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7.1 Introduction 

S-PLUS code is presented for the graphical insight into, and the statistical analy-
sis of, a two-treatment, two-period, two-treatment-sequence, or 2,2,2 crossover 
design.  In this introductory section, we describe the 2,2,2 crossover design and 
its uses in the pharmaceutical industry with emphasis on food interaction stud-
ies.  We also introduce a specific example and a dataset which will be used 
pedagogically throughout the chapter.  In Section 7.2, we provide a brief intro-
duction to data management in S-PLUS demonstrating just enough manipulations 
to facilitate the graphical methods and data analyses which follow.  Section 7.3 
presents a series of graphs for the initial exploration and discovery stage of the 
analysis of the 2,2,2 crossover design.  In Section 7.4, we perform the usual 
normal theory ANOVA and provide a clear and decision-oriented summary and 
inference plot.  Section 7.5 presents several graphical tools for the “visualization 
of the ANOVA” and a subsequent model fit assessment, and we end with a sum-
mary in Section 7.6. 

7.1.1 The 2,2,2 Crossover Design 

The 2,2,2 crossover design has been a standard tool of medical researchers for 
decades.  Although it has been used frequently in the pharmaceutical industry 
for initial studies investigating the safety and efficacy of new drugs, this design 
is probably best known for its use in evaluating the pharmacokinetics of a drug; 
most notably average bioequivalence, relative bioavailability, drug interaction, 
alcohol interaction, and food interaction. 
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In the simplest form of the 2,2,2 crossover design, half of the subjects are 
randomized to receive one of two treatments in the first treatment period, and 
the second of two treatments in the second treatment period.  The other half of 
the subjects receive the two treatments in the reverse sequence.  Between the 
two treatments in each treatment sequence, there is a “washout” period of ade-
quate length to, in concept, prevent the effect of whichever treatment is given in 
the first treatment period from carrying over to affect the treatment given in the 
second treatment period. 

The 2,2,2 crossover design allows for the evaluation of three effects: treat-
ments, periods, and carryover, although carryover is confounded with both se-
quence (sometimes referred to as subject group) effects and treatment-by-period 
interaction.  Whether or not to, and how to, evaluate carryover effects, and how 
to proceed if these are suspected, has been a controversial issue.  For further de-
tails, see Jones and Kenward (1989) and Senn (1993). 

7.1.2 Food Interaction Studies 

In some cases, taking a drug with food increases the amount of the drug in the 
blood stream.  This increase may be considered medically safe and provide addi-
tional therapeutic benefits to the patient.  Or, the increase may be viewed as a 
potential toxicity problem, regardless of the potential benefit.  In other cases, 
taking the drug with food decreases the amount of drug in the blood stream 
which may decrease the drug’s effectiveness.  In still other cases, taking the 
drug with food may not substantially affect the amount of drug which is deliv-
ered to the blood stream, and for all medically meaningful purposes, the effect 
of the drug is therapeutically equivalent when it is taken either with or without 
food.  Therefore, it is important to evaluate the degree, if any, that a drug inter-
acts with food. 

The primary medical objective of a food interaction study is to “prove” the 
absence of a clinically meaningful food interaction.  The clinical investigators 
may assume initially that there exists some degree of interaction, but it is their 
intention to show that its magnitude is not of clinical importance, possibly being 
nonexistent.  To accomplish this, food interaction studies investigate the phar-
macokinetic properties (ADME: absorption, distribution, metabolism, excretion) 
of a drug.  These properties help to clarify when, where, and how the body proc-
esses and uses the drug.  By measuring these properties, the bioavailability of 
the drug both in the presence and the absence of food is compared. 

The bioavailability of a drug is often characterized by summarizing its 
plasma concentration versus time course in the blood with three measurements: 

1. Area under the plasma concentration versus time curve (AUC), a meas-
ure of total absorption. 

2. Maximum plasma concentration (Cmax), a measure of the extent of ab-
sorption. 

3. Time to maximum plasma concentration (Tmax), a measure of the rate of 
absorption. 
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If the bioavailability of the drug is clinically similar when taken either with (+) 
or without (−) food as evaluated through all or a subset of AUC, Cmax, and Tmax 
as is appropriate for a particular drug, then by clinical extrapolation from the 
pharmacokinetic measurements to expected clinical responses, it should not mat-
ter therapeutically whether or not the drug is administered with food.  Thus, in a 
food interaction study, it is important to estimate the relative (Fed versus Fasted) 
bioavailability of a drug administered both with and without food. 

Relative bioavailability can be estimated following a paradigm similar to that 
for evaluating average bioequivalence.  Confidence intervals for the true propor-
tional differences in the mean Fed (+) and mean Fasted (−) values of targeted 
pharmacokinetic variables (e.g., AUC and Cmax) can be calculated.  Further de-
tails on average bioequivalence can be found in Chow and Liu (2000). 

7.1.3 Our Example 

In our example, eight healthy male subjects participated in a food interaction 
study to evaluate the magnitude of the food interaction of a new hypertensive 
therapy, Drug P, and its metabolite, Drug M.  Four subjects (numbers 1, 2, 5, 7) 
were randomized to take Drug P with food in the first treatment period but with-
out food in the second treatment period.  The other four subjects (numbers 3, 4, 
6, 8) took Drug P without food in the first treatment period but with food in the 
second treatment period.  Four plasma concentration versus time curves were 
constructed for each of the eight subjects; one for Drug P and one for Drug M in 
each of the two treatment periods.  Drug concentration values were assayed 
from plasma samples taken at 0, 10, 20, 30, 40, and 50 min, and 1, 1.25, 1.5, 
1.75, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24, 30, and 36 h after dosing.  AUC was esti-
mated from zero hours to 36 h using the trapezoidal rule, and then using ex-
trapolation from 36 h to infinity incorporating the elimination rate constant.  
Cmax and Tmax were simply observed from the plasma concentration versus time 
curve.  Four AUC, Cmax, and Tmax values were obtained for each of the eight sub-
jects in the study, corresponding to the Fed and Fasted states for each of the par-
ent drug and the metabolite.  Due to space considerations, in Section 7.2 we pre-
sent only a subset of these data to analyze, namely the AUC (ng × h/mL) data 
for the parent drug.  The full data set can be retrieved from Part 2, Table 5, at the 
web site http://www.villanova.edu/~tshort/Bradstreet/ and it is printed in Brad-
street (1992). 

7.2 Data Management 

In this section, we provide a brief introduction to data management in S-PLUS 
for the graphical methods and data analysis which follow in Sections 7.3, 7.4, 
and 7.5.  Specifically, we read the data into S-PLUS using a comma-separated 
text file, and create a data frame named food.df.  This is a convenient way to 
begin the data management process for this type of data as a tabular form with 
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cases as rows and variables as columns.  The first row of the food.csv file 
printed out below will be a header of character strings that S-PLUS will use to 
label the variables in the resulting data frame: 

subj,seq,AUC.Fed,AUC.Fasted 

1,+/-,809.44,967.82 

2,+/-,428,746.45 

3,-/+,757.71,901.11 

4,-/+,906.83,1146.96 

5,+/-,712.24,678.16 

6,-/+,561.77,745.51 

7,+/-,511.84,568.98 

8,-/+,756.6,852.86 

The command 

> food.df.orig <- read.table("food.csv", header = T,  

    sep = ",", as.is = T) 

produces an S-PLUS data frame named food.df.orig.  The as.is=T ar-
gument ensures that character data variables do not get converted to factors here.  
We’ll do this later.  To help us later in the chapter with producing graphs, formal 
statistical analyses, and subsequent model checking, some further manipulations 
are performed: 

> food.df <- data.frame( 

    subj = rep(food.df.orig$subj, each = 2),  

    seq = rep(food.df.orig$seq, each = 2), 

    trt = factor(rep(c("Fed", "Fasted"), times = 8),  

      levels = c("Fed", "Fasted")), 

    per=c(1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1), 

    AUC = as.vector( 

      t(food.df.orig[ , c("AUC.Fed", "AUC.Fasted")]))) 

The new data frame food.df is created by binding columns of data vectors 
with the help of functions to replicate values (rep), and to transpose (t) and 
unwind (as.vector) a rectangular block of data in column order. 

