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7
Risk Management

Basically, risk management deals with the problem of protecting a portfolio
or trading book against unexpected changes of market prices or other para-
meters. It therefore expresses the desire of a portfolio manager or trader to
guarantee a minimum holding period return or to create a portfolio which
helps him to fullfil specific liabilities over time. Risk management may help
to avoid extreme events, to reduce the tracking error or even the trading
costs. However, there are different possibilities for setting up a risk man-
agement or hedging process. The method which should be applied may
well depend on the time horizon of the risk manager. If he is interested
in controlling short-term risk, or if he would like to hedge against small
movements in market prices, he may decide for a sensitivity-based risk
management. This method is described in Section 7.1. If he has a longer
time horizon and wants to be safe against large market movements he may
decide for a downside risk management, which is discussed in Section 7.2.

7.1 Sensitivity-Based Risk Management

Sensitivity-based risk management deals with the problem of controlling a
portfolio’s sensitivity with respect to a given set of risk factors. It concen-
trates on hedging against small movements of the risk factors in a small
period of time. This is of special interest to traders in charge of controlling
the intraday or overnight market risk of their trading book. Section 7.1.1
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gives a general definition of first- and second-order hedging which is applied
to special risk measures such as the duration measure in Section 7.1.2 or
the key-rate deltas and gammas in Section 7.1.3. For ease of exposition we
omit the index for the specific daycount convention in writing the length
of a time interval. The reader interested in more details on this topic refer
to Section 5.1.

7.1.1 First- and Second-Order Hedging

Having defined the sensitivity measures of first- and second-order, we now
discuss how these measures can be used for risk management or hedging
purposes. To do so, let V (F,ϕ) be the price of a portfolio ϕ = (ϕ1, ...,ϕn) of
financial instruments or derivatives with pricesD1 (F) , ...,Dn (F) depending
on the vector of risk factors F = (F1, ...,Fm), i.e.

V (ϕ) = V (F,ϕ) =
nX
i=1

ϕi ·Di (F) ,

and letH1 (F) , ...,HK (F),K ∈IN , be the prices of the financial instruments
which the trader or risk manager would allow for hedging purposes and
which we will call hedge instruments. Furthermore, let h = (h1, ..., hK) be
a portfolio consisting of these hedge instruments, called a hedge portfolio,
with a portfolio price given by

V (h) = V (F, h) =
KX
k=1

hk ·Hk (F) .

The first-order sensitivities of the portfolios ϕ and h are given by

∆
V (ϕ)
Fj

=
nX
i=1

ϕi ·∆Di

Fj
(F)

and

∆
V (h)
Fj

=
KX
k=1

hk ·∆Hk

Fj
(F) , j = 1, ...,m.

For a fixed vector α = (α1, ...,αm) ∈ [0, 1]m, the idea behind the so-called
first-order hedging is to find a portfolio h∗ = (h∗1, ..., h

∗
K), sometimes called

the vector of the first-order hedge ratios, which solves the optimization
problem

(P1)


mX
j=1

αj ·
³
∆
V (ϕ)
Fj

(F)−∆V (h)Fj
(F)
´2
→ min

h ∈ Z1 ⊆IRK ,
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where Z1 denotes the set of all possible hedge portfolios, which we assume
to be set up by linear restrictions. This set may be equal to IRK if no
trading restrictions are set by the trader, but there may be restrictions
on the trading volume such as slow ≤ h ≤ shigh or even special corridors
into which the risk manager or trader would like to drive the first-order
sensitivities, i.e.

∆low ≤ ∆V (ϕ)F (F)−∆V (h)F (F) ≤ ∆high.

Such restrictions may be interesting especially for those first-order sensitiv-
ities for which αj was set equal to 0 and which are therefore not included
in the minimization process. Note that (P1) is of the general form

(P )

½
h0Qh+ c0h+ d→ min
h ∈ Z

for suitable vectors c and d, a symmetric matrix Q ∈IRK×K , and a set of
possible portfolios Z set up by linear restrictions. Especially, Q in the case
of problem (P1) is given by

Q = (qkl)k,l=1,...,K with qkl :=
mX
j=1

αj ·∆Hk

Fj
(F) ·∆Hl

Fj
(F) , k, l = 1, ...,K.

The goal function is convex if and only if Q is positive semi-definite, it
is strictly convex if and only if Q is positive definite. In either case, the
corresponding optimization problem is called quadratic. It is well-known
from the theory of non-linear optimization that the quadratic optimization
problem (P ) has a solution if Q is positive semi-definite, Z 6= ∅, and the
goal function is bounded below. (P ) has a unique solution if Q is positive
definite and Z 6= ∅. Very often traders and risk managers are only interested
in first-order hedging with respect to a single risk factor, i.e. α = ej for some
j ∈ {1, ...,m} and Z1 = IRK . We will refer to this special case as single-
factor first-order hedging. In this case, and if enough instruments with an
exposure in the corresponding risk factor are made available for hedging,
the value of the goal function in the previous optimization problem is zero,
i.e.

