
6. The Main Theorem

We fix an irrational α ∈ (0, 1) throughout this chapter. All probabilities
are with respect to the random graph G(n, p) with p = n−α. We recall the
statement of our goal, the Main Theorem 1.4.1: For any first order A

lim
n→∞

Pr
[
G(n, n−α) |= A

]
= 0 or 1

6.1 The Look-Ahead Strategy

Our approach is through the Ehrenfeucht Game as described in Section 2.1.
We fix the number k of moves. We shall give a strategy for Duplicator so that,
as n,m→∞, she almost surely wins Ehr(G1, G2, k) where G1 ∼ G(n, n−α)
and G2 ∼ G(m,m−α) are independently chosen.

Let 0 = t0, t1, . . . tk−1 be nonnegative integers. The (t0, . . . , tk−1)− look-
ahead strategy for Duplicator is easy to describe. Duplicator makes any moves
in response to Spoiler so that when there are i rounds remaining in the game
the ti-types of the vertices chosen are the same in both graphs. That is, if
x1, . . . , xk−i ∈ G1, y1, . . . , yk−i ∈ G2 have been chosen then there is a graph
isomorphism from clti

(x1, . . . , xk−i) to clti
(y1, . . . , yk−i) sending each xj to

its corresponding yj .
Of course, it may well be that Duplicator is unable to keep to this strategy.

In that case she loses. But if she is able to keep to this strategy then at
the end of the game the 0-closures are the same and she has won. We shall
give explicit (though surprisingly complicated) t0, . . . , tk−1 so that Duplicator
shall almost surely be able to keep to this strategy. Formally, we find ti by
induction on i. Note that as i represents the number of remaining moves we
are really working backwards from the end of the game. We need show that
almost surely for every x1, . . . , xk−i ∈ G1 and y1, . . . , yk−i ∈ G2 that have the
same ti-type and every xk−i+1 ∈ G1 (Spoiler move) there exists yk−i+1 ∈ G2

(Duplicator move) so that the resulting k − i+ 1-tuples have the same ti−1-
type. [Of course, Spoiler could also move in G2 but this case is the same by
symmetry.] For convenience of exposition we consider the first (i = k) and
final (i = 1) moves separately. In a formal sense this is unnecessary.
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6.1.1 The Final Move

We set t1 = 1. Assume x1, . . . , xk−1 ∈ G1, y1, . . . , yk−1 ∈ G2 have been
chosen with the same 1-closure. Now Spoiler moves and by symmetry we
can assume he picks xk ∈ G1. (Note that we cannot assume xk is a random
choice, quite the opposite!) Let w be the number of previously selected x’s
adjacent to the newly selected xk.

Case 1 (Inside): 1−wα < 0. Then xk ∈ cl1(x1, . . . , xk−1) since the rooted
graph with v = 1 nonroot and w edges is rigid. Let Ψ : cl1(x1, . . . , xk−1) →
cl1(y1, . . . , yk−1) be the isomorphism guaranteed by the 1-types being the
same. Spoiler selects yk = Ψ(xk). (Wily Spoiler’s attempt to trick Duplicator,
as in Section 2.5, is thwarted by her having looked ahead and assured that
not only the induced graphs but the 1-closures were identical.)

Case 2 (Outside): 1 − wα > 0. The rooted graph with k − 1 roots and
one nonroot adjacent to w of the roots is now safe. By our Generic Extension
Theorem 5.3.1 almost surely for every k − 1 vertices in G2 there is a vertex
adjacent to any prescribed w of them and no others. Duplicator picks that
yk ∈ G2 adjacent to just those w of the yj ∈ G2 such that the xk selected by
Spoiler was adjacent in G1 to xj .

6.1.2 The Core Argument (Middle Moves)

Let us fix i with 1 ≤ i ≤ k − 1 and let ti be given. We select ti+1 so that

1. ti+1 ≥ ti
2. Almost surely the ti-closure of any k − i vertices has at most ti+1 − 1

nonroots.

