
6. Martingale Hazard Process

In Sect. 4.5, we have introduced the concept of the martingale hazard func-
tion of a random time and we have examined the connection between this
concept and the notion of the hazard function. It appeared, that both notions
coincide if and only if the cumulative distribution function of τ, and thus also
its hazard function, are continuous (see Proposition 4.5.1). In this sense, the
martingale hazard function uniquely characterizes the unconditional proba-
bility distribution of a continuously distributed random time. On the other
hand, we have shown in Sect. 5.1.3 (see Proposition 5.1.3) that if the F-hazard
process is continuous, the process Ht−Γt∧τ follows a G-martingale. The main
goal of this chapter is to extend the concept to the case of a non-trivial fil-
tration, and to examine whether a continuous F-martingale hazard process
uniquely specifies the F-conditional survival probabilities of a random time.

6.1 Martingale Hazard Process Λ

In this chapter, we assume that (G.1) is valid, so that G = H ∨ F. It should
be stressed that the case when H ⊆ F (i.e., F = G) is not excluded. This
means that the situation when τ is an F-stopping time is also covered by the
results of this chapter. The concept of the (F,G)-martingale hazard process
is a direct counterpart of the notion of the martingale hazard function of τ
(the latter can be seen as the (F0,H)-martingale hazard process of τ).

Definition 6.1.1. An F-predictable, right-continuous, increasing process Λ
is called a (F,G)-martingale hazard process of a random time τ if and only
if the process M̃t := Ht − Λt∧τ follows a G-martingale. In addition, Λ0 = 0.
If, in addition, Λt =

∫ t

0
λu du the F-progressively measurable non-negative

process λ is referred to as the (F,G)-martingale intensity process.

Under (G.1), a random time τ and a reference filtration F uniquely specify
the enlarged filtration G through G = H ∨ F. Thus, when (G.1) holds, we
find it convenient to refer to the (F,G)-martingale hazard process of τ as the
F-martingale hazard process of τ.

We first examine the case when the F-martingale hazard process Λ can be
expressed through a straightforward counterpart of formula (4.26). To this
end, we introduce the following condition.
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Condition (F.1) For any t ∈ R+, the σ-fields F∞ and Ht are conditionally
independent given Ft under P; that is, for any bounded, F∞-measurable
random variable ξ and any bounded, Ht-measurable random variable η we
have

E P(ξ η | Ft) = E P(ξ | Ft)E P(η | Ft).

Let us emphasize that Condition (F.1) is satisfied when τ is constructed
through the canonical method (see Sect. 6.5 and 8.2.1). Since Ft ⊆ F∞, we
may restate Condition (F.1) as follows.

Condition (F.1a) For any t ∈ R+ and every u ≤ t, the following equality
holds: P{τ ≤ u | Ft} = P{τ ≤ u | F∞}.

The following condition will also be useful.

Condition (F.2) The process Ft = P{τ ≤ t | Ft} admits a modification with
increasing sample paths.

Under (F.1), we have Ft = P{τ ≤ t | Ft} = P{τ ≤ t | F∞} for any t ∈ R+.
It is thus clear that in this case F admits a modification with increasing
sample paths, so that (F.2) is valid. However, the process F is not necessarily
F-predictable (e.g., when τ is an F-stopping time that is not F-predictable).

6.1.1 Martingale Invariance Property

We work in the following abstract set-up: we are given a probability space
(Ω,G,P) endowed with a filtration G; a reference filtration F is an arbitrary
sub-filtration of G. The definition of martingale invariance property is classic.
It is important to notice that this property is not necessarily preserved under
an equivalent change of the underlying probability measure P.

Definition 6.1.2. A filtration F has the with respect to a filtration G if
any F-martingale follows also a G-martingale.

Condition (M.1) Filtrations F and G, with F ⊆ G, satisfy (M.1) (under P)
whenever F has the martingale invariance property with respect to G.

The following condition appears to be equivalent to (M.1).

Condition (M.2) For any t ∈ R+, the σ-fields F∞ and Gt are conditionally
independent given Ft under P.

By the definition of conditional independence of σ-fields, Condition (M.2)
means that for any bounded, F∞-measurable random variable ξ and any
bounded, Gt-measurable random variable η we have

E P(ξ η | Ft) = E P(ξ | Ft)E P(η | Ft).

Notice that Condition (M.2) can also be re-expressed in the following way.

Condition (M.2a) For any t ∈ R+, and any s ≥ t the σ-fields Fs and Gt

are conditionally independent given the σ-field Ft.
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Since Ft ⊆ Gt and Ft ⊆ F∞, each of the following two conditions is also
equivalent to (M.2).

Condition (M.2b) For any t ∈ R+ and any bounded, F∞-measurable ran-
dom variable ξ we have E P(ξ | Gt) = E P(ξ | Ft).

Condition (M.2c) For any t ∈ R+, and any bounded, Gt-measurable ran-
dom variable η we have E P(η | F∞) = E P(η | Ft).

Lemma 6.1.1. A filtration F has the martingale invariance property with
respect to a filtration G if and only if Condition (M.2) is satisfied. Put another
way, the conditions (M.1) and (M.2) are equivalent.

Proof. Suppose first that (M.2) holds. Let M be an arbitrary F-martingale.
Then for any t ≤ s we have (the first equality below follows from (M.2b))

E P(Ms | Gt) = E P(Ms | Ft) = Mt,

and thus M is a G-martingale. Conversely, suppose that every F-martingale
is a G-martingale. We shall check that this implies (M.2b). To this end, for
any fixed t ≤ s we consider an arbitrary set A ∈ F∞. We introduce the
F-martingale Mu := P{A | Ft}, t ∈ R+. Since M is also a G-martingale, we
obtain

P{A | Gt} = Mt = P{A | Ft}.
By standard arguments, this shows that (M.2b) is valid. �

Assume now that Condition (G.1) holds – that is, we have G = H∨F for
some filtration H. Let us recall that we have also introduced Condition (F.1).
Since Ht ⊆ Gt, it is apparent that (M.2) is stronger than (F.1). It appears
that both conditions are in fact equivalent.

Lemma 6.1.2. Conditions (F.1) and (M.1) are equivalent.

Proof. We already know that conditions (M.1) and (M.2) are equivalent, and
(M.2) is stronger than (F.1). It is enough to check that (F.1) implies (M.2).
Condition (F.1) is equivalent to the following condition: for any bounded,
F∞-measurable random variable ξ we have E P(ξ |Ht ∨ Ft) = E P(ξ | Ft).
Since Gt = Ht ∨ Ft, this immediately gives (M.2b). �

6.1.2 Evaluation of Λ: Special Case

In this section, we assume that (G.1) and (F.2) hold.

Proposition 6.1.1. Assume that F is an increasing, F-predictable process.
Then the process Λ given by the formula

Λt =
∫

]0,t ]

dFu

1 − Fu−
=
∫

]0,t ]

dP{τ ≤ u | Fu}
1 − P{τ < u | Fu}

(6.1)

is the F-martingale hazard process of τ.
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Proof. We need to check that the compensated process Ht − Λt∧τ follows a
G-martingale, where G = H ∨ F. Using (5.3), for t < s we obtain

E P(Hs −Ht | Gt) = P{t < τ ≤ s | Gt} = 11{τ>t}
P{t < τ ≤ s | Ft}

P{τ > t | Ft}

= 11{τ>t}
E P(Fs | Ft) − Ft

1 − Ft
.

On the other hand, for the process Λ given by (6.1) we obtain

E P

(
Λs∧τ − Λt∧τ | Gt

)
= E P

(∫
]t∧τ,s∧τ ]

dFu

1 − Fu−

∣∣∣Gt

)
= E P(11{τ>t} Y | Gt),

where
Y :=

∫
]t,s∧τ ]

dFu

1 − Fu−
= 11{τ>t}Y. (6.2)

Furthermore, using (5.11), we get

E P(11{τ>t}Y | Gt) = 11{τ>t}
E P(11{τ>t}Y | Ft)

P{τ > t | Ft}
.

It is thus enough to verify that for I := E P(11{τ>t}Y | Ft) we have:

I = E P

( ∫
]t,s∧τ ]

dFu

1 − Fu−

∣∣∣Ft

)
= E P(Fs − Ft | Ft). (6.3)

To this end, notice that

I = E P

(
11{τ>s}

∫
]t,s]

dFu

1 − Fu−
+ 11{t<τ≤s}

∫
]t,s∧τ ]

dFu

1 − Fu−

∣∣∣Ft

)
= E P

(
E P

(
11{τ>s}

∫
]t,s]

dFu

1 − Fu−

∣∣∣Fs

)
+ 11{t<τ≤s}

∫
]t,s∧τ ]

dFu

1 − Fu−

∣∣∣Ft

)
= E P

(
(1 − Fs)

∫
]t,s]

dFu

1 − Fu−
+
∫

]t,s]

∫
]t,u]

dFv

1 − Fv−
dFu

∣∣∣Ft

)
= E P

(
(1 − Fs)(Λs − Λt) +

∫
]t,s]

(Λu − Λt) dFu

∣∣∣Ft

)
,

where the third equality is a consequence of (5.19) applied to the F-predictable
process Zs =

∫
]t,s](1−Fu−)−1dFu. To conclude the proof, one may now argue

along similar lines as in the proof of part (i) in Proposition 4.5.1. Under the
present assumptions, Λ and F are processes of finite variation, so that their
continuous martingale parts vanish identically. The product rule (cf. (4.29)):∫

]t,s]

Λu dFu = ΛsFs − ΛtFt −
∫

]t,s]

Fu− dΛu (6.4)

is thus the path-by-path version of the deterministic integration by parts
formula of Lemma 4.2.2. �
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Remarks. Alternatively, to evaluate the conditional expectation

K := E P

(
Λs∧τ − Λt∧τ | Gt

)
,

we can directly apply formula (5.18) of Corollary 5.1.3. It is enough to notice
that

K = E P

(
11{τ>s}(Λs − Λt) | Gt

)
+ E P

(
11{t<τ≤s} Λ̃τ | Gt

)
,

where, for a fixed t, we write Λ̃u = (Λu − Λt)11]t,∞[(u) (so that Λ̃ follows an
F-predictable process). Therefore, an application of (5.18) yields

E P

(
11{t<τ≤s} Λ̃τ | Gt

)
= 11{τ>t}eΓt E P

(∫
]t,s]

(Λu − Λt) dFu

∣∣∣Ft

)
.