We also create some factor and numeric variables to impose a desired com-
parative order when plotting and tabulating the data.  The first three statements 
below create nominal factors so that S-PLUS analysis functions do not interpret 
values like the subject numbers 1, 2, …, 8 as having any ordered meaning.  The 
last two statements create numeric codings for sequence (1 = “Fed/Fasted”, 2 = 
“Fasted/Fed”) and treatment (1 = “Fed”, 2 = “Fasted”). 

> food.df$subjf <- factor(food.df$subj,  

    levels = as.character(1:8)) 

> food.df$perf <- factor(food.df$per,  

    levels = as.character(1:2)) 
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> food.df$seqf <- factor(food.df$seq,  

    levels=c("+/-", "-/+")) 

> food.df$seqn <- as.numeric(food.df$seqf) 

> food.df$trtn <- as.numeric(food.df$trt) 

Lastly we sort the data frame by sequence number and get a listing by typing 
its name 

> food.df <- food.df[order(food.df$seqn), ] 

>food.df 

   subj seq    trt per     AUC subjf perf seqf seqn trtn 

 1    1 +/-    Fed   1  809.44     1    1  +/-    1    1 

 2    1 +/- Fasted   2  967.82     1    2  +/-    1    2 

 3    2 +/-    Fed   1  428.00     2    1  +/-    1    1 

 4    2 +/- Fasted   2  746.45     2    2  +/-    1    2 

 9    5 +/-    Fed   1  712.24     5    1  +/-    1    1 

10    5 +/- Fasted   2  678.16     5    2  +/-    1    2 

13    7 +/-    Fed   1  511.84     7    1  +/-    1    1 

14    7 +/- Fasted   2  568.98     7    2  +/-    1    2 

 5    3 -/+    Fed   2  757.71     3    2  -/+    2    1 

 6    3 -/+ Fasted   1  901.11     3    1  -/+    2    2 

 7    4 -/+    Fed   2  906.83     4    2  -/+    2    1 

 8    4 -/+ Fasted   1 1146.96     4    1  -/+    2    2 

11    6 -/+    Fed   2  561.77     6    2  -/+    2    1 

12    6 -/+ Fasted   1  745.51     6    1  -/+    2    2 

15    8 -/+    Fed   2  756.60     8    2  -/+    2    1 

16    8 -/+ Fasted   1  852.86     8    1  -/+    2    2 

7.3 Initial Exploration and Discovery 

Section 7.3 presents graphics for the initial exploration and discovery stage of 
the data analysis of the 2,2,2 crossover design.  Section 7.3.1 presents individual 
subject (sometimes called “spaghetti”) plots ordered both by treatment (Fed, 
Fasted) within treatment sequence, and also by study period within treatment se-
quence.  Section 7.3.2 presents a graphic useful for evaluating marginal treat-
ment and variance effects.  Section 7.3.3 presents a series of three graphs which 
provide an initial look at the sample bivariate relationships.  Section 7.3.4 pre-
sents a graph which provides a preliminary look at the 2,2,2 crossover ANOVA. 

7.3.1 Individual Subject Plots 

Since there are only eight subjects, plotting individual subject profiles over the 
two study periods should be informative.  When there are many subjects, the in-
dividual subject profiles may be less informative. 
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We first set up some parameters for the graphical displays.  As opposed to 
the default style of enclosed box and tick-labels, we request that axis labels be 
more extreme than any data values for both the x-axis and y-axis, that the box 
layout in the plot area is open L-shaped, and that the plotting region is square: 

> par(xaxs = "e", yaxs = "e", bty = "l", pty = "s") 

The endpoint AUC (ng × h/mL) is analyzed in the log scale, so let us add the 
log-transformed endpoint to the data frame. 

> food.df$logAUC <- log(food.df$AUC) 

To call variables in the food.df data frame more easily, we attach food.df 
to the S-PLUS search path: 

> attach(food.df) 

We want axes in the log scale, but the numeric labels to be in the original scale.  
The axislog function we create (see Appendix 7.A.1) provides a full range of 
tick-marks that the usual log="y" or "x" option in the plot function 
typically misses. 

The series of calls starts with setting up the graph without plotting points or 
axes labels, so that we may later add customized symbols and text.  The result is 
Figure 7.1, which displays the subjects’ results ordered by treatment (Fed, 
Fasted) within each treatment sequence: 

> plot(trtn, logAUC, xlim = c(0, 5), type = "n",  

    axes = F, xlab = "", ylab = "AUC (ng x hr/ml)”) 

> axislog(AUC, line = 1, srt = 90, cex = 0.9) 

> axis(1, at = c(1:2, 4:5), rep(levels(trt), 2), ticks = F) 

> subjseq1 <- levels(subjf[seqn == 1, drop = T]) 

> for(i in seq(along = subjseq1)) { 

    points(trtn[subj == subjseq1[i]],  

      logAUC[subj == subjseq1[i]],  

      pch = subjseq1[i], type = "b") 

  } 

> subjseq2 <- levels(subjf[seqn == 2, drop = T]) 

> for(i in seq(along = subjseq2)) { 

    points(3 + trtn[subj == subjseq2[i]],  

      logAUC[subj == subjseq2[i]],  

      pch = subjseq2[i], type = "b") 

  } 

> mtext(side = 1, at = c(1.5, 4.5),  

    text = c("Sequence 1", "Sequence 2"), line = 2) 

In Figure 7.1, each line represents an individual subject.  We see that AUC 
was less when the subjects received the Fed regimen, most notably for Subject 
number 2.  The only exception was Subject number 5.  With such a small sam-
ple size, we suspect that the results of Subjects number 2 and 5 may be quite  
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Figure 7.1.  Subject plots ordered by treatment sequence. 
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Figure 7.2.  Subject plots ordered by period within treatment sequence. 
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influential on the normal-theory analysis which is presented later in Section 7.4.  
Also note that the AUC values for Subjects number 1, 2, 5, and 7 in Sequence 1 
were somewhat less on average as compared to those for Subjects number 3, 4, 
6, and 8 in Sequence 2, suggesting a modest sequence effect. 

Figure 7.2 displays the subject profiles ordered by period within treatment 
sequence.  This reflects the order in which the data were collected in the study, 
and can be insightful for evaluating period effects; and sometimes for discrimi-
nating between carryover effects, sequence effects, and treatment-by-period in-
teraction.  As in Figure 7.1, a sequence effect is suggested in that the log AUC 
values for the subjects in Sequence 2 are generally greater than those for the 
subjects in Sequence 1, regardless of the Fed or Fasted states.  However, Figure 
7.2 also suggests a treatment-by-period interaction as the log AUC values in the 
Fed and Fasted state are somewhat similar in Period 2, but the Fed values are 
much less than the Fasted values in Period 1.  The code to accomplish this is 
very similar to that for Figure 7.1 and is left as an exercise for the reader. 

7.3.2 Marginal Treatment and Variance Effects 

We next present a point graph of the data sorted by treatment, which enables us 
to get a first glimpse of marginal location and variance. 
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Figure 7.3.  Marginal spread and location plot. 

