
8 GRAPHS

8.1 INTRODUCTION

The structure of mathematics is based on relations between the elements of sets.
The sets contain given elements. The relations are also sets and contain tuples
which are formed from the elements of sets according to given rules of operation.
In this manner, relationships between selected elements of sets are described
symbolically.

The relations between elements may be visualized diagrammatically. In the dia-
gram, the elements are represented as vertices, whereas the relationships are
represented as edges. Simple relations can thus be represented visually in a
plane. A relation for which such a visualization exists is called a graph. The dia-
gram of vertices and edges is often also called a graph.

Since a graph is a visualizable relation, the algebra of relations forms the basis of
graph theory. The algebra of relations for finite sets may be transformed into a
boolean vector and matrix algebra. Basic definitions and rules of the algebra of
relations for finite graphs are treated in Section 8.2.

Various applications require graphs with specific properties. Simple graphs, di-
rected graphs, bipartite graphs, multigraphs and hypergraphs are distinguished
with respect to these properties. The nomenclature for graphs varies considerably
in the literature. For instance, simple and directed graphs are often also called ordi-
nary graphs and digraphs, respectively. The different classes of graphs, their prop-
erties and their relationships are treated in Section 8.3.

Graphs may be classified with respect to their structural properties. For this pur-
pose, the graph is considered as a domain consisting of vertices and edges. An
edge sequence in the graph is a chain of connected edges which form either a path
or a cycle. The study of paths and cycles leads to a definition of different forms of
connectedness of graphs. The removal of some of the vertices and edges of a
graph (a cut in the graph) leads to subgraphs; their connectedness is an essential
structural property of the graph. The fundamentals of the structural analysis and
further classification of simple and directed graphs are treated in Section 8.4.

The determination of paths in networks with specific properties is a basic problem
of graph theory. A network is represented as a weighted graph in which the edges
are weighted according to the properties under consideration. The various path
problems are unified by abstraction. This leads to a path algebra for weighted
graphs. The fundamentals of the path algebra and the algebraic methods of solu-
tion are treated in Section 8.5.

490 8.1 Introduction

The determination of flows in networks is a problem in graph theory related to the
theory of optimization. As in the case of path problems, the networks for flow prob-
lems are represented by weighted graphs. The flows in the network must satisfy
the law of conservation of mass and may be bounded by given capacities. To deter-
mine optimal flows, the principles of optimization are applied to graph theory. The
fundamentals of flows in networks are treated in Section 8.6.

Graph theory has a large spectrum of applications. In computer science, for exam-
ple, graph theory is applied in the theory of automata, in the theory of networks and
in connection with formal languages and data structures. In engineering, it is
applied to object-oriented modelling in the study of communications, transport and
supply systems and of planning, decision and production processes. Some ap-
plications are shown as examples in connection with the theoretical foundations.
The theoretical foundations treated here, as well as their applications, are re-
stricted to finite graphs.

538 8.4 Structure of Graphs : Introduction

8.4 STRUCTURE OF GRAPHS

8.4.1 INTRODUCTION

Structure : The structure of a graph is uniquely determined by the relations of
the domain. For example, the structure of a directed graph (V ; R) is determined
by the edge relation R. In analogy with vector algebra, topology and group theory,
the question arises whether a graph may be decomposed into subgraphs which
have simple structural characteristics and yield insight into the essential structural
properties of the graph. Paths and cycles are examples of such subgraphs.

The foundations for the structural analysis of graphs are first treated for directed
graphs with directed edges and then transferred to simple graphs with undirected
edges. Multigraphs and hypergraphs may be transformed into directed and simple
graphs, so that the foundations of structural analysis treated here also apply to
these graphs.

Paths and cycles : Graphs consist of vertices and edges. An edge sequence in
a graph is a chain of connected edges. An open edge sequence with different start
and end vertices is a path. A closed edge sequence with identical start and end
vertices is a cycle. Paths and cycles can be simple or elementary. Graphs without
cycles are called acyclic graphs. Graphs which consist entirely of cycles are called
cyclic graphs. Paths and cycles in directed and simple graphs are treated in
Sections 8.4.2 and 8.4.5.

Connectedness : A graph is said to be connected if there is an edge sequence
between any two vertices. Different forms of connectedness are defined for direct-
ed graphs, in particular strong and weak connectedness. Every graph which is not
strongly or weakly connected has a unique decomposition into strongly or weakly
connected components. The connectedness of directed and simple graphs is
treated in Sections 8.4.3 and 8.4.6.

Cuts : The effects of removing edges and vertices on the connectedness of a
graph are studied. Edges are cut, or vertices are excised together with the incident
edges, and the connectedness of the remaining graph is studied. These consider-
ations lead to a classification of edges and vertices and to the definition of multiple
vertex-disjoint connectedness and multiple edge-disjoint connectedness of
graphs. Cuts in directed and simple graphs are treated in Sections 8.4.4 and 8.4.7.

539Graphs

8.4.2 PATHS AND CYCLES IN DIRECTED GRAPHS

Introduction : A directed graph G�(V ; R) is a structured set. It consists of the
vertex set V and a binary vertex relation R which corresponds to a set of directed
edges. The vertex set V is equipped with structure by the vertex relation R. The
structural properties of a directed graph are entirely determined by the properties
of the relation R.

Various concepts are introduced in order to study the structural properties of di-
rected graphs and to cast them in a mathematical form. The definition of paths and
cycles in a directed graph forms the basis of the structural analysis. The existence
of paths and cycles between two vertices leads to the formation of the transitive
closure R� of the relation R. The properties of the transitive closure allow a classifi-
cation into acyclic, anticyclic and cyclic graphs. The essential concepts and funda-
mentals for the structural analysis of directed graphs are treated in the following.

Predecessor and successor : A vertex x is called a predecessor of a vertex y
if there is an edge from x to y in the graph, so that the ordered vertex pair (x,y) is
contained in the relation R. If x is a predecessor of y, then y is called a successor
of x.

x predecessor of y � (x, y)�R �
y successor of x � (y, x)�RT

A vertex x in a vertex set V may be regarded as a unary point relation in V. In the
following, this unary point relation is also designated by x. The predecessorship
and the successorship of vertices x,y�V are formulated as an inclusion using such
unary relations :

x predecessor of y � x yT - R �
y successor of x � y xT - RT

The set of all predecessors of a vertex x�V is designated by tP (x), the set of all
successors of x by tS (x). The sets tP (x) and tS (x) are unary relations in V and are
determined as follows using the edge relation R :

predecessors of x : tP (x) � R x

successors of x : tS (x) � RTx

540 8.4.2 Structure of Graphs : Paths and Cycles in Directed Graphs

Indegree and outdegree : The number of predecessors of a vertex x is called
the indegree of x and is designated by gP(x). The indegree gP(x) corresponds to
the number of elements in the set tP (x), and hence to the number of directed edges
which end at the vertex x. The number of successors of a vertex x is called the
outdegree of x and is designated by gS(x). The outdegree gS(x) corresponds to
the number of elements in the set tS(x), and hence to the number of directed edges
which emanate from the vertex x.

indegree gP (x) � | tP (x)| � |R x|

outdegree gS (x) � | tS (x)| � |RTx|

The sum of the indegrees of all vertices x�V is equal to the number of directed
edges of the directed graph, and hence coincides with the number of elements of
the relation R. The same is true for the outdegrees.

sum �
x�V

 gP (x) � �
x�V

 gS (x) � |R|

Example 1 : Predecessors, successors and degrees in directed graphs

ba

ed

c

0a
b
c
d

a b c d e

e

R tP(e)e tS(e)

1 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 1
0 0 1 1 0

0
0
0
0
1

a
b
c
d
e

0a
b
c
d
e

1
0
1
0

0a
b
c
d
e

0
1
1
0

x a b c d e

gP (x) 0 2 2 2 2

gS (x) 2 1 1 2 2

� gP(x)� 8

� gS(x)� 8

The directed graph shown above consists of 5 vertices and 8 directed edges. The
relation is specified by a boolean matrix R. The unary point relation for the vertex e
is shown as a boolean unit vector e. The product Re yields the boolean vector tP(e)
for the set of predecessors of e. It is identical with the column of R which is
associated with the vertex e. The product RTe yields the boolean vector tS(e) for
the set of successors of e. It is identical with the row of R which is associated with
the vertex e. The indegrees and the outdegrees of all vertices are compiled. The
sum of the indegrees and the sum of the outdegrees are both equal to the number
of edges.

541Graphs

Edge sequence : A chain of edges is called an edge sequence if the end vertex
of each edge except for the last edge is the start vertex of the following edge.

edge sequence < (x0, x1), (x1, x2) ,..., (xn�1, xn) >

condition �
n

j�1
((xj�1,xj)�R)

The start vertex x0 of the first edge and the end vertex xn of the last edge are called
the start vertex and the end vertex of the edge sequence, respectively. The ver-
tices x1 to xn�1 are called intermediate vertices of the edge sequence. The num-
ber n of edges is called the length of the edge sequence. An edge may occur more
than once in an edge sequence.

Ancestors and descendants : A vertex x is called an n-th ancestor of a vertex
y if there is an edge sequence of length n from x to y in the graph. If x is an n-th
ancestor of y, then y is called an n-th descendant of x. A 1-st ancestor or 1-st
descendant of x is a predecessor or successor of x, respectively. The n-th ances-
tors and descendants of x are determined recursively from the relationships for
predecessors and successors according to the following rule :

n-th ancestors of x :

t(k)
P

(x) � R t(k�1)
P

(x) for k�1,...,n with t(0)
P

(x) � x

t(n)
P

(x)� Rn x for n > 0

n-th descendants of x :

t(k)
S

(x) � RTt(k�1)
S

(x) for k�1,...,n with t(0)
S

(x) � x

t(n)
S

(x)�(Rn)T x for n > 0

The set of all ancestors of a vertex x is designated by t�P (x); it is determined as
the union of the sets of n-th ancestors of x. The set t�S (x) of all descendants of x
is determined analogously. The transitive closure R� of a relation R with stability
index s, defined in Section 8.2.6, may be used to determine these sets :

ancestors of x :

t�P (x) � t(1)
P

(x) ... t(s)
P

(x)� Rx ... Rs x � R�x

descendants of x :

t�S (x) � t(1)
S

(x) ... t(s)
S

(x)� RTx ... RsT x � R�T x

542 8.4.2 Structure of Graphs : Paths and Cycles in Directed Graphs

Path : A path from a start vertex x via intermediate vertices to an end vertex y is
an edge sequence. In a directed graph, a path may be uniquely represented as
a vertex sequence < x,...,y >. A path < x > with the same start and end vertex x
contains no edges and is called an empty path. The length of an empty path is 0.
There is an empty path for every vertex of a directed graph. The existence of non-
empty paths in a directed graph is established as follows :

there is a path of length n from x to y � xyT - Rn

there is a non-empty path from x to y � xyT - R�

Cycle : A non-empty path whose start vertex and end vertex coincide is called
a cycle. A loop at a vertex is a cycle of length 1. A cycle which contains no loops
is called a proper cycle. If there is a non-empty path from x to y and a non-empty
path from y to x, then the concatenation of the two paths yields a cycle through
x and y. The existence of cycles in a directed graph is established as follows :

there is a cycle of length n�0 through x � xxT - Rn

there is a cycle through x � xxT - R�

there is a cycle through x and y � xyT - R��R�T

Example 2 : Ancestors and descendants, paths and cycles in directed graphs

ba

e

c

0 1 0 1
0 0 0

a
b
c
d

0 1 1 1
0 0 0 0

a b c d
0
1
0
1

e

e 0 0 1 1 0

0

R
d

0 0 0 0
0 1 1

a
b
c
d

0 1 1 1
0 0 1 1

a b c d
1
0
1
0

e

e 0 1 1 1 1

0

R2

0 1 1 1
1 1 1

a
b
c
d

0 1 1 1
0 1 1 1

a b c d
1
1
1
1

e

e 0 1 1 1 1

0

R�

The relation R, the product R2 and the transitive closure R� for the graph under
consideration are shown as boolean matrices. The second ancestors of a vertex
are read off from the column of the matrix R2 associated with that vertex. The
second ancestors of vertex e are a,c,e. The second descendants of a vertex are
read off from the row of the matrix R2 associated with that vertex. The second
descendants of vertex b are c,d. In the same way, the ancestors and descendants
are read off from the matrix R�. Vertex a does not have any ancestors, but it has
the descendants b,c,d,e.