On the other hand, (5.11) gives

E P

(
11{τ>s}(Λs − Λt) | Gt

)
= 11{τ>t}eΓt E P(11{τ>s} (Λs − Λt) | Ft).

Combining the above formulae, we obtain

K = 11{τ>t}eΓt E P

(
11{τ>s} (Λs − Λt) +

∫
]t,s]

(Λu − Λt) dFu

∣∣∣Ft

)
= 11{τ>t}eΓt E P

(
(1 − Fs)(Λs − Λt) +

∫
]t,s]

(Λu − Λt) dFu

∣∣∣Ft

)
,

where the last equality is derived by conditioning first with respect to the
σ-field Fs.

6.1.3 Evaluation of Λ: General Case

We maintain the assumption that (G.1) holds. On the other hand, we assume
that either (F.2) is not satisfied (so that the process F is not increasing) or
(F.2) is valid, but the increasing process F is not F-predictable.

Example 6.1.1. For instance, a random time τ can be an F-stopping time,
which is not F-predictable. If τ is an F-stopping time, we have F = H, and
the process H is not F-predictable, unless a stopping time τ is F-predictable.

As the next result shows, the F-martingale hazard process Λ can still be
found through a suitable modification of formula (6.1). In the next result,
we do not need to assume that (F.2) holds. We shall write F̃ to denote
the F-compensator of the bounded F-submartingale F. This means that F̃
is the unique F-predictable, increasing process, with F̃0 = 0, and such that
the compensated process U = F − F̃ follows an F-martingale. Let us recall
that the existence and uniqueness of F̃ is an immediate consequence of the
Doob-Meyer decomposition theorem.

Remarks. In some applications, the F-stopping time τ is assumed to be totally
inaccessible (cf. Dellacherie (1972)). In this case, the compensator F̃ of the
increasing process F = H is known to follow an F-adapted process with
continuous increasing sample paths.
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Lemma 6.1.3. Let Z be a bounded, F-predictable process. Then for any t ≤ s

E P(11{t<τ≤s}Zτ | Ft) = E P

(∫
]t,s]

Zu dF̃u

∣∣∣Ft

)
.

Proof. The martingale property of U = F − F̃ yields

E P

( ∫
]t,s]

Zu d(Fu − F̃u)
∣∣∣Ft

)
= E P

(∫
]t,s]

Zu dUu

∣∣∣Ft

)
= 0.

It is thus enough to make use of (5.19). �

Proposition 6.1.2. (i) The F-martingale hazard process of a random time
τ is given by the formula

Λt =
∫

]0,t ]

dF̃u

1 − Fu−
. (6.5)

(ii) Assume that F̃t = F̃t∧τ for every t ∈ R+, i.e., the process F̃ is stopped
at a random time τ. Then the equality Λ = F̃ is valid.

Proof. It is clear that the process Λ given by (6.5) is F-predictable. We thus
need only to verify that the process M̃t = Ht −Λt∧τ follows a G-martingale.
In the first part of the proof, we proceed along the same lines as in the proof
of Proposition 6.1.1. We find that, in the present case, it is enough to show
that for any s ≥ t (cf. (6.3))

Ĩ := E P

(∫
]t,s∧τ ]

dF̃u

1 − Fu−

∣∣∣Ft

)
= E P(Fs − Ft | Ft) = E P(F̃s − F̃t | Ft),

where the second equality is a consequence of the definition of F̃ . We have

Ĩ = E P

(
11{τ>s}

∫
]t,s]

dF̃u

1 − Fu−
+ 11{t<τ≤s}

∫
]t,s∧τ ]

dF̃u

1 − Fu−

∣∣∣Ft

)
= E P

(
E P

(
11{τ>s}

∫
]t,s]

dF̃u

1 − Fu−

∣∣∣Fs

)
+ 11{t<τ≤s}

∫
]t,s∧τ ]

dF̃u

1 − Fu−

∣∣∣Ft

)
= E P

(
(1 − Fs)

∫
]t,s]

dF̃u

1 − Fu−
+
∫

]t,s]

∫
]t,u]

dF̃v

1 − Fv−
dF̃u

∣∣∣Ft

)
= E P

(
(Λs − Λt)(1 − Fs) +

∫
]t,s]

(Λu − Λt) dF̃u

∣∣∣Ft

)
,

where the third equality follows from Lemma 6.1.3, combined with equality
(5.19). Since Λ is F-predictable and U is an F-martingale, we obtain

E P

(∫
]t,s]

(Λu − Λt) dUu

∣∣∣Ft

)
= 0,
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which in turn entails that

Ĩ = E P

(
(Λs − Λt)(1 − Fs) +

∫
]t,s]

(Λu − Λt) dF̃u

∣∣∣Ft

)
= E P

(
(Λs − Λt)(1 − Fs) +

∫
]t,s]

(Λu − Λt) d(Fu − Uu)
∣∣∣Ft

)
= E P

(
(Λs − Λt)(1 − Fs) +

∫
]t,s]

(Λu − Λt) dFu

∣∣∣Ft

)
.

Our goal is to show that Ĩ = E P(F̃s − F̃t | Ft). For this purpose, we observe
that ∫

]t,s]

(Λu − Λt) dFu = −Λt(Fs − Ft) +
∫

]t,s]

Λu dFu.

Since Λ is a process of finite variation, Itô’s product rule yields∫
]t,s]

Λu dFu = ΛsFs − ΛtFt −
∫

]t,s]

Fu− dΛu. (6.6)

Finally, it follows From (6.5) that∫
]t,s]

Fu− dΛu = Λs − Λt − F̃s + F̃t.

Combining the above formulae, we conclude that

(Λs − Λt)(1 − Fs) +
∫

]t,s]

(Λu − Λt) dFu = F̃s − F̃t. (6.7)

This completes the proof of part (i). We shall now prove part (ii). We assume
that F̃t∧τ = F̃t for t ∈ R+, and thus the process Ft− F̃t∧τ is an F-martingale.
We wish to show that if the process Ht − F̃t∧τ follows a G-martingale, that
is, for any t ≤ s,

E P(Hs − F̃s∧τ | Gt) = Ht − F̃t∧τ

or, equivalently,

E P(Hs −Ht | Gt) = E P(F̃s∧τ − F̃t∧τ | Gt).

By virtue of (5.3), we have

E P(Hs −Ht | Gt) = (1 −Ht)
E P(Hs −Ht | Ft)
E P(1 −Ht | Ft)

. (6.8)

On the other hand, for the random variable J̃ := E P(F̃s∧τ − F̃t∧τ | Gt), we
obtain

J̃ = E P

(
11{τ>t}(F̃s∧τ − F̃t∧τ )

∣∣Gt

)
= (1 −Ht)

E P(F̃s∧τ − F̃t∧τ | Ft)
E P(1 −Ht | Ft)

= (1 −Ht)
E P(Fs − Ft | Ft)
E P(1 −Ht | Ft)

= (1 −Ht)
E P(Hs −Ht | Ft)
E P(1 −Ht | Ft)

,

where the second equality follows from (5.2), and the third is a consequence
of our assumption that the process Ft − F̃t∧τ is an F-martingale. �



172 6. Martingale Hazard Process

Under (F.1), the process F̃ is never stopped at τ, unless τ is an F-stopping
time. To show this assume, on the contrary, that F̃t = F̃t∧τ . Under (F.1),
the process Ft − F̃t∧τ is not only an F-martingale, but also a G-martingale
(see Lemmas 6.1.1–6.1.2). Since by virtue of part (ii) in Proposition 6.1.2
the process Ht − F̃t∧τ is a G-martingale, we conclude that H − F follows
a G-martingale. In view of the definition of F, the last property reads, for
t ≤ s,

E P

(
Hs − E P(Hs | Fs)

∣∣Gt) = Ht − E P(Ht | Ft)

or, equivalently,

E P(Hs −Ht | Gt) = E P

(
E P(Hs | Fs) | Gt) − E P(Ht | Ft) = I1 − I2. (6.9)

Under (F.1), we have (cf. (F.1a))

I1 = E P(P{τ ≤ s | Fs} | Ft ∨Ht) = E P(P{τ ≤ s | F∞} | Ft ∨Ht)
= E P(P{τ ≤ s | F∞} | Ft).

The last equality follows from the F∞-measurability of the random variable
P{τ ≤ s | F∞}, combined with the fact that the σ-fields F∞ and Ht are
conditionally independent given Ft. Consequently,

I1 = E P(E P(Hs | F∞) | Ft) = E P(Hs | Ft).

We conclude that (6.9) can be rewritten as follows:

E P(Hs −Ht | Gt) = E P(Hs | Ft) − E P(Ht | Ft).

Finally, by applying (6.8) to the left-hand side of the last equality, we obtain

(1 −Ht)
E P(Hs −Ht | Ft)
E P(1 −Ht | Ft)

= E P(Hs −Ht | Ft).

Letting s tend to ∞ in the last formula, we obtain Ht = E P(Ht | Ft) or,
more explicitly, P{τ ≤ t | Ft} = 11{τ≤t} for every t ∈ R+. We conclude that
a random time τ is indeed an F-stopping time.

6.1.4 Uniqueness of a Martingale Hazard Process Λ

We shall first examine the relationship between the concept of an F-martingale
hazard process Λ of τ and the classic notion of the G-compensator (that is,
the dual predictable projection) of the jump process H associated with a ran-
dom time τ. For convenience, the compensator of the process H is henceforth
called the compensator of τ.

Definition 6.1.3. A process A is a G-compensator of τ if and only if the
following conditions are satisfied: (i) A is a G-predictable, right-continuous,
increasing process, with A0 = 0, (ii) the process H −A is a G-martingale.
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It is well known that for any random time τ and any filtration G such that
τ is a G-stopping time there exists a unique G-compensator A of τ. Moreover,
At = At∧τ , i.e., the increasing process A is in fact stopped at τ. In the next
auxiliary result, we shall deal with an arbitrary filtration F, which, when
combined with the natural filtration H of a G-stopping time τ, generates the
enlarged filtration G. Since both statements are classic, the proof is omitted.

