
Preface

Software engineers have derived a progressively better understanding of the cha-
racteristics of complexity in software. It is now widely recognised that interaction
is probably the most important single characteristic of complex software. Soft-
ware architectures that contain many dynamically interacting components, each
with their own thread of control and engaging in complex coordination proto-
cols, are typically orders of magnitude more complex to correctly and efficiently
engineer than those that simply compute a function of some input through a
single thread of control.

Unfortunately, it turns out that many (if not most) real-world applications
have precisely these characteristics. As a consequence, a major research topic in
computer science over at least the past two decades has been the development
of tools and techniques to model, understand, and implement systems in which
interaction is the norm. Indeed, many researchers now believe that in the future,
computation itself will be understood chiefly as a process of interaction.

Since the 1980s, software agents and multi-agent systems have grown into
what is now one of the most active areas of research and development activity
in computing in general. There are many reasons for the current intensity of
interest, but certainly one of the most important is that the concept of an agent
as an autonomous system, capable of interacting with other agents in order to
satisy its design objectives, is a natural one for software designers. Just as we can
understand many systems as being composed of essentially passive objects, which
have a state and upon which we can perform operations, so we can understand
many others as being made up of interacting, semi-autonomous agents.

This recognition has led to the growth of interest in agents as a new para-
digm for software engineering. The aim of the AOSE-2000 workshop, held at the
ICSE-2000 conference in Limerick, Ireland, in June 2000, was to investigate the
credentials of agent-oriented software engineering, and to gain an understanding
of what agent-oriented software engineering might look like.

Some 32 papers were submitted to the workshop, and after refereeing, about
half were accepted for presentation. After the workshop, these papers were revi-
sed in light of the discussions at the workshop and, together with a selection of
invited papers (by Bussmann, Petrie, Rana, and Shehory), these revised papers
make up the volume you are now reading.

We are convinced that agents have a significant role to play in the future
of software engineering. This book offers insights into the issues that will shape
that future.

September 2000 Paolo Ciancarini
Michael Wooldridge



Organising Committee

Paolo Ciancarini (chair) University of Bologna, Italy
email ciancarini@cs.unibo.it

Michael Wooldridge (co-chair) University of Liverpool, UK
email M.J.Wooldridge@csc.liv.ac.uk

Programme Committee

Carlos Angel Iglesias Fernandez Spain
Dennis Heimbinger Germany
Michael Huhns USA
Nicholas Jennings UK
Liz Kendall Australia
Yannis Labrou USA
Jaeho Lee Korea
James Odell USA
Andrea Omicini Italy
Jan Treur The Netherlands
Jeffrey Tsai USA
Robert Tolksdorf Germany
Franco Zambonelli Italy



Topics of Interest

The workshop invited the submission of all papers covering aspects of agent-
oriented software engineering, but particularly the following:

– Methodologies for agent-oriented analysis and design
– Relationship of agent-oriented software to other paradigms (e.g., OO)
– UML and agent systems
– Agent-oriented requirements analysis and specification
– Refinement and synthesis techniques for agent-based specifications
– Verification and validation techniques for agent-based systems
– Software development environments and CASE tools for AOSE
– Standard APIs for agent programming
– Formal methods for agent-oriented systems, including specification and ve-

rification logics
– Engineering large-scale agent systems
– Experiences with field-tested agent systems
– Best practice in agent-oriented development
– Market and other economic models in agent systems engineering
– Practical coordination and cooperation frameworks for agent systems

We were particularly interested in papers that addressed to the following
questions:

1. The “OO mindset” contains about half a dozen key concepts – class, instance,
encapsulation, inheritance, polymorphism, and so on. In your view, what are
the key concepts in the “agent-oriented” mindset? If you had to identify just
one, then what would it be and why? How do we identify what should and
should not be modelled/implemented as an agent? What are the key features
you look for in a problem that suggests an agent-based solution?

2. Over the past few years, there has been an increasing trend in the object-
oriented community towards the development of “agent-like” features. Ex-
amples include distributed objects (CORBA, RMI), applets, mobile object
systems, and coordination mechanisms and languages. This trend is likely to
continue at least in the short term. Given this, how does an agent-oriented
software engineering view sit in relation to other software paradigms, in par-
ticular, object-oriented development? What are the key attributes of agent-
oriented development that make it unique and distinctive?

3. What is the impact of agent-oriented languages and tools on the software de-
velopment process? How can legacy software architectures be integrated with
agent- or multi-agent-oriented applications? Which specification, design, im-
plementation, maintenance, or documentation systems and strategies have
to be adopted in order to deal with agent-oriented issues?

4. Agent-based solutions are not appropriate to all applications. One of the keys
to the success of agent-oriented software engineering is therefore to identify
the application requirements that indicate an agent-based solution. What
are the key properties that indicate an agent-based approach is appropriate?