The existence of paths of length 2 may be read off directly from the elements of
the matrix R2. There are paths of length 2 from vertex a to e, namely < a, b, e > and
< a, d, e >. There is no path of length 2 from vertex d to e. There is a path of length 2
from vertex d to vertex d, namely the cycle < d, e, d >. There is a path of length 2
from vertex c to vertex c, namely the improper cycle < c, c, c >. The existence of

543Graphs

non-empty paths may also be read off from the elements of the matrix R�. There
is no path from vertex e to vertex a. There is a non-empty path from vertex e to d,
namely < e, d >, < e, c, d >, < e, c, b, e, d >,... . There are non-empty paths from
vertex e to e, namely the cycles < e, d, e >, < e, c, c, d, e >, < e, c, b,e >,... .

Acyclic graph : A directed graph G�(V ; R) is said to be acyclic if it does not
contain any cycles. The transitive closure R� of an acyclic graph is asymmetric.
If there is a non-empty path from x to y, then there is no non-empty path from y to x,
since otherwise the concatenation of the two paths would yield a cycle.

acyclic graph :� R�� R�T � 0

Anticyclic graph : A directed graph G�(V ; R) is said to be anticyclic if it does
not contain any proper cycles. In contrast to acyclic graphs, an anticyclic graph
may contain loops at the vertices. The transitive closure R� of an anticyclic graph
is antisymmetric.

anticyclic graph :� R�� R�T � - I

Cyclic graph : A directed graph G�(V ; R) is said to be cyclic if every non-empty
path in G belongs to a cycle. The transitive closure R� of a cyclic graph is symmet-
ric. If there is a non-empty path from x to y, then there is also a non-empty path from
y to x, so that the concatenation of the two paths yields a cycle.

cyclic graph :� R�� R�T

Properties : The following relationships hold between the properties of a relation
R and of its transitive closure R�. If the transitive closure R� is asymmetric or
antisymmetric, then the relation R is asymmetric or antisymmetric, respectively. If
the relation R is symmetric, then the transitive closure R� is symmetric. These
relationships lead to the following implications :

acyclic graph � asymmetric graph
anticyclic graph � antisymmetric graph
cyclic graph
 symmetric graph

Example 3 : Properties of graphs

asymmetric
acyclic

asymmetric
cyclic

symmetric
cyclic

These examples show that while every acyclic graph is asymmetric, not every
asymmetric graph is acyclic. They also show that while every symmetric graph is
cyclic, not every cyclic graph is symmetric.

544 8.4.2 Structure of Graphs : Paths and Cycles in Directed Graphs

Simple path : A non-empty path is said to be simple if it does not contain any
edge more than once. The vertices and the edges of a simple path form a subgraph
of the directed graph. If the start vertex and end vertex of a simple path are differ-
ent, the following relationships hold between the indegrees and the outdegrees of
the vertices of the corresponding subgraph :

subgraph for a simple path < x,...,z,...,y > with x � y

start vertex gS (x) � gP (x)�1

intermediate vertex gS (z) � gP (z)

end vertex gS (y) � gP (y)�1

Simple cycle : A simple path whose start vertex and end vertex coincide is called
a simple cycle. In the subgraph for a simple cycle, the indegree and the outdegree
of each vertex are equal.

subgraph for a simple cycle with vertex z

vertex gS (z) � gP (z)

Eulerian paths and cycles : A simple path with different start and end vertices
is called an Eulerian path if it contains all edges of the directed graph. A simple
cycle is called an Eulerian cycle if it contains all edges of the directed graph.

Elementary path : A non-empty path is said to be elementary if it does not con-
tain any vertex more than once. The vertices and the edges of an elementary path
form a subgraph. If the start vertex and end vertex of an elementary path are differ-
ent, then the vertices of the corresponding subgraph have the following indegrees
and outdegrees :

subgraph for an elementary path < x,...,z,...,y > with x � y

start vertex gS (x) � 1 gP (x) � 0

intermediate vertex gS (z) � 1 gP (z) � 1

end vertex gS (y) � 0 gP (y) � 1

Elementary cycle : An elementary path whose start vertex and end vertex coin-
cide is called an elementary cycle. In the subgraph of an elementary cycle, the in-
degree and the outdegree of every vertex are equal to 1. Note that the identical
start and end vertex is counted once, not twice.

subgraph for an elementary cycle with vertex z

vertex gS (z) � gP (z) � 1

545Graphs

Hamiltonian paths and cycles : An elementary path with different start and end
vertices is called a Hamiltonian path if it contains all vertices of the directed graph.
An elementary cycle is called a Hamiltonian cycle if it contains all vertices of the
directed graph.

Example 4 : Eulerian and Hamiltonian paths and cycles

ba

dc

x a b c d

gS (x) 2 1 1 1

gP (x) 1 1 1 2

Eulerian paths < a, d, c, a, b, d >, < a, b, d, c, a, d >

Hamiltonian paths < a, b, d, c >, < b, d, c, a >

ba

dc

x a b c d

gS (x) 2 1 1 2

gP (x) 2 1 1 2

Eulerian cycles < a, d, c, a, b, d, a >, < d, c, a, d, a, b, d >

Hamiltonian cycles < a, b, d, c, a >, < b, d, c, a, b >

546 8.4.3 Structure of Graphs : Connectedness of Directed Graphs

8.4.3 CONNECTEDNESS OF DIRECTED GRAPHS

Introduction : In a directed graph G�(V ; R), a vertex may or may not be reach-
able from another vertex along the directed edges. The concept of reachability
forms the basis for a definition of the connectedness of vertices. Different kinds of
connectedness may be defined, such as strong and weak connectedness. Di-
rected graphs which are not strongly or weakly connected may be decomposed
uniquely into strongly or weakly connected subgraphs. These subgraphs are
called strongly or weakly connected components, respectively. Connectedness
and decompositions of directed graphs are treated in the following.

Reachability : In a directed graph G�(V ; R), a vertex y�V is said to be reach-
able from a vertex x�V if there is an empty or non-empty path from x to y. Vertex
y is reachable from vertex x if and only if the product x yT of the associated point
relations x and y is contained in the reflexive transitive closure R*.

y is reachable from x :� x yT- R* R*� I R�

Strong connectedness : Two vertices x and y of a directed graph are said to be
strongly connected if x is reachable from y and y is reachable from x. A directed
graph is said to be strongly connected if all vertices are pairwise strongly con-
nected.

x and y are strongly connected :� x yT - R*�R*T

the graph is strongly connected :� R*� R*T� E � R*� E

Unilateral connectedness : Two vertices x and y of a directed graph are said
to be unilaterally connected if x is reachable from y or y is reachable from x. A
directed graph is said to be unilaterally connected if all vertices are pairwise
unilaterally connected.

x and y are unilaterally connected :� x yT - R* R*T

the graph is unilaterally connected :� R* R*T� E

Weak connectedness : Two vertices x and y of a directed graph (V ; R) are said
to be weakly connected if they are strongly connected in the symmetric graph
G�(V ; R RT). A directed graph is said to be weakly connected if all vertices are
pairwise weakly connected. Since the transitive closure of a symmetric relation is
symmetric, this definition may be expressed as follows :

x and y are weakly connected :� x yT - (R RT)*

the graph is weakly connected :� (R RT)*� E

547Graphs

Connectedness relations : The relation R of a directed graph G�(V ; R) gen-
erally contains strong, unilateral and weak connections. A relation which contains
only connections of the same type is called a connectedness relation. The con-
nectedness relations for a directed graph G are derived from the relation R and its
reflexive transitive closure R* :

strong connectedness relation : S � R*�R*T

unilateral connectedness relation : P � R* R*T

weak connectedness relation : C � (R RT)*

A strongly connected vertex pair is also unilaterally connected ; a unilaterally con-
nected vertex pair is also weakly connected. Hence a strongly connected graph
is also unilaterally connected, and a unilaterally connected graph is also weakly
connected. For a symmetric graph, the three different kinds of connectedness
coincide.

inclusion : R*�R*T - R* R*T - (R RT)*
connectedness : strong � unilateral � weak

Two different vertices which are strongly connected lie on a cycle. A strongly con-
nected graph is therefore cyclic. The converse is not true in the general case.

strongly connected graph � �� cyclic graph

Example 1 : Connectedness of graphs

strongly connected unilaterally connected

weakly connected not connected

548 8.4.3 Structure of Graphs : Connectedness of Directed Graphs

Properties of the connectedness relations : The strong connectedness rela-
tion S is reflexive, symmetric and transitive. Reflexivity and symmetry follow
directly from the definition. Transitivity follows from the following consideration. If
(x,y) and (y,z) are strongly connected vertex pairs, then z is reachable from x via
y and x is reachable from z via y . Hence (x,z) is also a strongly connected vertex
pair.

The unilateral connectedness relation P is reflexive and symmetric, but generally
not transitive. This follows from the following consideration. If (x, y) and (y, z) are
unilaterally connected vertex pairs, then it is possible that x is only reachable from
y and z is only reachable from y. In this case, neither is x reachable from z, nor
is z reachable from x. Thus (x, z) is not a unilaterally connected vertex pair.

The weak connectedness relation C is by definition the strong connectedness rela-
tion of an associated symmetric graph. This is reflexive, symmetric and transitive.

A reflexive, symmetric and transitive relation is an equivalence relation. Hence the
strong and weak connectedness relations are equivalence relations. The unilat-
eral connectedness relation is generally not an equivalence relation.

Decomposition into connected components : Let G�(V ; R) be a directed
graph. Its strong connectedness relation S�R*�R*T and its weak connectedness
relation C�(R RT)* are equivalence relations. Let Z stand for either of these
equivalence relations. The graph (V ; R) is connected if the equivalence relation Z
is the all relation E. If the graph (V ; R) is disconnected, then it may be uniquely
decomposed into connected subgraphs. The subgraphs are called the connected
components of the graph. The decomposition is carried out in the following steps,
independent of the kind of connectedness being considered :

(1) Connected class : The vertex set V of the graph is partitioned into connect-
ed classes using the relation Z. A connected class [x] with the vertex x as a
representative contains all vertices of V which are connected with x. The
class [x] is a unary relation and is determined as follows :

[x] � Z x

(2) Mapping : The set K of all connected classes is the quotient set V / Z. Each
vertex x�V is mapped to exactly one connected class, yielding a canonical
mapping � :

� : V � K with K � V/Z

(3) Reduced graph : The mapping �� from the vertex set V of the directed graph
G�(V ; R) to the set K of connected classes induces the reduced graph
GK�(K ; RK).

GK � (K ; RK) with RK � �TR�

549Graphs

(4) Connected component : A connected component is a connected subgraph
Gk ..� (Vk , Rk) of a directed graph G�(V ; R). The vertex set Vk contains
all vertices of a connected class k of the graph (V ; R). The edge set Rk�
R� (Vk�Vk) contains the edges from R whose vertices belong to Vk . The
union of all connected components Gk is generally a partial graph of G, since
the union of all vertex sets Vk is the vertex set V and the union of all edge sets
Rk is only a subset of the edge set R.

k�K

 Gk - G

Decomposition into strongly connected components : The vertex set V of
a directed graph G�(V ; R) may be decomposed into strongly connected classes
using its strong connectedness relation Z�S�R*�R*T. Two different classes
cannot be strongly connected in the reduced graph GK� (K ; RK), since strongly
connected vertices belong to the same class. Each connected component Gk�
(Vk ; Rk) has a symmetric transitive closure R�k and is therefore a cyclic graph. The
reduced graph GK� (K ; RK) has an antisymmetric transitive closure R�K and is
therefore an anticyclic graph.

