }

 /**

 * Method called by the JSP engine after any body evaluation

 * has taken place.

 */

 public int doEndTag() throws JspException

 {

 try

 {

 // Get the JspWriter connected to the

 // client browser output. This is received from

 // the pageContext, ctx.

 JspWriter outWriter = ctx.getOut();

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

394

 // Write something to the JspWriter.

 outWriter.write("This is the First Tag.");

 }

 catch(Exception ex)

 {

 throw new JspException("[doEndTag]: " + ex);

 }

 // Tell the JSP engine to continue evaluating the

 // rest of the JSP page, rather than aborting all

 // evaluation here.

 return EVAL_PAGE;

 }

 /**

 * Since this handler has allocated no resources, we don’t need

 * to release any when the JSP engine is done with the tag.

 */

 public void release() {}

 /**

 * Method called by the JSP engine before any evaluation

 * has taken place. The purpose of it is to provide a handle

 * to the PageContext of the running page to the tag.

 */

 public void setPageContext(PageContext context)

 {

 this.ctx = context;

 }

 /**

 * Method called by the JSP engine before any evaluation

 * has taken place. The purpose of it is to provide a handle

 * to the parent (enclosing) tag handler of this tag handler.

 */

 public void setParent(final Tag parent)

 {

 this.parent = parent;

 }

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

395

 /**

 * Method returning the parent Tag handler class of this one.

 */

 public Tag getParent()

 {

 return this.parent;

 }

}

The code of the JSP-compiled servlet in Listing 5-6, shows the two relevant
evaluation methods of this tag handler: doStartTag and doEndTag. The former is
called before and the latter after any body content of the tag is evaluated—but
because the firstTag has no body content, you need not do anything special to
the out JspWriter here. To tell the JSP engine to skip any evaluation of body
content, you return Tag.SKIP_BODY from the method.

The latter of the two methods, doEndTag, is called after any evaluation of body
content. In this case, you obtain a reference to the out JspWriter connected to the
HttpResponse of the generated servlet. After this, you are able to write any content
to the client from within the handler class—in our case the static string “This is
the First Tag.” is printed to the output stream.

Tag Library Descriptors

The TLD file is a document that maps tag handler classes to tag names and provides
metadata about the tag library itself and all tags defined within it. The TLD is an
XML document—so the document structure is defined within the DTD provided
in the XML header (“http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd”). An
XML visualization of the TLD DTD may give greater understanding.

The TLD DTD 1.2 specification, illustrated in Figure 5-16, requires the
following information to be present in the TLD file:

• XML version definition (<?xml version="1.0" encoding="ISO-8859-1" ?>).

• DTD telling the JSP engine what tag library definition structure is used in
this TLD. For example, the 1.2 specification has the following structure:
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library

1.1//EN" "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">.

• <taglib> container tag, declaring a tag library definition. This is a container
that encloses all real specifications in the TLD file.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

396

• Tag library metadata, containing version information and other data
common to the entire tag library. Referring to the TLD file listing below, the
taglib metadata elements provided are <tlib-version>, <jsp-version>,
<short-name>, and <description>.

• Tag definitions for all custom tags defined within this tag library. The TLD
file in Listing 5-7 defines one empty custom JSP tag, FirstTag. The Tag
definition is a container XML element; its children defines all aspects of the
custom JSP tag, according to the DTD illustrated in Figure 5-16.

Figure 5-16. The TLD DTD 1.2 specification for the tag library definition file
Listing 5-7 shows what a typical .tld file looks like.

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

397

Listing 5-7 shows what a typical .tld file looks like.

Listing 5-7. A typical .tld file

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE taglib PUBLIC

 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"

 "http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd">

<taglib>

 <tlib-version>1.2</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>APress tutorial tags</short-name>

 <description>Sample Tutorial Tag Library</description>

 <tag>

 <name>FirstTag</name>

 <tag-class>se.jguru.tags.FirstTag</tag-class>

 <body-content>empty</body-content>

 <description>The first tutorial tag</description>

 </tag>

</taglib>

Figure 5-16 shows all elements permitted within a Tag Library Descriptor XML
container. All XML documents use data found within their DTD to define permitted
XML elements. Understanding the tag library XML DTD is the best way to realize the
possibilities of the XML DTD, so take a peek at a fully populated TLD document and
correlate its contents with the Taglib DTD, starting with TLD metadata.

Tag Library Metadata

All tag libraries contain a set of metadata information tags, some of which are
required. Listing 5-8 is an excerpt from a taglib definition containing fully
populated metadata entries.

��������	

��
�
��

��������
�������
���
����

����
��

Chapter 5

398

Listing 5-8. Excerpt from a taglib definition

<!--

 Mandatory Metadata Container Tags

 tlib-versionTag Library version of this tag library, given

 in Dewey decimal notation (i.e: 1.25-1.6) A regular

 expression of the Dewey decimal otation is [0-9]*{ "."[0-9] }0..3,

 which denotes a maximum of 3 dots.

 Example: 1.2

 jsp-versionMinimum JSP version required for this tag

 library to function, given in Dewey decimal noration.

 Example: 1.2

 short-nameFreetext description of this tag library, which

 may be used by builder tools to generate a default taglib prefix.

 According to the DTD, one should not use white space, and not

 start with digits or underscore.

 Optional Metadata Container Tags

 uri Unique identifier of this tag library

 display-name Human-readable name intended for use by

 taglib construction tools

 description Human-readable string describing the "use" of this taglib

 small-icon Filename of an icon image for use by taglib construction tools

 large-icon Filename of an icon image for use by taglib construction tools

 validator Classname of a validator class which performs runtime

 validation on the <%@ taglib ...%> directives connected

 to this tag library definition.

 listener Classname of an event listener to this Tag.

-->

 <tlib-version>1.2</tlib-version>

 <jsp-version>1.2</jsp-version>

 <short-name>APress custom IterationTag</short-name>

 <uri>taglib/apressTags.tld</uri>

 <description>Sample Tutorial Tag Library</description>

 <!-- Mandatory Custom Tag definitions go here -->

</taglib>

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

399

An XML element definition corresponds to a container tag in Listing 5-8.
Thus, reading from the taglib DTD, you find the following <taglib> element
definition:

<!ELEMENT taglib (tlib-version, jsp-version, short-name, uri?, display-name?,

small-icon?, large-icon?, description?, validator?, listener*, tag+) >

...

Interpreting XML DTD Entries

The <taglib> element may contain a well-defined series of child elements, the
names of which are given within the parentheses. Let’s originate from the taglib
XML element definition:

<!ELEMENT taglib (tlib-version, jsp-version, short-name, uri?,

 display-name?, small-icon?, large-icon?, description?,

 validator?, listener*, tag+) >

The XML DTD defines the four meanings listed in Table 5-2 to the child elements
of an XML container, depending on the character appended to the child element
name.

Table 5-2. Character Definitions

CHARACTER
APPENDED CARDINALITY STATUS DESCRIPTION

<none> 1 Mandatory A mandatory element must occur

exactly once within its parent. The

<tlib-version> element is

mandatory within its <taglib>

parent.

? 0..1 Optional An optional element may occur

exactly once within its parent. The

<display-name> element is

mandatory within its <taglib>

parent.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

400

...

Figure 5-16 shows the element specification of the TLD DTD. The element
cardinalities are implied in Figure 5-16 by printing the character from the
Character Appended column in the preceding table. Can you find the two
mandatory child elements of the <tag> element?

Before taking a look at the <tag> element definitions in detail, study the optional
<validator> element a little closer. The functionality provided by a tag library validator
instance is powerful; it may be beneficial—especially in larger projects.

The <validator> Element

Each tag library may contain one (optional) tag library validator object. The
purpose of the validator is to verify that the <@% taglib … %> directive is well-
formed and potentially perform a custom validation on the JSP document. The
<validator> element is new to JSP version 1.2, with no corresponding TLD 1.1
equivalent.

The tag library validator instance must extend the class
javax.servlet.jsp.tagext.TagLibraryValidator, which is shown in Figure 5-17.
The developer must override at least one method—validate. Frequently, one
makes use of initialization parameters sent to the validator from the TLD file. If
so, the setInitParameters and getInitParameters methods are also of interest to
the development. The JSP container will invoke the setInitParameters method
before calling validate, ensuring that all init parameters will be available during
validation.