∆
V (ϕ)
Fj

(F) = ∆
V (h∗)
Fj

(F) =
KX
k=1

h∗k ·∆Hk

Fj
(F) . (7.1)

The resulting hedged portfolio (ϕ,−h∗) derived by adding a short position
in the hedge portfolio h∗ to the portfolio ϕ is called first-order neutral (with
respect to risk factor Fj). The second-order sensitivities of the portfolios ϕ
and h are given by

Γ
V (ϕ)
FjFl

(F) =
nX
i=1

ϕi · ΓDi

FjFl
(F)
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and

Γ
V (h)
FjFl

(F) =
KX
k=1

hk · ΓHk

FjFl
(F) , j, l = 1, ...,m.

For a fixed matrix β =
¡
βjl
¢
j,l=1,...,m

∈ [0, 1]m×m, the idea behind the
so-called second-order hedging is to find a portfolio h∗ = (h∗1, ..., h

∗
K), some-

times called the vector of the second-order hedge ratios, which solves the
optimization problem

(P2)


mX
j=1

mX
l=1

βjl ·
³
Γ
V (ϕ)
FjFl

(F)− ΓV (h)FjFl
(F)
´2
→ min

h ∈ Z2 ⊆IRK .

Again, we suppose that the set of all possible hedge portfolios Z2 is set
up by linear restrictions. One possible restriction may be equation (7.1) to
ensure that the residual portfolio will have a first-order sensitivity of zero
with respect to factor Fj and second-order sensitivities as low as possible.
Traders and risk managers are very often interested in second-order hedging
only with respect to a single risk factor, i.e. βjj = 1 for some j ∈ {1, ...,m}
and βjl = 0 for all other possible pairs (j, l) as well as Z2 = IRK . We
will refer to this special case as single-factor second-order hedging. In this
case, and if enough instruments with an exposure in the corresponding risk
factor are made available for hedging, the value of the goal function in the
previous optimization problem is zero, i.e.

Γ
V (ϕ)
FjFj

(F) = Γ
V (h∗)
FjFj

(F) =
KX
k=1

h∗k · ΓHk

FjFl
(F) . (7.2)

The resulting hedged portfolio (ϕ,−h∗) is called second-order neutral (with
respect to risk factor Fj).
Advanced risk management often includes first- and second-order hedg-

ing. In this case traders are not only interested in reducing the sensitivity
of their portfolio to given risk factors but also would like to reduce the fre-
quency of restructuring the portfolio after small market changes. There are
a few possibilities for how this can be done. The first one is to minimize a
combination of the first- and second-order sensitivities. For a fixed number
λ ∈ [0, 1], the idea is to find a portfolio h∗ = (h∗1, ..., h∗K) which solves the
optimization problem

(Pλ)



λ ·
mX
j=1

αj ·
³
∆
V (ϕ)
Fi

(F)−∆V (h)Fi
(F)
´2

+(1− λ) ·
mX
j=1

mX
l=1

βjl ·
³
Γ
V (ϕ)
FjFl

(F)− ΓV (h)FjFl
(F)
´2

→ min

h ∈ Z2−λ,
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where the set Z2−λ of possible hedge portfolios is supposed to be set up
by linear restrictions. Choosing λ = 1 the risk manager or trader is inter-
ested in first-order hedging only. Choosing λ = 0 as another extreme, he is
interested in pure second-order hedging.

Let us look at a first example. In Section 6.1.1 we learned that the first-
order sensitivity of the (static) coupon-bond futures price F (t, T ) with re-
spect to the cheapest-to-deliver bond (CTD) with price Bond (t, T ∗B, C

∗),
under the assumptions that the CTD bond doesn’t change by a small
change of the coupon-bond price, that there are no coupon payments in
the time-period [t, T ], and that all hedge ratios are due to the correspond-
ing notional amounts of the future and the CTD, is given by (see equation
(6.4))

∆FCTD (F) =
1 +RL (t, T ) · (T − t)

Conv (T ∗B, C
∗)

.

Since ∆CTDCTD (F) = 1, the first-order hedge ratio for hedging the future with
the CTD to receive first-order neutrality, according to equation (7.1), is
given by

∆FCTD (F) = h
∗
CTD ·∆CTDCTD (F) = h

∗
CTD.

The corresponding first-order hedge ratio for hedging the CTD with the
future to receive first-order neutrality is given by

h∗F =
Conv (T ∗B, C

∗)

1 +RL (t, T ) · (T − t)
,

i.e. we have to buy h∗F futures to hedge the CTD. Under the additional
assumption that the repo rate RL (t, T ) doesn’t change if the price of the
CTD changes1, this is also the hedge ratio with respect to a changing zero-
rate curve since, in this case, the future price-changes with changes of the
zero-rate curve only by the price-changes of the CTD. Note that the hedge
ratios have to be multiplied by the corresponding ratio of the notional
amounts if these are different for the future and the CTD (see Section 7.1.2
for an example).

7.1.2 Duration-Based Hedging

Let us now drop the assumption that the repo rate RL (t, T ) doesn’t change
with price-changes of the CTD, and assume that all price-changes are due
to a parallel shift of the zero-rate curve. This is the assumption we made
in Section 6.1.3 claiming that the zero rates of all maturities move by

∆R (t, T ) := ∆F (t) for all T ∈ [t, T ∗] . (7.3)

1Note, that this assumption is consistent with assumption 2 of the Black model, i.e.
interest rates are supposed to be deterministic for discounting purposes.
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Consequently, we assume that the linearly quoted repo rate moves accord-
ing to a parallel shift of the continously quoted zero-rate curve. The con-
tinuously compounded equivalent RC (t, T ) to the repo rate is implicitly
defined by the equation

eRC(t,T )·(T−t) = 1 +RL (t, T ) · (T − t) ,

or, the other way round,

RL (t, T ) =
1

T − t ·
h
eRC(t,T )·(T−t) − 1

i
.