Lemma 6.1.4. Let F be an arbitrary filtration such that G = H∨ F. Then:
(i) Let A be a G-predictable right-continuous increasing process satisfying
At = At∧τ . Then there exists an F-predictable right-continuous increasing
process Λ such that At = Λt∧τ .
(ii) Let Λ be an F-predictable right-continuous increasing process. Then At =
Λt∧τ is a G-predictable right-continuous increasing process.

The next proposition summarizes the connections between the G-compen-
sator A of τ and the F-martingale hazard process Λ of τ. Once more F is an
arbitrary filtration such that G = H ∨ F.

Proposition 6.1.3. (i) Let A be the G-compensator of τ. Then there exists
an F-martingale hazard process Λ such that At = Λt∧τ .
(ii) Let Λ be an F-martingale hazard process of τ. Then the process At = Λt∧τ

is the G-compensator of τ.

Proof. The first (second, resp.) statement follows from part (i) (part (ii),
resp.) in Lemma 6.1.4. �

From the uniqueness of the G-compensator, combined with part (ii) in
Proposition 6.1.3, it follows that the F-martingale hazard process is unique
up to time τ in the following sense: if Λ1 and Λ2 are the two F-martingale
hazard processes of τ, then the stopped processes coincide: Λ1

t∧τ = Λ2
t∧τ for

every t ∈ R+. To ensure some sort of uniqueness after τ of an F-martingale
hazard process, one needs to impose some additional restrictions.

Let τ be a G-stopping time τ for some filtration G. Then the sub-filtration
F of G for which we have G = H ∨ F is not uniquely specified. Assume that
G = H ∨ F1 = H ∨ F2, and denote by Λi an Fi-martingale hazard process of
τ. Then Λ1

t∧τ = At∧τ = Λ2
t∧τ . It seems natural to search for the F̂-martingale

hazard process, where F̂ is a ‘minimal’ filtration for which G = H ∨ F̂.

6.2 Relationships Between Hazard Processes Γ and Λ

Let us assume that the F-hazard process Γ is well defined (in particular,
τ is not an F-stopping time). We already know that under (G.1), for any
Fs-measurable random variable Y we have (cf. (5.13))

E P(11{τ>s} Y | Gt) = 11{τ>t} E P

(
Y eΓt−Γs | Ft). (6.10)



174 6. Martingale Hazard Process

The natural question, which arises in this context is: can we substitute Γ
with the F-martingale hazard function Λ in the last formula? Of course, the
answer is trivial when it is known that the equality Λ = Γ is satisfied, for
instance, when conditions (G.1) and (F.2) are fulfilled and the process F is
continuous. We are thus in a position the following result, which corresponds
to parts (ii)-(iii) of Proposition 4.5.1.

Proposition 6.2.1. Under (G.1) and (F.2), the following statements hold.
(i) If the increasing process F is F-predictable, but F is not continuous, then
the F-martingale hazard process Λ is also discontinuous process and we have

e−Γt = e−Λc
t

∏
0<u≤t

(1 −∆Λu),

where we write Λc to denote the continuous component of Λ. More explicitly,
Λc

t = Λt −
∑

0≤u≤t ∆Λu for every t ∈ R+.
(ii) If the increasing process F is continuous, then the F-martingale hazard
process Λ is also continuous and

Γt = Λt = − ln (1 − Ft), ∀ t ∈ R+.

If, in addition, the process Λ = Γ is absolutely continuous then for an inte-
grable Fs-measurable random variable Y we get

E P(11{τ>s} Y | Gt) = 11{τ>t} E P

(
Y e

−
∫

s

t
λu du | Ft).

Proof. The hazard process Γ is discontinuous if and only if the process F
admits discontinuities. Under (G.1) and (F.2), by virtue of Proposition 6.1.1,
we have

Gt = −
∫

]0,t ]

Gu− dΛu.

Since Λ is a process of finite variation, we obtain (cf. (4.24)–(4.25))

e−Γt = Gt = e−Λc
t

∏
0<u≤t

(1 −∆Λu).

The second statement is an immediate consequence of part (i). �
The following result is a straightforward consequence of Corollary 5.1.3.

Corollary 6.2.1. Suppose that (G.1) and (F.2) hold and F is a continuous
process. Let Y = h(τ) for some bounded, continuous function h : R+ → R.
Then

E P(Y | Gt) = 11{τ≤t} h(τ) + 11{τ>t} E P

(∫ ∞

t

h(u)eΛt−Λu dΛu

∣∣∣Ft

)
.

Let Z be a bounded, F-predictable process. Then for any t ≤ s

E P(Zτ11{t<τ≤s} | Gt) = 11{τ>t} E P

(∫ s

t

Zue
Λt−Λu dΛu

∣∣∣Ft

)
.
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In some instances, the F-martingale hazard process of a random time τ
can be found through the martingale approach. The following question thus
arises: does the continuity of the F-martingale hazard process Λ imply the
equality Λ = Γ ? The next result furnishes a partial answer to this question.

Proposition 6.2.2. Under (G.1) and (F.2), assume that the filtration F sup-
ports only continuous martingales. If the F-martingale hazard process Λ is
continuous, then the hazard process Γ is also continuous and Γ = Λ.

Proof. We know that the F-martingale hazard process Λ is given by (6.5).
Therefore, if Λ is continuous, then the process F̃ is continuous as well. Since
the F-martingale U = F − F̃ is necessarily continuous, it results that F =
U + F̃ follows a continuous, increasing process. We conclude that Λ is given
by (6.1), so that Λt = − ln (1 − Ft) = Γt. �

Let us state the following conjecture.

Conjecture (A). Under assumptions (G.1) and (F.2), if the F-martingale
hazard process Λ of τ is continuous, then the equality Γ = Λ holds.

The following counter-example – borrowed from Elliott et al. (2000) –
shows that in general (more specifically, when Condition (F.2) fails to hold)
the implication in Conjecture (A) is not valid.

Example 6.2.1. Let W be a standard Brownian motion on (Ω,F,P), where
F = FW is the natural filtration of W. We define a random time τ on
(Ω,F1,P) by setting: τ = sup { t ≤ 1 : Wt = 0 }. In words, τ is the last pas-
sage time to 0 before time 1 by the Brownian motion W. We set G = H∨ F.
Then the F-hazard process of τ equals Γt = − ln (1 − Ft), where

Ft = P{τ ≤ t | Ft} = Ñ
( |Wt|√

1 − t

)
, Ñ(x) :=

√
2
π

∫ x

0

e−u2/2 du.

Let L0 stand for the local time of W at the origin (for the properties of local
times, we refer to Karatzas and Shreve (1991) or Revuz and Yor (1991)). We
claim that the F-martingale hazard process of τ equals, for t ∈ [0, 1],

Λt =

√
2
π

∫ t

0

dL0
s√

1 − s
.

To check this, we shall use the following result (see Yor (1997)).

Proposition 6.2.3. For every t ∈ [0, 1), the F-hazard process of τ equals

Ft = P{τ ≤ t | Ft} = Ñ
( |Wt |√

1 − t

)
. (6.11)

The F-compensator of F equals

F̃t =

√
2
π

∫ t

0

dL0
s√

1 − s
,

where L0 is the local time at the origin of the Brownian motion W.
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Proof. For any fixed t < 1, the event {τ ≤ t} coincides with the event
{dt > 1}, where dt = inf { u ≥ t : Wu = 0}. Let us quote the following
equality (cf. Yor (1997))

dt = t+ inf {u ≥ 0 : Wu+t −Wt = −Wt} = t+ τ̂−Wt

d= t+
W 2

t

G2
. (6.12)

We denote here τ̂b = inf {u ≥ 0 : Ŵu = b}, where Ŵu = Wu+t −Wt, u ≥ 0,
is a Brownian motion independent of FW

t . Also, G has a Gaussian law with
mean 0 and variance 1, and G is independent of Wt.

Standard calculations show that, for any a ∈ R,

P
( a2

G2
> 1 − t

)
= Ñ
( | a |√

1 − t

)
. (6.13)

The Itô-Tanaka formula, combined with the classic identity:

xÑ ′(x) + Ñ ′′(x) = 0,

lead to

Ñ

(
|Wt |√
1 − t

)
=
∫ t

0

Ñ ′
(

|Ws |√
1 − s

)
d

(
|Ws |√
1 − s

)
+

1
2

∫ t

0

Ñ ′′
(

|Ws |√
1 − s

)
ds

1 − s

=
∫ t

0

Ñ ′
(

|Ws |√
1 − s

)
sgn(Ws)√

1 − s
dWs +

∫ t

0

Ñ ′
(

|Ws |√
1 − s

)
dL0

s√
1 − s

.

Let us recall the well-known property of the Brownian local time: if g : R → R
is a non-negative, Borel measurable function, then∫ t

0

g(Ws) dL0
s = g(0)L0

t , ∀ t ∈ R+.

We conclude that

Ñ

(
|Wt |√
1 − t

)
=
∫ t

0

Ñ ′
(

|Ws |√
1 − s

)
sgn(Ws)√

1 − s
dWs +

√
2
π

∫ t

0

dL0
s√

1 − s
.

But, in view of (6.12)–(6.13), we have

Ft = P{τ ≤ t | Ft} = P{dt > 1 | Ft} = Ñ

(
|Wt |√
1 − t

)
,

hence, the F-compensator of F equals

F̃t =

√
2
π

∫ t

0

dL0
s√

1 − s
.

This ends the proof of the proposition. �
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We continue an analysis of our example. Again using the property of
support of the local time, specifically, the equality

L0
t =
∫ t

0

11{Ws=0} dL0
s, ∀ t ∈ R+,

we find that L0
t = L0

t∧τ , and thus F̃t = F̃t∧τ . In view of part (ii) in Proposition
6.1.2, the F-martingale hazard process Λ thus equals F̃ . Furthermore, both
Γ and Λ are continuous processes, but Λ is increasing, while Γ has non-zero
continuous martingale part. We conclude that Γ �= Λ.