The existence of such ti+1 is a consequence of the Finite Closure Theo-
rem 4.3.2. For notational convenience we set t = ti, u = ti+1. Assume
x1, . . . , xk−i−1 ∈ G1, y1, . . . , yk−i−1 ∈ G2 have been chosen with the same u-
closure. Set x = (x1, . . . , xk−i−1), y = (y1, . . . , yk−i−1) for further notational
convenience. Let Ψ : clu(x) → clu(y) be the graph isomorphism showing that
their u-types are the same. Now Spoiler selects x ∈ G1.

Case 1 (Inside) x ∈ clu(x). Spoiler selects y = Ψ(x). As t ≤ u the u-
closure of x, x is contained in clu(x) (and also for y) so that restricting Ψ
gives an isomorphism from clt(x, x) to clt(y, y).

Case 2 (Outside) x 6∈ clu(x). Set H = clt(x, x) and R = clt(x, x) ∩ clu(x)
and consider the rooted graph (R,H). As x ∈ H but by assumption x 6∈ R
this is a legitimate extension.

We claim (R,H) is safe. Otherwise by Property 4.1.7 it would have a
rigid subextension (R,H ′). The number of nonroots of (R,H ′) would be at
most the number of nonroots of (x, clt(x, x)) which is one plus the number
of nonroots of

(
(x, x), clt(x, x)

)
. We’ve designed u = ti+1 so that this is at

most 1 + (u− 1) = u. Then
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H ′ ⊆ clu(R) ⊆ clu(clu(x)) = clu(x) ⊆ R

a contradiction.
Set R′ = Ψ(R). We apply Generic Extension Theorem 5.3.1 to give a u-

generic (R,H) extension over R′, call it (R′,H ′). The isomorphism Ψ , limited
to R → R′, extends to a graph isomorphism Ψ+ : H → H ′. Spoiler selects
y = Ψ+(x).

Does this work? As H,H ′ are isomorphic clt(y, y) certainly contains H ′.
There are no additional edges in H ′ since there were none in R′ and the
extension was generic. Can there be more points in clt(y, y)? Set New′ =
clt(y, y)−H ′. If New′ 6= ∅ then clt(y, y) would be a rigid extension over H ′

and, by the general bound, New′ would have at most u vertices. Thus the
v ∈ New′ would be adjacent only to vertices in H ′∩clu(x) (not to H ′−clu(x))
and would be a rigid extension over H ′ ∩ clu(x). Hence New′ ⊂ clu

(
clu(x)

)
which is simply clu(x). But then back in G1, setting New = Ψ−1(New′) we
have the same picture with H ∪ New isomorphic to H ′ ∪ New′. In G2 all
points of H ′ ∪New′ can be reached from y, y by rigid extensions of at most
t nonroots and those extensions never go outside of H ′ ∪New′. But then the
same would be true in G1 with the isomorphic H ∪New and that would give
clt(x, x) extra vertices that it doesn’t have.

Fig. 6.1. Spoiler plays Outside x. Duplicator finds y with u-generic (R, H)-
extension. If clt(y, y) had other vertices New′ the genericity would force them
inside clu(y) but then they would have been in clt(x, x) as well

6.1.3 The First Move

Set t = tk. On the first move Spoiler selects some x ∈ G1. Duplicator calcu-
lates clt(x) and must find an y ∈ G2 with the same t-type. To show that she
almost surely succeeds one needs that every t-type of a single vertex either
almost surely or almost never appears in G(n, n−α). There are only a finite
number (by the Finite Closure Theorem 4.3.2) of possible t-types to consider
so it suffices to show this for any particular one. We write the t-type as the
graph H = clt(x), with vertex x specified. We look only at logically possible
H, so that ({x},H) is a rigid extension.

Suppose H contains a subgraph H1 with v1 vertices, e1 edges where v1−
e1α < 0. The expected number of copies of H1 is O(nv1pe1) = O(nv1−e1α)
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which is o(1) so almost surely there are no copies of H1 and hence no copies
of H and hence no x with H = clt(x) exists.

Otherwise (∅,H) is a safe extension. Then not only does there exist a copy
ofH but by the Generic Extension Theorem 5.3.1 there exists an induced copy
of H which is t-generic over the empty set – which means that clt(H) = H.
We know clt(x) contains H, but it is also contained in clt(H) = H and
therefore it is precisely H.

6.2 The Original Argument

We begin by restating the crucial idea of Section 6.1.2 which in some sense
is the centerpiece of the entire argument.