Hence, a small change of RC (t, T ) will change the repo rate by

∆RL (F) := ∂
∂RC(t,T )

RL (t, T ) = e
RC(t,T )·(T−t)

= 1 +RL (t, T ) · (T − t) .

Furthermore, using equation (6.4), we know that a small change of the
CTD will change the (static) futures price by

∆FCTD (F) =
1 +RL (t, T ) · (T − t)

Conv (T ∗B, C
∗)

,

with (T ∗B, C
∗) characterizing the cheapest-to-deliver bond. Denoting the

first-order sensitivities of the (static) future price F = F (t, T ) and the
cheapest-to-deliver bond price CTD = CDT (t, T ∗B , C

∗) with respect to a
parallel shift of the zero-rate curve by ∆F (F) and ∆CTD (F), we know by
equation (6.15) that

∆CTD (F) = −duration (t, T ∗B , C∗) ·CTD.

To derive ∆F (F) let us now look at the (static) futures price, again assum-
ing that the CTD bond doesn’t change by a small change of the coupon-
bond price, that there are no coupon payments in the time-period [t, T ],
and that all hedge ratios are due to the corresponding notional amounts of
the future and the CTD. Following equation (5.4) it is given by

F (t, T ) = CTD · 1 +RL (t, T ) · (T − t)
Conv (T ∗B, C

∗)
− Accrued (t0, T, C

∗)

Conv (T ∗B, C
∗)

.
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Hence,

∆F (F) = ∆CTD (F) · 1 +RL (t, T ) · (T − t)
Conv (T ∗B, C

∗)

+CTD · 1 +RL (t, T ) · (T − t)
Conv (T ∗B, C

∗)
· (T − t)

= CTD · 1 +RL (t, T ) · (T − t)
Conv (T ∗B , C

∗)
·

· [−duration (t, T ∗B, C∗) + T − t]

=

µ
F (t, T ) +

Accrued (t0, T, C
∗)

Conv (T ∗B, C
∗)

¶
·

· [−duration (t, T ∗B, C∗) + T − t]
= Fdirty (t, T ) · [−duration (t, T ∗B , C∗) + T − t]

with

Fdirty (t, T ) := F (t, T ) +
Accrued (t0, T, C

∗)

Conv (T ∗B, C
∗)

denoting the so-called dirty price of the future. If we may suppose that
T − t ≈ 0, we know that Fdirty (t, T ) ≈ CTD(t,T∗B,C

∗)
Conv(T∗B,C∗)

which leads us to

∆F (F) ≈ −duration (t, T ∗B, C∗) · Fdirty (t, T )

≈ −duration (t, T ∗B, C∗) ·
CTD(t,T∗B,C

∗)
Conv(T∗B,C∗)

.

Having made this preparatory work, we can now turn our interest to the
problem of hedging a portfolio of coupon bonds with a coupon-bond future
to receive first-order neutrality with respect to a parallel shift of the zero-
rate curve. The result is summarized in the following lemma.

Lemma 7.1 (Duration-Based Hedge Ratios) Let V (F,ϕ, t) be the
dirty price of a portfolio ϕ = (ϕ1, ...,ϕn) of coupon bonds depending on
the risk factor F at time t ∈ [t0, T ]. Furthermore, let duration (ϕ, t) denote
the duration and ∆V (ϕ) (F) = ∆V (F,ϕ,t) (F) denote the first-order sensitiv-
ity of the coupon-bond portfolio with respect to F at time t ∈ [t0, T ]. Under
the assumption that the CTD bond doesn’t change by a small change of
the coupon-bond price and that there are no coupon payments in the time-
period [t, T ], the first-order hedge ratio h∗F (t) at time t ∈ [t0, T ] for hedging
the coupon-bond portfiolio with the future to receive first-order neutrality is
given by

h∗F (t) =
∆V (ϕ) (F)

∆F (F)

=
−duration (ϕ, t) · V (F,ϕ, t)

Fdirty (t, T ) · [−duration (t, T ∗B, C∗) + T − t]

(7.4)
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for t ∈ [t0, T ] and with CTD = CTD (t, T ∗B, C∗). The hedge ratio h∗F (t) is
sometimes called duration-based hedge ratio at time t ∈ [t0, T ].

In practice, risk and portfolio managers often use reasonable approxima-
tions of equation (7.4). These are summarized in the following corollary.