Note that Condition (F.2) is not satisfied in the present set-up (hence
(F.1) does not hold either). We conclude that when (F.2) fails to hold, the
continuity of Γ and Λ does not necessarily imply the equality Γ = Λ. Notice
that the G-compensator A of H, which satisfies At = Λt∧τ , is also equal to
F̃ since

F̃t =

√
2
π

∫ t∧τ

0

dL0
s√

1 − s
= Λt∧τ .

Finally, let us notice that the F-martingale hazard process Λ represents at
the same time the F̂-martingale hazard process of τ, where F̂ stands for the
natural filtration of the process |Wt| (it is well known that F̂ is a strict sub-
filtration of F). Likewise, for every t we have

Ft = P{τ ≤ t | Ft} = P{τ ≤ t | F̂t} = F̂t,

so that Γ = Γ̂t.

6.3 Martingale Representation Theorem

We consider the following set-up: we are given a reference filtration F and
the enlarged filtration G = F ∨ H, where the filtration H is generated by a
random time τ. In addition, we assume that the assumptions of Proposition
6.1.2 are valid so that F follows an increasing F-predictable process, and the
F-martingale hazard process Λ of a random time τ is given by the formula

Λt =
∫

]0,t]

dFu

1 − Fu−
. (6.14)

By virtue of the definition of the F-martingale hazard process, the compen-
sated process M̃t = Ht − Λt∧τ follows a G-martingale. In Lemma 5.1.7, we
have proved that the process L, given by the formula

Lt := 11{τ>t}(1 − Ft)−1 =
1 −Ht

1 − Ft
,

follows a G-martingale. We shall now check that the following equality is
valid:

dLt = −(1 − Ft)−1 dM̃t. (6.15)
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To this end, we observe that

At := Λt∧τ =
∫

]0,t]

1 −Hu−
1 − Fu−

dFu =
∫

]0,t]

Lu− dFu. (6.16)

Moreover, since
1 −Ht = Lt(1 − Ft),

using Itô’s lemma, we obtain (notice that L is a process of finite variation)

dHt = Lt− dFt − (1 − Ft) dLt = At − (1 − Ft) dLt

The following result is a counterpart of Proposition 5.2.1.

Proposition 6.3.1. Let Z be an F-predictable process such that the random
variable Zτ is integrable. Then the G-martingale MZ

t := E P(Zτ | Gt) admits
the following integral representation

MZ
t = m0 +

∫
]0,t]

Lt−dmu +
∫

]0,t]

(Zu −Du) dM̃u, (6.17)

where m stands for an F-martingale, given by the formula

mt = E P

( ∫ ∞

0

Zu dFu

∣∣∣Ft

)
,

and
Dt = (1 − Ft)−1E P

(∫ ∞

t

Zu dFu

∣∣∣Ft

)
.

Proof. By virtue of Proposition 5.1.1, we have (cf. (5.18))

MZ
t = E P(Zτ | Gt) = HtZτ + (1 −Ht)Dt = HtZτ + D̂t,

where
D̂t := (1 −Ht)Dt = Lt

(
mt −

∫
]0,t]

Zu dFu

)
.

Since L is a process of finite variation, we obtain

dD̂t = Lt−(dmt − Zt dFt) +Dt(1 − Ft) dLt

= Lt− dmt − Zt dDt +Dt(1 − Ft) dLt

= Lt− dmt − Zt dDt −Dt dM̃t,

where we have used (6.15) and (6.16). Consequently,

dMZ
t = Zt dHt + dD̂t = Lt− dmt + (Zt −Dt) dM̃t.

This gives the desired expression (6.17). �
It is clear that m0 = MZ

0 . Notice also that equality (6.17) can be rewritten
as follows:

MZ
t = m0 +

∫
]0,t∧τ ]

(1 − Ft−)−1 dmu +
∫

]0,t]

(Zu −Du) dM̃u. (6.18)
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6.4 Case of the Martingale Invariance Property

In the next result, we shall work directly with the F-martingale hazard pro-
cess. Therefore, Proposition 6.4.1 also covers the case when the F-hazard
process Γ does not exist (for example, when τ is an F-stopping time). It
appears that a counterpart of formula (6.10), with Γ replaced by Λ, is valid.
However, we need to impose here a suitable continuity condition. The follow-
ing proposition is essentially due to Duffie et al. (1996).

Proposition 6.4.1. Let H ∨ F ⊆ G. Assume that Condition (M.1) is valid,
and the F-martingale hazard process Λ of a random time τ is continuous. For
a fixed s > 0, let Y stand for an Fs-measurable, integrable random variable.
(i) If the (right-continuous) process V, given by the formula

Vt = E P

(
Y eΛt−Λs | Ft), ∀ t ∈ [0, s], (6.19)

is continuous at τ, i.e., if ∆Vs∧τ = Vs∧τ − V(s∧τ)− = 0, then for any t < s
we have

E P(11{τ>s} Y | Gt) = 11{τ>t} E P

(
Y eΛt−Λs | Ft).

(ii) If the process V, given by the formula

Vt = E P

(
eΛt−Λs | Ft), ∀ t ∈ [0, s], (6.20)

is continuous at τ then for any t ≤ s we have

P{τ > s | Gt} = 11{τ>t}E P

(
eΛt−Λs | Ft). (6.21)

Proof. It is clear that it suffices to prove part (i). We shall first check that

Ut := 11{τ>t}Vt = E P

(
∆Vτ 11{t<τ≤s} + 11{τ>s}Y

∣∣Gt

)
(6.22)

or, equivalently,

Ut = E P

( ∫
]t,s]

∆Vu dHu + 11{τ>s}Y
∣∣∣Gt

)
. (6.23)

In view of (6.19), we have Vt = eΛtmt, where m denotes an F-martingale:
mt := E P

(
Y e−Λs | Ft) for t ∈ [0, s]. In view of our assumptions, m also follows

a G-martingale. Using Itô’s product rule, we obtain

dVt = mt− deΛt + eΛt dmt = Vt−e−Λt deΛt + eΛt dmt. (6.24)

On the other hand, another application of Itô’s product rule yields

dUt = (1 −Ht−) dVt − Vt− dHt −∆Vt∆Ht.

Combining the last equality with (6.24), we obtain

dUt = (1 −Ht−)
(
Vt−e−Λt deΛt + eΛt dmt

)
− Vt− dHt −∆Vt dHt,
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so that, after rearranging,

dUt = −∆Vt dHt + dCt. (6.25)

In the last formula, we write C to denote a G-martingale

dCt = (1 −Ht−)eΛt dmt + dDt,

where in turn the G-martingale D equals

dDt = −Vt−
(
dHt − (1 −Ht−)e−Λt deΛt

)
= −Vt− d(Ht − Λt∧τ ) = −Vt− dM̃t.

Since obviously Us = 11{τ>s}Y, equality (6.25) implies (6.23). If the process
V is continuous at τ, then (6.22) yields

E P(11{τ>s} Y | Gt) = 11{τ>t}Vt = 11{τ>t} E P

(
Y eΛt−Λs | Ft).

This completes the proof. �

6.4.1 Valuation of Defaultable Claims

Let an F-adapted process B be given by the formula

Bt = exp
(∫ t

0

ru du
)
, ∀ t ∈ R+,

for some F-progressively measurable, integrable (short-term rate) process r.
It is clear that B, referred to as the (default-free) savings account, follows a
continuous process of finite variation. For a G-predictable process Z, and a
GT -measurable random variable X, we define the value process S by setting

St = Bt E P

(∫
]t,T ]

B−1
u Zu dHu +B−1

T X11{T<τ}
∣∣∣Gt

)
, (6.26)

where Z and X satisfy suitable integrability conditions. The next result,
borrowed from Duffie et al. (1996), is a suitable extension of Proposition
6.4.1. For convenience, we postpone the proof of this result to Sect. 8.3.

Proposition 6.4.2. Assume that Condition (M.1) is fulfilled, and a random
time τ admits an absolutely continuous F-martingale hazard function Λ. For
an F-predictable process Z and an FT -measurable random variable X, we
define the process Vt, t ∈ [0, T ], by setting

Vt = B̃t E P

(∫ T

t

B̃−1
u Zuλu du+ B̃−1

T X
∣∣∣Ft

)
, (6.27)

where B̃ is the ‘savings account’ corresponding to the default-risk-adjusted
short-term rate Rt = rt + λt, specifically,

B̃t = exp
( ∫ t

0

(ru + λu) du
)
.

Then

11{τ>t}Vt = Bt E P

(
B−1

τ (Zτ + ∆Vτ )11{t<τ≤T} +B−1
T X11{T<τ}

∣∣∣Gt

)
.
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Corollary 6.4.1. Let the processes S and V be defined by formulae (6.26)
and (6.27), respectively. Then

St = 11{τ>t}
(
Vt −Bt E P

(
B−1

τ 11{τ≤T}∆Vτ

∣∣Gt

))
.

If, in addition, ∆Vτ = 0, then St = 11{τ>t}Vt for every t ∈ [0, T ].

Conjecture (B). Under (G.1) and (F.1), if Z follows an F-predictable pro-
cess and X is an FT -measurable random variable, then the continuity condi-
tion ∆Vτ = 0 is satisfied.

Let us observe that instead of verifying conjecture (B), to establish the
equality St = 11{τ>t}Vt, which is a handy form of the valuation formula (6.26),
it suffices to show that Λ = Γ and to make use of the following result.

Proposition 6.4.3. Assume that the conditions (G.1) and (F.1) are valid
and a random time τ admits an absolutely continuous F-martingale hazard
function Λ. Let Z be an F-predictable process, and let X be an FT -measurable
random variable. If Γ = Λ then St = 11{τ>t}Vt for t ≤ T, where the processes
S and V are given by expressions (6.26) and (6.27), respectively.

Proof. In view of (F.1), we have (for the first equality, see Lemma 5.1.4)

P{τ ≥ u | F∞ ∨Ht} = 11{τ>t}
P{τ ≥ u | F∞}
P{τ ≥ t | F∞} = 11{τ>t}

P{τ ≥ u | Fu}
P{τ ≥ t | Ft}

for any u > t. Put more explicitly,

P{τ ≥ u | F∞ ∨Ht} = 11{τ>t}eΓt−Γu .