Theorem 6.2.1. Let u ≥ t be such that almost surely the t-closure of any
k+1 vertices has at most u−1 nonroots. Let H be any possible value of clu(x),
where we set x = (x1, . . . , xk). Let H1 be any possible value of clt(x, x). Then
almost surely either
• For every x with clu(x) ∼= H there exists x with clt(x, x) ∼= H1

or
• For every x with clu(x) ∼= H there does not exist x with clt(x, x) ∼= H1.

We want H,H1 to have common vertices x1, . . . , xk. They may or may
not have other common vertices. We call H∗ a picture if it is derived from
H,H1 by identifying the roots (in the prescribed order) and identifying some
(possibly none) other pairs of vertices and otherwise keeping the vertices
distinct. As H∗ has bounded size there are only a finite number of possible
pictures H∗. We actually show that for every such H∗ almost surely either
• For every x with clu(x) ∼= H there exists x with clt(x, x) ∼= H1 andH∪H1

∼=
H∗

or
• For every x with clu(x) ∼= H there does not exist x with clt(x, x) ∼= H1 and
H ∪H1

∼= H∗.

Fig. 6.2. α = π/7. H ∼= cl2(x1, x2). H1
∼= cl1(x1, x2, x). H∗(1), H∗(2) are two (of

many) possible pictures given by identification. In H∗(2) x is Inside. But in H∗(2)
a, c ∈ cl1(x1, x2, x), hence no x can exist with this picture. In H∗(1) x is Outside.
{x, e} is safe over H0 = {x1, x2}. By Generic Extension such x, e almost surely
exist
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In the picture H∗ set H0 = H ∩H1. There are two cases.
Case 1 (Inside) x ∈ H0. Then H = clu(x) determines clt(x, x) so we must

have H1 ⊆ H and can check if H1 is indeed clt(x, x).
Case 2 (Outside) x 6∈ H0. Then we must have (H0,H1) safe. Otherwise

by Property 4.1.7 it would have a rigid subextension (H0,H2) whose number
of nonroots would be at most u − 1 + 1 = u and then H2 would have to
be contained in H. It further must be that in H∗ the t-closure of x, x is
H1, nothing more or less. But suppose these are satisfied. By the Generic
Extension Theorem 5.3.1 for all x with clu(x) ∼= H there will exist a u-
generic extension giving H∗. If the t-closure of x, x was H2, strictly more
than H1, then H2 would be a rigid extension over H1 but by genericity it
would be a rigid extension over H0 but then it would be in H which we have
already checked. 2

The original proof of the Main Theorem 1.4.1 did not use the Ehrenfeucht
game. Rather, it was an induction on the length of the statement. To make
the induction go, however, we need to prove a statement for all predicates
P (x1, . . . , xk) with any number k of free variables. Sentences have k = 0 free
variables. As before, α is a fixed irrational number between zero and one.

Theorem 6.2.2. For every predicate P (x1, . . . , xk) there exists a nonneg-
ative integer t so that the following holds almost surely in G(n, p) with
p = n−α: for each t-type H either all x1, . . . , xk with that t-type satisfy P or
no x1, . . . , xk with that t-type satisfy P .

The proof is by induction on the length of the predicate P . For the atomic
predicates xi ∼ xj and xi = xj we can take t = 0 as the 0-closure includes
this information. If the statement holds for P then it certainly holds for ¬P
with the same value of t. If the statement holds for P,Q with values t1, t2
then it holds for P ∧ Q (or any Boolean function of P,Q) with the value
t = max(t1, t2), as a t-type includes the information about the s-type for all
smaller s. This leaves us with the one important case, a predicate of the form
Q = ∃xP (x1, . . . , xk, x). By induction there is a t so the P (x1, . . . , xk, x) holds
if and only if the t-type of x1, . . . , xk, x is one of some finite list H1, . . . ,Hs.
Let u satisfy the conditions of Theorem 6.2.1. There is a finite list of potention
u-types for x1, . . . , xk. For each such u-type, either almost surely there exists
x with x1, . . . , xk, x having t-type one of H1, . . . ,Hs or almost surely no such
x exists. Call those u-types positive and negative respectively. Then almost
surely Q holds if and only if the u-type of x1, . . . , xk is positive.