The code to produce this plot is given by: 
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> plot(jitter(trtn, factor = 3), logAUC, xlim = c(0, 3),  

    axes = F, xlab = "", ylab = "AUC (ng x hr/ml)”,  

    pch = 1) 

> axislog(AUC, line = 1, srt = 90, cex = 0.9) 

> axis(1, at = 1:2, labels = levels(trt),ticks = F) 

> points(x=1:2, y = c(mean(logAUC[trt == "Fed"]), 

    mean(logAUC[trt == "Fasted"])), pch = "-", cex = 3) 

We applied the jitter function (Chambers et al., 1983) to the x-axis values to 
alleviate overlap of points by adding enough random noise without distorting the 
structure of the data.  The horizontal bars in Figure 7.3 display the geometric 
means of the treatment groups.  Based on a marginal evaluation, the sample 
variability appears similar between the two treatments, and the sample location 
differs as we conjectured from examining Figures 7.1 and 7.2.  So we have no 
data-driven reason to suspect unequal variances in the bivariate treatment popu-
lation. 

7.3.3 Bivariate Treatment and Other Relationships 

Figure 7.4 is a scatter plot of the data pairs from the eight subjects.  The symbols 
indicate which treatment sequence each subject received.  In addition to assess-
ing the location of the bivariate point cloud versus the diagonal line, it is impor-
tant to identify both concordant and discordant outliers.  In the food interaction 
framework, concordant outliers are those bivariate points that are distant from 
the center of the point cloud but vertically close to the diagonal line (and thus 
situated near either end of the diagonal line).  These points represent those sub-
jects whose paired responses (Fed versus Fasted AUC) are somewhat similar to 
each other for that subject, but are notably different (smaller–lower end of the 
diagonal line; larger–upper end of the diagonal line) than the magnitudes of the 
responses of the other subjects.  Discordant outliers are those bivariate points 
which stray from the point cloud and stray from the diagonal line.  These repre-
sent subjects whose paired responses are not similar to each other for that sub-
ject, and are also notably different from the responses of the other subjects.  The 
last statement call is defined in Appendix 7.A.1, and is a wrapper that we will 
use repeatedly to place a key in the upper left or other corner of a graph: 

> plot(logAUC[trt == "Fasted"], logAUC[trt == "Fed"],  

    type = "n", axes = F,  

    xlab = "Fasted AUC (ng x hr/ml)",  

    ylab = "Fed AUC (ng x hr/ml)") 

> axislog(AUC, line = 1, srt = 90, cex = 0.9) 

> axislog(AUC, side = 1, line = 1) 

> points(logAUC[trt == "Fasted" & seqn == 1], 

    logAUC[trt == "Fed" & seqn == 1], pch = 1, cex = 1.2) 

> points(logAUC[trt == "Fasted" & seqn == 2], 

    logAUC[trt == "Fed" & seqn == 2], pch = 2, cex =1.2) 
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> # make symbols 20% larger than default 

> abline(0, 1) # adds the bivariate identity line 

> place.keyseq(0, 1) 
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Figure 7.4.  Scatter plot. 

Again, we see that the Fed AUCs tend to be less than the Fasted AUCs, and 
the AUCs for subjects in Sequence 2 tend to be larger than those for subjects in 
Sequence 1, regardless of the Fed or Fasted state.  For Subject number 2, who is 
a discordant outlier with Fed AUC = 428.00 and Fasted AUC = 746.45 ng × 
h/mL (see Section 7.2 data listing), the difference is relatively large.  We iden-
tify the bivariate response for Subject number 2 on the plot with 

> text(x = logAUC[subj == 2 & trt == "Fasted"] + .05,  

    y = logAUC[subj == 2 & trt == "Fed"], "2", adj = 1) 

and with analogous code we mark Subject number 5 as the lone point which is 
located above the bivariate identity line. 

Another informative look at these data is a Tukey sum–difference plot 
(Cleveland, 1993; Tukey, 1977), which allows us to study the Fed versus Fasted 
relationship through differences (log Fed – log Fasted) and sums (log Fed + log 
Fasted) of the bivariate data points.  In general, this plot clarifies magnitudes of 
treatment differences (ratios in our case) and permits discovery of trends across 
the observed ranges of the data.  (Note how it is easier to judge differences from 
the flat zero line in Figure 7.5 as compared to the bivariate identity line in Figure 
7.4.)  But we will see in Section 7.5 that the Tukey sum–difference plot has 
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added value for the initial exploration of the data collected from a 2,2,2 cross-
over trial as it simultaneously displays information on the carryover and period 
effects, as well as suggests treatment effects.  The code to generate Figure 7.5 is 
in Appendix 7.A.2. 
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Figure 7.5.  Tukey sum–difference plot. 
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Figure 7.6.  Plot of AUC ratios by sequence. 
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Figure 7.6 is a graph of the Fed/Fasted AUC ratios where the ratio points are 
labeled by sequence.  The code is in Appendix 7.A.2. 

It is of interest to observe what shape the sample distribution of ratios has, 
and how the sample distribution relates to a reference ratio of one.  To aid study 
of the graph, labels in the percentage change scale were placed next to the y-axis 
ratio labels.  We see that six of the eight subjects exhibited roughly a 10–25% 
decrease in Fed AUC relative to Fasted AUC, and one subject (number 2) exhib-
ited a little more than a 40% decrease.  In one subject (number 5), the Fed re-
sponse increased relative to the Fasted response by about 5%. 

7.3.4 A Preliminary Look at the 2,2,2 Crossover ANOVA 

Figure 7.7 plots the individual Fed and Fasted AUC values by period along with 
the corresponding period geometric means.  The lines connect the geometric 
means across periods by sequence.  The code is in Appendix 7.A.2.  Figure 7.7 
indicates an inconsistency from Period 1 to Period 2 in the Fed and Fasted 
AUCs.  In Period 1, the individual Fed AUCs are notably less than the Fasted 
AUCs; this is reflected in the corresponding geometric means.  However, in Pe-
riod 2, the two groups of individual Fed and Fasted AUC values are quite simi-
lar, and this is reflected by the similar geometric mean values which we also 
note are located centrally between the two geometric mean values from Period 
1.  Thus, Figure 7.7 alone suggests the presence of a treatment-by-period inter-
action. 
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Figure 7.7.  Geometric mean and individual responses by period. 
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7.4 Formal Data Analysis 

In this section, we perform the usual normal-theory ANOVA for the 2,2,2 cross-
over design.  For the full modeling and algebraic details, see Jones and Kenward 
(1989; pp. 9–10, 22–28, 30–34).  The model representation is 

 Yijk = µ + sik + πj + τd[i,j] + λd[i, j−1] + eijk, (7.1) 

where 

• µ = the overall mean effect. 
• sik = the effect of subject k in group i; i = 1, 2. 
• πj = the effect of period j; j = 1, 2. 
• τd[i,j] = the effect of treatment administered in period j to group i. 
• λd[i, j−1] = the carryover effect of the treatment administered in period j 

to group i, where τd[i,0] = 0 (no carryover in the first period). 
• eijk = the random error term for subject k in period j in group i, and is 

assumed to be normally distributed with mean 0 and variance σ2. 

Given our exploratory graphical work in Section 7.3, we can anticipate what 
the normal-theory ANOVA may confirm.  Specifically, Figures 7.1 to 7.7 indi-
cate a treatment effect in that, on average, Fed AUCs appear to be less than 
Fasted AUCs.  Figures 7.1, 7.2, and 7.4 suggest a modest sequence effect in that 
on average, AUCs are greater in the subjects in Sequence 2 as compared to Se-
quence 1.  Figures 7.2 and 7.7 suggest a treatment-by-period interaction where 
in Period 1, on average and individually, Fed AUCs are less than Fasted AUCs 
but in Period 2 they are quite similar.  Figures 7.2 and 7.7 also suggest that there 
will be no period effect in that, on average, AUCs are similar from Period 1 to 
Period 2 when disregarding treatment.  So, in a relative sense, we might antici-
pate a smaller p-value for the test of treatment (Fed versus Fasted) effects, a 
smaller p-value for the test of carryover effects which is confounded with both 
sequence effects and treatment-by-period interaction, and a larger p-value for 
period effects. 