If Z is an F-predictable process and X is an FT -measurable random variable,
using the G-martingale property of the compensated process Ht − Λt∧τ , we
obtain

St = Bt E P

(∫ T

t

B−1
u Zuλu11{u≤τ} du+B−1

T X11{T<τ}
∣∣∣Gt

)
= Bt E P

(∫ T

t

B−1
u Zuλu P{τ ≥ u | F∞ ∨Ht} du

∣∣∣Gt

)
+Bt E P

(
B−1

T X P{τ > T | F∞ ∨Ht}
∣∣∣Gt

)
= 11{τ>t}Bt E P

(∫ T

t

B−1
u Zuλue

Γt−Γu du
∣∣∣Ft ∨Ht

)
+Bt 11{τ>t} E P

(
B−1

T XeΓt−ΓT

∣∣∣Ft ∨Ht

)
= 11{τ>t}Bt E P

(∫ T

t

B−1
u Zuλue

Λt−Λu du
∣∣∣Ft

)
+Bt 11{τ>t} E P

(
B−1

T XeΛt−ΛT

∣∣∣Ft

)
,

where the last equality is an immediate consequence of (F.1) (see, for instance,
condition (M.2b)). Since B̃t = Bte

Λt , the result follows. �
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6.4.2 Case of a Stopping Time

In this section, we assume that the random time τ is an F-stopping time. In
other words, we postulate that H ⊆ F or, equivalently, that F = G. Then,
conditions (F.1), (F.2) and (M.1) are trivially satisfied. On the other hand, it
is clear that F = H, and thus the F-hazard process Γ of τ is not well defined.

Let us comment very briefly on the classification of stopping times (see,
e.g., Dellacherie (1972)). If τ is a G-predictable stopping time, we get the
trivial equality Λ = H, and thus the concept of a G-martingale hazard process
of a G-predictable stopping time is of no real use. If τ is a totally inaccessible
G-stopping time, the G-compensator of the associated jump processH follows
a continuous process (see Theorem V.T40 in Dellacherie (1972)). Recall that
the G-compensator of H is always stopped at τ.

From the previous section, we know that the process Λ can be used in
the evaluation of certain conditional expectations, provided that a certain
continuity condition is fulfilled. The following result, which covers the case
of a totally inaccessible G-stopping time, is an immediate consequence of
Proposition 6.4.1.

Corollary 6.4.2. Assume that τ is a G-stopping time and the G-martingale
hazard process Λ of τ is continuous. For a fixed T > 0, let Y be a GT -
measurable, integrable random variable. If the process Vt, t ∈ [0, T ], given by
the formula

Vt = E P

(
Y eΛt−ΛT | Gt), (6.28)

is continuous at τ then for any t < T we have

E P(11{τ>T} Y | Gt) = 11{τ>t} E P

(
Y eΛt−ΛT | Gt).

Example 6.4.1. Let τ be a random time, given on some probability space
(Ω,G,P), such that the cumulative distribution function F of τ is continuous,
and P{τ > t} > 0 for every t ∈ R+. Let us take G = H. Then τ is a totally
inaccessible G-stopping time and its G-martingale hazard process Λ equals

Λt∧τ =
∫ t∧τ

0

dF (u)
1 − F (u)

.

It is thus clear that we have Λt = Γ 0(t∧ τ) = Λ0(t∧ τ), where Γ 0 (Λ0, resp.)
is the hazard function (the martingale hazard function, resp.) of τ. Let us
set, for t ∈ R+,

Λt =
∫ t

0

dF (u)
1 − F (u)

= Γ 0(t) = Λ0(t).

For Λ given above and any fixed T > 0, the process V associated with the
random variable Y = 1 does not have a discontinuity at τ. Thus, for arbitrary
0 ≤ t < s we have (recall that here Gt = Ht)

P{τ > s | Gt} = 11{τ>t}E P(eΛt−Λs | Gt) = 11{τ>t}
1 − F (s)
1 − F (t)

.
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6.5 Random Time with a Given Hazard Process

We shall examine the standard construction of a random time τ associated
with a given hazard process Φ. It appears that in this method, the process Φ
can be considered either as the F-hazard process Γ, or as the F-martingale
hazard process Λ. Indeed, we shall show that the following properties are
valid:
(i) Φ coincides with the F-hazard process Γ of τ,
(ii) Φ is the F-martingale hazard process of a random time τ,
(iii) Φ is the G-martingale hazard process of a a G-stopping time τ.
Let Φ be an F-adapted, continuous, increasing process given on a filtered
probability space (Ω̃,F, P̃) such that Φ0 = 0 and Φ∞ = +∞. For instance,
Φ can be given by the formula

Φt =
∫ t

0

φu du, ∀ t ∈ R+, (6.29)

where φ is a non-negative, F-progressively measurable process. Our goal is
to construct a random time τ, on an enlarged probability space (Ω,G,P), in
such a way that Φ is an F-(martingale) hazard process of τ. To this end,
we assume that ξ is a random variable on some probability space1 (Ω̂, F̂ , P̂),
with the uniform probability law on [0, 1]. We may take the product space
(Ω = Ω̃× Ω̂, G = F∞ ⊗ F̂) with P = P̃⊗ P̂ as an enlarged probability space.
We define τ : (Ω,G,P) → R+ by setting

τ = inf { t ∈ R+ : e−Φt ≤ ξ } = inf { t ∈ R+ : Φt ≥ − ln ξ }.
As usual, we set Gt = Ht∨Ft for every t, so that Condition (G.1) is satisfied.

Remarks. It is worth stressing that the random time τ constructed above is
not a stopping time with respect to the filtration F. Furthermore, τ is a totally
inaccessible stopping time with respect to the enlarged filtration G = F ∨ H.

We shall now check that properties (i)-(iii) listed above are satisfied.

Proof of (i). We shall find the process Ft = P{τ ≤ t | Ft}. Since clearly
{τ > t} = {e−Φt > ξ}, we get

P{τ > t | F∞} = e−Φt .

Consequently,

1 − Ft = P{τ > t | Ft} = E P

(
P{τ > t | F∞} | Ft

)
= e−Φt ,

and so F is an F-adapted continuous increasing process. In addition,

Ft = 1 − e−Φt = P{τ ≤ t | F∞} = P{τ ≤ t | Ft}. (6.30)

We conclude that Φ coincides with the F-hazard process Γ of τ under P.

1 It is enough to assume that we may define on (Ω,G,�) a random variable ξ,
which is uniformly distributed on [0, 1], and which is independent of the process

Φ (we then set F̂ = σ(ξ)).
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Proof of (ii). We shall now check that Φ represents the F-martingale hazard
process Λ. This can be done either directly, or by establishing the equality
Λ = Γ. Since the process Φ is continuous, to show that Λ = Γ, it is enough
to check that Condition (F.1a) (or, equivalently, Condition (F.1)) holds, and
to apply Corollary 6.2.1. Let us check that (F.1a) is valid. To this end, we fix
t and we consider an arbitrary u ≤ t. Since for any u ∈ R+ we have

P{τ ≤ u | F∞} = 1 − e−Φu , (6.31)

we obtain the desired property:

P{τ ≤ u | Ft} = E P

(
P{τ ≤ u | F∞}

∣∣Ft

)
= 1 − e−Φu = P{τ ≤ u | F∞}.

Alternatively, we may check directly that (F.1) holds. Since

{τ ≤ s} = {Φs ≥ − ln ξ} ∈ F̂ ∨ Fs,

it is clear that Ft ⊆ Ht∨Ft ⊆ F̂∨Ft. Thus, for any bounded, F∞-measurable
random variable ξ we have

E P(ξ |Ht ∨ Ft) = E P(ξ | F̂ ∨ Ft) = E P(ξ | Ft), (6.32)

where the second equality is a consequence of the independence of F̂ and
F∞. This shows that (F.1) holds.

We conclude that the F-martingale hazard process Λ of τ coincides with
Γ, so that, by virtue of part (i): Φt = Λt = Γt = − ln (1 − Ft). Furthermore,
we know that Condition (F.1) is equivalent to (M.2), and thus, by virtue of
Lemma 6.1.1, the martingale invariance property holds, i.e., any F-martingale
also follow a martingale with respect to G.

Proof of (iii). Let us now check directly that Φ is an F-martingale hazard
process of a random time τ. Since Φ is a F-predictable process (and thus
a G-predictable process), we will show at the same time that Φ is also the
G-martingale hazard process of a G-stopping time τ. We need to verify that
the compensated process Ht − Φt∧τ follows a G-martingale. Since, for any
t ≤ s,

E P(Hs −Ht | Gt) = E P(11{t<τ≤s} | Gt) = 11{τ>t} E P(11{t<τ≤s} | Gt),

by virtue of Lemma 5.1.2, we have

E P(Hs −Ht | Gt) = 11{τ>t}
P{t < τ ≤ s | Ft}

P{τ > t | Ft}
.

Using (6.30), we obtain

P{t < τ ≤ s | Ft} = E P(Fs | Ft) − Ft,

and this in turn shows that
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E P(Hs −Ht | Gt) = 11{τ>t}
E P(Fs | Ft) − Ft

1 − Ft
. (6.33)

On the other hand, if we set Y = Φs∧τ − Φt∧τ , then, in view of part (i), we
get (cf. (6.2))

Y = 11{τ>t}Y = ln
(1 − Fs∧τ

1 − Ft∧τ

)
=
∫

]t,s∧τ ]

dFu

1 − Fu
.

Using again (5.2), we obtain (for the last equality in the formula below, see
(6.3))

E P

(
Y | Gt

)
= 11{τ>t}

E P(Y | Ft)
P{τ > t | Ft}

= 11{τ>t}
E P

( ∫
]t,s∧τ ]

(1 − Fu)−1dFu | Ft

)
1 − Ft

= 11{τ>t}
E P(Fs | Ft) − Ft

1 − Ft
.