Corollary 7.2 Let the assumptions of Lemma 7.1 be satisfied. Further-
more, let Vclean (F, t,ϕ) denote the clean price of the portfolio ϕ at time
t ∈ [t0, T ].

a) If T − t ≈ 0, then

h∗F (t) ≈
duration (t,ϕ) · V (F,ϕ, t)

duration (t, T ∗B, C
∗) · Fdirty (t, T )

≈ duration (ϕ, t) · V (F,ϕ, t) · Conv (T ∗B, C∗)
duration (t, T ∗B, C

∗) ·CTD .
(7.5)

b) If, in addition to the assumptions of part a),

V (F,ϕ, t)

Fdirty (t, T )
≈ Vclean (F,ϕ, t)

F (t, T )
,

then

h∗F (t) ≈
duration (ϕ, t) · Vclean (F,ϕ, t)
duration (t, T ∗B, C

∗) · F (t, T ) . (7.6)

Especially equation (7.6) is very popular among risk and portfolio man-
agers since durations, clean coupon bond and (clean) futures prices are
directly available in the market. Also, up to today, Macaulay and modi-
fied duration is available via commercial software and information systems
rather than the zero-rate based duration of equation (7.6). So risk and
portfolio managers tend to use one of these instead of the zero-rate based
duration. The following example shows this practical application of equa-
tion (7.6) using the Macaulay duration. The problems arising with this
application are analyzed in the case study of Section 7.1.3. For the prac-
tical application, note that h∗F was calculated under the assumption that
the futures price is evaluated relative to the same notional amount as the
CTD. If the notional NF of the future and the notional NCTD of the CTD
do not coincide, the duration-based hedge ratio of equations (7.4), (7.5) or
(7.6) has to be adjusted to

htradingF =
NCTD
NF

· h∗F . (7.7)



7.1 Sensitivity-Based Risk Management 281

Case Study (Hedging Bond Portfolios with Futures)
Let us consider the following coupon-bond portfolio ϕ = (ϕ1, ...,ϕ7)

with a notional amount of 90 Mio. Euro, a portfolio clean price of
Vclean (ϕ, t) = 88, 740, 750 (prices are already multiplied with NCTD

100 ) at
October 20, 2000 (t), and aMacaulay duration of durationMac (ϕ, t) = 5.41
years consisting of the following coupon bonds:

Notional amount (in Mio.) Coupon (in %) Maturity

10 4.050 05/17/02
10 4.125 08/27/04
15 7.500 11/11/04
5 6.250 04/26/06
20 3.750 01/04/09
10 4.500 07/04/09
20 5.250 07/04/10

Usually, the portfolio is divided for a better duration-based hedging re-
sult which we do by splitting into the portfolios ϕ1 = (ϕ1, ...,ϕ4) with
coupon bonds having a time to maturity of up to 6 years and ϕ2 =
(ϕ5, ...,ϕ7) with coupon bonds having a time to maturity of more than
6 years. The corresponding portfolio prices at time t were Vclean

¡
ϕ1, t

¢
=

41, 092, 750 and Vclean
¡
ϕ2, t

¢
= 47, 648, 000 (prices are already multiplied

with NCTD

100 ), the Macaulay durations were durationMac

¡
ϕ1, t

¢
= 3.19 years

and durationMac

¡
ϕ2, t

¢
= 7.33 years. The idea is to hedge portfolio ϕ1

with the Bobl future and portfolio ϕ2 with the Bund future. The price
for the futures at time t were FBobl (t) := F (t, TBobl) = 103.38 for the
Bobl and FBund (t) := F (t, TBund) = 105.58 for the Bund. The CTD for
the Bobl future at that time was a 6.5% government bond with maturity
time 10/14/05 and a duration of 4.43 years, the CTD for the Bund future
was a 5.375% government bond with maturity time 01/04/10 and a dura-
tion of 7.21 years. At October 20, 2000 both futures were for a notional of
NF = 100, 000 Euro. Using equation (7.6) and the Macaulay duration as
explained above, we get the following hedge ratios at time t for the Bobl
and Bund futures:

htradingBobl (t) ≈
durationMac

¡
ϕ1, t

¢
· Vclean

¡
ϕ1, t

¢
NBobl

100 · duration
³
t, T ∗CTD(Bobl), C

∗
CTD(Bobl)

´
· FBobl (t)

=
3.19 · 41, 092, 750

100,000
100 · 4.43 · 103.38

= 286.23 ≈ 286
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and

htradingBund (t) ≈
durationMac

¡
ϕ2, t

¢
· Vclean

¡
ϕ2, t

¢
NBund

100 · duration
³
t, T ∗CTD(Bund), C

∗
CTD(Bund)

´
· FBund (t)

=
7.33 · 47, 648, 000
1, 000 · 7.21 · 105.58 = 458.81 ≈ 459.

So we are hedging the coupon-bond portfolio by selling 286 Bobl futures
and 459 Bund futures.

Sometimes it is also interesting to duration-hedge a coupon-bond portfo-
lio with other coupon bonds. For this reason, let V (F,ϕ, t) and
duration (ϕ, t) be the price and duration of a portfolio ϕ = (ϕ1, ...,ϕn)
of coupon bonds at time t ∈ [t0, T ]. Furthermore, let h = (h1, ..., hK) be a
portfolio consisting of the coupon bonds which are available for hedging and
which we will briefly denote by hedging coupon bonds. Let
Hk (F, t) = Bond

¡
t, T kB, C

k
¢
and duration

¡
t, T kB, C

k
¢
, k = 1, ...,K ∈ IN ,

be the prices and durations of these hedge instruments and

V (h, t) = V (F, h, t) =
KX
k=1

hk ·Hk (F, t) and duration (h, t)

be the price and duration of the hedge portfolio as given in equation
(6.16). Then the condition for the first-order hedge ratios h∗ = h∗ (t) with
h∗ = (h∗1, ..., h

∗
K) for hedging the coupon-bond portfolio with the hedging

coupon bonds to receive first-order neutrality at time t is given by

∆V (ϕ) (F) = ∆V (h
∗) (F) =

KX
k=1

h∗k ·∆Hk (F) , (7.8)

or equivalently

−duration (ϕ, t) · V (F,ϕ, t) = −duration (h∗, t) · V (F, h∗, t) .