Decomposition into weakly connected components : The vertex set V of a
directed graph G�(V ; R) may be decomposed into weakly connected classes
using its weak connectedness relation Z�C�(R RT)* . Two different classes
cannot be weakly connected in the reduced graph GK� (K ; RK), since weakly
connected vertices belong to the same class and the two vertices of an edge are
at least weakly connected. Hence every directed graph is the union of its weakly
connected components.

G �
k�K

 Gk

550 8.4.3 Structure of Graphs : Connectedness of Directed Graphs

Example 2 : Decomposition into strongly connected components

b

e

f

g

a

c

d F

A

B

directed graph reduced graph

relation R closure R* S� R*� R* T

a
b
c
d
e
f
g

0 1 0 0 0 1 0
0 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0

a b c d e f g
a
b
c
d
e
f
g

1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 1 1

a b c d e f g
a
b
c
d
e
f
g

1 0 0 0 0 0 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1

a b c d e f g

Let the directed graph G�(V ; R) shown in the diagram be given. The relation R,
the reflexive transitive closure R* and the strong connectedness relation S are
shown as boolean matrices. The graph is not strongly connected, since the reflex-
ive transitive closure R* is not equal to the all relation E. It is decomposed into its
strongly connected components.

The strongly connected classes [a], [b] and [f] are determined using the con-
nectedness relation S. The class [a] contains the vertex a, the class [b] contains
the vertices b,c,d,e, and the class [f] contains the vertices f,g. Each vertex of the
graph G is mapped to exactly one strongly connected class. The vertex set is thus
partitioned into three strongly connected classes, which are designated by the
uppercase letters A, B, F of their representatives a, b, f in order to simplify the dia-
gram.

The boolean matrix for the mapping � : V� {A, B, F} is formed columnwise from
the boolean vectors for the unary relations [a], [b], [f]. The edge relation
RK��TR�� � of the reduced graph is calculated as a product of boolean matrices.

551Graphs

RK� �TR �

�

mapping

1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1

1 0 0 0 0 0 0
0 1 1 1 1 0 0
0 0 0 0 0 1 1

0 1 0 0 0 1 0
0 1 1 1 1 1 1
0 0 0 0 0 1 1

0 1 1
0 1 1
0 0 1

1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1

0 1 0 0 0 1 0
0 0 0 1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 0

A
B
F

a b c d e f
g

a
b
c
d
e
f

g

a b c d e f g A B FA B F

g

a
b
c
d
e
f

The decomposition of the directed graph yields three strongly connected compo-
nents, which are cyclic graphs. Like the strongly connected classes, they are des-
ignated by A, B, F. They form a reduced graph which is anticyclic. In the diagram
of the directed graph at the beginning of the example, the strongly connected com-
ponents are shaded. The reduced graph is shown alongside, with the vertices A,
B, F and the directed edges corresponding to the relation RK calculated above.

Example 3 : Decomposition into weakly connected components

e

fb

ca

d

e

fb

ca

d

directed graph with weakly
connected components

symmetric graph with strongly
connected components

The figure shows a directed graph with the vertex set V� {a,..., f }, as well as the
associated symmetric graph. The weakly connected components of the directed
graph and the strongly connected components of the symmetric graph are
shaded.

The decomposition of a directed graph into its weakly connected classes is re-
duced to the decomposition of the symmetric graph into its strongly connected
classes. The strongly connected components of the symmetric graph are not con-
nected by edges, and hence neither are the weakly connected components of the
directed graph. The directed graph is the union of its weakly connected compo-
nents.

552 8.4.4 Structure of Graphs : Cuts in Directed Graphs

8.4.4 CUTS IN DIRECTED GRAPHS

Introduction : The reachability and connectedness of vertices in a directed
graph are treated in the preceding section. In this section, the effects of removing
edges or vertices on reachability and connectedness in the remaining graph are
studied. For this purpose, the concept of cuts is introduced.

In a directed graph, edges may be cut or vertices may be excised. Cutting an edge
means removing the edge from the graph; this leads to a partial graph. Excising
a vertex means removing the vertex as well as the incident edges from the graph;
this leads to a subgraph.

The vertices and edges of a directed graph are classified according to how their
removal affects reachability and connectedness in the graph. This leads to con-
cepts such as vertex cuts and edge cuts or vertex-disjoint and edge-disjoint paths.
These are used to define further structural properties of graphs such as edge-
disjoint connectedness and vertex-disjoint connectedness. These concepts and
the corresponding structural properties of directed graphs are treated in the follow-
ing.

Basic edge : An edge (x, y) in a directed graph G�(V ; R) is called a basic edge
(separating edge) if the vertex y is reachable from the vertex x only via this edge.
If the basic edge is removed, then y is no longer reachable from x.

Chord : An edge (x, y) in a directed graph G�(V ; R) is called a chord if the vertex
y is also reachable from the vertex x via other edges. The chord (x, y) is the
shortest path from x to y.

Basic graph : A partial graph B�(V ; Q) of a directed graph G�(V ; R) is called
a basic graph for G if the following conditions are satisfied :

1. If a vertex y is reachable from a vertex x in the directed graph G, then y is
also reachable from x in the partial graph B.

2. If an edge from x to y is removed from the partial graph B, then y is no longer
reachable from x in the partial graph.

Construction of basic graphs : A basic graph B�(V ; Q) for a directed graph
G�(V ; R) is generally not unique. A basic graph contains all basic edges of the
graph. It may be iteratively constructed from a directed graph by removing a chord
from the current graph in every step. The transitive closure R� of the directed
graph is identical with the transitive closure Q� of a basic graph.

553Graphs

Example 1 : Basic edges and basic graph

The directed graph G�(V ; R) shown below has four basic edges and four chords.
The basic edges are highlighted in the diagram. A basic graph B�(V ; Q) of G is
shown. It contains the four basic edges and also a chord of the directed graph. The
transitive closure R� of the directed graph is identical with the transitive closure
Q� of the basic graph.

directed graph G�(V ; R) transitive closure R�

c

a b

d

e

1 1 0 1
1 0 1

a
b

c
d

1 1 0 1
1 1 0 1

a b c d
1
1
1
1

e

1

e 1 1 0 1 1

basic graph B�(V ; Q) transitive closure Q�

a

c

b

d

e

1 1 0 1
1 0 1

a
b

c
d

1 1 0 1
1 1 0 1

a b c d
1
1
1
1

e

1

e 1 1 0 1 1

Edge cut : Let two different vertices x and y of a directed graph G�(V ; R) be
given. An edge set T(x,y) - R is called an edge cut if removing its edges from the
graph G has the effect that y is no longer reachable from x. An edge cut T(x,y) is
called a minimal edge cut if no other edge cut S(x,y) contains fewer edges than
T(x,y). The number of edges in a minimal edge cut is called the minimal edge cut
size and is designated by min t(x,y). If a minimal edge cut contains exactly one
edge, then this edge is a basic edge of the directed graph.

Both the set of all edges emanating from the vertex x and the set of all edges
ending at the vertex y are edge cuts. Hence the minimal edge cut size is bounded
from above by the outdegree of x and the indegree of y.

min t(x, y) � min {gS(x), gP(y)}

Edge-disjoint paths : Let x and y be two different vertices of a directed graph
G�(V ; R). Two simple paths from x to y are said to be edge-disjoint if they have
no edge in common. An edge-disjoint path set W(x,y) contains paths from x to y
which are pairwise edge-disjoint. It is called a maximal edge-disjoint path set if no
other edge-disjoint path set U(x,y) contains more paths than W(x,y). The number
of paths in a maximal edge-disjoint path set is called the maximal number of edge-
disjoint paths and is designated by max w(x,y).

554 8.4.4 Structure of Graphs : Cuts in Directed Graphs

Every edge emanating from the vertex x and every edge ending at the vertex y can
occur in at most one edge-disjoint path from x to y. The maximal number of edge-
disjoint paths is therefore bounded from above by the outdegree of x and the inde-
gree of y.

max w(x, y) � min {gS(x), gP(y)}

Example 2 : Construction procedures

The following example illustrates two different procedures for constructing an
edge-disjoint path set and a corresponding edge cut. Let the illustrated directed
graph with the vertices x and y be given. It possesses a maximal edge-disjoint path
set W(x,y) with two paths and three minimal edge cuts T(x,y) with two edges each.

x

a

y

b

maximal edge-disjoint path set :

W(x, y)� { � x, a, y �, � x, b, y � }

minimal edge cuts :

T(x, y) : {(x, a), (x, b)}, {(x, a), (b, y)}, {(a, y), (b, y)}

In the first procedure, edge-disjoint paths of the graph G are constructed in the
following steps :

1. Look for a simple path from x to y in the graph G0�G. Let this path be
w1�< x, a, b, y >. A partial graph G1 is formed from the graph G0 by removing
all edges of the path w1 from G0. This prevents the edges of w1 from being
used again in a later step.

w1 �� x, a, b, y�
x

a

y

b

G0

x

a

y

b

G1

2. Look for a simple path from x to y in the graph G1. Since there is no such path,
the construction procedure terminates.

After this construction procedure, the edge-disjoint path set W(x,y)�{w1} consists
only of the path w1 � < x, a, b, y >. It is not maximal. A corresponding edge cut
T(x,y)�{(x,a), (a,b), (b,y)} consists of all edges of the path w1. It is not minimal
and contains a minimal edge cut {(x,a), (b,y)} as a subset.

555Graphs

In the second procedure, edge-disjoint paths of the graph G are constructed in the
following steps :

1. Look for a simple path from x to y in the graph G0�G. Let this path be
w1�< x, a, b, y >. A modified graph G1 is formed from the graph G0 by re-
versing all edges of the path w1 in G0. This prevents the edges of w1 from
being used again with the same direction in a later step.

x

a

y

b

G0

w1 �� x, a, b, y�

G1

y

a

x

b

2. Look for a simple path from x to y in the graph G1. Let this path be
w2�< x, b, a, y >. A modified graph G2 is formed from the graph G1 by re-
versing all edges of the path w2 in G1. This prevents the edges of w2 from
being used again with the same direction in a later step.

G1

w2 �� x, b, a, y�

G2

y

a

x

b

x

a

y

b

Check whether the path w2 contains a reversed edge of the path w1 deter-
mined earlier. The path w2 contains the edge (b,a), which is the reverse of
the edge (a,b) in the path w1. Two shorter paths w

_
1 and w

_
2 are constructed

from the two paths w1 and w2. The path w
_

1�< x, a, y > is the concatenation
of the first subpath < x, a > of w1 and the last subpath < a, y> of w2. The path
w
_

2�< x, b, y > is the concatenation of the first subpath <x, b> of w2 and the
last subpath < b, y > of w1. The path w

_
1 does not contain the edge (a,b), and

the path w
_

2 does not contain the reversed edge (b,a). The graph G2 contains
the edge (a,b) in its original direction, so that this edge is available for the con-
struction of further paths. The paths w1 and w2 are replaced by w

_
1 and w

_
2.

3. Look for a simple path from x to y in the graph G2. Since there is no such path,
the construction procedure terminates.

556 8.4.4 Structure of Graphs : Cuts in Directed Graphs

After this construction procedure, the edge-disjoint path set W(x,y)�{w
_

1,w
_

2} con-
sists of the paths w

_
1�< x, a, y > and w

_
2�< x, b, y >. It is maximal. A corresponding

edge cut T(x,y) consists of one edge from each edge-disjoint path, for example
T(x,y)�{(x, a), (b, y)}. It is minimal.

Edge-disjoint paths and edge cuts : Let two different vertices x and y of a
directed graph G�(V ; R) be given. The maximal number of edge-disjoint paths
leading from x to y is equal to the minimal edge cut size for x and y.

max w(x,y) � min t(x,y)

The proof of this theorem is contained in the following procedure for constructing
a maximal edge-disjoint path set and a minimal edge cut.

Construction of an edge-disjoint path set and an edge cut : Let two different
vertices x and y in a directed graph G�(V ; R) be given. A set W(x,y) of edge-
disjoint paths from x to y is constructed iteratively by modifying the original graph.
At the beginning the path set W(x,y) is empty, and the graph G0 is equal to the
original graph G. In each step k�1, 2,... a path wk of the path set W(x,y) and a
modified graph Gk are determined in the following steps :

1. Look for a simple path wk from x to y in the graph Gk�1. If there is no such
path, the path set W(x,y) is complete, and the construction terminates.