The initial model fit for log AUC specifies that subjects within sequence 
constitute a partition term in the error structure: 

> fit.food <- aov(logAUC ~ seqf + Error(subjf) + trt +  

    perf, data=food.df) 

Application of the summary command demonstrates the two-strata error struc-
ture (between and within subjects) of the 2,2,2 crossover design: 

> summary(fit.food) 

Error: subjf  

          Df Sum of Sq   Mean Sq  F Value     Pr(F) 

     seqf  1 0.1797439 0.1797439 2.096941 0.1977559 

Residuals  6 0.5143031 0.0857172                    
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Error: Within  

          Df Sum of Sq   Mean Sq  F Value     Pr(F) 

      trt  1 0.1605383 0.1605383 9.026330 0.0238727 

     perf  1 0.0000232 0.0000232 0.001305 0.9723585 

Residuals  6 0.1067133 0.0177856                    

According to the ANOVA results, the sequence term, seqf, is not statisti-
cally significant (p = 0.198).  Based upon the p-value alone and the intrinsic 
aliasing of sequence, carryover, and treatment-by-period interaction in a single 
degree-of-freedom contrast, it might be concluded that none of these effects 
were an issue with these data.  However, Figures 7.1 to 7.7 in Section 7.3 sug-
gest the presence of a modest sequence effect or a treatment-by-period interac-
tion.  To choose between these two requires an examination of response-related 
covariates (e.g., age, gender, weight) as they are distributed among the subjects 
in the two treatment sequences.  Biological carryover is unlikely as the washout 
period was planned to be of sufficient length, and plasma levels in all eight sub-
jects at the beginning of Period 2 were observed to be zero. 

Despite suspicion about a potentially meaningful sequence effect or a treat-
ment-by-period interaction, we continue with the usual analyses of period and 
treatment effects to continue illustrating S-PLUS.  Indeed, the ANOVA results 
support our initial graphical investigation: there is a statistically significant 
(p = 0.024) treatment effect which we know from our graphical investigations is 
due to the lower Fed than Fasted AUCs.  And, there is no statistically significant 
(p = 0.972) period effect as was seen graphically, as on average, AUCs are not 
strikingly different from Period 1 to Period 2 regardless of treatment. 

In Section 7.5 we present some 2,2,2 crossover ANOVA model checking 
and diagnostics, but for now let us presume that the underlying assumptions of 
normality and equal variances are tenable and proceed with formal estimation 
inference.  Our parameter of interest is the proportional difference in AUC for 
the Fed regimen relative to the Fasted regimen.  We need to construct a sample 
point estimate and a 90% confidence interval for the true value. 

Although there are several approaches in S-PLUS to compute the needed 
quantities, we will use model.tables to compute the means and standard er-
ror of the difference in the means on the log scale, and we also use the fit above 
to calculate the critical value of the t-distribution: 

> tblmeans <- model.tables(fit.food, type = "means", se=T) 

> meandiff.se <- tblmeans$se$trt 

> t.crit <- qt(0.95, df = fit.food$Within$df.residual) 

This code is sufficient to compute the sample point estimate of the difference in 
log AUC and the 90% confidence interval for the true difference, Fed–Fasted, in 
the log scale.  We exponentiate the log scale results to arrive at the correspond-
ing results for the ratio, Fed/Fasted , in the original scale: 

> meandiff <- diff(rev(tblmeans$tables$trt)) 

> orig.ratio <- exp(meandiff) 

> # Use Delta method to estimate SE of orig.ratio 
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> orig.ratio.se <- orig.ratio * meandiff.se  

> lcl.ratio <- exp(meandiff - t.crit * meandiff.se) 

> ucl.ratio <- exp(meandiff + t.crit * meandiff.se) 

See Appendix 7.A.3 for a few more statements that build on these to alterna-
tively express the results as percent change in AUCs.  We summarize these re-
sults and display them in a table: 

> tbldiff <- matrix(c(orig.ratio, lcl.ratio, ucl.ratio, 

    orig.pctchg, lcl.pctchg, ucl.pctchg), byrow = T,  

    nrow = 2) 

> # pctchg refers to percent change analogues to ratio. 

> dimnames(tbldiff) <- list(c("Ratio", "Pct Chg"), 

    c("Point Est", "Lower", "Upper")) 

 

> # Needed to display title with table 

> disply <- function()  

  { 

    cat("Differences with 95% Confidence Bounds", "\n") 

    round(tbldiff,2) 

  }  

 

> disply() 

Differences with 95% Confidence Bounds  

        Point Est  Lower Upper  

  Ratio      0.82   0.72  0.93 

Pct Chg    -18.15 -28.10 -6.83 

We use similar code to obtain the individual treatment geometric means and ap-
proximated standard errors based on the “Delta” method (Agresti, 1990, Ch. 12). 

> indv.sem <- meandiff.se / sqrt(2) 

> orig.means <- exp(tblmeans$tables$trt) 

> orig.sems <-  orig.means * indv.sem 

> tblindv <- matrix(c(orig.means, orig.sems), ncol = 2) 

> dimnames(tblindv) <- list(c("Fed", "Fasted"),  

    c("Geo Mean", "SEM")) 

 

> round(tblindv, 2) 

       Geo Mean   SEM   

   Fed   662.00 31.21 

Fasted   808.84 38.14 

To summarize the results of our food interaction study, we construct Figure 
7.8 which presents the results averaging across periods but also for each period 
separately, due to the suspected treatment-by-period interaction.  The code for 
all this is in Appendix 7.A.3. 
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Figure 7.8.  Treatment effect, Fed versus Fasted. 

The usual average bioequivalence criteria based on ratios of data are shown 
by the dashed lines located at the y-axis ratio values of 0.80 and 1.25.  The 
Fed/Fasted AUC ratios for the individual subjects are represented by the open 
circles (Sequence 1) and the open triangles (Sequence 2).  The geometric mean 
ratio estimated from all of the data is represented by the solid dot with value 
0.82, and the corresponding 90% confidence interval (0.72, 0.93) for the true 
proportioned difference in mean Fed AUC and mean Fasted AUC is represented 
by the bold error bars.  These results indicate that, on average, the Fed and 
Fasted states are not bioequivalent; Fed AUC is, on average, less than Fasted 
AUC. 

Also shown are the ratios (Fed/Fasted) of geometric means (solid dots) and 
corresponding 90% confidence intervals (bold error bars) which were computed 
separately using the between-subject variability from each study period.  This 
additional part of the display is of interest when there is reasonable evidence of 
unequal carryover effects (usually only the first period is plotted), or in the case 
of a suspected treatment-by-period interaction.  The results are not surprising 
given our previous graphical and statistical analyses.  The Period 1 data suggest 
inequivalence of the Fed and Fasted states; the Period 2 data are consistent with 
equivalence.  Thus we have summarized the major individual, mean, and infer-
ential results in a single graphic display which is easily understood by the clini-
cal, pharmacokinetic, and statistical professionals involved in bioequivalence 
evaluations. 
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7.5 Visualizing the 2,2,2 Crossover ANOVA,  
Model Checking, and Diagnostics 

In this section we present several valuable graphical tools for visualizing the 
data which are used in the three single degree-of-freedom ANOVA contrasts 
testing for carryover effects (confounded with sequence effects and treatment-
by-period interaction), period effects, and treatment effects.  We also present a 
series of graphics for assessing model fit.  Some of the graphical techniques are 
reasonably common ones with special adaptations to the 2,2,2 crossover design; 
others are specific to the 2,2,2 crossover design. 

7.5.1 Visualizing the ANOVA 

We illustrate two sets of graphical presentations that visualize the data used in 
the three single degree-of-freedom ANOVA contrasts.  The first is based on dis-
playing treatment means by period; the second displays various linear combina-
tions of the two data points collected for each subject. 

