
1. Introduction

Constraint Programming represents one of the closest approaches computer
science has yet made to the Holy Grail of programming: the user states the
problem, the computer solves it.

Eugene C. Freuder, Inaugural issue of the Constraints Journal, 1997

The idea of constraint-based programming is to solve problems by simply
stating constraints (conditions, properties) which must be satisfied by a solu-
tion of the problem. For example, consider a bicycle number lock. We forgot
the first digit, but remember some constraints about it: The digit was an odd
number, greater than 1, and not a prime number. Combining the pieces of
partial information expressed by these constraints (digit, greater than 1, odd,
not prime) we are able to derive that the digit we are looking for is “9”.

Constraints can be considered as pieces of partial information. Constraints
describe properties of unknown objects and relationships between them. Con-
straints are formalized as distinguished, predefined predicates in first-order
predicate logic. The objects are modeled as variables.

Constraints allow for a finite representation and efficient processing of
possibly infinite relations. For example, each of the two arithmetic constraints
X+Y =7 and X−Y =3 admits infinitely many solutions over the integers.
Taken together, these two constraints can be simplified into the solution
X=5 and Y =2.

From the mid-1980’s, constraint logic programming combined the advan-
tages of logic programming and constraint solving. Constraint-based program-
ming languages enjoy elegant theoretical properties, conceptual simplicity,
and practical success.

In logic programming languages, problem-solving knowledge is stated in a
declarative way by rules that define relations. A solution is searched for by
applying the rules to a given problem. A fixed strategy called resolution is
used.

In constraint solving, efficient special-purpose algorithms are employed to
solve sub-problems expressed by constraints.

As it runs, a constraint program successively generates constraints. As
a special program, the constraint solver stores, combines, and simplifies the
constraints until a solution is found. The partial solutions can be used to
influence the run of the program.



2 1. Introduction

The advantages of constraint logic programming are: declarative problem
modeling on a solid mathematical basis, propagation of the effects of decisions
using efficient algorithms, and search for optimal solutions.

The use of constraint programming supports the complete software devel-
opment process. Because of its conceptual simplicity and efficiency executable
specifications, rapid prototyping, and ease of maintainance are achievable.

Already since the beginning of the 1990’s, constraint-based programming
has been commercially successful. In 1996, the world wide revenue generated
by constraint technology was estimated to be on the order of 100 million
dollars. The technology has proven its merits in a variety of application areas,
including decision support systems for scheduling, timetabling, and resource
allocation.

For example, the system Daysy performs short-term personnel planning
for Lufthansa after disturbances in air traffic (delays, etc.), such that changes
in the schedule and costs are minimized. Nokia uses constraints for the au-
tomatic configuration of software for mobile phones. The car manufacturer
Renault has been employing the technology for short-term production plan-
ning since 1995.

Overview of the Book

This book is intended as a concise and uniform overview of the fundamentals
of constraint programming: languages, constraints, algorithms, and applica-
tions.

The first part of the book discusses classes of constraint programming
languages. The second part introduces types of constraints and algorithms
to solve them. Both parts include examples. The third part describes three
exemplary applications in some detail. In the appendix, we briefly give syntax
and semantics of first-order predicate logic which constitutes the formal basis
of this book.

In the first part of the book, we introduce the basic ideas behind the
classes of (concurrent) constraint logic programming languages in a uniform
abstract framework.

In Chap. 4, we introduce logic programming. We define syntax, opera-
tional semantics in a calculus, and declarative semantics in first-order logic.
We give soundness and completeness results that explain the formal connec-
tion between operational and declarative semantics. With Prolog we briefly
introduce the best known representative and classic of logic programming
languages.

Step by step we extend this class of programming languages in the follow-
ing chapters. We will keep the structure of presentation and emphasize the
commonalities and explain the differences.

In Chap. 5, we extend logic programming by constraints, leading to con-
straint logic programming. In Chap. 6, constraints present themselves as a



1. Introduction 3

formalism for communication and synchronization of concurrent processes. In
Chap. 7, we introduce a concurrent programming language for writing con-
straint solvers and constraint programs called Constraint Handling Rules.

In the second part of the book, we explain what a constraint solver does
and what it should do. We define the notion of constraint system and explain
the principles behind constraint-solving algorithms such as variable elimi-
nation and local-consistency techniques. We introduce common constraint
systems such as Boolean constraints for circuit design, terms for program
analysis, linear polynomial equations for financial applications, finite domains
for scheduling, and interval constraints for solving arbitrary arithmetic ex-
pressions.

Constraint Handling Rules will come in handy to specify and implement
the corresponding constraint-solving algorithms at a high level of abstraction.
We will analyze termination, confluence, and worst case time complexity
of the algorithms. For each constraint system, we give an example of its
application.

In the third part of the book, we reach the commercial practice of con-
straint programming: We briefly describe the market for this technology,
the involved software companies, applications areas, and sample concrete
projects. Then we present in more detail three applications: from timetabling
to internet-based rent advice and optimal placement of senders for wireless
communication.

References to related literature and a detailed index conclude the book.

Since this book concentrates on the essentials of constraint program-
ming and reasoning, it does not address the following topics: temporal and
spatial constraints, dynamic (undoable) constraints, soft (prioritized) con-
straints, constraint-based optimization techniques, low-level implementation
techniques, programming methodology, non-logic programming languages
(functional, object oriented, imperative) with constraints, and databases with
constraints.

A final remark: The web pages of this book at
http://www.informatik.uni-ulm.de/pm/mitarbeiter/fruehwirth/pisa
contain teaching aids like slides and exercises, as well as links to programming
languages, tutorials, software, further references, and more.