2. Form the modified graph Gk by reversing the directions of all edges of the
path wk in the graph Gk�1.

3. Check whether the path wk contains an edge with reversed direction. If the
path wk contains an edge (b,a) with reversed direction, then a path wi with
i < k which was determined earlier contains the edge (a,b) with the original
direction. In this case, the paths wi and wk are replaced by the two shorter
paths w

_
i and w

_
k .

wi � < x,...,r,a,b,s,...,y> wk� < x,...,p,b,a,q,...,y>

w
_

i � < x,...,r,a,q,...,y> w
_

k� < x,...,p,b,s,...,y>

The new path w
_

i does not contain the edge (a,b), and the new path w
_

k does
not contain the reversed edge (b,a). Thus the original edge (a,b) is available
again for the construction of further paths. Due to the double reversal in steps
i and k, this edge is contained in the modified graph Gk . Step 3 is repeated
until the path wk does not contain any edges with reversed direction.

557Graphs

The graph modified by the construction of the edge-disjoint path set W(x,y) is des-
ignated by GI. The directions of all edges of the edge-disjoint paths in the modified
graph GI are reversed with respect to their directions in the original graph G. The
modified graph GI is used as follows to construct an edge cut T(x,y) associated with
W(x,y) :

1. In the modified graph GI, all vertices reachable from the vertex x are deter-
mined and collected in the vertex set X. The vertex x belongs to the vertex
set X, since it is reachable from itself.

2. All vertices which do not belong to the vertex set X are collected in the vertex
set Y. The vertex y belongs to the vertex set Y, since there is no path from x
to y in the graph GI.

3. The edge cut T(x,y) contains all edges (a,b) of the original graph G which lead
from a vertex a�X to a vertex b�Y.

The following relationships hold between the edge-disjoint path set W(x,y) and the
corresponding edge cut T(x,y) :

1. The edge cut T(x,y) contains only edges which occur in edge-disjoint paths.
If there were an edge (a,b) with a�X and b�Y which occured in none of the
edge-disjoint paths, then its direction would not be reversed in the modified
graph GI. Hence b would have to be reachable from a in GI, and would there-
fore belong to the vertex set X. This contradicts the definition of X.

2. A path wk�< x,...,a,b,...,y > � W(x,y) consists of a subpath wx�< x,...,a >

with vertices from X and a subpath wy�< b,...,y> with vertices from Y. The
subpath wx can only contain vertices from X, since in GI every vertex of wx

is reachable from a. If a vertex c from wy would belong to X, b would also
have to belong to X, since b is reachable from c in GI. This contradicts the
hypothesis b�Y. Thus from each path wk�W(x,y) the edge cut T(x,y) con-
tains exactly one edge (a,b) with a�X and b�Y.

3. Since the edge cut T(x,y) contains exactly one edge from every path in W(x,y)
and all edges in T(x,y) occur in paths from W(x,y), the size t(x,y) of the edge
cut T(x,y) is equal to the number w(x,y) of edge-disjoint paths in W(x,y), that
is t(x,y)�w(x,y).

4. Each path of an edge-disjoint path set must contain at least one edge of an
edge cut. Hence the edge cut size t(x,y) is an upper bound for the maximal
number of edge-disjoint paths. Conversely, the number w(x,y) of edge-
disjoint paths is a lower bound for the minimal edge cut size. Since
t(x,y)�w(x,y), it follows that t(x,y) is minimal and w(x,y) is maximal.

558 8.4.4 Structure of Graphs : Cuts in Directed Graphs

Example 3 : Edge-disjoint paths and edge cuts

x y y x y

a

c

d a

c

d a

b

cx

w1�� x, c, d, e, y�

w
_

1�� x, c, d, y�

w2�� x, a, c, e, d, y�

w
_

2�� x, a, c, e, y�

no further path

W(x, y)� {w
_

1, w
_

2}

original graph G modified graph modified graph GI

eebeb

G0 dG1 G2

The set W(x,y) of edge-disjoint paths from x to y in the graph G shown above is
constructed iteratively. In the first step, the simple path w1 is chosen in the original
graph G0�G, and the modified graph G1 is formed by reversing all edges of w1
in G0. In the second step, the simple path w2 is chosen in the modified graph G1,
and the modified graph G2 is formed by reversing all edges of w2 in G1. Since the
edge (d,e) occurs in w1 and the reversed edge (e,d) occurs in w2, the paths w1
and w2 are replaced by the paths w

_
1 and w

_
2. In the modified graph G2, there is

no further path from x to y, and hence W(x,y)�{ w
_

1, w
_

2 } is a maximal edge-disjoint
path set.

In the modified graph GI�G2, the edges of the paths w
_

1 and w
_

2 have been re-
versed. The vertex set X�{x,a,b,c} contains the vertices reachable from x in GI,
the vertex set Y�{d,e,y} contains the remaining vertices of GI. The minimal edge
cut T(x,y)�{(c,d), (c,e)} associated with the maximal edge-disjoint path set W(x,y)
contains the edges of the original graph G which lead from a vertex in X to a vertex
in Y. The set T(x,y) contains one edge from each of the paths w

_
1 and w

_
2.

x y y

a

b

c

d a

b

cx

X� {x, a, b, c}

Y� {d, e, y}

T(x, y)� {(c, d), (c, e)}

original graph Gmodified graph GI

e

d

e

Vertex cut : Let two different vertices x and y of a directed graph G�(V ; R) be
given. A vertex set S(x,y)�V�{x, y} is called a vertex cut if removing its vertices
and the incident edges from the graph G has the effect that y is no longer reachable
from x. If there is an edge from x to y, then there is no vertex cut. A vertex cut S(x,y)
is called a minimal vertex cut if no other vertex cut Q(x,y) contains fewer vertices

559Graphs

than S(x,y). The number of vertices of a minimal vertex cut is called the minimal
vertex cut size and is designated by min s(x,y). If a minimal vertex cut contains
exactly one vertex, then this vertex is called a separating vertex of the directed
graph.

If there is no edge from x to y, then both the set of all successors of x and the set
of all predecessors of y are vertex cuts. The minimal vertex cut size is therefore
bounded from above by the outdegree of x and the indegree of y.

min s(x, y) � min {gS(x), gP(y)} (x, y)�R

Vertex-disjoint paths : Let two different vertices x and y of a directed graph G�
(V ; R) be given. Two elementary paths from x to y are said to be vertex-disjoint if
they have no vertex in common other than x and y. A vertex-disjoint path set U(x,y)
contains paths from x to y which are pairwise vertex-disjoint. A vertex-disjoint path
set U(x,y) is called a maximal vertex-disjoint path set if no other vertex-disjoint path
set P(x,y) contains more paths than U(x,y). The number of paths in a maximal
vertex-disjoint path set is called the maximal number of vertex-disjoint paths and
is designated by max u(x,y).

Every successor of x and every predecessor of y can occur in at most one vertex-
disjoint path from x to y. The maximal number of vertex-disjoint paths is therefore
bounded from above by the outdegree of x and the indegree of y.

max u(x, y) � min {gS(x), gP(y)}

Vertex-disjoint paths and vertex cuts : Let two different vertices x and y of a
directed graph G�(V ; R) be given which are not connected by an edge from x to y.
The maximal number of vertex-disjoint paths leading from x to y is equal to the
minimal vertex cut size for x and y.

max u(x,y) � min s(x,y)

The proof of this theorem is contained in the following procedure for constructing
a maximal vertex-disjoint path set and a minimal vertex cut.

Construction of a vertex-disjoint path set and a vertex cut : Let two different
vertices x and y in a directed graph G�(V ; R) be given which are not connected
by an edge from x to y. The determination of a maximal set U(x,y) of vertex-disjoint
paths from x to y and a minimal vertex cut S(x,y) in the graph G is reduced to the
determination of a maximal set of edge-disjoint paths and a minimal edge cut in
a substitute graph GE. The substitute graph GE is constructed from the graph G
as follows :

– Every vertex a of G is replaced by two vertices aI and aII and an edge (aI,aII).

– Every edge (a,b) of G is replaced by an edge (aII,bI).

560 8.4.4 Structure of Graphs : Cuts in Directed Graphs

In the substitute graph GE , a maximal set W(xII,yI) of edge-disjoint paths from xII

to yI and a minimal edge cut T(xII,yI) are determined. The following relationships
hold between the maximal edge-disjoint path set W(xII,yI) in GE and the maximal
vertex-disjoint path set U(x,y) in G, and between the minimal edge cut T(xII,yI) in
GE and the minimal vertex cut S(x,y) in G :

(1) There is a one-to-one correspondence of paths w�< xII,...,zI, zII,...,yI > from
xII to yI in GE with paths u�< x,...,z,...,y > from x to y in G. The vertices
zI, zII and the edge (zI, zII) in w correspond to the intermediate vertex z in u.
Two paths from x to y in G are vertex-disjoint if and only if the corresponding
paths from xII to yI in GE are edge-disjoint. Thus there is also a one-to-one
correspondence between maximal edge-disjoint path sets W(xII,yI) in GE
and maximal vertex-disjoint path sets U(x,y) in G. Hence the maximal num-
ber max w(xII,yI) of edge-disjoint paths in GE is equal to the maximal number
max u(x,y) of vertex-disjoint paths in G.

(2) For every maximal edge-disjoint path set W(xII,yI) in GE there is a minimal
edge cut T(xII,yI) which contains exactly one edge from every edge-disjoint
path. If T(xII,yI) contains an edge (aII,zI) with zI�yI or an edge (zII,aI) with
zII�xII, then by virtue of the construction of G this edge may be replaced by
the edge (zI,zII). Then T(xII,yI) contains only edges of type (zI,zII). An edge
(zI,zII) in GE corresponds to the vertex z. Thus there is a one-to-one
correspondence between minimal edge cuts T(xII,yI) with edges of type
(zI,zII) in GE and minimal vertex cuts S(x,y) with intermediate vertices z�x,y
in G. Hence the minimal edge cut size min t(xII,yI) in GE is equal to the mini-
mal vertex cut size min s(x,y) in G.

(3) Since in the substitute graph GE the maximal number max w(xII,yI) of edge-
disjoint paths is equal to the minimal edge cut size min t(xII,yI), it follows by
(1) and (2) that in the graph G the maximal number max u(x,y) of vertex-
disjoint paths is equal to the minimal vertex cut size min s(x, y).

561Graphs

Example 4 : Vertex-disjoint paths and vertex cuts
In the directed graph G shown below, a vertex-disjoint path set and a vertex cut
are constructed as follows using the substitute graph GE and the modified substi-
tute graph GI

E :

bII

c

y

u1�� x, a, y�

u2�� x, b, c, y�

b

c

bI yI

cIIcI

aIIaI

bIIbI yI

cIIcI

aIIaI

U(x, y)� {u1, u2 }
S(x, y)� {a, c }

w1�� xII, aI, aII, yI�

w2�� xII, bI, bII, cI, cII, yI�

W(xII, yI)� {w1, w2 }
T (xII, yI)� {(xII, aI), (cI, cII)} � {(aI, aII), (cI, cII)}

graph G substitute graph GE modified substitute graph GI
E

XII� {xII, bI, bII, cI }

YI � {xI, aI, aII, cII, yI, yII }

x

a

xI yII xI yII

xII xII

The substitute graph GE for the graph G is constructed. In the substitute graph GE ,
the edge-disjoint paths w1 and w2 from xII to yI are determined. The substitute
graph GE is transformed into the modified substitute graph GI

E by reversing the
direction of every edge in w1 and w2. In the modified substitute graph GI

E , all ver-
tices reachable from xII are collected in the vertex set XII, and all remaining vertices
are collected in the vertex set YI. The minimal edge cut T(xII,yI) contains all edges
of the substitute graph GE which lead from a vertex in XII to a vertex in YI . The edge
(xII,aI) is replaced by the edge (aI,aII). The edges (aI,aII) and (cI,cII) in the substi-
tute graph GE correspond to the vertices a and c in the graph G. The edge-disjoint
paths in the substitute graph GE correspond to the vertex-disjoint paths in the
graph G.