The TLD DTD specifies that the <validator> element has the following
structure:

<!ELEMENT validator (validator-class, init-param*, description?) >

* 0..n Optional, list An optional list element may occur

several times within its parent. The

<listener> element is an optional list

within its <taglib> parent.

+ 1..n Mandatory, list A mandatory list element must occur

at least once within its parent. The

<tag> element is a mandatory list

within its <taglib> parent.

Table 5-2. Character Definitions (Continued)

CHARACTER
APPENDED CARDINALITY STATUS DESCRIPTION

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

401

Listing 5-9 is a sample validator specification from a TLD file.

Listing 5-9. A validator definition

<taglib>

 ...

<!--

 Mandatory Validator Container Tags

 validator-class The class which should be instantiated to

 obtain the tag library validator.

 Optional Validator Container Tags

 init-param An initialization parameter specification

 to the Validator instance. All parameters defined in

 the TLD file will be parsed and inserted into a Map which

 may be retrieved with the getInitParameters(); method.

 -->

 <validator>

 <validator-class>

 se.jguru.tags.BasicTagLibValidator

 </validator-class>

 <init-param>

 <param-name>logFileName</param-name>

 <param-value>validatorLog.txt</param-value>

 </init-param>

Figure 5-17. The TagLibraryValidator class encapsulates a minimalistic but
powerful functionality. The only two methods requiring the attention of a
developer are release and validate. The JavaBean setter and getter for the
initParameters JavaBean property are merely convenience methods, which do not
require overriding on the part of the developer.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

402

 <init-param>

 <param-name>dateFormat</param-name>

 <param-value>-hh:mm:ss.SSSS-</param-value>

 </init-param>

 </validator>

 ...

</taglib>

The simplest way to understand the function and use of a
TagLibraryValidator subclass is to show a simple example of its use. Therefore,
take a look at the three entries that join forces to create a validator service:

• JSP file contains the <@% taglib ... %> directive. Let’s assume that the taglib
directive is <%@ taglib uri="apressTags" prefix="apt" %>.

• TLD file contains the <validator> specification. Let’s use the previous TLD
snippet as a point of origin in this small example.

• javax.servlet.jsp.tagext.TagLibraryValidator subclass contains the
validation definition. According to the previous TLD file, you will use a
validator class called se.jguru.tags.BasicTagLibValidator (see Figure 5-18).

Listing 5-10 provides the resulting output to the log file. Note that the output
in the topmost section, where the initialization parameters names and values are

Figure 5-18. The taglib validator class of this small example. Besides overriding the
validate and release methods, the BasicTagLibValidator may log data to a log
file—and the logOut Writer is connected to the log file.

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

403

printed, correspond perfectly to the values provided in the TLD file in Listing 5-9. Note
also, that the prefix and uri printouts are read from the <@% taglib ... %> directive in
the JSP document. The PageData output is simply the XML version of the JSP
document, which is sent to the validator as an argument to the validate method.

Listing 5-10. Log file excerpt

[-02:04:38.0739-]: Log file opened. Validator in normal operational mode.

[-02:04:38.0739-]: -- Printing all init parameters

[-02:04:38.0759-]: [dateFormat]: -hh:mm:ss.SSSS-

[-02:04:38.0759-]: [logFileName]: validatorLog.txt

[-02:04:38.0759-]: -- All init parameters printed.

[-02:04:38.0819-]: prefix: apt

[-02:04:38.0819-]: uri: apressTags

[-02:04:38.0819-]: --> Begin PageData

[-02:04:38.0819-]: (1): <jsp:root

[-02:04:38.0819-]: (2): xmlns:jsp="http://java.sun.com/JSP/Page"

[-02:04:38.0819-]: (3): version="1.2"

[-02:04:38.0819-]: (4): xmlns:apt="apressTags"

[-02:04:38.0819-]: (5): >

[-02:04:38.0829-]: (6): <jsp:text><![CDATA[

[-02:04:38.0829-]: (7):

[-02:04:38.0829-]: (8): <html>

[-02:04:38.0829-]: (9): <head>

[-02:04:38.0829-]: (10): <title>AnotherBody Tag Sample</title>

[-02:04:38.0829-]: (11): </head>

[-02:04:38.0829-]: (12):

[-02:04:38.0829-]: (13): <body>

[-02:04:38.0829-]: (14): <center>

[-02:04:38.0829-]: (15):

[-02:04:38.0829-]: (16): <h1>Body Tag Example</h1>

[-02:04:38.0829-]: (17):

[-02:04:38.0829-]: (18): <table border=2>

[-02:04:38.0829-]: (19): <tr>

[-02:04:38.0829-]: (20): <td>JSP source code</td>

[-02:04:38.0829-]: (21): <td>Resulting output</td>

[-02:04:38.0839-]: (22): </tr>

[-02:04:38.0839-]: (23):

[-02:04:38.0859-]: (24): <tr>

[-02:04:38.0859-]: (25): <td><apt:SimpleBodyTag>This is a

 body text.</apt:SimpleBodyTag></td>

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

404

[-02:04:38.0859-]: (26): <td>]]>

[-02:04:38.0879-]: (27): </jsp:text>

[-02:04:38.0879-]: (28): <apt:SimpleBodyTag><jsp:text><![CDATA[

[-02:04:38.0879-]: (29): This is a body text.]]>

[-02:04:38.0899-]: (30): </jsp:text>

[-02:04:38.0899-]: (31): </apt:SimpleBodyTag>

[-02:04:38.0899-]: (32): <jsp:text><![CDATA[

[-02:04:38.0919-]: (33): </td>

[-02:04:38.0919-]: (34): </tr>

[-02:04:38.0919-]: (35):

[-02:04:38.0919-]: (36): </table>

[-02:04:38.0919-]: (37):

[-02:04:38.0919-]: (38): </center>

[-02:04:38.0919-]: (39): </body>

[-02:04:38.0919-]: (40): </html>]]>

[-02:04:38.0919-]: (41): </jsp:text>

[-02:04:38.0929-]: (42): </jsp:root>

[-02:04:38.0929-]: <-- End PageData

The full source code of the BasicTagLibValidator shows that the validate
method has access to the initialization parameters, as well as a PageData object
that encapsulates the XML version of the JSP document. The PageData class has
one single method of interest, getInputStream, which returns an InputStream
connected to the XML stream of the document. The developer may therefore
validate documents originating from the data found in the JSP file, the taglib
directive, or the initialization parameters.

In Listing 5-11, the TagLibraryValidator-specific method calls appear in bold text.

Listing 5-11. The BasicTagLibValidator class

/*

 * Copyright (c) 2000,2001 jGuru Europe.

 * All rights reserved.

 */

package se.jguru.tags;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

import java.util.*;

import java.io.*;

import java.text.SimpleDateFormat;

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

405

public class BasicTagLibValidator extends TagLibraryValidator

{

 // Writer to a log file where the log messages will go.

 private PrintWriter logOut;

 // Define the default logfile name

 public static final String DEFAULT_LOGFILE_NAME = "BasicTLV_logfile.txt";

 // The simple date format of the log messages

 private SimpleDateFormat sdf;

 public BasicTagLibValidator()

 {

 // Call the constructor of our superclass

 super();

 }

 /**

 * Free up all held resources; i.e. close the log file.

 */

 public void release()

 {

 // Close the logFile

 try

 {

 this.logOut.close();

 }

 catch (Exception ex)

 {

 // Whoops.

 System.err.println("[BasicTagLibValidator::release]: "

 + "Could not close the log file Writer: " + ex);

 }

 // Call the release of our superclass

 // to continue the release of the state

 // in this validator.

 super.release();

 }

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

406

 public void setInitParameters(Map params)

 {

 // Proceed with the normal setInitParameters

 super.setInitParameters(params);

 // Setup the log file...

 this.openLogFile();

 }

 private void openLogFile()

 {

 // Don't redo the openLogFile tasks

 // if the log file is already open.

 if (this.logOut != null)

 {

 // Log the attempt.

 this.log("Log file already opened.");

 // Bail out.

 return;

 }

 // Get the configuration parameters

 Map params = this.getInitParameters();

 // Get the log file name

 String logFileName = "" + params.get("logFileName");

 if (logFileName == null || logFileName.equals(""))

 logFileName = DEFAULT_LOGFILE_NAME;

 // LogFile exists?