We conclude that the process Ht − Φt∧τ follows a G-martingale.
Let us analyze the differences between statements (i) and (iii). In part

(i), we consider Φ as an F-hazard process of τ, then using Corollary 5.1.1 we
deduce that for any Fs-measurable random variable Y

E P(11{τ>s} Y | Gt) = 11{τ>t} E P

(
Y eΦt−Φs | Ft). (6.34)

In part (iii), Φ is considered as the G-martingale hazard process then, in view
of Corollary 6.4.2, for any Gs-measurable random variable Y such that the
associated process V is continuous at τ we obtain

E P(11{τ>s} Y | Gt) = 11{τ>t} E P

(
Y eΦt−Φs | Gt). (6.35)

If Y is actually Fs-measurable then we have (see (6.32))

E P

(
Y eΦt−Φs | Gt) = E P

(
Y eΦt−Φs | Ft ∨Ht) = E P

(
Y eΦt−Φs | Ft).

It follows that the associated process V is necessarily continuous at τ, and
formulae (6.34) and (6.35) coincide.

Remarks. Assume that the process Φ is absolutely continuous, it satisfies
(6.29) for some process φ. Then equality (6.33) can be rewritten as follows:

P{t < τ ≤ s | Gt} = 11{τ>t} E P

(
1 − e

−
∫

s

t
φu du

∣∣∣Ft

)
. (6.36)

Using (6.31), we find that the cumulative distribution function of a random
time τ under P equals

F (t) = P{τ ≤ t} = 1 − E P

(
e
−
∫

t

0
φu du

)
= 1 − e

−
∫

t

0
γ0(u) du

,

where we write γ0 to denote the unique F0-intensity (that is, the intensity
function) of τ.

Let us conclude this section by mentioning that the construction of a
random time described above can be extended to the case of a finite family
of F-conditionally independent random times (see Sect. 9.1.2).
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6.6 Poisson Process and Conditional Poisson Process

Until now, we have focused our attention on the case of a single random time
and the associated jump process. In some financial applications, we need to
model a sequence of successive random times. Almost invariably, this is done
by making use of the so-called F-conditional Poisson process, also known as
the doubly stochastic Poisson process. The general idea is quite similar to the
canonical construction of a single random time, which was examined in the
previous section. We start by assuming that we are given a stochastic process
Φ, to be interpreted as the hazard process, and we construct a jump process,
with unit jump size, such that the probabilistic features of consecutive jump
times are governed by the hazard process Φ.
Poisson process with constant intensity. Let us first recall the definition
and the basic properties of the (time-homogeneous) Poisson process N with
constant intensity λ > 0.

Definition 6.6.1. A process N defined on a probability space (Ω,G,P) is
called the Poisson process with intensity λ with respect to G if N0 = 0 and
for any 0 ≤ s < t the following two conditions are satisfied:
(i) the increment Nt −Ns is independent of the σ-field Gs,
(ii)the increment Nt−Ns has the Poisson law with parameter λ(t−s); specif-
ically, for any k = 0, 1, . . . we have

P{Nt −Ns = k | Gs} = P{Nt −Ns = k} =
λk(t− s)k

k!
e−λ(t−s).

The Poisson process of Definition 6.6.1 is termed time-homogeneous, since
the probability law of the increment Nt+h − Ns+h is invariant with respect
to the shift h ≥ −s. In particular, for arbitrary s < t the probability law of
the increment Nt −Ns coincides with the law of the random variable Nt−s.
Let us finally observe that, for every 0 ≤ s < t,

E P(Nt −Ns | Gs) = E P(Nt −Ns) = λ(t− s). (6.37)

We take a version of the Poisson process whose sample paths are, with prob-
ability 1, right-continuous stepwise functions with all jumps of size 1. Let us
set τ0 = 0, and let us denote by τ1, τ2, . . . the G-stopping times given as the
random moments of the successive jumps of N. For any k = 0, 1, . . .

τk+1 = inf {t > τk : Nt �= Nτk
} = inf {t > τk : Nt −Nτk

= 1}.
One shows without difficulties that P{ limk→∞ τk = ∞} = 1. It is convenient
to introduce the sequence ξk, k ∈ N of non-negative random variables, where
ξk = τk − τk−1 for every k ∈ N. Let us quote the following well known result.

Proposition 6.6.1. The random variables ξk, k ∈ N are mutually indepen-
dent and identically distributed, with the exponential law with parameter λ,
that is, for every k ∈ N we have

P{ξk ≤ t} = P{τk − τk ≤ t} = 1 − e−λt, ∀ t ∈ R+.
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Proposition 6.6.1 suggests a simple construction of a process N, which
follows a time-homogeneous Poisson process with respect to its natural fil-
tration FN . Suppose that the probability space (Ω,G,P) is large enough to
support a family of mutually independent random variables ξk, k ∈ N with
the common exponential law with parameter λ > 0. We define the process N
on (Ω,G,P) by setting: Nt = 0 if {t < ξ1} and, for any natural k,

Nt = k if and only if
k∑

i=1

ξi ≤ t <

k+1∑
i=1

ξi.

It can checked that the process N defined in this way is indeed a Poisson
process with parameter λ, with respect to its natural filtration FN . The jump
times of N are, of course, the random times τk =

∑k
i=1 ξi, k ∈ N.

Let us recall some useful equalities that are not hard to establish through
elementary calculations involving the Poisson law. For any a ∈ R and 0 ≤
s < t we have

E P

(
eia(Nt−Ns)

∣∣Gs

)
= E P

(
eia(Nt−Ns)

)
= eλ(t−s)(eia−1),

and
E P

(
ea(Nt−Ns)

∣∣Gs

)
= E P

(
ea(Nt−Ns)

)
= eλ(t−s)(ea−1).

The next result is an easy consequence of (6.37) and the above formulae. The
proof of the proposition is thus left to the reader.

Proposition 6.6.2. The following stochastic processes follow G-martingales.
(i) The compensated Poisson process N̂ defined as

N̂t := Nt − λt.

(ii) For any k ∈ N, the compensated Poisson process stopped at τk

M̂k
t := Nt∧τk

− λ(t ∧ τk).

(iii) For any a ∈ R, the exponential martingale Ma given by the formula

Ma
t := eaNt−λt(ea−1) = eaN̂t−λt(ea−a−1).

(iv) For any fixed a ∈ R, the exponential martingale Ka given by the formula

Ka
t := eiaNt−λt(eia−1) = eiaN̂t−λt(eia−ia−1).

Remarks. (i) For any G-martingale M, defined on some filtered probability
space (Ω,G,P), and an arbitrary G-stopping time τ, the stopped process
M τ

t = Mt∧τ necessarily follows a G-martingale. Thus, the second statement
of the proposition is an immediate consequence of the first, combined with
the simple observation that each jump time τk is a G-stopping time.
(ii) Consider the random time τ = τ1, where τ1 is the time of the first jump
of the Poisson process N. Then Nt∧τ = Nt∧τ1 = Ht, so that the process M̂1

introduced in part (ii) of the proposition coincides with the martingale M̂
associated with τ.
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(iii) The property described in part (iii) of Proposition 6.6.2 characterizes
the Poisson process in the following sense: if N0 = 0 and for every a ∈ R
the process Ma is a G-martingale, then N follows the Poisson process with
parameter λ. Indeed, the martingale property of Ma yields

E P

(
ea(Nt−Ns)

∣∣Gs

)
= eλ(t−s)(ea−1), ∀ 0 ≤ s < t.

By standard arguments, this implies that the random variable Nt − Ns is
independent of the σ-field Gs, and has the Poisson law with parameter λ(t−s).
A similar remark applies to property (iv) in Proposition 6.6.2.

Let us consider the case of a Brownian motion W and a Poisson process
N that are defined on a common filtered probability space (Ω,G,P). In par-
ticular, for every 0 ≤ s < t, the increment Wt −Ws is independent of the
σ-field Gs, and has the Gaussian law N(0, t− s). It might be useful to recall
that for any real number b the following processes follow martingales with
respect to G:

Ŵt = Wt − t, mb
t = ebWt− 1

2 b2t, kb
t = eibWt+

1
2 b2t.

The next result shows that a Brownian motion W and a Poisson process N,
with respect to a common filtration G, are necessarily mutually independent.

Proposition 6.6.3. Let a Brownian motion W and a Poisson process N
be defined on a common filtered probability space (Ω,G,P). Then the two
processes W and N are mutually independent.

Proof. Let us sketch the proof. For a fixed a ∈ R and any t > 0, we have

eiaNt = 1 +
∑

0<u≤t

(eiaNt − eiaNt−) = 1 +
∫

]0,t]

(eia − 1)eiaNu− dNu,

= 1 +
∫

]0,t]

(eia − 1)eiaNu− dN̂u + λ

∫ t

0

(eia − 1)eiaNu− du.

On the other hand, for any b ∈ R, the Itô formula yields

eibWt = 1 + ib

∫ t

0

eibWu dWu − 1
2
b2
∫ t

0

eibWu du.

The continuous martingale part of the compensated Poisson process N̂ is
identically equal to 0 (since N̂ is a process of finite variation), and obviously
the processes N̂ and W have no common jumps. Thus, using the Itô product
rule for semimartingales, we obtain

ei(aNt+bWt) = 1 + ib

∫ t

0

ei(aNu+bWu) dWu − 1
2
b2
∫ t

0

ei(aNu+bWu) du

+
∫

]0,t]

(eia − 1)ei(aNu−+bWu) dN̂u + λ

∫ t

0

(eia − 1)ei(aNu+bWu) du.
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Let us denote fa,b(t) = E P(ei(aNt+bWt)). By taking the expectations of both
sides of the last equality, we get

fa,b(t) = 1 + λ

∫ t

0

(eia − 1)fa,b(u) du− 1
2
b2
∫ t

0

fa,b(u) du.

By solving the last equation, we obtain, for arbitrary a, b ∈ R,

E P

(
ei(aNt+bWt)

)
= fa,b(t) = eλt(eia−1)e−

1
2 b2t = E P

(
eiaNt

)
E P

(
eibWt

)
.

We conclude that for any t ∈ R+ the random variables Wt and Nt are mutu-
ally independent under P.

In the second step, we fix 0 < t < s, and we consider the following
expectation, for arbitrary real numbers a1, a2, b1 and b2,

f(t, s) := E P

(
ei(a1Nt+a2Ns+b1Wt+b2Ws)

)
.