Multiple edge-disjoint reachability : A vertex y in a directed graph G�(V ; R)
is said to be n-fold edge-disjointly reachable from a vertex x if x and y are identical
or the maximal number of edge-disjoint paths from x to y is not less than n. The
multiple edge-disjoint reachability of vertices forms the basis for the definition of
multiple edge-disjoint connectedness.

Multiple edge-disjoint connectedness : Two vertices x and y are said to be
n-fold edge-disjointly connected if x is at least n-fold edge-disjointly reachable from
y and vice versa. A directed graph is said to be n-fold edge-disjointly connected
(n-edge connected) if all vertices are pairwise n-fold edge-disjointly connected.
The strong connectedness of a directed graph corresponds to simple (1-fold)
edge-disjoint connectedness.

562 8.4.4 Structure of Graphs : Cuts in Directed Graphs

The maximal multiplicity max m of the edge-disjoint connectedness of a directed
graph is equal to the minimum of the maximal number of edge-disjoint paths for
all vertex pairs (x, y) with x�y. The upper bound for the maximal number of edge-
disjoint paths yields an upper bound for the maximal multiplicity.

max m � min
x�y

 {max w(x,y)} � min
x

 {gS(x), gP(x)}

Multiple vertex-disjoint reachability : A vertex y in a directed graph G�(V ; R)
is said to be n-fold vertex-disjointly reachable from a vertex x if x and y are identical,
if there is an edge from x to y or if the maximal number of vertex-disjoint paths from
x to y is not less than n. The multiple vertex-disjoint reachability of a vertex forms
the basis for the definition of multiple vertex-disjoint connectedness.

Multiple vertex-disjoint connectedness : Two vertices x and y are said to be
n-fold vertex-disjointly connected if x is at least n-fold vertex-disjointly reachable
from y and vice versa. A directed graph is said to be n-fold vertex-disjointly con-
nected (n-vertex connected, n-connected) if all vertices are pairwise n-fold vertex-
disjointly connected. The strong connectedness of a directed graph corresponds
to simple (1-fold) vertex-disjoint connectedness.

The maximal multiplicity max n of the vertex-disjoint connectedness of a directed
graph which is not complete is equal to the minimum of the maximal number of
vertex-disjoint paths for all vertex pairs (x,y) with x�y which are not connected by
an edge from x to y.

max n � min
x�y

 { max u(x,y) | (x,y)�R }

Example 5 : Multiple edge- and vertex-disjoint connectedness

directed graph

y

z

x

The directed graph shown above is strongly connected, and hence simply edge-
disjointly connected. It is also doubly (2-fold) edge-disjointly connected, since from
each vertex each other vertex is reachable via exactly two edge-disjoint paths. The
graph has no higher edge-disjoint connectedness, since every vertex has inde-
gree 2 and outdegree 2 and the degree of connectedness is bounded from above
by the minimal indegree and outdegree of the vertices.

The directed graph is strongly connected, and therefore simply vertex-disjointly
connected. It is not doubly vertex-disjointly connected, since for instance there is
only one vertex-disjoint path from the vertex x to the vertex y with the intermediate
vertex z as a separating vertex.

563Graphs

8.4.5 PATHS AND CYCLES IN SIMPLE GRAPHS

Introduction : A simple graph G� (V ;�) consists of a vertex set V and an adja-
cency relation � for the neighborhood of vertices. The adjacency of two vertices
is represented by an undirected edge which corresponds to a pair of edges with
opposite directions. The graph is free of loops. The adjacency relation �� is sym-
metric and antireflexive.

A simple graph is treated as a symmetric and antireflexive special case of a direct-
ed graph. The fundamentals of paths and cycles for directed graphs can largely
be transferred to simple graphs. The fundamentals of the structural analysis of
simple graphs are treated in the following.

Neighbors : Two vertices x and y are called neighbors if there is an undirected
edge between x and y in the simple graph, so that the vertex pairs (x,y) and (y, x)
are contained in the adjacency relation �.

x and y are neighbors � (x, y)�� � (y, x)��

If the vertices x and y are represented as unary point relations in V, which are also
designated by x and y, then their neighborhood is determined as follows using the
algebra of relations :

x and y are neighbors � x yT- � � yxT- �

The set t (x) of all neighbors of a vertex x is calculated as a unary relation in the
vertex set V as follows :

neighbors of x : t(x) � � x

Degree : The number of neighbors of a vertex x is called the degree of the vertex
and is designated by g (x). The degree g (x) corresponds to the number of ele-
ments in the set t(x) and hence to the number of undirected edges at the vertex x.

degree of a vertex : g(x) � t(x) � �x

If a simple graph contains k undirected edges, then the sum of the degrees of all
vertices x�V is 2k, and hence equal to the number of elements in �.

sum of degrees : �
x�V

 g(x) � �
x�V

 �x � � � 2k

564 8.4.5 Structure of Graphs : Paths and Cycles in Simple Graphs

Example 1 : Neighbors and degrees

ba

ed

c

0 1 1 0
0 1 0

a
b
c
d

1 1 0 0
0 0 0 0

a b c d
0
1
1
1

e

e 0 1 1 1 0

1
0a

b
c
d

0
0

e 1

0
0a

b
c
d

1
1

e 0

1

� t(e)e

x a b c d e

g(x) 2 3 3 1 3 � g(x)� ,� , � 12

The simple graph shown above consists of 5 vertices and 6 undirected edges. The
symmetric adjacency relation is specified by a boolean matrix � . The unary point
relation for the vertex e is shown as a boolean unit vector e. The product �e yields
the boolean vector t(e) for all neighbors of e. It coincides with the column of �
which is associated with the vertex e. The degrees of all vertices are compiled. The
sum of the degrees of all vertices is equal to twice the number of undirected edges.

Edge sequence : A chain of edges is called an edge sequence if the end vertex
of each edge except for the last edge is the start vertex of the following edge.

edge sequence < (x0, x1), (x1, x2) ,..., (xn�1, xn) >

condition �
n

j�1
((xj�1,xj)� �)

The start vertex x0 of the first edge and the end vertex xn of the last edge are called
the start vertex and end vertex of the edge sequence, respectively. The vertices
x1 to xn�1 are called intermediate vertices of the edge sequence. The number n
of edges is called the length of the edge sequence. If there is an edge sequence
from x0 to xn, then by virtue of the symmetry of simple graphs there is also an edge
sequence in the reverse direction from xn to x0.

Descendants : A vertex y is called an n-th descendant of a vertex x if there is an
edge sequence of length n from x to y in the graph. If y is an n-th descendant of x,
then x is also an n-th descendant of y, since for an edge sequence from x to y there
is also a reverse edge sequence from y to x. The descendants are calculated as
for directed graphs using the n-th power �n and the transitive closure �� of the
adjacency relation �.

n-th descendants of x : t(n) (x) � �n x

all descendants of x : t� (x) � ��x

565Graphs

Path : A path from a start vertex x via intermediate vertices to an end vertex y is
an edge sequence. In a simple graph, it can be uniquely represented as a vertex
sequence < x,...,y >. A path < x > with the same start and end vertex x contains no
edges and is called an empty path. The length of an empty path is 0. There is an
empty path for every vertex of a simple graph. The existence of non-empty paths
in a simple graph is established as follows :

there is a path of length n from x to y � xyT - �n

there is a non-empty path from x to y � xyT - ��

Cycle : A non-empty path whose start and end vertex coincide is called a cycle.
Due to the symmetry of the adjacency relation �, a simple graph contains a large
number of trivial cycles. If a path is first traversed in one direction and then retraced
in the other direction, a trivial cycle is obtained. However, trivial cycles are not sig-
nificant for the structure of simple graphs. Since the conditions for the existence
of cycles in directed graphs also hold for trivial cycles when applied to simple
graphs, they cannot be used to study simple graphs.

Simple path : A non-empty path is said to be simple if it does not contain any un-
directed edge more than once. The vertices and the undirected edges of a simple
path form a subgraph of the simple graph. If the start vertex and end vertex of a
simple path are different, then the degrees of the vertices in the subgraph have the
following properties :

subgraph for a simple path < x,...,z,...,y > with x�y

start vertex : g(x) odd

intermediate vertex : g(z) even

end vertex : g(y) odd

Simple cycle : A simple path whose start vertex and end vertex coincide is called
a simple cycle. In the subgraph for a simple cycle, the degree of every vertex is
even.

subgraph for a simple cycle with vertex z

vertex : g(z) even

Eulerian paths and cycles : A simple path with different start and end vertices
is called an Eulerian path if it contains all undirected edges of the simple graph.
A simple cycle is called an Eulerian cycle if it contains all undirected edges of the
simple graph.

566 8.4.5 Structure of Graphs : Paths and Cycles in Simple Graphs

Elementary path : A non-empty path is said to be elementary if it does not con-
tain any vertex more than once. The vertices and the undirected edges of an ele-
mentary path form a subgraph of the simple graph. If the start vertex and end ver-
tex of a simple path are different, then the degrees of the vertices in the subgraph
are :

subgraph for a simple path < x,..., z,...,y > with x�y

start vertex : g(x) � 1

intermediate vertex : g(z) � 2

end vertex : g(y) � 1

Elementary cycle : An elementary path whose start vertex and end vertex coin-
cide is called an elementary cycle. In the subgraph for an elementary cycle, the
degree of every vertex is 2. Note that the identical start and end vertex of the cycle
is counted once, not twice.

subgraph for an elementary cycle with vertex z

vertex z : g(z) � 2

Hamiltonian paths and cycles : An elementary path with different start and end
vertices is called a Hamiltonian path if it contains all vertices of the simple graph.
An elementary cycle is called a Hamiltonian cycle if it contains all vertices of the
simple graph.

Example 2 : Paths and cycles

ba

ed

c

x a b c d e

g(x) 3 3 4 3 3

simple paths < a, c, e, d, c, b > < a, b, e, c, b >

elementary paths < a, b, c > < b, c, d >

simple cycles < a, b, c, d, e, c, a > < e, b, c, d, a, c, e >

elementary cycles < a, b, c, a > < a, b, e, c, a >

The simple graph shown above does not contain any Eulerian cycles, since the
degrees of vertices a,b,d,e are odd and hence the necessary condition for a simple
cycle containing all edges of the graph is not satisfied. However, the graph con-
tains several Hamiltonian cycles. For example, the cycle < a, b, c, e, d, a > is a
Hamiltonian cycle.

567Graphs

8.4.6 CONNECTEDNESS OF SIMPLE GRAPHS

Introduction : The connectedness properties of directed graphs may be trans-
ferred directly to simple graphs. The symmetry property of simple graphs leads to
essential simplifications. The different forms of connectedness of directed graphs
coincide for simple graphs and are all referred to as simple connectedness. The
fundamentals for the connectedness and the decomposition of simple graphs are
treated in the following.

Connectability : In a simple graph G� (V ; �) two vertices x,y�V are said to
be connectable if there is an empty or non-empty path between x and y. The ver-
tices x and y are connectable if and only if the product xyT of the associated point
relations is contained in the reflexive transitive closure �*.

x and y are connectable :� x yT- �* �*� I ��

Simple connectedness : Two vertices x and y in a simple graph are simply con-
nected if x and y are connectable. A simple graph is simply connected if all vertices
in V are pairwise simply connected. A distinction between strong, unilateral and
weak connectedness is not possible for simple graphs, since the adjacency rela-
tion � is symmetric, which implies �*� �*T��* �*T� (� �T)*��*.

x and y are simply connected :� xyT - �*

the graph is simply connected :� �*� E

Connectedness relation : Like the strong and the weak connectedness relation
for directed graphs, the simple connectedness relation Z��* for simple graphs
is an equivalence relation. It forms the basis for a decomposition of simple graphs
into their simply connected components.