 File logfile = new File(logFileName);

 if (logfile.exists())

 logfile.renameTo(

 new File(logfile.getName() + ".old"));

 // Open the logfile Writer

 try

 {

 this.logOut = new PrintWriter(

 new FileWriter(logfile));

 }

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

407

 catch (IOException ex)

 {

 // Whoops...

 System.out.println("Could not open the logging Writer: " + ex);

 }

 // Get the format string for the simple date format

 String sdfString = "" + params.get("dateFormat");

 if (sdfString == null || sdfString.equals(""))

 sdfString = "hh:mm:ss.SSSS";

 // Create the internal log format

 this.sdf = new SimpleDateFormat(sdfString);

 // Done.

 this.log("Log file opened. Validator in normal operational mode.");

 this.log(" -- Printing all init parameters");

 for (Iterator it = params.keySet().iterator(); it.hasNext();)

 {

 // Get the current key

 Object key = it.next();

 // Log the key/value pair

 this.log(" [" + key + "]: " + params.get(key));

 }

 // Done.

 this.log(" -- All init parameters printed.");

 }

 /**

 * Private logging method, which writes a log message

 * to the standard log stream of this validator, i.e.

 * logOut.

 */

 private void log(String msg)

 {

 // Check sanity

 if (this.logOut == null) this.openLogFile();

 if (msg == null || msg.equals("")) return;

 // Get the current timestamp

 Date now = new Date();

��������	

��
�
��

��������
�������
���
����

����
��

Chapter 5

408

 // Potentially sane. Log.

 String completeMessage = "[" + this.sdf.format(now) + "]: " + msg;

 this.logOut.println(completeMessage);

 this.logOut.flush();

 }

 /**

 * Validate a JSP page. This will get invoked once per directive in the

 * JSP page. This method will return a null String if the page passed

 * through is valid; otherwise an error message.

 */

 public String validate(String prefix, String uri, PageData page)

 {

 // Log

 this.log(" prefix: " + prefix);

 this.log(" uri: " + uri);

 // Get the content of the JSP document from the PageData argument

 LineNumberReader lnr = new LineNumberReader(

 new InputStreamReader(page.getInputStream()));

 String aReadLine = "";

 // Output the content of the PageData

 this.log(" --> Begin PageData");

 try

 {

 while ((aReadLine = lnr.readLine()) != null)

 {

 // Output the current line

 this.log("(" + lnr.getLineNumber() + "): " + aReadLine);

 }

 }

 catch (IOException ex)

 {

 this.log("Error reading PageData: " + ex);

 }

 this.log(" <-- End PageData");

 // If something displeases us, return a String with an

 // error message. If all went well, return null.

 return null;

 // Or: return "This is an error message from the validator.";

 }

}

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

409

A TagLibraryValidator instance is global for all directives referring to a
particular TLD file. Its fully qualified class is defined as an XML element in the
TLD file, as seen in Listing 5-11.

Having taken a look at the metadata structure of tag libraries, now turn your
attention to the tag definitions themselves.

Tag Definitions

Each <tag> element defined in the TLD file maps a handler class to a tag name. Each
<tag> element is a container, grouping tag metadata and possibly attribute
definitions (contained in <attribute> elements) for all attributes known (in other
words, automatically set by the tag handler instance). All <tag> definition elements
must be contained within their <taglib> parent. The <tag> elements in Listing 5-12
are therefore assumed to be contained in a <taglib> parent.

Listing 5-12 builds on Listing 5-8. Because you did not actually create any
<tag> containers, the TLD file does not currently define any custom actions.
However, the comment <!-- Mandatory Custom Tag definitions go here -->
indicates that more information is to be inserted into the TLD file. Create a <tag>
entry that defines a new tag called FirstTag. The comments within the code
listing explain the effect of each entry.

Listing 5-12. The tag definition section of the TLD file

<!--

 All tag metadata and attribute definitions must be contained

 within the tag element, and each tag element must in turn

 be contained within the taglib parent element.

-->

<tag>

 <!--

 Mandatory metadata container tags

 name := The (unique) name of the tag, found in the action

 tag name of the JSP action. (i.e: For the JSP action

 <x:someName />, the name attribute is someName).

 tag-class := Fully qualified class name of the Tag handlerclass

 of this tag. The handler must implement interface

 javax.servlet.jsp.tagext.Tag

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

410

 -->

 <name>FirstTag</name>

 <tag-class>se.jguru.tags.FirstTag</tag-class>

 <!--

 Optional metadata container tags

 tei-class The Tag Extra Information class is a fully

 qualified class name to a class which contains

 metadata describing the attributes of a

 tag. The teiclass must implement

 javax.servlet.jsp.tagext.TagExtraInfo

 body-content Defines whether or not the tag should

 be used in standalone or container mode.

 3 different values are permitted:

 a) JSP. This (default) value indicates

 that the body of the tag contains normal

 JSP data.

 b) empty. This value Indicates that the

 tag cannot have any body content (i.e.

 the tag Is empty).

 c) tagdependent. This value indicates that

 the body of the tag contains statements

 in some language other than JSP. An example

 could be SQL statements for execution within

 a DB.

 display-name Human-readable name intended for use by tag

 construction tools

 small-icon Filename of a 16x16 icon image for use by tag

 construction tools

 large-icon Filename of a 32x32 icon image for use by tag

 construction tools

 description Human-readable string describing the "use" of this tag

 variable Provides information about any scripting variables declared

 by this tag. If variable definitions are present, the tag

 must have a TagExtraInfo companion class, defined in the

 <tei-class> element.

 attribute Each tag element may contain 0 or more attribute

 definitions, specifying all the attributes which should be

 recognized by the tag in question. All attributes definitions

 are XML containers, which fully defines the attribute as a

 Java object. Tag attributes are covered in detail shortly.

 example Human-readable string providing an example of

 this tag used

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

411

-->

<tag>

 <name>FirstTag</name>

 <tag-class>se.jguru.tags.FirstTag</tag-class>

 <body-content>empty</body-content>

 <description>The first tutorial tag</description>

 <!-- Attribute definitions go here. -->

</tag>

The tag defined in Listing 5-12 is an empty tag; its definition elements are
seen in the last part of the definition file. A graphical listing of the element nodes
introduced in the <tag> element reveals the structure (see Figure 5-19).

This is the XML definition for the tag element:

<!ELEMENT tag (name, tag-class, tei-class?, body-content?, display-name?,

 small-icon?, large-icon?, description?, variable*, attribute*, example?) >

Note that the order of the elements within their parent container could
be—but rarely is—irrelevant. Some well-known XML processors do not create a
full-dependency tree like a regular compiler—the programmer must therefore
still pay close attention to the element order, rather than simply focus on the
content. Undoubtedly, this situation will improve in the future, but the current
state of XML parsers is such that the development community is required to
mind yet another formatting detail of the taglib configuration.

The element order within the <tag> element container is clear from the
element definition. Although it may be trivial to deduct the required element
order from a look at the element definition, it certainly is cumbersome to
constantly keep an eye at the tag definition at all times while generating a TLD
file. In fact, one of the better uses of integrated development environments is the
sanity checking and automatic re-ordering of XML tags to comply with the DTD
in question. If you find yourself getting frequent XML parse exceptions, I recommend
finding a development environment that has tools for strict generation and
parsing of XML files.

As shown in the preceding element tag definition (and in Figure 5-18), the
only two indexed (list) subelements of <tag> are attribute and variable. The
former defines an attribute known to the JSP custom tag, and the latter defines a
variable declared for use by other tags in the JSP page. Take a look at each in turn.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

412

Figure 5-19. The XML structure of the tag element. All mandatory elements have
been shaded. Although a detailed description for all elements in the image hasn’t
been given, you can see that all the elements are subelements to the <tag> container.

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

413

The <attribute> Element

The <attribute> element, where attributes of a JSP custom action are defined. The
<attribute> element definition is small and simple to understand, as shown here
and in Figure 5-20:

<!ELEMENT attribute (name, required? , rtexprvalue?, type?, description?) >

Attribute definitions are straightforward; all properties in the attribute
definition amounts to providing a Java code snippet that declares a variable.
All elements of the attribute container are explained in the comments of the
taglib.tld excerpt shown in Listing 5-13.