Plots of Treatment Means by Period 
To evaluate period effects, treatment effects, and to help diagnose carryover ef-
fects versus sequence effects versus  treatment-by-period interaction, we plot the 
four treatment means, two for Fed and two for Fasted, by study period connect-
ing the treatment means either by treatment sequence (Figure 7.9) or by treat-
ment group (Figure 7.10).  The pattern of the connected means illustrates three 
characteristics: 

1. The relative ordering of the two treatments within each study period. 
2. The magnitude of the difference between the two treatments within each 

period. 
3. The magnitude of any difference between periods in each treatment 

group. 

The range of the y-axis is determined by the range of the individual data points 
excluding any outliers which might distort the message in the graph. 

We create the needed means with 

> attach(food.df) # not needed if already attached 

> tbpmeans.auc <- aggregate(logAUC,  

    list(Treatment = trt, Period = per), mean) 

> names(tbpmeans.auc)[3] <- "meanlogAUC" 

> mean.fed.per1 <- tbpmeans.auc[1, "meanlogAUC"] 

> mean.fasted.per1 <- tbpmeans.auc[2, "meanlogAUC"] 

> mean.fed.per2 <- tbpmeans.auc[3, "meanlogAUC"] 

> mean.fasted.per2 <- tbpmeans.auc[4, "meanlogAUC"] 

We construct Figure 7.9 connecting the means by treatment sequence: 
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> plot(rep(1:2, 2), tbpmeans.auc$meanlogAUC,  

    type = "n", axes = F, xlab="",  

    ylab = "Geometric Mean AUC (ng x hr/ml)",  

    xlim = c(0, 3)) 

> axislog(exp(tbpmeans.auc$meanlogAUC), line = 1, srt = 90,  

    cex = 0.9) 

> points(c(1, 2), c(mean.fed.per1, mean.fed.per2), pch = 4,  

    cex = 1.2) 

> points(c(1, 2), c(mean.fasted.per1, mean.fasted.per2),  

    pch = 0, cex = 1.2) 

> lines(c(1, 2),c(mean.fed.per1, mean.fasted.per2),  

    pch=" ", type = "b", cex = 2) 

> lines(c(1, 2), c(mean.fasted.per1, mean.fed.per2),  

    pch = " ", type = "b", cex = 2, lty = 3) 

> axis(1, at = 1:2, c("Per 1", "Per 2"), ticks = F) 

> place.keytrt(0,1) 
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Figure 7.9.  Treatment geometric means connected by sequence. 

Figure 7.10, which connects the means by treatment, is created by the same 
sequence of steps except the two lines calls are slightly modified to read: 

> lines(c(1, 2), c(mean.fed.per1, mean.fed.per2),  

    pch = " ", type = "b", cex = 2) 

> lines(c(1, 2), c(mean.fasted.per1, mean.fasted.per2),  

    pch = " ", type = "b", cex = 2, lty = 3) 
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Figure 7.10.  Treatment geometric means connected by treatment. 

For our example, it is difficult to see much difference in the two display options 
since the Period 2 means are so close together.  We see that in Period 1, the geo-
metric mean AUC for the Fed state is substantially less than that for the Fasted 
state while in Period 2 they are quite similar.  And, the geometric mean for the 
Fed state is less in Period 1 than in Period 2, and the reverse holds for the Fasted 
state. 

Plotting Linear Combinations of the Data 
Recall from Section 7.3 that each of the three single degree-of-freedom ANOVA 
contrasts can be evaluated using either t-tests or F-tests.  More specifically, the 
contrasts are constructed by comparing between the two treatment sequences 
various linear combinations of the two observations for each subject.  A series of 
three plots displays the data which are evaluated by each of the three single de-
gree-of-freedom contrasts which test for carryover effects, period effects, or 
treatment effects.  For example, to visualize the data in the contrast testing 
carryover effects (confounded with sequence effects and treatment-by-period in-
teraction), plot the individual within subject sums (Period 1 log AUC + Period 2 
log AUC) for each sequence (Figure 7.11).  From the two sample distributions 
of data and the respective mean sums, the corresponding t-test can be evaluated 
visually.  A difference in location between the two distributions suggests a 
carryover effect (or a sequence effect or a treatment-by-period interaction).  
Similarly, plot the individual and mean within-subject treatment differences (log 
Fed AUC–log Fasted AUC) by treatment sequence to visualize the data in the 
contrast for period effects (Figure 7.12).  And, plot the individual and mean 
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within-subject period differences (Period 2 log AUC–Period 1 log AUC) by 
treatment sequence to visualize the data in the contrast for treatment effects 
(Figure 7.13).  These plots also allow for a visual assessment of nonnormality, 
heteroscedasticity, and outliers, for each of the three two-sample t-tests. 

To construct these plots, we create a new data frame. 

> food.comb <- aggregate(logAUC,  

    list(Subject = subj, Sequence = seqn), sum) 

> names(food.comb)[3] <- "sumPer" 

> food.comb <- cbind(food.comb, diffTrt =  

    aggregate(log(AUC), list(Subject = subj,  

      Sequence = seqn), function(x) {-diff(x)})[,3]) 

> food.comb$diffPer <- c( 

    -food.comb$diffTrt[food.comb$Sequence == 1],  

    food.comb$diffTrt[food.comb$Sequence==2]) 

We attach our new data frame food.comb and create Figures 7.11 through 
7.13 with its variables.  The code for these plots is in Appendix 7.A.4. 

The shift in location in Figure 7.11 suggests either a carryover effect or a se-
quence effect or a treatment-by-period interaction.  Earlier in the chapter, Fig-
ures 7.2, 7.7, 7.9, and 7.10 suggested a treatment-by-period interaction; Figures 
7.1, 7.2, and 7.4 suggested a modest sequence effect. 

The lack of a shift in location in Figure 7.12 indicates no evidence of a pe-
riod effect, although the single lower point (Subject number 2) in the Fed then 
Fasted sequence influences the analysis quite a bit. 
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Figure 7.11.  Evaluation of carryover effect. 
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Figure 7.12.  Evaluation of period effect. 
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Figure 7.13.  Evaluation of treatment effect. 
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The notable shift in location in Figure 7.13 indicates a treatment effect and 
again, the single upper point (Subject number 2) in the Fed then Fasted sequence 
makes this more pronounced.  We end the session and clean up with the com-
mand 

> detach("food.comb") 

7.5.2 Model Checking and Diagnostics 

Another series of plots assesses the appropriateness of the normal theory model 
for the 2,2,2 crossover design.  These diagnostic plots are somewhat routine in 
concept, but there is an interesting twist in their construction for the 2,2,2 cross-
over design.  The residual values from the normal theory analysis sum to zero 
within a subject.  Therefore, the residuals from the two treatment periods for a 
given subject will have the same magnitudes and opposite signs.  No additional 
information is gained from the second set of residuals.  (This idea extends to t 
treatment, p period, s sequence crossover trials where t = p, p > 2.  All relevant 
information is contained in the residuals from only p−1 periods.) 

We demonstrate five plots.  The first is a normal probability plot (Figure 
7.14); the second is a plot of fitted versus observed values (Figure 7.15); the 
third is a plot of raw residuals versus fitted values (Figure 7.16); the fourth mo-
tivated by John W. Tukey plots the square root of the absolute value of the re-
siduals against fitted values (Figure 7.17); and the fifth illustrates Cook’s dis-
tance (Figure 7.18). 

We begin by refitting the model in a slightly different way: 

> fit2.food <- lm(logAUC ~ subjf + trt + perf,  

    data = food.df) 

We are interested in within-subject residuals, so calls to the fitted object will 
provide these and also corresponding identification and diagnostic quantities.  
Projections (see the proj function) could alternatively be used to obtain the 
residuals from the multistratum fit.food object in Section 7.4, but manual 
work would be required to construct the identification and diagnostic quantities.  
As mentioned above, the two residuals sum to zero, so we plot only the Period 1 
residuals. 