If K = 1 with TB := T 1B and C := C
1, this is

−duration (ϕ, t) · V (F,ϕ, t) = −duration (t, TB, C) · h∗ ·Bond (t, TB, C) ,

or

h∗ =
duration (ϕ, t) · V (F,ϕ, t)

duration (t, TB, C) ·Bond (t, TB, C)
.

If K > 1, there is more than one possibility, and further equations have to
be added, such as

duration (ϕ, t) = duration (h∗, t) .
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In this case we need a minimum of two coupon bonds for hedging. For
a number of two hedging coupon bonds we always get a combination of a
coupon bond with a shorter and a coupon bond with a longer duration than
that of the portfolio ϕ. We will return to hedging coupon-bond portfolios
with coupon bonds in the next section.

7.1.3 Key-Rate Delta and Gamma Hedging

In Section 6.1.4 we showed that the key-rate deltas are a natural generaliza-
tion of the duration concept. To realize this concept, the time to maturity
interval [0, T ∗ − t] was divided into m ∈ IN non-overlapping subintervals
KB1, ...,KBm called the key-rate buckets. At time t, all zero rates having
a time to maturity within the same bucket KBj are supposed to move
by exactly the same amount ∆Fj (t), j = 1, ...,m. If D (R (t) , t) denotes
the price of a financial instrument or derivative depending on (some ele-
ments of) the vector of zero rates R (t) := (R (t, T1) , ..., R (t, Tn))

0 and time
t ∈ [t0, T ∗] with t0 ≤ t ≤ T1 < · · · < Tn ≤ T ∗, the key-rate delta ∆DKBj (R)
is defined to be the first-order sensitivity of the derivatives price with re-
spect to a small parallel shift of the zero-rate curve within key-rate bucket
KBj , j = 1, ...,m, and all other zero rates unchanged. The corresponding
second-order sensitivity, the key-rate gamma with respect to the key-rate
buckets KBj and KBl, j, l = 1, ...,m, is denoted by ΓDKBj ,KBl

(R). Us-
ing these definitions, the approximate price-change ∆D (R) of a derivative,
depending on small changes of the risk factors F, is given by

∆D (R) ≈
mX
j=1

∆DKBj (R) ·∆Fj +
mX
j=1

mX
l=1

ΓDKBjKBl (R) ·∆Fj ·∆Fl.

The price-change ∆V (ϕ,R) of the portfolio ϕ = (ϕ1, ...,ϕn) of financial
instruments or derivatives with prices D1 (R) , ...,Dn (R) depending on the
vector of zero rates R which is supposed to include all zero rates on which
the derivatives may depend is approximately given by

∆V (ϕ, R) ≈
mX
j=1

∆
V (ϕ)
KBj

(R) ·∆Fj +
mX
j=1

mX
l=1

Γ
V (ϕ)
KBjKBl

(R) ·∆Fj ·∆Fl,

where V (ϕ, R) denotes the price of the portfolio, the key-rate deltas of the
portfolio are given by

∆
V (ϕ)
KBj

(R) =
nX
i=1

ϕi ·∆Di

KBj
(R) , j = 1, ...,m,

and the key-rate gammas of the portfolio are given by

Γ
V (ϕ)
KBjKBl

(R) =
nX
i=1

ϕi · ΓDi

KBjKBl
(R) , j, l = 1, ...,m.
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Let H1 (R) , ...,HK (R), K ∈ IN , be the prices of the hedge instruments
with key-rate deltas and gammas denoted by ∆Hk

KBj
(R) and ΓHk

KBjKBl
(R),

j, l = 1, ...,m, k = 1, ...,K. Furthermore, let h = (h1, ..., hK) be the
hedge portfolio with price V (h) = V (h,R) and key-rate delta and gamma
given by ∆V (h)KBj

(R) and ΓV (h)KBjKBl
(R), j, l = 1, ...,m. For a fixed vector

α = (α1, ...,αm) ∈ [0, 1]m, the so-called key-rate delta hedging is the search
for a portfolio h∗ = (h∗1, ..., h

∗
K), sometimes called the vector of the key-rate

delta hedge ratios, which solves the optimization problem

(P1)


mX
j=1

αj ·
³
∆
V (ϕ)
KBj

(R)−∆V (h)KBj
(R)

´2
→ min

h ∈ Z1 ⊆IRK ,

where Z1 denotes the set of all possible hedge portfolios which we assume
to be set up by linear restrictions. For a fixed matrix β =

¡
βjl
¢
j,l=1,...,m

∈
[0, 1]m×m, the corresponding key-rate gamma hedging is the search for a
portfolio h∗ = (h∗1, ..., h

∗
K), sometimes called the vector of the key-rate

gamma hedge ratios, which solves the quadratic optimization problem

(P2)


mX
j=1

mX
l=1

βjl ·
³
Γ
V (ϕ)
KBjKBl

(R)− ΓV (h)KBjKBl
(R)

´2
→ min

h ∈ Z2 ⊆IRK .