Let us denote ã1 = a1 + a2 and b̃1 = b1 + b2. Then

f(t, s) = E P

(
ei(a1Nt+a2Ns+b1Wt+b2Ws)

)
= E P

(
E P

(
ei(ã1Nt+a2(Ns−Nt)+b̃1Wt+b2(Ws−Wt))

∣∣Gt

))
= E P

(
ei(ã1Nt+b̃1Wt)E P

(
ei(a2(Ns−Nt)+b2(Ws−Wt))

∣∣Gt

))
= E P

(
ei(ã1Nt+b̃1Wt)E P

(
ei(a2Nt−s+b2Wt−s)

))
= fa1,b1(t− s) E P

(
ei(ã1Nt+b̃1Wt)

)
= fa1,b1(t− s)fã1,b̃1

(t),

where we have used, in particular, the independence of the increment Nt−Ns

(and Wt −Ws) of the σ-field Gt, and the time-homogeneity of N and W. By
setting b1 = b2 = 0 in the last formula, we obtain

E P

(
ei(a1Nt+a2Ns)

)
= fa1,0(t− s)fã1,0(t),

while the choice of a1 = a2 = 0 yields

E P

(
ei(b1Wt+b2Ws)

)
= f0,b1(t− s)f0,b̃1

(t).

It is not difficult to check that

fa1,b1(t− s)fã1,b̃1
(t) = fa1,0(t− s)fã1,0(t)f0,b1(t− s)f0,b̃1

(t).

We conclude that for any 0 ≤ t < s and arbitrary a1, a2, b1, b2 ∈ R:

E P

(
ei(a1Nt+a2Ns+b1Wt+b2Ws)

)
= E P

(
ei(a1Nt+a2Ns)

)
E P

(
ei(b1Wt+b2Ws)

)
.

This means that the random variables (Nt, Ns) and (Wt,Ws) are mutually
independent. By proceeding along the same lines, one may check that the ran-
dom variables (Nt1 , . . . , Ntn) and (Wt1 , . . . ,Wtn) are mutually independent
for any n ∈ N and for any choice of 0 ≤ t1 < . . . < tn. �
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Let us now examine the behavior of the Poisson process under a specific
equivalent change of the underlying probability measure. For a fixed T > 0,
we introduce a probability measure P∗ on (Ω,GT ) by setting

dP∗

dP

∣∣∣
GT

= ηT , P-a.s., (6.38)

where the Radon-Nikodým density process ηt, t ∈ [0, T ], satisfies

dηt = ηt−κ dN̂t, η0 = 1, (6.39)

for some constant κ > −1. Since Y := κN̂ is a process of finite variation,
we know from Lemma 4.4.1 that (6.39) admits a unique solution, denoted as
Et(Y ) or Et(κN̂); it can be seen as a special case of the Doléans (or stochastic)
exponential. By solving (6.39) path-by-path, we obtain

ηt = Et(κN̂) = eYt

∏
0<u≤t

(1 +∆Yu)e−∆Yu = eY c
t

∏
0<u≤t

(1 +∆Yu),

where Y c
t := Yt −

∑
0<u≤t∆Yu is the path-by-path continuous part of Y.

Direct calculations show that

ηt = e−κλt
∏

0<u≤t

(1 + κ∆Nu) = e−κλt(1 + κ)Nt = eNt ln(1+κ)−κλt,

where the last equality holds if κ > −1. Upon setting a = ln(1 + κ) in part
(iii) of Proposition 6.6.2, we get Ma = η; this confirms that the process η
follows a G-martingale under P. We have thus proved the following result.

Lemma 6.6.1. Assume that κ > −1. The unique solution η to the SDE
(6.39) follows an exponential G-martingale under P. Specifically,

ηt = eNt ln(1+κ)−κλt = eN̂t ln(1+κ)−λt(κ−ln(1+κ)) = Ma
t , (6.40)

where a = ln(1+κ). In particular, the random variable ηT is strictly positive,
Pa.s. and E P(ηT ) = 1. Furthermore, the process Ma solves the following SDE:

dMa
t = Ma

t−(ea − 1) dN̂t, Ma
0 = 1. (6.41)

We are in the position to establish the well-known result, which states
that under P∗ the process Nt, t ∈ [0, T ], follows a Poisson process with the
constant intensity λ∗ = (1 + κ)λ.

Proposition 6.6.4. Assume that under P a process N is a Poisson process
with intensity λ with respect to the filtration G. Suppose that the probability
measure P∗ is defined on (Ω,GT ) through (6.38) and (6.39) for some κ > −1.
(i) The process Nt, t ∈ [0, T ], follows a Poisson process under P∗ with respect
to G with the constant intensity λ∗ = (1 + κ)λ.
(ii) The compensated process N∗

t , t ∈ [0, T ], defined as

N∗
t = Nt − λ∗t = Nt − (1 + κ)λt = N̂t − κλt,

follows a P∗-martingale with respect to G.
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Proof. From remark (iii) after Proposition 6.6.2, we know that it suffices to
find λ∗ such that, for any fixed b ∈ R, the process M̃ b, given as

M̃ b
t := ebNt−λ∗t(eb−1), ∀ t ∈ [0, T ], (6.42)

follows a G-martingale under P∗. By standard arguments, the process M̃ b is
a P∗-martingale if and only if the product M̃ bη is a martingale under the
original probability measure P. But in view of (6.40), we have

M̃ b
t ηt = exp

(
Nt

(
b+ ln(1 + κ)

)
− t
(
κλ+ λ∗(eb − 1)

))
.

Let us write a = b + ln(1 + κ). Since b is an arbitrary real number, so is a.
Then, by virtue of part (iii) in Proposition 6.6.2, we necessarily have

κλ+ λ∗(eb − 1) = λ(ea − 1).

After simplifications, we conclude that, for any fixed real number b, the
process M̃ b defined by (6.42) is a G-martingale under P∗ if and only if
λ∗ = (1 + κ)λ. In other words, the intensity λ∗ of N under P∗ satisfies
λ∗ = (1 + κ)λ. Also the second statement is clear. �
Remarks. Assume that G = FN , i.e., the filtration G is generated by some
Poisson process N. Then any strictly positive G-martingale η under P is
known to satisfy (6.39) for some G-predictable process κ.

Assume that W is a Brownian motion and N follows a Poisson process
under P with respect to G. Let η satisfy

dηt = ηt−
(
βt dWt + κ dN̂t

)
, η0 = 1, (6.43)

for some G-predictable stochastic process β and some constant κ > −1. A
simple application of the Itô’s product rule shows that if processes η1 and η2

satisfy:
dη1

t = η1
t−βt dWt, dη2

t = η2
t−κ dN̂t,

then the product ηt := η1
t η

2
t satisfies (6.43). Taking the uniqueness of so-

lutions to the linear SDE (6.43) for granted, we conclude that the unique
solution to this SDE is given by the expression:

ηt = exp
( ∫ t

0

βu dWu − 1
2

∫ t

0

β2
u du
)

exp
(
Nt ln(1 + κ) − κλt

)
. (6.44)

The proof of the next result is left to the reader as exercise.

Proposition 6.6.5. Let the probability P∗ be given by (6.38) and (6.44) for
some constant κ > −1 and a G-predictable process β, such that E P(ηT ) = 1.
(i) The process W ∗

t = Wt −
∫ t

0 βu du, t ∈ [0, T ], follows a Brownian motion
under P∗, with respect to the filtration G.
(ii) The process Nt, t ∈ [0, T ], follows a Poisson process with the constant
intensity λ∗ = (1 + κ)λ under P∗, with respect to the filtration G.
(iii) Processes W ∗ and N are mutually independent under P∗.
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Poisson process with deterministic intensity. Let λ : R+ → R+ be
any non-negative, locally integrable function such that

∫∞
0 λ(u) du = ∞. By

definition, the process N (with N0 = 0) is the Poisson process with intensity
function λ if for every 0 ≤ s < t the increment Nt −Ns is independent of the
σ-field Gs, and has the Poisson law with parameter Λ(t) − Λ(s), where the
hazard function Λ equals Λ(t) =

∫ t

0 λ(u) du.
More generally, let Λ : R+ → R+ be a right-continuous, increasing func-

tion with Λ(0) = 0 and Λ(∞) = ∞. The Poisson process with the hazard
function Λ satisfies, for every 0 ≤ s < t and every k = 0, 1, . . .:

P{Nt −Ns = k | Gs} = P{Nt −Ns = k} =
(Λ(t) − Λ(s))k

k!
e−(Λ(t)−Λ(s)).

Example 6.6.1. The most convenient and widely used method of constructing
a Poisson process with a hazard function Λ runs as follows: we take a Poisson
process Ñ with the constant intensity λ = 1, with respect to some filtration G̃,
and we define the time-changed process Nt := ÑΛ(t). The process N is easily
seen to follow a Poisson process with the hazard function Λ, with respect to
the time-changed filtration G, where Gt = G̃Λ(t) for every t ∈ R+.

Since for arbitrary 0 ≤ s < t

E P(Nt −Ns | Gs) = E P(Nt −Ns) = Λ(t) − Λ(s),

it is clear that the compensated Poisson process N̂t = Nt − Λ(t) follows a
G-martingale under P. A suitable generalization of Proposition 6.6.3 shows
that a Poisson process with the hazard function Λ and a Brownian motion
with respect to G follow mutually independent processes under P. The proof
of the next lemma relies on a direct application of the Itô formula, and so it
is omitted.

Lemma 6.6.2. Let Z be an arbitrary bounded, G-predictable process. Then
the process MZ , given by the formula

MZ
t = exp

( ∫
]0,t]

Zu dNu −
∫ t

0

(eZu − 1) dΛ(u)
)
,

follows a G-martingale under P. Moreover, MZ is the unique solution to the
SDE

dMZ
t = MZ

t−(eZt − 1) dN̂t, MZ
0 = 1.