We need to make sure the MASS library is attached (Venables and Ripley, 
1999) in order to use their standardized and Studentized residual functions 
stdres and studres.  Next we create a data frame for our upcoming analy-
sis that contains only observations from the first period: 

> half.index <- food.df$per == 1 

> half.resid <- residuals(fit2.food)[half.index] 

> library(MASS) # Venables and Ripley library 

> half.studres <- studres(fit2.food)[half.index] 

> half.stdres <- stdres(fit2.food)[half.index] 

> half.pred <- predict(fit2.food)[half.index] 
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> half.cooks <- Cooks.lm(fit2.food)[half.index] 

> food.half <- data.frame(food.df[half.index, ],  

    resid = half.resid, studres = half.studres,  

    stdres = half.stdres, pred = half.pred,  

    cooks = half.cooks) 

> # synchronize row names and subject ID 

> row.names(food.half) <- food.half$subj  

A listing of this data frame is given in Appendix 7.A.4.  The Cooks.lm func-
tion is taken from the plot.lm function definition in S-PLUS and is also listed 
in Appendix 7.A.4.  With some modification, we also make use of another func-
tion defined in plot.lm called id.n to help us identify values of large mag-
nitude.  See Appendix 7.A.1 for its definition. 

We do not need to be concerned with transforming back axes from the log 
scale to the original scale, so our call sequences are simplified.  We first look at 
a normal probability plot: 

> attach(food.half) 

> qqxy <- qqnorm(studres, plot = F) 

> qqxy.x <- qqxy$x; qqxy.y <- qqxy$y 

> names(qqxy.x) <- names(qqxy.y) <- row.names(food.half) 

> plot(qqxy.x, qqxy.y, type = "n",  

    xlab = "Standard Normal Quantiles",  

    ylab = "Studentized Residuals, Period 1") 

> points(qqxy.x[seqn == 1], qqxy.y[seqn == 1], pch = 1) 

> points(qqxy.x[seqn == 2], qqxy.y[seqn == 2], pch = 2) 

> qqline(studres) 

> id.n(qqxy.x, qqxy.y, how.many = 2, offset = 0.2) 

> place.keyseq(0, 1) 

Figure 7.14 plots the eight Studentized residuals from the first period against 
expected normal order statistics.  We observe two notable deviations from line-
arity:  Subjects number 2 and 5, both of whom were randomized to the first 
treatment sequence, Fed then Fasted.  The fact that these two residuals deviate 
from the other six is not surprising given our initial graphical exploration of this 
dataset. 

Figures 7.15 through 7.17 are generated by similar codes and the full dis-
plays of the commands are in Appendix 7.A.4.  Figure 7.15 plots the fitted log 
AUC values from Period 1 against the observed log AUC values for Period 1.  
The fit is not unreasonable and only one point (Subject number 2) deviates nota-
bly from the 45° identity line.  Note the location of the open triangles (upper 
right) for Sequence 2 versus the open circles (lower left) for Sequence 1. 

Figure 7.16 plots the raw residuals from Period 1 against the fitted values 
from Period 1.  Subjects number 2 and 5 demonstrate residuals which are the 
most different from the others. 
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Figure 7.14.  Normal probability plot. 

Figure 7.15.  Evaluation of model fit. 
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Figure 7.16.  Raw residuals versus fitted values. 
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Figure 7.17.  Equal variance plot. 
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Figure 7.17 evaluates the equal variance assumption.  The plot method was 
first suggested by John Tukey; a reference example is shown in Cleveland 
(1993).  A lowess (Cleveland, 1979) robust smoothing curve is superposed as a 
guide to help discover any trends.  Ideally we would like to see an approxi-
mately flat line.  The apparent volatility of these data is not unexpected given 
the small number of data points. 

And finally, Cook’s distance as plotted in Figure 7.18 identifies the data 
from Subjects number 2 and 5 as the most influential: 

> plot(1:8, cooks, type = "h", axes = F,  

    ylab = "Cook\'s Distance: Period 1",  

    xlab="Subject",xlim=c(0,9)) 

> axis(2) 

> mtext(side = 1, at = 1:8, paste(subj)) 

> detach(“food.half”) # cleanup 
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Figure 7.18.  Cook’s distance plot. 

7.6 Concluding Remarks 

In this chapter, we provided S-PLUS tools for graphical insight and the normal 
theory statistical analysis of data from a 2,2,2 crossover design.  We demon-
strated the value of graphical analyses from initial data exploration and discov-
ery, into understanding the ANOVA with particular emphasis on the single de-
gree of freedom contrast which confounds carryover effects with sequence ef-
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fects and treatment-by-period interaction, through to model checking and diag-
nostic work following the ANOVA.  We illustrated the use of S-PLUS on a data-
set from a food interaction study where there was some evidence of a food effect 
in the presence of either a modest sequence effect or a treatment-by-period in-
teraction, and where two subjects had notably more influence on the results of 
the trial than the other six enrolled.  And, we provided a useful summary graph 
for presenting the individual, average, and inferential results from a 2,2,2 cross-
over average bioequivalence or interaction trial. 
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7.A. Appendix 

7.A.1 Functions for Graphical Annotations 

Utility Function for Generating Log Axes Ticks 
axislog <- function(data, nint = 5, side = 2, opp.side = F,  

  ...) { 

  orig <- pretty(data, nint) 

  orig.px <- orig[orig > 0] 

  logrange <- log(orig.px) 

  usrnow <- par("usr")  # graphical layout settings 

  if(side == 2) { 

    par(usr = c(usrnow[1:2], min(logrange), max(logrange))) 

    axis(2, at = logrange, labels = paste(orig.px), ...) 

  } 

  else if(side == 1) { 

    par(usr = c(min(logrange), max(logrange), usrnow[3:4])) 

    axis(1, at = logrange, labels = paste(orig.px), ...) 

  } 

  if(opp.side == T) { 

    axis(side + 2, at = pretty(logrange),  

      labels = paste(pretty(logrange)), ...) 

  } 

  invisible() 

} 

Utility Function for Placing Sequence Identifier Key on Graphs 
# x = 0 and y = 1 refers to upper left corner, 

# x = 1 and y = 0 refers to lower right corner 

 

place.keyseq <- function(x = 0, y = 1, ...)  

{ 

  oldpar <- par(gr.state) 

  par(usr=c(0, 1, 0, 1)) 

  on.exit(par(oldpar)) 

  on.exit(par(new = F), add = T) 

  key(x, y, text = list(c("Seq 1", "Seq 2", " ")), 

    points = list(pch = c(1, 2, 32)), border = T) 

# Adds space between text and bottom border 

  invisible() 

} 



7. Graphical Insight and Data Analysis for the 2,2,2 Crossover Design     181 

 

Similar Function for Treatment Identifier Key 
place.keytrt <- function(x = 0, y = 1, ...) { 

  oldpar <- par(gr.state) 

  par(usr = c(0, 1, 0, 1)) 

  on.exit(par(oldpar)) 

  on.exit(par(new = F), add = T) 

  key(x, y, text = list(c("Fed", "Fasted", " ")), 

    points = list(pch = c(4, 0, 32)), border = T) 

  invisible() 

} 

Utility Function to Help Identify Values of Large Magnitude on Figures 
7.14 – 7.16, Section 7.5.2 
id.n <- function(x, y, how.many = F, offset = 0) 

  if(how.many) { 

# Identify "how.many" greatest y-values (in absolute value) 

# based on sub-function definition in  

# plot.lm function method 

    n <- length(y) 

    oy <- order(abs(y)) 

    names(oy) <- names(abs(y))[oy] 

    which <- oy[(n - how.many + 1):n] 

    text(x[which] + offset, y[which], names(which),  

      adj = 1) 