Figure 5-20. Visual representation of the <attribute> element. Note that the only
mandatory subelement of the attribute tag is <name>. If you choose to use types other
than the default (java.lang.String), the <type> element must be defined as well.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

414

Listing 5-13. The tag attribute specification

<!--

 All tag attribute metadata and must be contained

 within the tag container.

-->

<attribute>

 <!--

 Mandatory metadata container tags

 name The name of the attribute, found in the action tag name of the

 JSP action.

 (i.e: The JSP action <x:someName someKey="apa" />

 has the attribute name someKey).

 -->

 <name>allClients</name>

 <!--

 Optional metadata container tags

 required Indicates whether or not this attribute is mandatory.

 If this value is false or no, a default value must be

 defined in the code of the Tag handler class.

 Default value: false.

 Legal values are { yes | true | no | false }

 rtexprvalue Indicates whether or not the value of this attribute

 can be calculated during runtime as a JSP expression,

 as opposed to a static (pre-defined) value set during

 compilation.

 Default value: false.

 Legal values are { yes | true | no | false }

 type The type of the attribute, expressed as a fully

 qualifiedclass, such as java.util.Map.

 Default value: java.lang.String.

 description Human-readable string describing the purpose of

 this attribute

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

415

 -->

 <required>yes</required>

 <rtexprvalue>yes</rtexprvalue>

 <type>java.util.List</type>

 <description>The List of all Clients</description>

</attribute>

As shown in Listing 5-13, the definition of an attribute to a custom Tag
implementation class is straightforward.

...

Java Code for a JSP Custom Tag Attribute

It seems tragic that it is much simpler to understand the generated Java code
deriving from a TLD attribute than the TLD attribute definition itself. In other
words, the TLD definition does a great job of making a rather simple task a good
deal more complex. For instance, the XML definition:

 <attribute>

 <name>map</name>

 <required>false</required>

 <rtexprvalue>true</rtexprvalue>

 <type>java.util.Map</type>

 </attribute>

and the JSP document:

<apt:ListTag map="<%= aMap %>"></apt:ListTag>

creates the Java call:

listTagInstance.setMap(aMap);

It would appear that the TLD definition is more complex (and involves more

...

typing than) the JSP document and the corresponding generated Java code.

The remaining optional list element of the <tag> container is the <variable>
container element that defines scripting variables declared by the custom JSP action.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

416

The <variable> Element

JSP custom tags may define variables that may be accessed from the JSP document
or other custom tags. This mechanism is useful to share information from a
custom JSP parent tag to its contained children. That way, the child custom action
needs not know about the existence of its parent at all, which permits complete
separation of the two handler classes. The <variable> element definition is small,
as shown in the following definition and in Figure 5-21:

<!ELEMENT variable ((name-given | name-from-attribute), variable-class?,

 declare?, scope?, description?) >

It is easy to get confused by the naming element dualism of the <variable>
container, but it’s a simple process to understand the vision of the TLD DTD
design engineers. Each variable may be named in either of two ways:

• The script variable name is assigned by the Web application deployment
engineer, who provides a <name-given> attribute in the TLD file.

• The script variable name is provided as a translation-time value of an
attribute. The name of the attribute is given in the <name-from-attribute>
element.

Listing 5-14 contains a full description of the variable element in the TLD.

Figure 5-21. Visualization of the variable container element of the TLD 1.2 DTD.
Mandatory elements are shaded; note that each variable must include either a
<name-given> or a <name-from-attribute> container element.

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

417

Listing 5-14. A variable element definition

<!--

 All tag variable metadata and must be contained

 within the tag container.

-->

<variable>

 <!--

 Mandatory metadata container elements

 name-given Name of the scripting variable. Either a

 name-given or a name-from-attribute element

 must be supplied to the variable - but both

 cannot be used at the same time.

 name-from-attribute Name of the attribute whose value

 is the name of this scripting variable. Either

 a name-given or a name-from-attribute element

 must be supplied to the variable – but both

 cannot be used at the same time.

 -->

 <name-given>firstName</name-given>

 <!--

 Optional metadata container tags

 variable-class Class name of the variable declared. Defaults

 to String if not provided.

 declare true if the variable should be declared (as

 opposed to simply used) by the JSP container,

 false otherwise. The default value is true.

 scope One of three values indicating which scope the

 declared element should have. The values are

 VariableInfo.AT_BEGIN, VariableInfo.AT_END and

 VariableInfo.NESTED. Refer to the section

 "Class javax.servlet.jsp.tagext.VariableInfo"

 for a detailed walkthrough on variable scoping,

 and to the sidebar below for the associated code.

 description Human-readable description of this variable.

��������	

��
�
��

��������
�������
���
����

����
��

Chapter 5

418

 -->

 <variable-class>String</variable-class>

 <declare>true</declare>

 <scope>AT_BEGIN</scope>

 <description>The first name of the current client</description>

</variable>

Listing 5-14 defines the variable String firstName with a visibility scope
starting from the opening tag delimiter.

...

Java Code for the <variable> Element

The code generated for a <variable> definition in a custom JSP page is a small
matter; the following snippet was generated by the Tomcat4.0-b5 Web container.
Paths and variable names have been abbreviated for readability; the Catalina
engine of Tomcat has an affinity for always using the fully qualified class path for
all type definitions and variables. Although this is good indeed for system stability,
the autogenerated code is somewhat tricky to read unedited.

The code pertaining to the variable definition is bolded in the following snippet.
Note that the variable has nested scope (in other words, it is accessible only
within the body of the tag) because it is declared between the doStartTag and
doEndTag method calls). The visibility of a script variable is indicated by one of
three constants, defined in the javax.servlet.jsp.tagext.VariableInfo class.
When the variable is nested within the body of the enclosing custom JSP tag, its
corresponding VariableInfo constant is VariableInfo.NESTED. Refer to “Class
javax.servlet.jsp.tagext.VariableInfo,” later in this chapter, for more information
about the VariableInfo class.

/* ---- apt:VariableTag ---- */

VariableDefinitionTag vt = new VariableDefinitionTag();

vt.setPageContext(pageContext);

vt.setParent(null);

try

{

 int startResult = vt.doStartTag();

 if (startResult == BodyTag.EVAL_BODY_BUFFERED)

 throw new JspTagException("Since tag handler class VariableDefinitionTag "

 + "does not implement BodyTag, it can't return BodyTag.EVAL_BODY_TAG");

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

419

 if (startResult != Tag.SKIP_BODY)

 {

 do

 {

 String foo = null;

 foo = (String) pageContext.findAttribute("foo");

 } while (vt.doAfterBody() == BodyTag.EVAL_BODY_AGAIN);

 }

 if (vt.doEndTag() == Tag.SKIP_PAGE)

 return;

}

finally

{

 vt.release();

}

Note that the value of the variable is retrieved from an attribute bound in the
pageContext with the same name as the <variable> element.

When altering the scope of a declared variable, such as in
<scope>AT_BEGIN</scope>, the declaration is done in another place; but all other
aspects of the invocation is identical to the <scope>NESTED</scope> case
illustrated in the previous code snippet. Taking a look at a piece of the resulting
JSP code, generated by the Tomcat-4.0 engine, you see two alterations: the
variable is declared in another place, and it is initialized in two places. This rather
odd behavior is done to permit IterationTags and BodyTags to modify and re-read
the value of the variable with each iteration.

try

{

 String foo = null;

 int startResult = vt.doStartTag();

 foo = (String) pageContext.findAttribute("foo");

 if (startResult == BodyTag.EVAL_BODY_BUFFERED)

 throw new JspTagException("Since tag handler class VariableDefinitionTag "

 + "does not implement BodyTag, it can't return BodyTag.EVAL_BODY_TAG");

 if (startResult != Tag.SKIP_BODY)

 {

 do

 {

 foo = (String) pageContext.findAttribute("foo");

 } while (vt.doAfterBody() == BodyTag.EVAL_BODY_AGAIN);

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

420

Using the <scope>AT_END</scope> setting for declaring a variable alters the code
produced by the JSP compiler yet again, placing the final assignment of the foo
variable after the while statement marking the end of the tag body, as shown in
the previous code snippet. Feel free to verify the code generated by your favorite

...

Web container.

Of course, the full XML DTD can be found and downloaded using a regular Web
browser, after navigating to http://java.sun.com/dtd/web-jsptaglibrary_1_2.dtd.

For those of you still using the 1.1 TLD specification, take a brief look at the
1.1 TLD file.