In case of a Poisson process with intensity function λ, it can be easily
deduced from Lemma 6.6.2 that, for any (Borel measurable) function κ :
R+ → (−1,∞), the process

ζt = exp
( ∫

]0,t]

ln(1 + κ(u)) dNu −
∫ t

0

κ(u)λ(u) du
)

is the unique solution to the SDE

dζt = ζt−κ(t) dN̂t, η0 = 1.
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Using similar arguments as in the case of constant κ, one can show that
the unique solution to the SDE

dηt = ηt−
(
βt dWt + κ(t) dN̂t

)
, η0 = 1,

is given by the following expression:

ηt = ζt exp
( ∫ t

0

βu dWu − 1
2

∫ t

0

β2
u du
)
. (6.45)

The next result generalizes Proposition 6.6.5. Again, the proof is left to the
reader.

Proposition 6.6.6. Let P∗ be a probability measure equivalent to P on
(Ω,GT ), such that the density process η in (6.38) is given by (6.45). Then,
under P∗ and with respect to G :
(i) the process W ∗

t = Wt −
∫ t

0 βu du, t ∈ [0, T ], follows a Brownian motion,
(ii) the process Nt, t ∈ [0, T ], follows a Poisson process with the intensity
function λ∗(t) = 1 + κ(t)λ(t),
(iii) processes W ∗ and N are mutually independent under P∗.

Conditional Poisson process. We start by assuming that we are given
a filtered probability space (Ω,G,P) and a certain sub-filtration F of G.
Let Φ be an F-adapted, right-continuous, increasing process, with Φ0 = 0
and Φ∞ = ∞. We refer to Φ as the hazard process. In some cases, we have
Φt =

∫ t

0
φu du for some F-progressively measurable process φ with locally

integrable sample paths. Then the process φ is called the intensity process. We
are in a position to state the definition of the F-conditional Poisson process
associated with Φ. Slightly different, but essentially equivalent, definition of
a conditional Poisson process (also known as the doubly stochastic Poisson
process) can be found in Brémaud (1981) and Last and Brandt (1995).

Definition 6.6.2. A process N defined on a probability space (Ω,G,P) is
called the F-conditional Poisson process with respect to G, associated with
the hazard process Φ, if for any 0 ≤ s < t and every k = 0, 1, . . .

P{Nt −Ns = k | Gs ∨ F∞} =
(Φt − Φs)k

k!
e−(Φt−Φs), (6.46)

where F∞ = σ(Fu : u ∈ R+).

At the intuitive level, if a particular sample path Φ·(ω) of the hazard pro-
cess is known, the process N has exactly the same properties as the Poisson
process with respect to G with the (deterministic) hazard function Φ·(ω). In
particular, it follows from (6.46) that

P{Nt −Ns = k | Gs ∨ F∞} = P{Nt −Ns = k | F∞},

i.e., conditionally on the σ-field F∞ the increment Nt −Ns is independent of
the σ-field Gs.
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Similarly, for any 0 ≤ s < t ≤ u and every k = 0, 1, . . . , we have

P{Nt −Ns = k | Gs ∨ Fu} =
(Φt − Φs)k

k!
e−(Φt−Φs). (6.47)

In other words, conditionally on the σ-field Fu the process Nt, t ∈ [0, u],
behaves like a Poisson process with the hazard function Φ. Finally, for any
n ∈ N, any non-negative integers k1, . . . , kn, and arbitrary non-negative real
numbers s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sn < tn we have

P
( n⋂

i=1

{Nti −Nsi = ki}
)

= E P

( n∏
i=1

(
Φti − Φsi

)ki

ki!
e−(Φti

−Φsi
)
)
.

Let us notice that in all conditional expectations above, the reference filtra-
tion F can be replaced by the filtration FΦ generated by the hazard process.
In fact, an F-conditional Poisson process with respect to G follows also a con-
ditional Poisson process with respect to the filtrations: FN ∨ F and FN ∨ FΦ

(with the same hazard process).
We shall henceforth postulate that E P(Φt) <∞ for every t ∈ R+.

Lemma 6.6.3. The compensated process N̂t = Nt −Φt follows a martingale
with respect to G.

Proof. It is enough to notice that, for arbitrary 0 ≤ s < t,

E P(Nt−Φt | Gs) = E P(E P(Nt−Φt | Gs∨F∞) | Gs) = E P(Ns−Φs | Gs) = Ns−Φs,

where in the second equality we have used the property of a Poisson process
with deterministic hazard function. �

Given the two filtrations F and G and the hazard process Φ, it is not ob-
vious whether we may find a process N, which would satisfy Definition 6.6.2.
To provide a simple construction of a conditional Poisson process, we assume
that the underlying probability space (Ω,G,P), endowed with a reference fil-
tration F, is sufficiently large to accommodate for the following stochastic
processes: a Poisson process Ñ with the constant intensity λ = 1 and an F-
adapted hazard process Φ. In addition, we postulate that the Poisson process
Ñ is independent of the filtration F

Remark. Given a filtered probability space (Ω,F,P), it is always possible to
enlarge it in such a way that there exists a Poisson process Ñ with λ = 1,
independent of the filtration F, and defined on the enlarged space.

Under the present assumptions, for every 0 ≤ s < t, any u ∈ R+, and any
non-negative integer k, we have

P{Ñt − Ñs = k | F∞} = P{Ñt − Ñs = k | Fu} = P{Ñt − Ñs = k}
and

P{Ñt − Ñs = k | F Ñ
s ∨ Fs} = P{Ñt − Ñs = k} =

(t− s)k

k!
e−(t−s).
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The next result describes an explicit construction of a conditional Poisson
process. This construction is based on a random time change associated with
the increasing process Φ.

Proposition 6.6.7. Let Ñ be a Poisson process with the constant intensity
λ = 1, independent of a reference filtration F, and let Φ be an F-adapted, right-
continuous, increasing process. Then the process Nt = ÑΦt , t ∈ R+, follows
the F-conditional Poisson process with the hazard process Φ with respect to
the filtration G = FN ∨ F.

Proof. Since Gs ∨ F∞ = FN
s ∨ F∞, it suffices to check that

P{Nt −Ns = k | FN
s ∨ F∞} =

(Φt − Φs)k

k!
e−(Φt−Φs)

or, equivalently,

P{ÑΦt − ÑΦs = k | F Ñ
Φs

∨ F∞} =
(Φt − Φs)k

k!
e−(Φt−Φs).

The last equality follows from the assumed independence of Ñ and F. �
Remark. Within the setting of Proposition 6.6.7, any F-martingale is also a
G-martingale, so that Condition (M.1) is satisfied.

The total number of jumps of the conditional Poisson process is obviously
unbounded with probability 1. In some financial models (see, e.g., Lando
(1998) or Duffie and Singleton (1999)), only the properties of the first jump
are relevant, though. There exist many ways of constructing the conditional
Poisson process, but Condition (F.1) is always satisfied by the first jump of
such a process, since it follows directly from Definition 6.6.2. In effect, if we
denote τ = τ1, then for any t ∈ R+ and u ≥ t we have (cf. Condition (F1.a)
of Sect. 6.1)

P{τ ≤ t | Fu} = P{Nt ≥ 1 | Fu} = P{Nt−N0 ≥ 1 | G0∨Fu} = P{τ ≤ u | F∞},
where the last equality follows from (6.47). It is also clear, once more by
(6.47), that P{τ ≤ t | Fu} = e−Φu for every 0 ≤ t ≤ u.

Example 6.6.2. Cox process. In some applications, it is natural to consider
a special case of an F-conditional Poisson process, with the filtration F gen-
erated by a certain stochastic process, representing the state variables. To
be more specific, on considers a conditional Poisson process with the inten-
sity process φ given as φt = g(t, Yt), where Y is an Rd-valued stochastic
process independent of the Poisson process Ñ, and g : R+ × Rd → R+ is a
(continuous) function. The reference filtration F is typically chosen to be the
natural filtration of the process Y ; that is, we take F = FY . In such a case,
the resulting F-conditional Poisson process is referred2 to as the Cox process
associated with the state variables process Y, and the intensity function g.

2 It should be acknowledged that the terminology in this area is not uniform across
various sources.
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Our last goal is to examine the behavior of an F-conditional Poisson pro-
cess N under an equivalent change of a probability measure. Let us assume,
for the sake of simplicity, that the hazard process Φ is continuous, and the
reference filtration F is generated by a process W, which follows a Brown-
ian motion with respect to G. For a fixed T > 0, we define the probability
measure P∗ on (Ω,GT ) by setting

dP∗

dP

∣∣∣
GT

= ηT , P-a.s., (6.48)

where the Radon-Nikodým density process ηt, t ∈ [0, T ], solves the SDE

dηt = ηt−
(
βt dWt + κt dN̂t

)
, η0 = 1, (6.49)

for some G-predictable processes β and κ such that κ > −1 and E P(ηT ) = 1.
An application of Itô’s product rule shows that the unique solution to (6.49)
is equal to the product νtζt, where dνt = νtβt dWt and dζt = ζt−κt dN̂t, with
ν0 = ζ0 = 1. The solutions to the last two equations are

νt = exp
(∫ t

0

βu dWu − 1
2

∫ t

0

β2
u du
)

and
ζt = exp (Ut)

∏
0<u≤t

(1 +∆Uu) exp (−∆Uu),

respectively, where we denote Ut =
∫
]0,t] κu dN̂u. It is useful to observe that

ζ admits the following representations:

ζt = exp
(
−
∫ t

0

κu dΦu

) ∏
0<u≤t

(1 + κu∆Nu),

and

ζt = exp
(∫

]0,t]

ln(1 + κu) dNu −
∫ t

0

κu dΦu

)
.

The following result is a counterpart of Proposition 5.3.1.

Proposition 6.6.8. Let the Radon-Nikodým density of P∗ with respect to P
be given by (6.48)–(6.49). Then the process W ∗

t = Wt −
∫ t

0
βu du, t ∈ [0, T ],

follows a Brownian motion with respect to G under P∗, and the process

N∗
t = N̂t −

∫ t

0

κu dΦu = Nt −
∫ t

0

(1 + κu) dΦu, ∀ t ∈ [0, T ], (6.50)

follows a G-martingale under P∗. If, in addition, the process κ is F-adapted,
then the process N follows under P∗ an F-conditional Poisson process with
respect to G, and the hazard process of N under P∗ equals

Φ∗
t =
∫ t

0

(1 + κu) dΦu.