  } 

7.A.2 Additional Code for Section 7.3 

Prior to running the code in this section, the data frame food.df should be at-
tached to the search list and graphics parameters should be changed from their 
default values using the following commands: 

attach(food.df) 

par(xaxs = "e", yaxs = "e", bty = "l", pty = "s") 

Figure 7.5 
plot(x = logAUC[trt == "Fed"] + logAUC[trt == "Fasted"],  

  y = logAUC[trt == "Fed"] - logAUC[trt == "Fasted"],  

  type = "n", axes = F,  

  xlab = "exp(log Fed + log Fasted) AUC", 

  ylab = "exp(log Fed - log Fasted) AUC") 
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axislog(exp(logAUC[trt == "Fed"] –  

    logAUC[trt == "Fasted"]), line = 1, srt = 90,  

  cex = 0.9) 

axislog(exp(logAUC[trt == "Fed"] +  

    logAUC[trt == "Fasted"]), side = 1, line = 1,  

  cex = 0.8) 

points(x = logAUC[trt == "Fed" & seqn == 1] +  

    logAUC[trt == "Fasted" & seqn == 1],  

  y = logAUC[trt == "Fed" & seqn == 1] –  

    logAUC[trt == "Fasted" & seqn == 1], pch = 1,  

  cex = 1.2) 

points(x = logAUC[trt == "Fed" & seqn == 2] +  

    logAUC[trt == "Fasted" & seqn == 2],  

  y = logAUC[trt == "Fed" & seqn == 2] –  

    logAUC[trt == "Fasted" & seqn == 2], pch = 2,  

  cex = 1.2) 

abline(0, 0, lty = 3) 

mtext(side = 1, at = log(c(150000, 200000, 400000, 600000,  

  800000, 1000000, 1200000)),  

  text = c("Geometric Mean:",  

    paste(round(sqrt(c(200000, 400000, 600000, 800000,  

      1000000, 1200000)), 0))), line = 4, cex = 0.8) 

place.keyseq(0.8, 0.2) 

# a little off lower right-hand corner due to  

# x-axis placement 

Figure 7.6 
plot(x = rep(1, 8),  

  y = log(AUC[trt == "Fed"]/AUC[trt == "Fasted"]),  

  type = "n", axes = F, xlab = "",  

  ylab = "Ratio: Fed / Fasted AUC") 

axislog(AUC[trt == "Fed"]/AUC[trt == "Fasted"], line = 1,  

  srt = 90, cex = 0.9) 

points(x = jitter(rep(1, 4)),  

  y = log(AUC[trt == "Fed" & seqn == 1]/ 

    AUC[trt == "Fasted" & seqn == 1]), pch = 1) 

points(x = jitter(rep(1, 4)),  

  y = log(AUC[trt == "Fed" & seqn == 2]/ 

    AUC[trt == "Fasted" & seqn == 2]), pch = 2) 

abline(h = log(1), lty = 3) 

axis(2, at = log((seq(0.5, 1.1, by = 0.1))),  

  labels = paste(seq(-50, 10, by = 10), "%", sep = ""),  

  line = -2, srt = 0, cex = 0.8, ticks = F) 

place.keyseq(0.8, 0.2) 
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Figure 7.7  
plot(per, logAUC, type = "n", axes = F, xlab = "",  

  ylab = "AUC (ng x hr/ml)", xlim = c(0, 3)) 

axislog(AUC, line = 1, srt = 90, cex = 0.9) 

points(x = jitter(per[trt == "Fasted"], factor = 3),  

  y = logAUC[trt == "Fasted"], pch = 0) 

points(x = jitter(per[trt == "Fed"], factor = 3),  

  y = logAUC[trt == "Fed"], pch = 4) 

lines(c(1.2, 1.8),  

  c(mean(logAUC[trt == "Fasted" & per == 1]),  

    mean(logAUC[trt == "Fasted" & per == 2])),  

  type = "b", pch = 0, cex = 2) 

lines(c(1.2, 1.8), c(mean(logAUC[trt == "Fed" & per == 1]), 

    mean(logAUC[trt == "Fed" & per == 2])), type = "b",  

  pch = 4, cex = 2) 

axis(1, at = 1:2, c("Per 1", "Per 2"), ticks = F) 

place.keytrt(0.8, 0.2) 

7.A.3 Additional Code for Section 7.4 

Percent Change Expressions 
Percent change expressions of Fed relative to Fasted; these build on the ratios 
computed. 

orig.pctchg <- (orig.ratio - 1)*100 

orig.pctchg.se <- 100*orig.ratio.se 

lcl.pctchg <- (lcl.ratio - 1) * 100 

ucl.pctchg <- (ucl.ratio - 1) * 100 

Figure 7.8 
attach(food.df) # not needed if already attached 

plot(x = rep(1, 8),  

  y = log(AUC[trt == "Fed"]/AUC[trt == "Fasted"]),  

  type = "n", axes = F, xlab = "", xlim = c(0.5, 2.5),  

  ylim = log(c(0.5, 1.25)),  

  ylab = "Ratio: Fed / Fasted AUC") 

axislog(c(0.5, 1.25), line = 1, srt = 90, cex = 0.9) 

abline(h = log(c(0.8, 1, 1.25)), lty = 7) 

points(x = jitter(rep(1, 4)),  

  y = log(AUC[trt == "Fed" & seqn == 1]/ 

    AUC[trt == "Fasted" & seqn == 1]), pch = 1) 
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points(x = jitter(rep(1, 4)),  

  y = log(AUC[trt == "Fed" & seqn == 2]/ 

    AUC[trt == "Fasted" & seqn == 2]), pch = 2) 

points(1.4, meandiff, cex = 1.25, pch = 16) 

par(lwd = 5) 

error.bar(1.4, meandiff, lower = t.crit * meandiff.se,  

  add = T, gap = F) 

par(lwd = 1) 

text(1.5, meandiff - t.crit * meandiff.se,  

  paste("(", round(lcl.ratio, 2), ")", sep = ""), adj = 0) 

text(1.5, meandiff, paste("(", round(orig.ratio, 2), ")",  

    sep = ""), adj = 0) 

text(1.5, meandiff + t.crit * meandiff.se,  

  paste("(", round(ucl.ratio, 2), ")", sep = ""), adj = 0) 

 

# For Period 1 only 

per1data <- t.test(log(AUC[trt == "Fed" & per == 1]),  

  log(AUC[trt == "Fasted" & per == 1]), conf.level = 0.9) 

meandiff.per1 <-  - diff(per1data$estimate) 

lcl.per1 <- per1data$conf.int[1] 

ucl.per1 <- per1data$conf.int[2] 

points(1.9, meandiff.per1, cex = 1.25, pch = 16) 

par(lwd = 5) 

error.bar(1.9, meandiff.per1, lower = lcl.per1,  

  upper = ucl.per1, incr = F, add = T, gap = F) 

par(lwd = 1) 

text(2, lcl.per1, paste("(", round(exp(lcl.per1), 2), ")",  

    sep = ""), adj = 0) 

text(2, meandiff.per1, paste("(", round(exp(meandiff.per1), 

    2), ")", sep = ""), adj = 0) 

text(2, ucl.per1, paste("(", round(exp(ucl.per1), 2), ")",  

    sep = ""), adj = 0)   

 