Decomposition into simply connected components : A simple graph G�
(V ; �) may be decomposed into simply connected components using the simple
connectedness relation Z��*. The vertex set V is mapped to the quotient set K�
V / Z. The vertex set Vk of a connected component Gk ..� (Vk ; �k) contains all
vertices of a connected class k�K. The edge set �k ..�� � (Vk�Vk) contains the
edges from � whose vertices belong to Vk . There are no edges between the
elements of the reduced graph. The simple graph is the union of its simply con-
nected components Gk .

G �
k�K

 Gk

568 8.4.6 Structure of Graphs : Connectedness of Simple Graphs

Example : Simple connectedness of a graph

11
1

0 1 1 1
0 0 1

a
b
c
d

1 0 0
1 1 1 0

a b c d
0
0
0
0

e

e 0 0 0 0 0

1

f 0 0 0 0 1

0
0
0
0

f

1
0

1 1 1 1
1 1 1

a
b
c
d

1 1 1
1 1 1

a b c d
0
0
0
0

e

e 0 0 0 0 1

1

f 0 0 0 0 1

0
0
0
0

f

1
1

a

dc

b

f

e

G1 G2 � closure �*

The reflexive transitive closure of the graph shown above is represented as a bool-
ean matrix �*, from which the simply connected classes may be read off directly.
The class [a] corresponds to the column for a in the matrix �*. It contains the ver-
tices a,b,c,d and is the vertex set for the simply connected component G1 . The
class [e] corresponds to the column e in the matrix �*. It contains the vertices e,f
and is the vertex set for the simply connected component G2 .

569Graphs

8.4.7 CUTS IN SIMPLE GRAPHS

Introduction : The connectability and connectedness of vertices in a simple
graph are treated in the preceding section. In this section, the effects of removing
edges or vertices on the connectability and connectedness in the remaining graph
are studied. For this purpose, the concept of cuts is introduced as in the case of
directed graphs.

Edges are classified into bridges and cycle edges according to how their removal
affects the connectedness of the graph. If a bridge is cut, the connectedness of the
graph is partially lost; if a cycle edge is cut, connectedness is preserved. Acyclic
graphs contain only bridges, cyclic graphs contain only cycle edges. Simple cyclic
connectedness is defined for simple graphs. Graphs which are not simply cycli-
cally connected may be uniquely decomposed into simply cyclically connected
components.

If the connectedness of a graph is partially lost by the excision of a vertex, this
vertex is called an articulation vertex. A graph without articulation vertices is ele-
mentarily cyclically connected. A graph with articulation vertices may be uniquely
decomposed into elementarily cyclically connected blocks.

The definitions of simple and elementary cyclic connectedness allow a deeper
analysis of the connectedness properties of simple graphs. They are special cases
of multiple edge- and vertex-disjoint connectedness, which is described for direct-
ed graphs in Section 8.4.4. The concepts and fundamentals for cyclic connected-
ness of graphs are treated in the following.

Bridge : An undirected edge between two vertices x and y in a simple graph
G�(V ;�) is called a bridge if x and y are connectable only via this edge. If a bridge
from x to y is removed from the simple graph, then x and y are no longer connect-
able. If a bridge is removed from a simply connected graph, the graph is divided
into two simply connected components.

Cycle edge : An undirected edge between two vertices x and y in a simple graph
G�(V ;�) is called a cycle edge if it is contained in a simple cycle. If a cycle edge
between x and y is removed from the simple graph, x and y remain connectable.
If a cycle edge is removed from a simply connected graph, simple connectedness
is preserved.

570 8.4.7 Structure of Graphs : Cuts in Simple Graphs

Decomposition of the adjacency relation : Every undirected edge of a simple
graph G�(V ;�) is either a bridge or a cycle edge. The adjacency relation �� may
therefore be uniquely decomposed into a part �B for the bridges and a part �Z for
the cycle edges.

adjacency relation for G : ���B �Z with �B� �Z � �
adjacency relation for bridges : �B
adjacency relation for cycle edges : �Z

Simple acyclic and cyclic graphs : A simple acyclic graph contains only
bridges and no cycle edges. A simple cyclic graph contains only cycle edges and
no bridges.

simple acyclic graph :� �Z � �
simple cyclic graph :� �B � �

Simple cyclic connectedness : Two vertices x and y are said to be simply cycli-
cally connected if x and y are identical or there is a simple cycle in which they both
occur. A simple graph is said to be simply cyclically connected if all vertices are
pairwise simply cyclically connected.

x and y are simply cyclically connected :� x yT - �*
Z

the graph is simply cyclically connected :� �*
Z � E

Decomposition into simply cyclically connected components : The simple
cyclic connectedness relation Z��*

Z is an equivalence relation. A simple graph
G�(V ;�) may therefore be uniquely decomposed into simply cyclically con-
nected components. The decomposition is carried out as in the case of directed
graphs. Every simply cyclically connected component is a simple cyclic subgraph.
The reduced simple graph is a simple acyclic graph if the loops at the vertices are
disregarded.

Example 1 : Decomposition into simply cyclically connected components

a

ed

b c

hg

f

k

A C

G F

B

B B

B B

B

reduced graph without loops
B bridges

571Graphs

1

1

1

0
0
1
0
0
0
0
0
0

0 0 0 0
0 1 0

a
b

c
d

0 1 0 0
0 0 0 0

a b c d
0
0
0
0

e

e 0 0 0 0 0

0

bridge part �B

f 0 0 0 0 0
g 0 0 0 0

0
0
0
0

f
0
0
0
0

g

0 1
0 0
0 0

h 0 0 0 1 0
k 0 0 0 0 0

0 0
0 0

0
0
0

h
0
0
0
0

k

0 0
0 0
0 0
0 0
0 0

0 1 0 1
0 0 0

a
b

c
d

0 0 0 0
1 0 0 0

a b c d
1
1
0
1

e

e 1 1 0 1 0

1

cycle part �Z

f 0 0 0 0 0
g 0 0 0 0 0

0
0
0
0

f
0
0
0
0

g

0 0
0 0
0 0

h 0 0 0 0 0
k 0 0 0 0 0

1 0
1 0

0
0
0
0

h
0
0
0
0

k

0 0
1 1
0 0
0 1
1 0

1 1 1
1 1

a
b

c
d

0 0 0
1 1 1

a b c d
1
1
0
1

e

e 1 1 1 1

1

f 0 0 0 0
g 0 0 0 0

0
0
0
0

f
0
0
0
0

g

0 0
1 0
0

h 0 0 0 0
k 0 0 0 0

1 0
1 0

0
0
0
0

h
0
0
0
0

k

0 0
1 1
0 0
1 1
1 1

closure �*
Z

The simple graph shown above is simply connected, but not simply cyclically con-
nected. The adjacency relations for the bridge part �B and for the cycle part �Z
as well as the reflexive transitive closure �*

Z for the cycle part are shown as bool-
ean matrices. The undirected edges (b,c), (d,h), (e,g) are bridges. All remaining
edges are cycle edges. The simply cyclically connected classes can be read off
directly from the boolean matrix for the reflexive transitive closure �*

Z. The simple
graph possesses the simply cyclically connected classes A, C, G, F with the vertex
sets {a,b,d,e}, {c}, {g}, {f,h,k}. These classes form the vertex set of the reduced
graph, which is a simple acyclic graph except for the loops. The bridges of the sim-
ple graph induce edges between the connected classes of the reduced graph.

Articulation vertex : A vertex a of a simple graph G�(V ;�) is called an articu-
lation vertex if two different vertices x�a and y�a are connectable only via a.
If the articulation vertex a is removed from the simple graph together with its
edges, then x and y are no longer connectable. If an articulation vertex is excised
from a simply connected graph, the graph is divided into several simply connected
components.

572 8.4.7 Structure of Graphs : Cuts in Simple Graphs

Elementary cyclic connectedness : Two vertices x and y of a simple graph are
said to be elementarily cyclically connected if x and y are identical, they are neigh-
bors or there is an elementary cycle in which they both occur. A simple graph is
said to be elementarily cyclically connected if all vertices are pairwise elementarily
cyclically connected. An elementarily cyclically connected graph does not contain
any articulation vertices.

Block : A subgraph of a simple graph G�(V ;�) is called a block if it is elementa-
rily cyclically connected. A block is said to be proper if it is not contained in another
block as a subgraph. If a simple graph contains an elementary cycle, then all ver-
tices and all undirected edges of this cycle belong to a proper block.

Relationships between blocks : A simple graph G�(V ;�) may possess sev-
eral proper blocks. Two different proper blocks have the following properties :

(1) Two different proper blocks have either one vertex or no vertices in common.

(2) If two different proper blocks have a vertex in common, this vertex is an
articulation vertex of the simple graph.

(3) Two different proper blocks are not connected by edges.

Block decomposition : A simple graph G�(V ;�) may be uniquely decomposed
into proper blocks Be�(Ve ; �e). Since two different proper blocks have at most
one vertex in common and are not connected by edges, every edge of the simple
graph is associated with a unique proper block. The edge sets �e of all blocks are
therefore disjoint subsets of the edge set � of the simple graph. The vertex sets
Ve of the blocks are generally not disjoint subsets of the vertex set V of the simple
graph, since articulation vertices are contained in different vertex sets Ve .

G �
e

 Be

The block structure of a simple graph is represented in a block graph. The vertices
of the block graph correspond to the proper blocks. The edges of the block graph
indicate that the two proper blocks share a common vertex, which is an articulation
vertex of the simple graph. A block graph may also be represented as a hyper-
graph in which every hyperedge corresponds to an articulation vertex.

573Graphs

Example 2 : Articulation vertices and block decomposition

a

ed

b c

hg

f

k

1

2 3 4 5

6 7

8 9 10

11 12

proper blocks

A � ({a,b} ; {1})

B � ({a,d,e} ; {2,3,6})

C � ({c,e,f} ; {4,5,7})

D � ({e,g,h,k} ; {8,9,10,11,12})

In the simple graph shown above, lowercase letters identify vertices and numbers
identify edges. The simple graph is simply connected, but not elementarily cycli-
cally connected. For example, the vertices a and k do not lie on an elementary
cycle. The graph has the articulation vertices a and e. For example, the vertices
b and d are connectable only via a, the vertices c and g only via e. The graph
possesses four proper blocks A, B, C and D, which are elementarily cyclically con-
nected. The vertices and edges of the blocks are specified above. Every undi-
rected edge is contained in exactly one block. The corresponding block graph with
the blocks as vertices and the articulation vertices as edges is shown as a simple
graph and as a hypergraph.

B A

D C

e e

a

e

B A

D C

e

a

simple graph hypergraph

Multiple edge- and vertex-disjoint connectedness : The fundamentals for
multiple edge- and vertex-disjoint connectedness of directed graphs are described
in Section 8.4.4. They may be directly transferred to simple graphs, taking into
account the symmetry of these graphs. Undirected edges take the place of direct-
ed edges, and connectability takes the place of reachability of vertices. The forms
of connectedness of simple graphs treated here are special cases of multiple
edge- or vertex-disjoint connectedness which are particularly important in applica-
tions to practical problems. Simple connectedness corresponds to simple edge-
disjoint connectedness and simple vertex-disjoint connectedness. Simple cyclic
connectedness corresponds to two-fold edge-disjoint connectedness, and ele-
mentary cyclic connectedness corresponds to two-fold vertex-disjoint connected-
ness.

574 8.4.8 Structure of Graphs : Acyclic Graphs

8.4.8 ACYCLIC GRAPHS

Introduction : The acyclicity of a graph leads to special structural properties of
the graph. In studying these properties, a distinction is made between directed
acyclic graphs with directed edges and simple acyclic graphs with undirected
edges.

Directed acyclic graphs possess an order structure. The vertex set is an ordered
set. The directed edges describe the order relation in the vertex set. Due to the
order structure, the vertices can be sorted. Edges can be removed from the graph
in such a manner that the order structure is preserved. The minimal structure-
preserving edge set is unique. The vertex set and the minimal edge set form the
basic graph.

Simple acyclic graphs do not have an order structure, since their edges are undi-
rected. They form undirected trees or forests.