Tag Libraries in JSP 1.1

The TLD specification version 1.1 contains most options found in version 1.2, but
it lacks many descriptor elements of JSP 1.2. In fact, the full XML DTD of the TLD
for JSP 1.1 is a lot simpler than the corresponding for 1.2. Figure 5-22 shows the
DTD for the TLD document version 1.1.

The difference between TLD DTD versions 1.2 and 1.1 is rather big; apart
from the obvious alteration of the DOCTYPE element at the TLD document top, and
the values of the <tlibversion> and <jspversion> elements, more subtle differences
occur frequently in the document. The 1.1 versions of the TLD DTD uses
concatenated element names (for example, jspversion), but the 1.2 TLD DTD uses
hyphens to separate word parts from one another (for example, jsp-version).

Also, some element names in the JSP 1.1 TLD have been altered in the JSP 1.2
release. For instance, the <info> element has been renamed <description> in the
JSP 1.2 TLD DTD. For a full listing of the changes between the 1.1 and 1.2 TLD
DTDs, refer to the JSP specification, section “Changes.”

To illustrate the differences between the TLD versions, the FirstTag custom
action discussed in “The Tag Library Definition File” earlier in this chapter is
re-created in Listing 5-15 TLD version 1.1.

NOTE Chapter 6 provides some thorough examples of creating new
Tag libraries.

��������	

��
�
���

��������
�������
���
����

����
��

IterationTag Interface

421

Figure 5-22. Visualization of the TLD DTD for the JSP 1.1 specification. All
elements pertaining to a tag definition has been shaded. Note that several of
the elements from the TLD DTD version 1.2 are missing or spelled differently. For
instance, the <info> element corresponds to the description element of TLD DTD
version 1.2.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

422

Listing 5-15. The TLD document

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE taglib PUBLIC

 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>

 <tlibversion>1.0</tlibversion>

 <jspversion>1.1</jspversion>

 <shortname>

 J2EE frontend technologies; servlets, JSPs and

 EJBs tutorial tag library

 </shortname>

 <uri>http://localhost/taglib/tagz.jar</uri>

 <info>Sample Tutorial Tag Library</info>

 <tag>

 <name>FirstTag</name>

 <tagclass>se.jguru.tags.FirstTag</tagclass>

 <bodycontent>empty</bodycontent>

 <info>The first tutorial tag</info>

 </tag>

</taglib>

The XML <tag> element definition from the TLD DTD version 1.1 (shown in
the code line below) is smaller than its 1.2 counterpart. Note that the only two
mandatory subelements are <name> and <tagclass>:

<!ELEMENT tag (name, tagclass, teiclass?, bodycontent?, info?, attribute*)>

A graphical illustration of the tag element shows the simplicity even better
(see Figure 5-23).

The code generated by the JSP engine to call the life-cycle methods of the
FirstTag handler class becomes slightly different than the 1.2 equivalent. The
only significant difference is that the named constant in one boolean expression
is declared deprecated in 1.2, as shown here:

if (eval == BodyTag.EVAL_BODY_TAG)

throw new JspTagException("Since tag handler class se.jguru.tags.FirstTag "

+ "does not implement BodyTag, it can't return BodyTag.EVAL_BODY_TAG");

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

423

Thus, although the JSP 1.2 specification may have altered quite a lot with
regards to specification files and DTDs, the autogenerated code compiled to a
servlet is practically the same between the two revisions.

Touring the javax.servlet.jsp.tagext Package

All classes for implementing the functionality of JSP custom tags are found in the
javax.servlet.jsp.tagext package. The package contains two types of classes:

Figure 5-23. XML structure of the <tag> element in the JSP 1.1 version of the
TLD DTD

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

424

• Required interfaces of tag handler classes and their abstract implementation
classes. Tags are separated into two categories, corresponding to the three tag
handler interfaces (javax.servlet.jsp.tagext.Tag,
javax.servlet.jsp.tagext.IterationTag, and javax.servlet.jsp.tagext.BodyTag)
with their corresponding helper classes (TagSupport and BodyTagSupport).

• Metadata classes describing tag handlers, their required and optional
attributes, and the operation of the tag. The information provided by the
metaclasses includes: optional or mandatory body content, required parent
tag, and any attributes required or variables declared.

The tagext metadata classes are numerous but well-designed, where each
class encapsulates specific information about the tag. The main task of these
metadata classes is encapsulating information from the TLD file and exposing it
to the JSP engine. This metadata information allows the JSP engine to create the
Java code of the autogenerated servlet and permits the developer to provide
specifications to the JSP engine. Such specifications include valid value ranges
for attributes, parameters, and so on.

Standalone tags are handled by a class implementing the
javax.servlet.jsp.tagext.Tag interface. Body tags (possibly containing text) are
handled by a class implementing the javax.servlet.jsp.tagext.BodyTag interface
if the body content of the tag container should be modified during runtime or
the javax.servlet.jsp.tagext.IterationTag interface otherwise.

All three interfaces are implemented by a related support class with empty
method bodies, similar in construction to the Adapter classes of the
java.awt.event package. Thus, when implementing a tag handler class, the developer
may choose to implement the proper interface or extend its support class (which is
frequently done, because it facilitates and speeds up the development). Note that
both the IterationTag and the BodyTag interfaces extends the Tag interface, thus
providing additional sets of methods that may operate on the body content of a
container tag.

These three interfaces contain life cycle method definitions of all non-tag
specific methods called by the JSP engine when it executes the code defined for
a particular tag. Put simpler, the JSP engine will call only the methods defined in
the three interfaces in Figure 5-24, plus any methods implied by descriptor
entries in the TLD file. Although not complex in nature, the indirect calling
convention of the Tag, IterationTag and BodyTag methods make these classes
worthwhile to study.

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

425

Figure 5-24. Structure of the tag specification interfaces (Tag, IterationTag and
BodyTag) and their implementation class counterparts (TagSupport and
BodyTagSupport). Note that both the Tag and IterationTag interfaces are
implemented by the TagSupport class.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

426

Interface javax.servlet.jsp.tagext.Tag

The Tag interface contains methods and constants defining the life cycle of a tag
handler class (see Figure 5-25).

Mainly, the methods fall in one of the two following categories:

• JavaBean property setter methods, called by the JSP engine to set the state of
the tag handler instance. The corresponding JavaBean getter method is
generally called from within the tag handler. The methods are
setParent(Tag t)
and setPageContext(PageContext obj).

• Life-cycle methods called by the JSP engine at specific points in the
execution of the tag handler. The methods are
doEndTag,doStartTag, release.

Being root interface of all tag handler classes, the Tag interface defines the
primary life-cycle methods called by the JSP engine when executing the methods
belonging to a custom tag, as defined previously.

The JSP engine is responsible for completely setting up all internal data (by
calling the JavaBean setXXX setter methods) prior to evaluating any tag content.
This content is evaluated by calling the doStartTag and doEndTag methods.

Figure 5-25. The Tag interface

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

427

Class javax.servlet.jsp.tagext.TagSupport

TagSupport is an Adapter class implementing an abstract infrastructure that
supports all methods in the Tag interface, as shown in Figure 5-26. Thus, its main
development benefit is reducing the amount of specific code that the developer
must create.

Tag-wide values, which should be accessible from all parts and methods, are
stored within the values hashtable and retrieved using the getValue, getValues,
setValue, and setValues methods.

Most methods of the TagSupport class are quite self-explanatory, given their
good-fashioned naming convention. The only method that deserves some
special attention within the TagSupport class is findAncenstorWithClass, which
locates the closest enclosing tag handler of the particular class provided. Take a look at
Listing 5-16, which illustrates the use of the findAncestorWithClass method.

Figure 5-26. The TagSupport class

��������	

��
�
��

��������
�������
���
����

����
��

Chapter 5

428

Listing 5-16. The findAncestorWithClass method

// Let us assume that the JSP document has a structure like so:

//

// <xyz:parentTag >

// <xyz:firstChildTag >

// <xyz:innerChildTag />

// </ xyz:firstChildTag >

// </ xyz:parentTag >

//

// A nice way to access a reference to either of the enclosing tags

// from within the methods of the innerChildTag handler class is:

public void someMethodInInnerChildTagHandler()

{

 // Get a reference to the handler class of parentTag

 ParentTagHandler myParent = (ParentTagHandler) findAncestorWithClass(

 this, ParentTagHandler.class);

 // Check sanity

 if(myParent == null) throw new JspException("The innerChildTag must" +

 "be contained within a parentTag.");

 // Get a reference to the handler class of firstChildTag

 Child1TagHandler bigSister = (Child1TagHandler) findAncestorWithClass(

 this, Child1TagHandler.class);

 // Check sanity

 if(bigSister == null) throw new JspException("The innerChildTag must"

 + "be contained within a firstChildTag.");

 // Call some methods within the handler instances.