Again, we suppose that the set of all possible hedge portfolios Z2 is set
up by linear restrictions. Combinations are possible as already mentioned
in Section 7.1.1. Nevertheless, because of the complexity of the resulting
optimization problems, key-rate delta hedging plays the dominant role in
practice.

Case Study (Key-Rate Delta Hedging)2

In the Duration-Based Hedging with Futures case study of Section 7.1.2
we hedged, at time t = 10/20/00, a coupon-bond portfolio with a notional
amount of 90 Mio. Euro using Bobl and Bund futures. We did this, using
the simplest approximation of Corollary 7.2b), by selling h01 = 286 Bobl
and h02 = 459 Bund futures which is a notional of 74.5 Mio. Euro. Accord-
ing to the classification of the coupon bonds into two maturity segments
in this case study we now define the key-rate buckets KBA1 := [0M, 6Y ]
and KBA2 := (6Y, 10Y ]. The zero-rate curve at time t and the key-rate
deltas of the duration hedged portfolio

¡
ϕ1, ...,ϕ7,−h01,−h02

¢
is shown3 in

2All calculations and optimizations were done using the software tool Risk Advisor
from risklab germany.

3Remember, that we plot the key rate deltas with respect to an increase of the
corresponding zero rates by 1bp.
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figures 7.1-7.2. The two deltas do not completely net out because we split
the portfolio, and so do not correctly consider coupon payments of the
longer maturity coupon bonds which fall in the first key-rate bucket. Fur-
thermore, the duration-based hedging formula of Corollary 7.2b) is just an
approximation.
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FIGURE 7.1. Continuous zero rate curve derived from German government bonds
on October 20, 2000

On the other hand we apply the optimization problem (P1) doing a key-
rate delta hedging with respect to the same key-rate buckets and instru-
ments. The optimal solution of this problem is given by selling hA1 = 360
Bobl and hA2 = 442 Bund futures which is a notional of 80.18 Mio. Euro.
The corresponding key-rate deltas of the hedged portfolio¡
ϕ1, ...,ϕ7,−hA1 ,−hA2

¢
in figure 7.3 are both close to zero and by far smaller

than those of portfolio
¡
ϕ1, ...,ϕ7,−h01,−h02

¢
.

However, this is not the full picture. Let us consider the key-rate buckets
KBB1 := [0M, 3Y ], KBB2 := (3Y, 6Y ], KBB3 := (6Y, 8Y ], and
KBB4 := (8Y, 10Y ] and let us examine the corresponding key-rate deltas
of portfolio

¡
ϕ1, ...,ϕ7,−hA1 ,−hA2

¢
. The result is plotted in figure 7.4 and

shows the risk inherent in what we thought a well hedged portfolio. It is
indeed well hedged under the assumption that the zero-rate curve moves
by parallel shifts only in the key-rate buckets KBA1 and KBA2 when the
key-rate deltas of buckets KBB1 and KB

B
2 as well as those of buckets KB

B
3

and KBB4 net out. The hedge may be rather bad if the yield curve twists.
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FIGURE 7.2. Key rate deltas of the duration hedged portfolio¡
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FIGURE 7.3. Key rate deltas of the key rate hedged portfolio¡
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One step further, let us use a 8% coupon bond with maturity time
01/21/02 and a 6% coupon bond with maturity time 07/04/07 as hedge
instruments H3 and H4 and apply optimization problem (P1) with respect
to the key-rate buckets KBB1 , KB

B
2 , KB

B
3 , and KB

B
4 . The optimal solu-

tion is a hedge portfolio of hB1 = 259 Bobl futures, h
B
2 = 445 Bund futures

which is a notional of 70.4 Mio., a notional of hB3 = −0.42 Mio. of H3,
and a notional of hB4 = 33.62 Mio. of H4. This is a total notional amount
of 103.6 Mio., i.e. the notional amount of our hedge portfolios increases
the finer we hedge. Nevertheless, the risk numbers of the key-rate hedged
portfolio

¡
ϕ1, ...,ϕ7,−hB1 ,−hB2 ,−hB3 ,−hB4

¢
, shown in figure 7.5, look much

better than those of the hedged portfolio
¡
ϕ1, ...,ϕ7,−hA1 ,−hA2

¢
as shown

in figure 7.4.
Let us finally compare the risk of the startingcoupon-bond portfolio with

that of the key-rate hedged portfolio
¡
ϕ1, ...,ϕ7,−hB1 ,−hB2 ,−hB3 ,−hB4

¢
for

the yearly key-rate buckets KBC1 := [0M, 1Y ] ,KBC2 := (1Y, 2Y ] , ...,
KBC10 := (9Y, 10Y ] as shown in figures 7.6-7.7. Notice the typically negative
key-rate deltas of the long coupon-bond portfolio in figure 7.6, due to the
fact thatcoupon-bond prices fall if we increase the zero rates by 1bp. We see
that the main risk is concentrated in the key-rate buckets KBC4 , ...,KB

C
6 ,

corresponding to time to maturities from 3 to 6 years, and in the key-rate
buckets KBC9 and KBC10, corresponding to time to maturities from 8 to
10 years. As the analysis of the RiskMetricsTM correlations in Section 6.4
showed, it is rather plausible to assume that the zero-rate curve in each
of these two time to maturity segments will move by parallel shifts. So
we can assume that the key-rate deltas will net out making the hedged
portfolio

¡
ϕ1, ...,ϕ7,−hB1 ,−hB2 ,−hB3 ,−hB4

¢
a rather good one. We could

now add additional conditions such as a limit for the notional amount of
the hedged portfolio to meet more specific needs of the risk controller or
portfolio manager.