Directed acyclic graph : A directed acyclic graph G�(V ;R) is asymmetric and
does not contain cycles. Every path from a vertex x to a vertex y is elementary. The
closure R� is asymmetric and transitive. Hence it is a strict order relation. The
theoretical foundations of strict order relations may therefore be applied to directed
acyclic graphs.

Rank : Every vertex x of a directed acyclic graph G�(V ;R) is assigned a rank
r(x), which is a natural number with the following properties :

(1) A vertex x has the rank r(x)�0 if it does not have any ancestors.

(2) A vertex x has the rank r(x)�k > 0 if it has a k-th ancestor and no (k�1)-th
ancestors.

It is only possible to assign ranks if the directed graph G is acyclic. If there is a cycle
through the vertex x, then for every k-th ancestor of x in the cycle there is a prede-
cessor in the cycle, and hence also a (k�1)-th ancestor of x. The directed graph
must therefore be free of cycles.

If the rank r(x) of a vertex x is k, then by definition the vertex x has a k-th ancestor
but no (k�1)-th ancestor. Thus there must be a path of length k but no path of
length k�1 from a vertex without predecessor in G to x. Hence the rank r(x) is the
length k of a longest path from a vertex without predecessor in G to x.

Topological sorting : The determination of the ranks of the vertices of a directed
graph G�(V ;R) is called topological sorting. The vertex set V�V0 is topologically
sorted by iteratively reducing it to the empty vertex set �. In step k, the vertex set
Vk is determined whose vertices x�Vk have a k-th ancestor in G and are therefore
of rank r(x)%k. The vertex set Vk contains all predecessors of the vertices in the
vertex set Vk�1. This iterative reduction is formulated as follows using unary rela-
tions :

575Graphs

initial values : v0 � e all relation

reduction : vk � RT vk�1 k�1,...,n

termination : vn � � null relation

A vertex x of the vertex set Vk is of degree r(x)�k if it does not belong to the vertex
set Vk�1. The set Wk of all vertices of rank k is therefore the difference Vk�Vk�1 ,
which is calculated as the intersection of Vk and the complement of Vk�1 . It is
called the k-th vertex class and is determined as a unary relation as follows :

k-th vertex class : wk � vk � v
_

k�1 k�0,...,n�1

Order structure : Topologically sorting a directed acyclic graph G�(V ;R) yields
a partition of the vertex set into disjoint vertex classes Wk with k�0,...,n�1. The
partition has the following ordinal properties :

– The vertex class W0 contains all vertices of the lowest rank 0. These vertices
have no ancestors in G, and hence no predecessors. They are therefore
minimal. Since there are no other vertices without predecessors, W0 con-
tains all minimal vertices.

– The vertex class Wn�1 contains all vertices of the highest rank n�1. These
vertices have no descendants in G, and hence no successors. They are
therefore maximal. Since there may generally also be other vertices without
successor, Wn�1 generally does not contain all maximal vertices.

– Every vertex x in the vertex class Wk with k�0 has at least one predecessor
y in the vertex class Wk�1 . If x�Wk did not have a predecessor y�Wk�1 ,
then x would not have any k-th ancestors, and would therefore not belong to
Wk .

– A vertex has neither a predecessor nor a successor in its own vertex class.
If y were a predecessor of x and hence x a successor of y, then the rank of
y would have to be less than the rank of x and x, y could not belong to the
same vertex class.

576 8.4.8 Structure of Graphs : Acyclic Graphs

Example 1 : Topological sorting

Let a directed acyclic graph be given. The calculation steps for sorting this graph
topologically are shown. The sorting leads to the formation of classes in the vertex
set of the graph. The sorted graph and its classes are represented graphically.

ga

c

b

f

e

d

acyclic graph

b

d

g

f

e

vertex classes of the graph

a

c

a
b
c
d

a b c d e

e

topological sorting vk� RT vk�1

f
g

f g

RT

1
1
1
1
1
1
1

v0 v1 v2 v3 v4 v5

0
1
1
1
1
1
1

0
0
1
0
1
1
1

0
0
0
0
0
1
1

0
0
0
0
0
0
1

0
0
0
0
0
0
0

0
1
1
1
0
0
0

0
0
0
0
1
0
0

0
0
0
0
0
1
0

0
0
1
0
1
0
1

0
0
0
0
0
0
1

0
0
0
0
0
0
1

0
0
0
0
0
0
0

wk� vk� v
_

k�1

vertex classes

w0 w1 w2 w3 w4

1
0
0
0
0
0
0

0
1
0
1
0
0
0

0
0
1
0
1
0
0

0
0
0
0
0
1
0

0
0
0
0
0
0
1

Basic edges and chords : A directed acyclic graph G�(V ; R) has basic edges
and chords. An edge from x to y is called a basic edge if y is reachable from x only
via this edge. Otherwise it is called a chord. Since a directed acyclic graph does
not contain cycles, an edge from x to y is a chord if and only if there is a path of
length n > 1 from x to y.

path from x to y with n > 1 � x yT-
n�1

Rn� R
n�0

 Rn� RR�

chord (x,y) � x yT-R � RR�

basic edge (x,y) � x yT- R � RR�

577Graphs

Basic path : A directed acyclic graph G�(V ; R) does not contain cycles. If there
are one or more paths from x to y, then there is at least one path of maximal length.
A path of maximal length is called a basic path. A basic path contains only basic
edges.

Proof : A basic path contains only basic edges.

Consider a path from x to y of maximal length m which contains an edge from a
to b. If the edge from a to b were a chord, there would have to be a path from
a to b of length greater than 1, and hence also a path from x to y of length greater
than m. But this contradicts the hypothesis. It follows that all edges of a path from
x to y of maximal length are basic edges.

Basic graph : The graph B�(V ; Q) is a basic graph of a directed acyclic graph
G�(V ; R) if Q contains only the basic edges in R. The basic graph B is constructed
by removing all chords from R. The basic graph B is unique. The transitive clo-
sures R� and Q� coincide.

basic graph B�(V ; Q) with Q�R � RR�

Proof : The transitive closures R� and Q� coincide.

For every chord (x, y)�R there is by definition a path from x to y of length n�1.
Thus there is also a path of maximal length from x to y which is a basic path and
consists only of basic edges. Hence y is still reachable from x if the chord (x, y) is
removed from R, so that the chord (x, y) yields no additional contribution to the
closure R�. Hence the closures R� and Q� coincide.

Order diagram : In the topological sorting of a directed acyclic graph G�(V ; R),
the rank r(x) of a vertex x�V is equal to the length of a longest path from a vertex
without predecessor to x. This path is a basic path consisting only of basic edges.
Hence removing chords from R does not change the rank r(x) of a vertex x, so that
topologically sorting the graph G�(V ; R) and its basic graph B�(V ; Q) leads to
the same result. The representation of the order structure of the basic graph with
its vertex classes is an order diagram according to Section 4.2.

578 8.4.8 Structure of Graphs : Acyclic Graphs

Example 2 : Basic graph and order diagram

Let the directed acyclic graph G�(V ; R) from Example 1 be given. The edges
(a, c) and (d, g) are chords, since there are basic paths < a, d, c > and < d, e, g >.
The basic graph B�(V ; Q) is constructed from the graph G by removing these
chords from G. The edge set Q of the basic graph is calculated using the formula
specified above. The basic graph B and the order diagram are represented graphi-
cally. The directed acyclic graph G and the basic graph B possess the same vertex
classes.

ga

c

b

f

e

d

basic graph

b

d

g

f

e

vertex classes of the basic graph

a

c

Simple acyclic graph : A simple acyclic graph G�(V ;�) does not contain any
simple cycles. All undirected edges of the graph G are bridges. Removing an edge
destroys the original connectedness of the graph G.

Tree : A simple acyclic graph which is simply connected is called a tree. A tree
with n vertices has exactly n�1 undirected edges.

tree : n�k�1
number of vertices : n
number of edges : k

A tree is constructed as follows : A simple graph with only one vertex and no undi-
rected edges is simply connected, does not contain simple cycles and is therefore
a tree. Simple connectedness and absence of simple cycles are preserved if the
tree is iteratively extended by adding a new vertex with a new undirected edge to
an existing vertex in each step. For n vertices, this construction leads to n�1
edges.

In a tree, the path between two different vertices x and y is unique. If there were
several different paths between x and y, there would be cycles, but this is ruled
out by the definition of a tree.

Forest : A simple acyclic graph with several simply connected components is
called a forest. Every simply connected component is a tree. By the definition of
trees, a forest with n vertices and k undirected edges contains exactly n�k trees.

forest : n�k � c
number of vertices : n
number of edges : k
number of components : c

579Graphs

Example 3 : Trees and forests

tree : n�8 k�7 c�1

forest : n�13 k�11 c�2

580 8.4.9 Structure of Graphs : Rooted Graphs and Rooted Trees

8.4.9 ROOTED GRAPHS AND ROOTED TREES

Introduction : A vertex of a graph from which all remaining vertices are reach-
able is called a root of the graph. Rooted graphs and rooted trees are of fundamen-
tal importance in computer science. For example, finite automata, syntax dia-
grams and flow diagrams are treated as rooted graphs. All hierarchical structures
are regarded as rooted trees. Searching for all vertices of a graph which are reach-
able from a given vertex leads to a search tree which corresponds to a rooted tree
and forms a skeleton of the graph. The fundamentals for rooted graphs, rooted
trees and search trees are treated in the following.

Root : A vertex w is called a root (root vertex) of a directed graph G�(V ;R) if all
vertices of the graph are reachable from the vertex w. If a directed graph is not
weakly connected, then it has no root. If it is strongly connected, then every vertex
of the graph is a root.

w is a root :� w eT- R*

Rooted graph : A directed graph G�(V ;R) is called a rooted graph if it contains
at least one root. In a rooted graph, there is a special form of connectedness be-
tween pairs of vertices, called quasi-strong connectedness. Two vertices x and y
are quasi-strongly connected if there is a vertex z from which the vertices x and
y are both reachable. In this case, there is a path from x to z in the dual graph GT

and a path from z to y in the graph G, so that (x,z)�R*T and (z,y)�R*, and hence
(x,y)�R*TR*. In a rooted graph, all vertices are pairwise quasi-strongly connected
via a root, so that R*TR � E holds.

x and y are quasi-strongly connected :� x yT - R*T R*

G�(V ;R) is a rooted graph :� R*TR* � E

Acyclic rooted graph : A directed graph G�(V ;R) is acyclic if R�� R�T��
holds. It is a rooted graph if R*TR*�E holds. An acyclic rooted graph has exactly
one root. The existence of several roots would contradict the absence of cycles.

G�(V ;R) is an acyclic rooted graph � R�� R�T�� � R*TR*�E

Rooted tree : An acyclic rooted graph G�(V ;R) is called a rooted tree if R is left-
unique, so that RRT- I holds.

G�(V ;R) is a rooted tree :� RRT- I � R�� R�T�� � R*TR*�E

A rooted tree with the root w has the following properties :

� The root w has no predecessor.
� Every vertex x�w has exactly one predecessor.
� Every vertex x�w is reachable along exactly one path from w to x.
� A rooted tree with n vertices has exactly n – 1 edges.

581Graphs

Forest of rooted trees : A directed graph is called a forest of rooted trees if every
weakly connected component is a rooted tree.

Example 1 : Rooted graphs and rooted trees

rooted graph
with 2 roots

rooted tree
with 12 vertices and 11 edges

Search tree : Let a vertex a in a directed graph G be given. A rooted tree with
root a which contains all descendants of a in G is called a search tree at the vertex
a. A search tree is constructed by an iterative search, starting from the vertex a.
Breadth-first search and depth-first search are distinguished.

Breadth-first search : In a breadth-first search, a vertex sequence F is main-
tained, which at first contains only the root a. As long as the vertex sequence F
is not empty, the following steps are carried out in a loop :

– If the vertex at the beginning of F has a successor which has not been visited
yet, such a successor is appended to the end of the sequence F.

– If the vertex at the beginning of F has no successor which has not been visited
yet, it is removed from the sequence F.

The vertices visited and the edges used in the course of the breadth-first search
form the breadth-first search tree. For every visited vertex x, the search tree con-
tains a path of minimal length from a to x. This property is of fundamental impor-
tance for determining paths of minimal length between the vertices of a directed
graph.