 ...

}

As shown in Listing 5-16, the findAncestorWithClass method may be used to
obtain a reference to an enclosing parent having a particular type. This is useful
to avoid type mismatches and corresponding exceptions when calling the parent
from the child.

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

429

Interface javax.servlet.jsp.tagext.IterationTag

The IterationTag interface extends the Tag interface and defines an additional life-
cycle method called by the Web container at the end of the IterationTag body
evaluation. The IterationTag interface introduces but one new method, doAfterBody,
as shown in Figure 5-27.

The doAfterBody method is called once after each pass through the body text.
As long as the doAfterBody method returns BodyTag.EVAL_BODY_AGAIN, the iteration
over the body text continues.

In practice, it is uncommon to implement the IterationTag interface directly;
most tag handler classes requiring the functionality of the IterationTag would
instead extend the TagSupport class (see “Class
javax.servlet.jsp.tagext.TagSupport” later in this chapter).

Interface javax.servlet.jsp.tagext.BodyTag

The BodyTag interface extends the IterationTag interface, defining additional life-
cycle methods that facilitate modifying the body text contained in the tag, as
shown in Figure 5-28.
When the JSP engine generates the servlet, the calling order of the methods will
always be:

1. The JSP engine creates a BodyContent object from the text in the container
body and calls setBodyContent using the newly created object. Using
methods within the BodyContent, the text may be retrieved or sent to the
JspWriter of the enclosing tag handler.

2. doInitBody is called once, prior to first pass through the body text.

Figure 5-27. The IterationTag interface

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

430

3. doAfterBody (defined in the IterationTag interface) is called once after
each pass through the body text. As long as the doAfterBody method
returns BodyTag.EVAL_BODY_AGAIN, the iteration over the body text continues.

In practice, it is uncommon to implement the BodyTag interface directly;
most tag handler classes requiring the functionality of the BodyTag would instead
extend the BodyTagSupport class (refer to the following section for a walkthrough
of the BodyTag class).

Class javax.servlet.jsp.tagext.BodyTagSupport

Similar to the TagSupport class, the main benefit of extending from BodyTagSupport
instead of directly implementing the BodyTagSupport interface is that the amount of
trivial code one needs to create is somewhat reduced. Figure 5-29 shows the
BodyTagSupport class.

Note that the added convenience JavaBean properties bodyContent and
previousOut may simplify the development further. The getBodyContent method
returns a reference to information about the body text, and the getPreviousOut
method returns a reference to the out JspWriter of the enclosing context or tag.
Normally, you need to use the previousOut to write text to the JSP document—
which, in turn, is connected to the client browser.

NOTE Refer to Chapter 6 for examples of extending the BodyTag class.

Figure 5-28. The BodyTag interface

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

431

Interface javax.servlet.jsp.tagext.TryCatchFinally

The TryCatchFinally interface shown in Figure 5-30 declares two methods, doCatch
and doFinally, which are called from within automatically generated catch and
finally blocks, respectively.

Thus far, the assumption has been that all code execution would progress
according to plan. If the code of a tag handler class throws an exception during
its execution, a somewhat tricky situation arises. How can the programmer
handle the conditional execution that takes place in the catch and finally blocks
following a try block? The simple answer is that such coding has been left up to
the programmer before JSP version 1.2.

Although it is a simple task to encapsulate all text of a JSP document in a catch-all
try block, it is not recommended, as the JSP document becomes burdened with a

Figure 5-29. The BodyTagSupport class

Figure 5-30. The TryCatchFinally interface

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

432

mandatory <% try { %> ... <% } catch(Exception ex) { // Handler goes here } %>
scriptlet. The JSP document content should replace the … for this pattern to work.
Apart from making the document quite unreadable, the potential for errors in the JSP
document using this structure is quite high.

The better alternative is to let your tag handler class implement the
TryCatchFinally interface, having the two methods doCatch and doFinally as
described in Table 5-3.

...

Java Code Generated from a TryCatchFinally

The stereotypical implementation of the JSP-generated code for a tag handler
class implementing the TryCatchFinally interface reveals little new functionality.
Note, however, the calls to the doCatch(Throwable) and doFinally() methods,
which are inserted into the catch and finally blocks.

For improved readability, the doCatch and doFinally methods in the following
listing appear in bold, and the full type paths converted into simple ones:

 /* ---- apt:VariableTag ---- */

VariableDefinitionTag vt = new VariableDefinitionTag();

vt.setPageContext(pageContext);

vt.setParent(null);

Table 5-3. The Function of Methods doCatch and doFinally

METHOD DECLARATION

Handler method invoked from

within the mandatory catch of the

JSP body

void doCatch(Throwable t) throws Throwable.

Handler method invoked from

within the finally block of the JSP

body (in other words, this method

is always invoked)

void doFinally()

NOTE It is important that the doFinally method does not throw any exceptions
because these cannot normally be handled by the autogenerated Java class.

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

433

try

{

 int startTagResult = vt.doStartTag();

 if (startTagResult == BodyTag.EVAL_BODY_BUFFERED)

 throw new JspTagException("Since tag handler class VariableDefinitionTag "

 + "does not implement BodyTag, it can't return BodyTag.EVAL_BODY_TAG");

 if (startTagResult != Tag.SKIP_BODY)

 {

 do

 {

 } while (vt.doAfterBody() == BodyTag.EVAL_BODY_AGAIN);

 }

 if (vt.doEndTag() == Tag.SKIP_PAGE) return;

}

catch (Throwable t)

{

 vt.doCatch(t);

}

finally

{

 vt.doFinally();

 vt.release();

}

String foo = null;

foo = (String) pageContext.findAttribute("foo");

Extra bonus: The VariableDefinitionTag defines one variable, named foo of
type String. From the previous code, can you determine the value of its <scope>

...

element in the TLD?

Class javax.servlet.jsp.tagext.BodyContent

Non-empty tags, which enclose text between their opening and closing tag
delimiters, may manipulate the enclosed text and optionally react to its content.
The javax.servlet.jsp.tagext.BodyContent class, shown in Figure 5-31, encapsulates a
buffer that holds the body text content and also contains the methods used to
interact with the body text.

At construction time, the BodyContent instance is given a JspWriter object
argument; this object should be the JspWriter connected to the browser output.
One may thereafter get a reference to the contained JspWriter by calling the
getEnclosingWriter method.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

434

The BodyContent class extends JspWriter, so you may regard it as a local
wrapper containing extra convenience methods that extracts the buffered
contents from the wrapped writer. The methods can be divided into the two
following logical groups:

• Retrieving a representation of the BodyContent
string. If you wish to retrieve a
String representation, use the getString method. Should you prefer a Reader
representation, use the getReader method.

• Writing data to the JspWriter of the enclosing JSP page. This JspWriter is
obtained by calling the getEnclosingWriter method. The methods are

writeOut(Writer out), clearBody(), and flush().

The usage of the BodyContent and BodyTagSupport classes is simplest demonstrated
with an example. You’ll develop a custom JSP action called SimpleBodyTag and a
JSP page called simpleBodyTag.jsp. The purpose of the SimpleBodyTag handler is to
provide information about the text that was enclosed inside it. You can see the
resulting output of running the simpleBodyTag.jsp page in Figure 5-32.

The relevant source code of the JSP document, which produced the output
in Figure 5-32, is rather minimalistic. Note that the content of the leftmost cell
simply illustrates the code in the JSP document and does not perform any actual
server-side code invocations. The relevant code of the simpleBodyTag.jsp
document is provided here, and the custom JSP action appears in bold text:

Figure 5-31. The BodyContent interface

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

435

<%@ taglib uri="apressTags" prefix="apt" %>

...

<tr>

<td><apt:SimpleBodyTag>This is a body text.</apt:SimpleBodyTag></td>

<td><apt:SimpleBodyTag>This is a body text.</apt:SimpleBodyTag></td>

</tr>

...