One of the most important applications in portfolio management is the
derivation of a portfolio that mirrors a given index portfolio. Such a portfo-
lio is also called a tracking portfolio and the process of managing a portfolio
to duplicate the index over time is called index tracking . Usually this is
done by adjusting the duration or the key-rate delta of the tracking portfo-
lio with respect to a single key-rate bucket to match that of the index. No
wonder that the results can be very disappointing if the zero-rate move-
ments are non-parallel. Therefore, we dedicated the following case study to
compare the tracking portfolios for the J.P. Morgan government bond in-
dex Germany (JPMGBG), briefly denoted by J.P. Morgan index derived by
a key-rate delta hedge with one (consistent with duration-based hedging)
and with ten key-rate buckets.
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FIGURE 7.4. Key rate deltas of the key rate hedged portfolio¡
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Case Study (Index Tracking)4

Starting in April 1998, the J.P. Morgan index was hedged once a month.
First this was done with respect to one key-rate bucket from 0 to 10 years
due to a parallel shift of the yield curve, second with respect to the ten key-
rate buckets KBC1 ,KB

C
2 , ...,KB

C
10. In addition we claimed that the fair or

clean prices of the J.P. Morgan index and those of the hedge portfolios
should be equal. The corresponding hedge concepts are referred to as (fair
price) duration tracking for the case of one key-rate bucket and (fair price)
key-rate tracking for the case of ten key-rate buckets. The portfolios are
compared after one month and then readjusted. Figure 7.8 shows the price
behaviour of the duration tracking portfolio compared to the J.P. Morgan
index. This happened while the correponding zero-rate curves changed as
plotted in figure 7.9.
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FIGURE 7.8. Price behaviour of the duration tracking portfolio compared to the
J.P. Morgan index.

At the very beginning the duration tracking did quite well until the “big
surprise” in October 1998 opened the eyes by a significant underperfor-
mance compared to the J.P. Morgan index which is shown numerically in
the following table.

Time J.P. Morgan Duration tracking change

8/31-09/30/98 9, 486, 111 9, 021, 417 parallel
9/30-10/31/98 −3, 031, 613 −11, 749, 764 twist

4All calculations and optimizations were done using the software tool Risk Advisor
from risklab germany.
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FIGURE 7.9. Changes of the zero rate curves.

Where did this underperformance in October 1998 come from? To answer
this question let us dip into September 30, 1998. If we compare the price
value of a basis point (see Section 6.1.3) of −255, 325.69 for the J.P. Morgan
index and −255, 326.21 for the duration tracking portfolio at a clean price
of 585, 583, 106.07 for the first and 585, 583, 179.57 for the latter we would
have not expected such a development. This is underlined by the key-rate
delta picture in figures 7.10-7.11 plotted by their days to maturity.
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FIGURE 7.10. Key rate delta of the J.P. Morgan index with respect to one key
rate bucket.
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FIGURE 7.11. Key rate delta of the duration tracking portfolio with respect to
one key rate bucket

However, with a little more insight, given by the key-rate delta pictures
of figures 7.12-7.13 for a number of 10 key-rate buckets, we see that both
portfolios have a completely different risk design.
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FIGURE 7.12. Key rate deltas of the J.P. Morgan index with respect to ten key
rate buckets
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FIGURE 7.13. Key rate deltas of the duration tracking portfolio with respect to
ten key rate buckets

More dramatically this is shown in figure 7.14, looking at the key-rate
deltas of the portfolio derived by going long the duration tracking portfolio
and short the J.P. Morgan index. We can see that the duration tracking
portfolio extremely overweights the last maturity segment, resulting in a
negative key-rate delta. A zero-rate curve moving up in this last maturity
bucket may therefore have led to the underperformance we observed. And
indeed, as already shown in figure 7.9, the zero-rate curve did increase in
this bucket combined with a twist of the whole zero-rate curve.
If we use all ten key-rate buckets to solve hedging problem (P1), the key-