Depth-first search : In a depth-first search, a vertex sequence F is maintained,
which at first contains only the root a. As long as the vertex sequence F is not
empty, the following steps are carried out in a loop :

– If the vertex at the end of F has a successor which has not been visited yet,
such a successor is appended to the end of the sequence F.

– If the vertex at the end of F has no successor which has not been visited yet,
it is removed from the sequence F.

The vertices visited and the edges used in the course of the depth-first search form
the depth-first search tree.

582 8.4.9 Structure of Graphs : Rooted Graphs and Rooted Trees

Properties : Breadth-first search and depth-first search lead to different search
trees. The depth of a search tree is the length of a longest path from the root a to
a visited vertex without successor. The breadth of a search tree is the maximal
number of visited vertices without successor. Among all search trees, a breadth-
first search tree has maximal breadth and minimal depth. A depth-first search tree
generally has small breadth and great depth.

Example 2 : Breadth-first search and depth-first search

Let the directed graph shown below be given. The descendants of the vertex c are
to be determined by breadth-first search and by depth-first search. The iterative
construction of the vertex sequence F for the breadth-first search and the depth-
first search is shown.

f

d

c

a

b

e

directed graph

c
c a
c a b
c a b d

a b d
b d
b d e

d e
d e f

e f
f

c
c a
c a b
c a b e
c a b e f
c a b e
c a b
c a
c
c d
c

breadth-first search sequence F depth-first search sequence F

583Graphs

The vertex c is the root of the breadth-first search tree and the depth-first search
tree. The breadth-first search tree is constructed according to the following rule,
starting from the root c :

– If a new vertex y is appended to the end of the sequence F with start vertex x,
the new vertex y and the edge from x to y are added to the breadth-first search
tree.

The depth-first search tree is constructed according to the following rule, starting
from the root c :

– If a new vertex y is appended to the end of the sequence F with end vertex x,
the new vertex y and the edge from x to y are added to the depth-first search
tree.

e f

c c

da b

f

e

b

a d

breadth-first search tree depth-first search tree

	Preface
	Contents
	1 Logic
	1.1 Representation of Thought
	1.2 Elementary Concepts
	1.3 Propositional Logic
	1.3.1 Logical Variables and Connectives
	1.3.2 Logical Expressions
	1.3.3 Logical Normal Form
	1.3.4 Logical Rules of Inference

	1.4 Predicate Logic
	1.5 Proofs and Axioms

	2 Set Theory
	2.1 Sets
	2.2 Algebra of Sets
	2.3 Relations
	2.4 Types of Relations
	2.5 Mappings
	2.6 Types of Mappings
	2.7 Cardinality and Countability
	2.8 Structures

	3 Algebraic Structures
	3.1 Introduction
	3.2 Inner Operations
	3.3 Sets with One Operation
	3.4 Sets with Two Operations
	3.4.1 Introduction
	3.4.2 Additive and Multiplicative Domains
	3.4.3 Dual Domains

	3.5 Vector Spaces
	3.5.1 General Vector Spaces
	3.5.2 Real Vector Spaces

	3.6 Linear Mappings
	3.7 Vector and Matrix Algebra
	3.7.1 Definitions
	3.7.2 Elementary Vector Operations
	3.7.3 Elementary Matrix Operations
	3.7.4 Derived Scalars
	3.7.5 Complex Vectors and Matrices

	4 Ordinal Structures
	4.1 Introduction
	4.2 Ordered Sets
	4.3 Extreme Elements
	4.4 Ordered Sets with Extremality Properties
	4.5 Mappings of Ordered Sets
	4.6 Properties of Ordered Sets
	4.7 Ordered Cardinal Numbers

	5 Topological Structures
	5.1 Introduction
	5.2 Topological Spaces
	5.3 Bases and Generating Sets
	5.4 Metric Spaces
	5.5 Point Sets in Topological Spaces
	5.6 Topological Mappings
	5.7 Construction of Topologies
	5.7.1 Final and Initial Topologies
	5.7.2 Subspaces
	5.7.3 Product Spaces

	5.8 Connectedness of Sets
	5.8.1 Disconnections and Connectedness
	5.8.2 Connectedness of Constructed Sets
	5.8.3 Components and Paths

	5.9 Separation Properties
	5.10 Convergence
	5.10.1 Sequences
	5.10.2 Subsequences
	5.10.3 Series
	5.10.4 Nets
	5.10.5 Filters

	5.11 Compactness
	5.11.1 Compact Spaces
	5.11.2 Compact Metric Spaces
	5.11.3 Locally Compact Spaces

	5.12 Continuity of Real Functions

	6 Number System
	6.1 Introduction
	6.2 Natural Numbers
	6.3 Integers
	6.4 Rational Numbers
	6.5 Real Numbers
	6.6 Complex Numbers
	6.7 Quaternions

	7 Groups
	7.1 Introduction
	7.1.1 Group Theory
	7.1.2 Outline

	7.2 Groups and Subgroups
	7.3 Types of Groups
	7.3.1 Permutation Groups
	7.3.2 Symmetry Groups
	7.3.3 Generated Groups
	7.3.4 Cyclic Groups
	7.3.5 Groups of Integers
	7.3.6 Cyclic Subgroups

	7.4 Class Structure
	7.4.1 Classes
	7.4.2 Cosets and Normal Subgroups
	7.4.3 Groups of Residue Classes
	7.4.4 Conjugate Elements and Sets

	7.5 Group Structure
	7.5.1 Introduction
	7.5.2 Homomorphism
	7.5.3 Isomorphism
	7.5.4 Isomorphic Types of Groups
	7.5.5 Automorphisms

	7.6 Abelian Groups
	7.6.1 Introduction
	7.6.2 Classification of Abelian Groups
	7.6.3 Linear Combinations
	7.6.4 Direct Sums
	7.6.5 Constructions of Abelian Groups
	7.6.6 Decompositions of Abelian Groups

	7.7 Permutations
	7.7.1 Introduction
	7.7.2 Symmetric Groups
	7.7.3 Cycles
	7.7.4 Conjugate Permutations
	7.7.5 Transpositions
	7.7.6 Subgroups of a Symmetric Group
	7.7.7 Group Structure of the Symmetric Group S 4
	7.7.8 Class Structure of the Symmetric Group S 4

	7.8 General Groups
	7.8.1 Introduction
	7.8.2 Classes in General Groups
	7.8.3 Groups of Prime-power Order
	7.8.4 Normal Series

	7.9 Unique Decomposition of Abelian Groups

	8 Graphs
	8.1 Introduction
	8.2 Algebra of Relations
	8.2.1 Introduction
	8.2.2 Unary Relations
	8.2.3 Homogeneous Binary Relations
	8.2.4 Heterogeneous Binary Relations
	8.2.5 Unary and Binary Relations
	8.2.6 Closures

	8.3 Classification of Graphs
	8.3.1 Introduction
	8.3.2 Directed Graphs
	8.3.3 Bipartite Graphs
	8.3.4 Multigraphs
	8.3.5 Hypergraphs

	8.4 Structure of Graphs
	8.4.1 Introduction
	8.4.2 Paths and Cycles in Directed Graphs
	8.4.3 Connectedness of Directed Graphs
	8.4.4 Cuts in Directed Graphs
	8.4.5 Paths and Cycles in Simple Graphs
	8.4.6 Connectedness of Simple Graphs
	8.4.7 Cuts in Simple Graphs
	8.4.8 Acyclic Graphs
	8.4.9 Rooted Graphs and Rooted Trees

	8.5 Paths in Networks
	8.5.1 Introduction
	8.5.2 Path Algebra
	8.5.3 Boolean Path Algebra
	8.5.4 Real Path Algebra
	8.5.4.1 Minimal Path Length
	8.5.4.2 Maximal Path Length
	8.5.4.3 Maximal Path Reliability
	8.5.4.4 Maximal Path Capacity

	8.5.5 Literal Path Algebra
	8.5.5.1 Path Edges
	8.5.5.2 Common Path Edges
	8.5.5.3 Simple Paths
	8.5.5.4 Extreme Simple Paths
	8.5.5.5 Literal Vertex Labels
	8.5.5.6 Literal Edge Labels for Simple Graphs
	8.5.5.7 Applications in Structural Analysis

	8.5.6 Properties of Path Algebras
	8.5.7 Systems of Equations
	8.5.7.1 Solutions of Systems of Equations
	8.5.7.2 Direct Methods of Solution
	8.5.7.3 Iterative Methods of Solution

	8.6 Network Flows
	8.6.1 Introduction
	8.6.2 Networks and Flows
	8.6.3 Unrestricted Flow
	8.6.4 Restricted Flow
	8.6.5 Maximal Flow
	8.6.6 Maximal Flow and Minimal Cost
	8.6.7 Circulation

	9 Tensors
	9.1 Introduction
	9.2 Vector Algebra
	9.2.1 Vector Spaces
	9.2.2 Bases
	9.2.3 Coordinates
	9.2.4 Metrics
	9.2.5 Construction of Bases
	9.2.6 Transformation of Bases
	9.2.7 Orientation and Volume

	9.3 Tensor Algebra
	9.3.1 Introduction
	9.3.2 Tensors
	9.3.3 Transformation of Tensor Coordinates
	9.3.4 Operations on Tensors
	9.3.5 Antisymmetric Tensors
	9.3.6 Tensors of First and Second Rank
	9.3.7 Properties of Dyads
	9.3.8 Tensor Mappings

	9.4 Tensor Analysis
	9.4.1 Introduction
	9.4.2 Point Spaces
	9.4.3 Rectilinear Coordinates
	9.4.4 Derivatives with Respect to Global Coordinates
	9.4.5 Curvilinear Coordinates
	9.4.6 Christoffel Symbols
	9.4.7 Derivatives with Respect to Local Coordinates
	9.4.8 Tensor Integrals
	9.4.9 Field Operations
	9.4.10 Nabla Calculus
	9.4.11 Special Vector Fields
	9.4.12 Integral Theorems

	10 Stochastics
	10.1 Introduction
	10.2 Random Events
	10.2.1 Introduction
	10.2.2 Elementary Combinatorics
	10.2.3 Algebra of Events
	10.2.4 Probability
	10.2.5 Reliability

	10.3 Random Variables
	10.3.1 Introduction
	10.3.2 Probability Distributions
	10.3.3 Moments
	10.3.4 Functions of One Random Variable
	10.3.5 Functions of Several Random Variables
	10.3.6 Discrete Distributions
	10.3.6.1 Bernoulli Distribution
	10.3.6.2 Binomial Distribution
	10.3.6.3 Pascal Distribution
	10.3.6.4 Poisson Distribution

	10.3.7 Continuous Distributions
	10.3.7.1 Gamma Distribution
	10.3.7.2 Normal Distribution
	10.3.7.3 Logarithmic Normal Distribution
	10.3.7.4 Maximum Distributions
	10.3.7.5 Minimum Distributions

	10.4 Random Vectors
	10.4.1 Introduction
	10.4.2 Probability Distributions
	10.4.3 Moments
	10.4.4 Functions of a Random Vector
	10.4.5 Multinomial Distribution
	10.4.6 Multinormal Distribution

	10.5 Random Processes
	10.5.1 Introduction
	10.5.2 Finite Markov Processes in Discrete Time
	10.5.2.1 Introduction
	10.5.2.2 States and Transitions
	10.5.2.3 Structural Analysis
	10.5.2.4 Spectral Analysis
	10.5.2.5 First Passage
	10.5.2.6 Processes of Higher Order

	10.5.3 Finite Markov Processes in Continuous Time
	10.5.3.1 Introduction
	10.5.3.2 States and Transition Rates
	10.5.3.3 First Passage
	10.5.3.4 Queues
	10.5.3.5 Queue Systems

	10.5.4 Stationary Processes
	10.5.4.1 Introduction
	10.5.4.2 Probability Distributions and Moments
	10.5.4.3 Stationary Processes in Discrete Time
	10.5.4.4 Stationary Processes in Continuous Time

	Index