The JSP-to-servlet compiler generated the code in Listing 5-17 for the JSP
document in the preceding snippet. Again, as the code generated may be less than
perfectly simple to read for humans; its variable names, class paths, and indentation
have been cleaned up for easier reading. The bold code in Listing 5-17 corresponds to
the execution of the tag body. Note that the body content from the JSP document has
been converted into the out.write(“This is a body text.”); statement.

Listing 5-17. The autogenerated code for the SimpleBodyTag

/* ---- apt:SimpleBodyTag ---- */

SimpleBodyTag sbt = new SimpleBodyTag();

sbt.setPageContext(pageContext);

sbt.setParent(null);

Figure 5-32. The resulting output of the SimpleBodyTag example custom JSP
action. Only the output in the table cell to the bottom right originate from the
SimpleBodyTag handler; all other output comes from the JSP document,
simpleBodyTag.jsp.

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

436

try

{

 int startResult = sbt.doStartTag();

 if (startResult != Tag.SKIP_BODY)

 {

 try

 {

 if (startResult != Tag.EVAL_BODY_INCLUDE)

 {

 out = pageContext.pushBody();

 sbt.setBodyContent((BodyContent) out);

 }

 sbt.doInitBody();

 do

 {

 out.write("This is a body text.");

 } while (sbt.doAfterBody() == BodyTag.EVAL_BODY_AGAIN);

 }

 finally

 {

 if (startResult != Tag.EVAL_BODY_INCLUDE)

 out = pageContext.popBody();

 }

 }

 if (sbt.doEndTag() == Tag.SKIP_PAGE) return;

}

finally

{

 sbt.release();

}

// end

The full code of the SimpleBodyTag handler class is smaller one than might
think, as simply extending the BodyTagSupport class can perform powerful tasks
without large amounts of custom code. In this case, the only custom code of the
SimpleBodyTag has been supplied in the doAfterBody method. The simple UML
diagram of the tag handler class is shown in Figure 5-33.

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

437

Listing 5-18 displays the full code for the SimpleBodyTag handler class.

Listing 5-18. The SimpleBodyTag handler class

/*

 * Copyright (c) 2000 jGuru.se

 * All rights reserved.

 */

package se.jguru.tags;

import java.util.*;

import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

public class SimpleBodyTag extends BodyTagSupport

{

 /**

 * Method which prints out some status messages regarding its

 * body contents. Therefore, the BodyTagSupport

 * class is used as a superclass of this Tag handler.

 */

 public int doAfterBody() throws JspException

 {

 // Get the BodyContent.

 BodyContent bc = this.getBodyContent();

 // Get the body content as a string.

 String bodyAsString = bc.getString();

 // Get the JspWriter connected to the JSP document

 JspWriter out = this.getPreviousOut();

Figure 5-33. The structure of the SimpleBodyTag handler class is minimalistic—only
the doAfterBody method needs be overridden from the BodyTagSupport superclass.
All other methods are run with the default behaviour from BodyTagSupport.

��������	

��
�
��

��������
�������
���
����

����
��

Chapter 5

438

 // Find out some Reader metadata

 int bufferSize = bc.getBufferSize();

 String strBufSize = "UNKNOWN, size=" + bufferSize;

 if (bufferSize == out.DEFAULT_BUFFER)

 strBufSize = "DEFAULT_BUFFER, " + bufferSize;

 if (bufferSize == out.NO_BUFFER)

 strBufSize = "NO_BUFFER, " + bufferSize;

 if (bufferSize == out.UNBOUNDED_BUFFER)

 strBufSize = "UNBOUNDED_BUFFER, " + bufferSize;

 // Get the fully qualified class name of the BodyContent reader

 String readerClass = bc.getReader().getClass().getName();

 // Clear the original body content from the JSP document.

 // If we do not, the tag body from the JSP document will

 // be written to the client browser. However, our intention

 // is to output onlyprocessed text with metadata about

 // the body text. We must therefore clear the original body,

 // and create a new one.

 bc.clearBody();

 // Now, generate the new body content of this tag.

 try

 {

 out.println("[body size]: " + bodyAsString.length() + "
");

 out.println("[buffer size]: " + strBufSize + "
");

 out.println("[readerClass]: " + readerClass + "
");

 out.println("[contents]: " + bodyAsString + "
");

 }

 catch (Exception ex)

 {

 System.out.println("Whoops! " + ex);

 }

 // Done.

 return Tag.SKIP_BODY;

 }

}

The doAfterBody method of Listing 5-18 prints metadata corresponding to
the BodyContent held by the tag. The explanation of each individual statement in
Listing 5-18 can be found in its comments.

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

439

Class javax.servlet.jsp.tagext.TagExtraInfo

The TagExtraInfo class shown in Figure 5-34, is used as a superclass from which
descriptions about tag handlers are derived.

The extra information about a tag handler provided by the TagExtraInfo class
is required for proper operation in two situations:

• When your tag handler defines scripting variables (in other words, variables
existing within the boundaries of a container tag or from the tag onwards within
the JSP document). Type information about scripting variables is given through
the method public VariableInfo[] getVariableInfo(TagData data), where the
JSP engine encapsulates attribute metadata information in the TagData
object and passes it as a method argument. The return array contains
information and about all variables/attributes created or modified by the
tag handler.

• When you want to perform validation checking of attributes, provided
within a JSP tag. Such validation is achieved by the method
public boolean isValid(TagData data).

Both these methods return or handle arguments that encapsulate attribute
or data information in a similar manner. Their specific details are described in
the following sections on TagData and VariableInfo, respectively.

In addition, the TagExtraInfo class contains a TagInfo object, which contains
information about the attributes declared in the TLD file. This TagInfo object can
be retrieved from the TagExtraInfo class by calling public TagInfo getTagInfo().

Figure 5-34. The TagExtraInfo class

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

440

Class javax.servlet.jsp.tagext.TagInfo

The TagInfo class, shown in Figure 5-35, is used to retrieve runtime metadata
about the attributes of a tag handler class.

Figure 5-35. The TagInfo class

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

441

The metadata retrieved from calling methods in the TagInfo class is interpreted
form the TLD file. The methods of the javax.servlet.jsp.tagext.TagInfo are of
three main types:

• Methods that return a string form of the data found in the taglib.tld. The
methods are getAttributes, getTagName, getBodyContent, and getTagClassName.

• Methods that return containers holding metadata describing other JSP
entities. The methods are
getTagExtraInfo and getTagLibrary.

• Methods that return runtime information from parsing the JSP document.
The method is
getVariableInfo.

The toString method of a TagInfo object returns a String, which provides
some information about the contents of a TagInfo object.

Listing 5-19 is the output result of calling the toString method on a TagInfo
instance. Compare the output in the listing with the provided information in the
taglib.tld file. Can you find any discrepancies?

Listing 5-19. Printout of a TagInfo.toString() call

name = printTypeTree

class = se.jguru.tags.PrintTypeTreeTag

body = JSP

info = Tag iterating over a Map of instances, exposing each instance using its

target JavaBean property.

attributes = { name = allTargets type = null reqTime = true required = true}

The relevant parts of the TLD file which was used as the source for the listing
in 5-19, is reprinted in Listing 5-20.

Listing 5-20. The tag definition in the TLD file

<tag>

 <name>printTypeTree</name>

 <tag-class>se.jguru.tags.PrintTypeTreeTag</tag-class>

 <tei-class>se.jguru.tags.PrintTypeTreeExtraInfo</tei-class>

 <body-content>JSP</body-content>

 <description>Tag iterating over a Map of instances,

 exposing each instance using its target JavaBean

 property.</ description>

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

442

 <attribute>

 <name>allTargets</name>

 <required>yes</required>

 <rtexprvalue>yes</rtexprvalue>

 </attribute>

</tag>

As you can see, the TagInfo class simply contains the parsed version of the
TLD file.

Class javax.servlet.jsp.tagext.TagData

TagData objects contain metadata information describing attribute names and
values used by tags (see Figure 5-36).

The TagData instance vaguely mimics the behavior of a Hashtable from
which data may be retrieved using the getAttribute methods. TagData instances
are created and populated by the JSP engine for your convenience.