# For Period 2 only 

per2data <- t.test(log(AUC[trt == "Fed" & per == 2]),  

  log(AUC[trt == "Fasted" & per == 2]), conf.level = 0.9) 

meandiff.per2 <-  - diff(per2data$estimate) 

lcl.per2 <- per2data$conf.int[1] 

ucl.per2 <- per2data$conf.int[2] 

points(2.4, meandiff.per2, cex = 1.25, pch = 16) 

par(lwd = 5) 

error.bar(2.4, meandiff.per2, lower = lcl.per2,  

  upper = ucl.per2, incr = F, add = T, gap = F) 

par(lwd = 1) 
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text(2.5, lcl.per2, paste("(",  

  round(exp(lcl.per2), 2), ")", sep = ""), adj = 0) 

text(2.5, meandiff.per2, paste("(",  

  round(exp(meandiff.per2), 2), ")", sep = ""), adj = 0) 

text(2.5, ucl.per2, paste("(",  

  round(exp(ucl.per2), 2), ")", sep = ""), adj = 0) 

par(lwd = 1) 

axis(1, at = c(1.4, 1.9, 2.4), c("All\nData",  

    "Per 1\nData only", "Per 2\nData only"), ticks = F) 

place.keyseq(0, 0.2) 

detach(“food.df”) # cleanup 

7.A.4 Additional Code for Section 7.5 

Prior to running the code to create Figures 7.11−7.13, the data frame 
food.comb should be attached to the search list.  Prior to running the code to 
create Figures 7.14−7.18, the data frame food.half should be attached to the 
search list. 

attach(food.comb) 

Figure 7.11:  Carryover Effect 
plot(as.numeric(Sequence), sumPer,  

  type = "n", axes = F, xlab = "",  

  ylab = "AUC: Period 1 + Period 2", xlim = c(0.5, 2.5)) 

axislog(exp(sumPer),opp.side = T, line = 1, srt = 90,  

  cex = 0.9) 

points(jitter(rep(1, 4), factor = 3),  

  sumPer[Sequence == 1], pch = 1) 

points(jitter(rep(2, 4), factor = 3),  

  sumPer[Sequence == 2], pch = 2) 

points(x = c(1, 2), c(mean(sumPer[Sequence == 1]), 

    mean(sumPer[Sequence == 2])), pch = "-", cex = 3) 

axis(1, at = c(1, 2), labels = c("Seq I:\nFed then Fasted",  

    "Seq II:\nFasted then Fed"), ticks = F, cex = 0.9) 

mtext("log AUC: Period 1 + Period 2", side = 4, line = 3) 
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Figure 7.12:  Period Effect 
plot(as.numeric(Sequence), diffTrt, type = "n", axes = F,  

  xlab = "", ylab = "AUC: Fed / Fasted",  

  xlim = c(0.5, 2.5)) 

axislog(exp(diffTrt), opp.side = T, line = 1, srt = 90,  

  cex = 0.9) 

points(jitter(rep(1, 4), factor = 3),  

  diffTrt[Sequence == 1], pch = 1) 

points(jitter(rep(2, 4), factor = 3),  

  diffTrt[Sequence == 2], pch = 2) 

points(x = c(1, 2), c(mean(diffTrt[Sequence == 1]),  

    mean(diffTrt[Sequence == 2])), pch = "-", cex = 3) 

axis(1, at = c(1, 2), labels = c("Seq I:\nFed then Fasted", 

    "Seq II:\nFasted then Fed"), ticks = F, cex = 0.9) 

mtext("log AUC: Fed - Fasted", side = 4, line = 3) 

Figure 7.13:  Treatment Effect 
plot(as.numeric(Sequence), diffPer, type = "n", axes = F,  

  xlab = "", ylab = "AUC: Period 2 / Period 1",  

  xlim = c(0.5, 2.5)) 

axislog(exp(diffPer), opp.side = T, line = 1, srt = 90,  

  cex = 0.9) 

points(jitter(rep(1, 4), factor = 3),  

  diffPer[Sequence == 1], pch = 1) 

points(jitter(rep(2, 4), factor = 3),  

  diffPer[Sequence == 2], pch = 2) 

points(x = c(1, 2), c(mean(diffPer[Sequence == 1]),  

    mean(diffPer[Sequence == 2])), pch = "-", cex = 3) 

axis(1, at = c(1, 2), labels = c("Seq I:\nFed then Fasted", 

    "Seq II:\nFasted then Fed"), ticks = F, cex = 0.9) 

mtext("log AUC: Period 2 - Period 1", side = 4, line = 3) 
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Listing of Food Half Data Used to Study Period 1 Residuals in  
Figures 7.14–7.18 
> food.half 

  subj seq    trt per     AUC subjf perf seqf seqn trtn   logAUC 

1    1 +/-    Fed   1  809.44     1    1  +/-    1    1 6.696343 

2    2 +/-    Fed   1  428.00     2    1  +/-    1    1 6.059123 

5    5 +/-    Fed   1  712.24     5    1  +/-    1    1 6.568415 

7    7 +/-    Fed   1  511.84     7    1  +/-    1    1 6.238012 

3    3 -/+ Fasted   1  901.11     3    1  -/+    2    2 6.803627 

4    4 -/+ Fasted   1 1146.96     4    1  -/+    2    2 7.044870 

6    6 -/+ Fasted   1  745.51     6    1  -/+    2    2 6.614069 

8    8 -/+ Fasted   1  852.86     8    1  -/+    2    2 6.748595 

 

         resid    studres     stdres     pred       cooks  

1  0.009612069  0.1075670  0.1176976 6.686731 0.002308787 

2 -0.179138916 -4.4991205 -2.1935151 6.238262 0.801918105 

5  0.123479646  1.7543451  1.5119801 6.444935 0.381013961 

7  0.046047200  0.5289139  0.5638375 6.191965 0.052985445 

3 -0.014709018 -0.1648621 -0.1801086 6.818336 0.005406516 

4  0.016085298  0.1803839  0.1969608 7.028785 0.006465593 

6  0.040115695  0.4577066  0.4912075 6.573953 0.040214138 

8 -0.041491975 -0.4741032 -0.5080598 6.790087 0.043020787 

S-PLUS Function to Compute Cook’s Distance 
This function is defined within the S-PLUS function plot.lm. 

Cooks.lm <- function(fit) 

{ 

  lmi <- lm.influence(fit) 

  fit.s <- summary.lm(fit) 

  s <- fit.s$sigma 

  h <- lmi$hat 

  p <- fit$rank 

  stdres <- fit$residuals/(s * (1 - h)^0.5)  #standardized 

  cooks <- (1/p * stdres^2 * h)/(1 - h) 

  if(!is.null(fit$na.action)) 

    cooks <- nafitted(fit$na.action, cooks) 

  return(cooks) 

} 
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Figure 7.15:  Response versus Fitted 
plot(pred, logAUC, type = "n", xlab = "log AUC: Period 1", 

   ylab = "log AUC Fitted: Period 1") 

abline(0, 1) 

points(pred[seqn == 1], logAUC[seqn == 1], pch = 1) 

points(pred[seqn == 2], logAUC[seqn == 2], pch = 2) 

place.keyseq(0.1, 1) 

Figure 7.16:  Raw Residuals versus Fitted 
plot(pred, resid, type = "n",  

  xlab = "Fitted log AUC: Period 1",  

  ylab = "Raw Residuals: Period 1") 

points(pred[seqn == 1], resid[seqn == 1], pch = 1) 

points(pred[seqn == 2], resid[seqn == 2], pch = 2) 

abline(0, 0) 

id.n(pred, resid, how.many = 2,offset = 0.1) 

place.keyseq(0.8, 0.2) 

Figure 7.17:  Equal Variance 
plot(pred, sqrt(abs(resid)), type = "n",  

  xlab = "Fitted log AUC: Period 1", 

 ylab = "Square Root of Absolute Value Residual: Period 1") 

points(pred[seqn == 1], sqrt(abs(resid))[seqn == 1],  

  pch = 1) 

points(pred[seqn == 2], sqrt(abs(resid))[seqn == 2],  

  pch = 2) 

lines(lowess(pred,sqrt(abs(resid)))) 

id.n(pred, sqrt(abs(resid)), how.many = 2, offset =0.1) 

place.keyseq(0.8, 1.0) 
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