rate deltas of the resulting key-rate tracking portfolio pretty much equal
those of the J.P. Morgan index (see figure 7.15). If we examine the portfolio
resulting from going long the key-rate tracking portfolio and short the J.P.
Morgan index we see that the key-rate deltas are much smaller than those
of figure 7.14, especially in the last segment (see figure 7.16). Consequently,
the corresponding price behaviour of the key-rate tracking portfolio is much
closer to that of the J.P. Morgan index than that of the duration tracking
portfolio which is shown in figure 7.17. As we can see, the key-rate tracking
portfolio rather smoothly tracks the index, almost perfect compared to
the duration tracking portfolio. This is documented by the tracking error,
which is defined to be the square root of the sum of the squared deviations
of the index price and the price of the corresponding tracking portfolio. It
is calculated as 2, 926, 855 or 0.50% for the duration tracking portfolio and
331, 102 or 0.05% for the key-rate tracking portfolio which is only 10% of
the first value.
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FIGURE 7.14. Key rate deltas of the portfolio resulting from going long the
duration tracking portfolio and short the J.P. Morgan index with respect to ten
key rate buckets
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FIGURE 7.15. Key rate deltas of the key rate tracking portfolio with respect to
ten key rate buckets
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FIGURE 7.16. Key rate deltas of the portfolio resulting from going long the key
rate tracking portfolio and short the J.P. Morgan index with respect to ten key
rate buckets
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FIGURE 7.17. Price behaviour of the key rate tracking portfolio compared to the
duration tracking portfolio and the J.P. Morgan index



296 7. Risk Management

Note that we optimized the tracking portfolios of the previous example
without any linear restrictions but the price equality. Nevertheless, it could
be interesting to add other restrictions such as a limit on the hedging
volume or limits on the investment in instruments with a maturity falling
in specific key-rate buckets to control the time structure of the portfolio.
It could also be interesting to limit the sensitivity with respect to other
risk factors such as the theta or vega, which could be easily implemented
as shown in Section 7.1.1.
Another area of increasing interest is protecting a given portfolio ϕ of

loans, considered to play the role of the index portfolio, with a portfolio h
of coupon bonds, considered as playing the role of the tracking portfolio,
against the risk of changing interest rates. This is already part of the so-
called asset liability management . If we claim that both assets and liabilities
have identical key-rate deltas, the price-change of the residual portfolio is
approximately given by

mX
j=1

mX
l=1

³
Γ
V (ϕ)
KBjKBl

(R)− ΓV (h)KBjKBl
(R)

´
·∆Fj ·∆Fl.

Let us suppose that we model loans such ascoupon bonds, and remember
that coupon bonds have gamma exposure only in the diagonal elements of
the gamma matrix. Then this price-change is equal to

mX
j=1

³
Γ
V (ϕ)
KBjKBj

(R)− ΓV (h)KBjKBj
(R)

´
· (∆Fj)2 .

If we claim that the key-rate gammas ΓV (h)KBjKBj
(R) of the assets are always

larger than the key-rate gammas ΓV (ϕ)KBjKBj
(R) of the liability side, i.e.

Γ
V (h)
KBjKBj

(R) ≥ ΓV (ϕ)KBjKBj
(R) , for all j = 1, ...,m,

the approximate price-change of the residual portfolio will always be nega-
tive. In other words, an increase in price because of changing zero rates in
any of the key-rate buckets will always be greater, a decrease in price will
always be less on the asset side than that on the liability side. This general-
izes the restriction that, under a parallel movement of the zero-rate curve,
the convexity of the asset side should always be larger than the convexity
of the liability side which can be found, e.g., in Dahl [Dah93].
Having discussed different possibilities for setting restrictions, there is

also the possibility of changing the goal function. Under limited first- or
second-order sensitivities it could be interesting to minimize the transac-
tion costs or to maximize the expected return of a portfolio. The latter
is of special interest for portfolio managers, especially when the planning
horizon is long-term rather than short-term. Since this fits the background
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of downside risk measures, we will discuss downside risk management with
the intention of maximizing the expected return of a portfolio in the next
section.

7.2 Downside Risk Management

In this section we deal with the problem of managing the risk of large
movements of the risk factors or interest rates in a possibly longer period
of time. This problem especially appears in portfolio management when
the portfolio manager wants to avoid the return of his portfolio falling
below some given benchmark return. This problem is adressed in Section
7.2.1. On the other hand, the portfolio manager or trader may be controlled
by a limit set on the value at risk of his portfolio therefore trying to be
safe against extreme events. We will present a solution to this problem in
Section 7.2.2.

7.2.1 Risk Management Based on Lower Partial Moments

The process of performing an optimal asset allocation basically deals with
the problem of finding a portfolio that maximizes the expected utility of
the investor or portfolio manager. In other words, the portfolio manager
aims to choose a portfolio with a distribution function that maximizes the
expected utility . As long as it is supposed that the returns of the portfolio
assets follow a normal distribution, the return distribution of any portfo-
lio considered will also be normal. In this case, as is done throughout the
traditional portfolio theory introduced by Markowitz [Mar52] and Sharpe
[Sha64], the problem of finding an expected utility-maximizing portfolio or
distribution function for a risk-averse trader or portfolio manager, repre-
sented by a concave utility function, can be restricted to finding an optimal
combination of the two parameters mean and variance. This dramatically
simplifies the whole asset allocation process and is known as mean-variance
analysis. It is the aim of the portfolio manager to find a portfolio that
maximizes his expected return under a given risk level or a portfolio that
minimizes his risk under a given return level. Risk in this case is measured
by the variance of the portfolio return.
Unfortunately, selection rules based on the two parameters mean and

variance are of limited generality. Roughly speaking they are optimal if the
utility function is quadratic or if it is concave and the return distribution is