If the scripting variable described by a particular TagData object has not yet
been given a value (such as, for instance, is the case with runtime variables being
set by the Tag handler), the scripting variable has the value
TagData.REQUEST_TIME_VALUE. This value simply distinguishes variables having
been set from those not yet given a value.

The three relevant getter methods of the TagData class are:

Figure 5-36. The TagData class

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

443

• public Object getAttribute(String attributeName) is a normal hashtable getter
method, which retrieves the value of the attribute with the provided name.

• public String getAttributeString(String attributeName) is a normal hashtable
getter method, which retrieves the value of the attribute with the provided
name. The difference between the getAttributeString and the getAttribute
methods is simply that the former will typecast the results to a string.

• public String getId() returns the identifier of the tag (in other words, its id
attribute value).

Class javax.servlet.jsp.tagext.VariableInfo

Each VariableInfo instance contains information about a scripting variable
created or modified by a tag handler. All methods in this class, shown in 5-37, are
getter JavaBean methods that return information about a declared variable.

The following methods of the VariableInfo class have simple modes of
operation:

• public String getVarName() returns the name of the variable described. Say
that a VariableInfo instance obj describes a variable that was declared with
the statement String aCuteString;. The call to obj.getVarName() would
return the value "aCuteString" describing the variable name.

Figure 5-37. The VariableInfo class

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

444

• public String getClassName() returns the name of the class of the variable.
Say that a VariableInfo instance obj describes a variable that was declared
with the statement String aCuteString;. The call to obj.getClassName()
would return the value “java.lang.String” describing the class name of the
declared variable.

• public String getDeclare() returns true if the variable is declared by the tag
handler class for which this VariableInfo object is provided.

• public int getScope() returns one of the constants defined in the VariableInfo
class and reveals which scope the declared variable will have in the JSP
document.

• VariableInfo.NESTED denotes that the variable exists only between the
start and end tag delimiters of the tag whose variable is described by the
VariableInfo object.

• VariableInfo.AT_BEGIN indicates that the variable is defined from the start
tag delimiter to the end of the JSP document.

• VariableInfo.AT_END indicates that the variable is defined from the end tag
delimiter to the end of the JSP document.

Figure 5-38 depicts the areas of the JSP document where a declared variable
will be visible. Of course, the variable must be declared by a tag handler class;
examples of classes declaring variables will be provided in the next chapter.

Figure 5-38. The different declaration scopes of a declared variable

��������	

��
�
���

��������
�������
���
����

����
��

Touring the javax.servlet.jsp.tagext Package

445

Class javax.servlet.jsp.tagext.TagAttributeInfo

The TagAttributeInfo class, shown in Figure 5-39, is a simple storage class for
parsed data, and its methods retrieve information about attributes of a tag
handler, as defined in the taglib.tld file.

The methods fall in the two following categories:

• Methods returning parsed and interpreted values from the attribute
definitions provided in the taglib.tld file. The methods are
canBeRequestTime, getName, getTypeName, isRequired, and toString.

• Static convenience method that returns the TagAttributeInfo object for the
id attribute, corresponding to the variable name within the generated
servlet.
The method is
getIdAttribute(TagAttributeInfo a[]).

Class javax.servlet.jsp.tagext.TagLibraryInfo

The TagLibraryInfo class shown in Figure 5-40 is a simple storage class for parsed
data, and its methods retrieve data provided in the taglib descriptor file.

All methods are JavaBean getter methods, which return the data in the
variable with the same name. For instance, the getShortName method returns
the value kept within the shortname variable.

Figure 5-39. The TagAttributeInfo class

��������	

��
�
���

��������
�������
���
����

����
��

Chapter 5

446

The need to manually extract data from the TagLibraryInfo class is rather
limited, as it is mainly intended to be used by the JSP engine in its metadata
extraction.

Class javax.servlet.jsp.tagext.TagLibraryValidator

As the developer of a tag library, you may want to make sure that the <@% taglib ... %>
directive is printed in a proper way. Before JSP version 1.2, there was no simple way
of performing such validation—the TagLibraryValidator class, shown in Figure 5-41,
has been added to the JSP version 1.2 class library to provide a simple way of
validating a TagLib directive within a JSP document.

A TagLibraryValidator instance is global for all directives referring to a
particular TLD file. Its fully qualified class is defined as an XML element in the
TLD file, as seen in earlier “The <validator> Element” section.

The four methods in the class fall in the two following categories:

Figure 5-40. The TagLibraryInfo class

��������	

��
�
���

��������
�������
���
����

����
��

The Role of JSP Tag Libraries in Middle-Tier System Development

447

• Methods manipulating the initialization parameters and state (instance
variables) of the TagLibraryValidator instance. (All parameters are provided
in the TLD file).
�!���
	��!���
���
setInitParameter(Map aMap);
Map getInitParameters(); and release().

• Methods handling life-cycle validation for the TagLibraryValidator instance.
This method is
validate(String prefix, String uri, PageData page).

Any non-null result from the validate method is regarded as an error message by
the JSP engine. If the validate method returns a non-null string, it is wrapped in an
Exception object and thrown by the JSP engine. Be sure to return null from the validate
method to indicate successful validation. If running the Tomcat-4.0 reference
implementation, the root exception prints the following message:

org.apache.jasper.JasperException: TagLibraryValidator in APress

 tutorial TagLib - invalid page: This is an error message from

 the validator.

The last part of the message (“This is an error message from the validator”) is
the string that was returned from the validate method, and the (“APress tutorial
TagLib”) is the short name (content of the <short-name> element) of the TLD file.

The Role of JSP Tag Libraries in Middle-Tier
System Development

JSP taglib definitions are indeed flexible and powerful to use in the development of
server-side customized JSP functionality. The massive increase in complexity to
plan, create, and implement JSP tag libraries compared using the standard JSP
functionality is evident to most developers investigating taglib functionality for

Figure 5-41. The TagLibraryValidator class

��������	

��
�
��

��������
�������
���
����

����
��

Chapter 5

448

the first time. Thus, the relevancy and major benefit of taglibs require a bit of
evaluating.

Many server-side systems have front-end functionality that mimics the
Model View Controller (MVC) design pattern to divide the separate
functionalities of the server. Thus, the middleware front ends commonly use
either of the design patterns (view or controller) illustrated in Figure 5-42.

Briefly consider the functionalities and call order of the two front-end
entities (in other words, the controller and view of the MVC design pattern).
The tasks of the three objects in the pattern are:

• Controller reacts to the input and commands sent by the user. Any capture
of user-supplied data or command parameters is handled by the controller
servlet. When finished in reading all data provided by the user, the
controller servlet updates the model to incorporate the commands from
the user.

Figure 5-42. Frequently used system-wide design pattern for collaborating
components or class clusters when developing a Web application system

��������	

��
�
���

��������
�������
���
����

����
��

The Role of JSP Tag Libraries in Middle-Tier System Development

449

• Model holds the business object state and behavior. All system entities
should be held and manipulated within an application server. Figure 5-42
illustrates the standard J2EE model that assumes an enterprise JavaBeans
(EJB) server as the application server. An application server of some type
should always be used, unless the system is sufficiently small that the model
can be included in the controller or view. Such design is recommended only
for the smallest of systems. The dynamic data required by the view is read
from the model and sent to the view encapsulated within a JavaBean instance.

• View defines non-dynamic HTML code areas and joins it with the dynamic
data extracted from the model. The actual joining is performed by calling
JavaBean getter property methods in the value object, holding model data.

The joining of dynamic and static data presents a fundamental problem, as
two professional roles must work together to create the final result. The developer is
responsible for the dynamic data, and the Web designer/content manager is
responsible for the static data of the view. The system code must be shielded
from improper modifications (such as tampering with the JSP tag syntax) by
mistake—enforcing data encapsulation in the server tier reduces the risk of
having somebody corrupting the JSP document.

Tag library definitions and customized server-side tags provide a good way of
encapsulating the data from the model. In general, more encapsulated and data-wise
hidden modes of operations tend to be more stable in the long run. Also, simpler
models and modes of usage tend to have a rewarding quality about themselves.

The Apache framework Struts uses the model illustrated in Figure 5-42. Refer
to http://jakarta.apache.org/struts/ for a reference to the Struts architecture—
or the next chapter for a walkthrough.

��������	

��
�
���

��������
�������
���
����

����
��

��������	

��
�
���

��������
�������
���
����

����
��

