
CHAPTER 13

Cookies and Session
Tracking

The ability to track users and customize user information based on personal pref-
erences has become both one of the hottest and most debated features to be
offered on the Web. While the advantages of being able to offer users services
based on exactly what they desire are obvious, many questions have been raised
regarding privacy in terms of the ramifications of being able to “follow” a user as
that user navigates from page to page, and even from site to site.

Barring privacy concerns, the process of tracking user information through
cookies or other technologies can be immensely beneficial to both the user and
the site offering these services. It is to the user’s benefit that these services provide
the opportunity to customize content, weeding out any information that may be
uninteresting or useless. This capability is also highly beneficial to the site admin-
istrators, as tracking user preferences and habits opens up a whole new realm of
possibilities for user interaction, including targeted marketing and a vastly supe-
rior analysis of the popularity of their onsite content. On the commerce-domi-
nated Web, these capabilities are by now practically the de facto standard.

This idea of tracking a user while navigating through your site can be defined
as session tracking. Given the vast amount of knowledge that could be gained
from introducing session tracking into your site architecture, it could be said that
the advantages of session tracking and providing customized content far out-
weigh the disadvantages. With that said, this could hardly be considered a com-
plete PHP textbook without devoting a chapter to PHP’s session-tracking capabili-
ties. In this chapter, I introduce several concepts closely intertwined with session
tracking, namely, session cookies and their uses, unique session identification
numbers, before concluding the chapter with a synopsis of PHP’s predefined ses-
sion-tracking configuration and predefined functions.

What Is a Cookie?

A cookie is nothing more than a small parcel of information that is sent by a Web
server and stored on a client browser. This can be advantageous to the developer
because useful data regarding the user session can be stored and then later
retrieved, resulting in the creation of a state of persistence between the client and

321

Gilmore_13 12/4/00 1:09 PM Page 321

server. Cookies are commonly used by many Internet sites as a means to enhance
both user experience and site efficiency, providing a way to track user navigation,
actions, and preferences. The ability to store this information is a key feature for
sites offering such services as online shopping, site personalization, and targeted
advertising.

Due to the usercentric purpose of cookie usage, the key piece of information
stored is likely to be a unique user identification number (UIN). This ID is subse-
quently stored in a database and is used as the key for retrieving any information
stored in the database that is mapped to this UIN. Of course, it is not mandatory
that the cookie is used to store a UIN; you could store anything you like in the
cookie, provided that its total size does not surpass four kilobytes (4096 bytes).

Cookie Components

Interestingly, other pieces of information are also stored in the cookie, enabling
the developer to tailor its usage in terms of domain, time frame, path, and secu-
rity. Here are descriptions of the various cookie components:

• name—The cookie name is a mandatory parameter because the name is
the parameter from which the cookie is referenced. The cookie name can
be essentially thought of in terms of a variable name.

• value—A cookie value is simply a piece of data mapped to the cookie name.
This could be a user identification number, background color, date, any-
thing.

• expiration date—This date defines the lifetime of the cookie. Once this
timestamp equals the current date and time, the cookie will expire and be
rendered unusable. According to cookie specifications, inclusion of the
expiration date is optional. However, PHP’s cookie-setting functionality
requires that this expiration date is set. According to the cookie specifica-
tions, if an expiration date is not included, the cookie will expire at the end
of the user session (that is, when the user exits the site).

• domain—This is the domain that both created and can read the cookie.
If a domain has multiple servers and would like all servers to be able to
access the same cookie, then the domain could be set in the form of
.phprecipes.com. In this case all potential third-level domains falling under
the PHPrecipes site, such as wap.phprecipes.com or news.phprecipes.com,
would have access to the cookie. For security reasons, a cookie cannot be
set for any domain other than the one mapped to the server attempting to

Chapter 13

322

Gilmore_13 12/4/00 1:09 PM Page 322

set the cookie. This parameter is optional. If it is not included, it will default
to the domain name from which the cookie is emanating.

• path—The path setting specifies the URL path from which the cookie is
valid. Any attempt to retrieve a cookie from outside of this path will fail.
Setting path is optional. If it is not set, then the path will be set to the path
of the document from which the cookie is created.

• security—This determines whether or not the cookie can be retrieved in a
nonsecure setting. Because the cookie will be primarily used in a nonsecure
setting, this optional parameter will default to FALSE.

Although all cookies must abide by the same set of syntax rules when they are
set, the cookie storage format is browser dependent. For example, Netscape Com-
municator stores a cookie in a format similar to the following:

.phprecipes.com FALSE / FALSE 971728956 bgcolor blue

In Internet Explorer, the same cookie would be stored as:

bgcolor

blue

localhost/php4/php.exe/book/13/

0

2154887040

29374385

522625408

29374377

*

To correctly view a cookie stored by Internet Explorer, just open it up using a
text editor. Keep in mind that certain text editors do not properly process the
newline character found at the end of each line, causing them to appear as
squares in the cookie document.

Cookies and Session Tracking

323

NOTE Internet Explorer stores its cookie information in a folder aptly enti-
tled “Cookies,” while Netscape Communicator stores it in a single file enti-
tled “cookies.” Just perform a search on your drive to find these files.

Gilmore_13 12/4/00 1:09 PM Page 323

Cookies and PHP

OK, enough background information. By now, I’m sure you’re eager to learn how
you can begin using PHP to store and retrieve your own cookies. You’ll be happy
to know that it is surprisingly easy, done with a simple call to the predefined func-
tion setcookie().

The function setcookie() stores a cookie on a user’s machine. Its syntax is:

int setcookie (string name [, string val [, int date [, string path [, string

domain [, int secure]]]]])

If you took a moment to read the introduction to cookies, you are already
familiar with the parameters in the setcookie() syntax. If you’ve skipped ahead
and are not familiar with the mechanics of persistent cookies, I suggest that you
return to the beginning of this section and read through the introduction, as all of
the setcookie() parameters are introduced there.

Before proceeding, I ask that you read the following sentence not once, not
twice, but three times. A cookie must be set before any other page-relevant infor-
mation is sent to the browser. Write this 500 times on a blackboard, get a tattoo
stating this rule, teach your parrot to say it: I don’t care, just get it straight. In other
words, you cannot just set a cookie where you wish in a Web page. It must be sent
before any browser-relevant information is sent; otherwise it will not work.

Another important restriction to keep in mind is that you cannot set a cookie
and then expect to use that cookie in the same page. Either the user must refresh
the page (don’t count on it), or you will have to wait until the next page request
before that cookie variable can be used.

This example illustrates how setcookie() is used to set a cookie containing a
user identification number:

$userid = "4139b31b7bab052";

$cookie_set = setcookie ("uid", $value, time()+3600, "/", ".phprecipes.com", 0);

After analyzing this code, you’ll notice these results of setting the cookie:

• After reloading or navigating to any subsequent page, the variable $userid
becomes available, producing the user id 4139b31b7bab052.

• This cookie will expire (thus be rendered unusable) exactly one hour (3600
seconds) after it has been sent.

• The cookie is available for retrieval in all directories on the server.

Chapter 13

324

Gilmore_13 12/4/00 1:09 PM Page 324

• This cookie is only accessible via the phprecipes.com domain.

• This cookie is accessible via a nonsecured protocol.

The next example, shown in Listing 13-1, illustrates how a cookie can be used
to store page-formatting preferences, in this case the background color. Notice
how the cookie will only be set if the form action has been executed.

Listing 13-1: Storing a user’s favorite background color
<?

// If the variable $bgcolor exists…

if (isset($bgcolor)) :

setcookie("bgcolor", $bgcolor, time()+3600);

?>

<html>

<body bgcolor="<?=$bgcolor;?>">

<?

// else, $bgcolor is not set, therefore show the form

else :

?>

<body bgcolor="white">

<form action="<? print $PHP_SELF; ?>" method="post">

What's your favorite background color?

<select name="bgcolor">

<option value="red">red

<option value="blue">blue

<option value="green">green

<option value="black">black

</select>

<input type="submit" value="Set background color">

</form>

<?

endif;

?>

</body>

</html>

On loading of this page to the browser, the script will verify whether the
cookie entitled “bgcolor” has been set. If it has, then the background color of the
page will be set to the value specified by the variable $bgcolor. Otherwise, an

Cookies and Session Tracking

325

Gilmore_13 12/4/00 1:09 PM Page 325

HTML form will appear, prompting the user to specify a favorite background
color. Once the color is specified, subsequent reloading of the page or traversal to
any page using the cookie value $bgcolor will be recognized.

Interestingly, you can also use array notation to specify cookie names. You
could specify cookie names as uid[1], uid[2], uid[3], and so on, and then later
access these values just as you would a normal array. Check out Listing 13-2 for an
example of how this works.

Listing 13-2: Assigning cookie names according to array index value
<?

setcookie("phprecipes[uid]", "4139b31b7bab052", time()+3600);

setcookie("phprecipes[color]", "black", time()+3600);

setcookie("phprecipes[preference]", "english", time()+3600);

if (isset ($phprecipes)) {

while (list ($name, $value) = each ($phprecipes)) {

echo "$name = $value
\n";

}

}

?>

Executing this script results in the following output, in addition to three cookies
being set on the user’s computer:

uid = 4139b31b7bab052

color = black

preference = english

Perhaps the most common use of cookies is for storage of a user identifica-
tion number that will be later used for retrieving user-specific information. This
process is illustrated in the next listing, where a UIN is stored in a MySQL data-
base. The stored information is subsequently retrieved and used to set various
pieces of information regarding the formatting of the page.

To set the stage for the next listing, assume that a table entitled user_info
resides on a database named user. The user_info table contains three pieces of

Chapter 13

326

NOTE Although the use of array-based cookies may seem like a great idea
for storing all kinds of information, keep in mind that certain browsers
(such as Netscape Communicator) limit the number of cookies to 20 per
domain.

Gilmore_13 12/4/00 1:09 PM Page 326

information: a user ID, first name, and email address. This table was created using
the following syntax:

mysql>create table user_info (

->user_id char(18),

->fname char(15),

->email char(35));

Listing 13-3 actually picks up about halfway through what would be a com-
plete “registration” script, starting where the user information (user ID, first
name, and email address) has already been inserted into the database. To elimi-
nate the need for the user to later log in, the user ID (set to 15 in Listing 13-3 for
the sake of illustration) is stored on the user’s computer by way of a cookie.

Listing 13-3: Retrieving user information from a database
<?

if (! isset($userid)) :

$id = "15";

setcookie ("userid", $id, time()+3600);

print "A cookie containing your userID has been set on your machine. Please

refresh the page to retrieve your user information";

else:

@mysql_connect("localhost", "web", "4tf9zzzf")

or die("Could not connect to MySQL server!");

@mysql_select_db("user") or die("Could not select user database!");

// declare query

$query = "SELECT * FROM user_info WHERE user_id = '$userid'";

// execute query

$result = mysql_query($query);

$row = mysql_fetch_array($result);

print "Hi ".$row["fname"].",
";

print "Your email address is ".$row["email"];

mysql_close();

endif;

?>

Listing 13-3 highlights just how useful cookies can be for identifying users.
The above scenario could be applied to any number of situations, ranging from
eliminating the need to log in to effectively tracking user preferences.

Cookies and Session Tracking

327

Gilmore_13 12/4/00 1:09 PM Page 327

The listing in the next section, “Unique Identification Numbers,” illustrates
the complete process of user registration and subsequent storage of the unique
user ID.

Unique Identification Numbers

By now you are probably curious just how easy it is to create a unique UIN. Put
your college calculus books away; there is no need for funky 17th-century algo-
rithms. PHP provides an easy way to create a unique UIN through its predefined
function uniqid().

The function uniqid() generates a 13-character unique identification num-
ber based on the current time. Its syntax is:

int uniqid (string prefix [, boolean lcg])

The input parameter prefix can be used to begin the UIN with a particular string
value. Since prefix is a required parameter, you must designate at least an empty
value. If set to TRUE, the optional input parameter lcg will cause uniqid() to pro-
duce a 23-character UIN. To quickly create a unique ID, just call uniqid() using an
empty value as the sole input parameter:

$uniq_id = uniqid("");

// Some 13 character value such as ' 39b3209ce8ef2' will be generated.

Another way to create a unique ID is to prepend the derived value with a
string, specified in the input parameter prefix, as shown here:

$uniq_id = uniqid("php", TRUE);

// Some 16 character value such as 'php39b3209ce8ef2' will be generated.

Given the fact that uniqid() creates its UIN based on the current time of the
system, there is a remote possibility that it could be guessed. Therefore, you may
want to ensure that its value is truly random by first randomly choosing a prefix
using another of PHP’s predefined functions, rand(). The following example
demonstrates this usage:

srand ((double) microtime() * 1000000);

$uniq_id = uniqid(rand());

Chapter 13

328

NOTE The MySQL functions used in Listing 13-3 are introduced in Chap-
ter 11, “Databases.”

Gilmore_13 12/4/00 1:09 PM Page 328

The function srand() acts to initiate the random number generator. If you
want to ensure that rand() consistently produces a random number, you must
execute srand() first. Placing rand() as an input parameter to uniqid() will result
in rand() first being executed, returning a prefix value to uniqid(), which will
then execute, producing a UIN that would be rather difficult to guess.

Armed with the knowledge of how to create unique user IDs, you can now
create a practical user registration scheme. On first request of the script in Listing
13-4, the user is greeted with a short form requesting a name and email address.
This information will be then inserted along with a generated unique ID into the
table user_info, first described along with Listing 13-3. A cookie containing this
unique ID is then stored on the user’s computer. Any subsequent visit to the page
will prompt the script to query the database based on the unique user ID stored
in the cookie, displaying the user information to the screen.

Listing 13-4: A complete user registration process
<?

// build form

$form = "

<form action=\"Listing13-4.php\" method=\"post\">

<input type=\"hidden\" name=\"seenform\" value=\"y\">

Your first name?:

<input type=\"text\" name=\"fname\" size=\"20\" maxlength=\"20\" value=\"\">

Your email?:

<input type=\"text\" name=\"email\" size=\"20\" maxlength=\"35\" value=\"\">

<input type=\"submit\" value=\"Register!\">

</form>

";

// If the form has not been displayed and the user does not have a cookie.

if ((! isset ($seenform)) && (! isset ($userid))) :

print $form;

// If the form has been displayed but the user information

// has not yet been processed

elseif (isset ($seenform) && (! isset ($userid))) :

srand ((double) microtime() * 1000000);

$uniq_id = uniqid(rand());

// connect to the MySQL server and select the users database

@mysql_pconnect("localhost", "web", "4tf9zzzf")

or die("Could not connect to MySQL server!");

@mysql_select_db("user") or die("Could not select user database!");

Cookies and Session Tracking

329

Gilmore_13 12/4/00 1:09 PM Page 329

// declare and execute query

$query = "INSERT INTO user_info VALUES('$uniq_id', '$fname', '$email')";

$result = mysql_query($query) or die("Could not insert user information!");

// set cookie "userid" to expire in one month.

setcookie ("userid", $uniq_id, time()+2592000);

print "Congratulations $fname! You are now registered! Your user information

will be displayed on each subsequent visit to this page.";

// else if the cookie exists, use the userID to extract

// information from the users database

elseif (isset($userid)) :

// connect to the MySQL server and select the users database

@mysql_pconnect("localhost", "web", "4tf9zzzf")

or die("Could not connect to MySQL server!");

@mysql_select_db("user") or die("Could not select user database!");

// declare and execute query

$query = "SELECT * FROM user_info WHERE user_id = '$userid'";

$result = mysql_query($query) or die("Could not extract user information!");

$row = mysql_fetch_array($result);

print "Hi ".$row["fname"].",
";

print "Your email address is ".$row["email"];

endif;

?>

The judicious use of several if conditionals makes it possible to use one script
to take care of each step of the registration and subsequent user recognition pro-
cess. There are three scenarios involved in this script:

• The user has not seen the form and does not have a valid cookie. This is the
step where the user is presented with the form.

• The user has filled in the form and does not yet have a valid cookie. This is
the step where the user information is entered into the database, and the
cookie is set, due to expire in one month.

• The user returns to the script. If the cookie is still valid (has not expired),
the cookie is read in and the relevant information is extracted from the
database.

Chapter 13

330

Gilmore_13 12/4/00 1:09 PM Page 330

The general process shown in Listing 13-4 could of course be applied to any data-
base. This illustrates, on a very basic level, how many of the larger sites are able to
apply user-specified preferences to their site, resulting in a “tailor-made” look for
each user.

This ends the introduction to PHP and cookies. If you are interested in learn-
ing more about the cookie mechanism, check out the online resources that I’ve
cited in the sidebar “Relevant Links.”

Relevant Links

For more information regarding cookies and their usage, take a moment to read
through a few of the resources that I’ve gleaned from the Web:

• http://www.cookiecentral.com

• http://home.netscape.com/newsref/std/cookie_spec.html

• http://builder.com/Programming/Cookies/ss01.html

• http://www.w3.org/Protocols/rfc2109/rfc2109

As you have learned, cookies can be very useful for “remembering” user-spe-
cific information that can be retrieved in subsequent visits to your site. However,
cookies can not be solely relied on since users can set their browsers to refuse to
accept cookies. Thankfully, PHP offers an alternative methodology for storing per-
sistent information; This method is called session tracking and is the subject of
the next section.

Session Handling

A session is best defined as the period of time beginning when a user enters your
site and ending when the user exits. Throughout this session, you may wish to
assign various variables that will accompany the user while navigating around
your site, without having to manually code a bunch of hidden forms or appended
URL variables. This otherwise tedious process becomes fairly easy with session
handling.

Consider the following scenario. Using session handling, a user entering your
site would be assigned a unique session id (SID). This SID is then sent to the user’s
browser in a cookie entitled PHPSESSID. If cookie support is disabled or not sup-
ported, this SID can be automatically appended to all local URLs throughout the
user session. At the same time, a file with the same name as the SID is stored on

Cookies and Session Tracking

331

Gilmore_13 12/4/00 1:09 PM Page 331

the server. As the user navigates throughout the site, you may wish to record cer-
tain variables as session variables. These variables are stored in that user’s file.
Any subsequent call to any of those variables deemed to be of the “session” type
will cause the server to grab that user’s session file and search it for the session
variable in question. And voilà! The session variable is displayed. In a nutshell,
this is the essence of session handling. Of course, you can also direct this user
information to be stored in databases or other files, whatever you wish.

Sounds interesting? You bet it does. Armed with this information, you will
surely have a better understanding of the various configuration issues at hand,
which I will now discuss. There are three particularly important configuration
flags. The first, entitled —enable-trans-id, must be included in the configuration
process if you wish to take advantage of its features (described below). The other
two, entitled track_vars and register_globals, can be enabled and disabled as
necessary in the php.ini file. The ramifications of activating these three flags are
discussed next.

—enable-trans-sid

When PHP is compiled with this flag, all relative URLs will automatically be
rewritten with the session ID attached. This appendage of the session ID is writ-
ten in the form session-name=session-id, where session-name is defined in the
php.ini file (explained later in this section). If you decide not to do so, you can use
the constant SID.

track_vars

Enabling track_vars allows $HTTP_*_VARS[] arrays, where * is one of the EGPCS
(Environment, Get, Post, Cookie, Server) values. This must be enabled in order for
the SID to propagate from one page to another. As of PHP 4.03, this setting is
always enabled.

register_globals

Enabling this option will result in all EGCPS variables being globally accessible.
You want this disabled if you don’t want your global array filling with perhaps
unnecessary data. If this is disabled and track_vars is enabled, all GPC variables
can be accessed through the $HTTP_*_VARS[] arrays. As an example, if
register_globals is disabled, you would have to refer to the predefined variable
$PHP_SELF as $HTTP_SERVER_VARS["PHP_SELF"].

There are also a number of preferential configuration issues that you should
take care of. These directives are described in Table 13-1, shown in their default
form as seen in the php.ini file. They are introduced in the order that they actually
appear in the file.

Chapter 13

332

Gilmore_13 12/4/00 1:09 PM Page 332

Table 13-1. Session-handling directives in the php.ini file

DIRECTIVE DESCRIPTION

session.save_handler = files Specifies how the session information

will be stored on the server. There are

three ways to do so: in a file (files),

shared memory (mm), or through user-

defined functions (User). The user-

defined functions allow you to easily

store the information in any format you

wish, for example, in a database.

session.save_path = /tmp Designates the directory in which the

PHP session files will be stored. On the

Linux platform, the default setting

('/tmp') is probably just fine. On the

Windows platform, you will need to

change this to some Windows path;

otherwise errors will occur.

session.use_cookies = 1 When enabled, cookies are used to store

the session ID on the user’s computer.

session.name = PHPSESSID If session.use_cookies is enabled, then

session.name will be used as the cookie

name. The characters comprising the

name can only be alphanumeric.

session.auto_start = 0 When enabled, session.auto_start will

automatically initiate a session when a

client makes an initial request.

session.cookie_lifetime = 0 If session.use_cookies is enabled, then

session.cookie_lifetime will determine

the lifetime of the sent cookies. If it is set

to 0, then any sent cookies will expire on

the termination of the user session.

session.cookie_path = / If session.use_cookies is enabled, then

session.cookie_path determines the

parent path directory for which sent

cookies are valid.

session.cookie_domain = If session.use_cookies is enabled, then

session.cookie_domain determines the

domain for which sent cookies are valid.

session.serialize_handler = php This specifies the name of the handler

that will be used to serialize data. There

are currently two possible values for

this: php and WDDX.

Cookies and Session Tracking

333

Gilmore_13 12/4/00 1:09 PM Page 333

Table 13-1. (Continued)

DIRECTIVE DESCRIPTION

session.gc_probability = 1 This specifies the percentual probability

that PHP’s garbage collection routine

will be activated.

session.gc_maxlifetime = 1440 Specifies the time (in seconds) before

session data is considered invalid and

will be destroyed. This timer begins

counting down after the last access to

the session.

session.referer_check = When set to a string, each request to a

session-enabled page will begin with a

verification that the specified string is in

the global variable $HTTP_REFERER. If it is

not found, any accompanying session

ID will be ignored.

session.entropy_file = Points to an external file that supplies

additional random information used

during the creation of the session ID.

There are typically two devices on UNIX

systems made for this purpose,

/dev/random and /dev/urandom. The

/dev/random device collects random data

from inside the kernel, while the

/dev/urandom device relies on the MD5

hashing algorithm to produce a random

string. In short, /dev/random is faster, but

/dev/urandom produces a more

“random” string.

session.entropy_length = 0 Assuming session.entropy_file is set,

session.entropy_length specifies the

number of bytes to be read from the file

specified by session.entropy_length.

session.cache_limiter = nocache Determines the cache control method

for session pages. There are three

possible values for this setting: nocache,

public, and private.

session.cache_expire = 180 Determines the TTL (time to live) in

minutes for cached session pages.

Chapter 13

334

Gilmore_13 12/4/00 1:09 PM Page 334

Now that you have presumably made any necessary configuration adjust-
ments to your server, I will turn attention toward the mechanics of how you can
implement session handling on your site. It is actually a rather simple process,
made possible through the use of several predefined functions. The first concept
that you need to know is that a session is initiated with the function
session_start(). Of course, you could eliminate the need to use this function if
you had enabled session.auto_start in the php.ini file as discussed earlier in this
section. However, for the remainder of this section, I will assume that you have
not done this so to ensure consistency in my examples. The syntax of
session_start() is simple, as it requires no input parameters and returns only a
boolean informing the developer as to its success.

session_start()

The function session_start() is twofold in purpose. Once called, it checks to see
if the user has already started a session, and if the user has not, it starts one. Its
syntax is:

boolean session_start()

If it starts a session, it performs three functions, assigning the user a SID,
sending a cookie (if session.use_cookies is enabled in the php.ini file), and creat-
ing the session file on the server. Its second purpose is that it informs the PHP
engine that other session variables may be used in the script from which it (ses-
sion_start()) is executed.

A session is started simply by calling session_start() like this:

session_start();

Just as a session can be created, it can be destroyed. This is accomplished via
the function session_destroy().

Cookies and Session Tracking

335

NOTE The configuration directive session.save_handler is so useful that I
felt an entire section should be devoted to it. It is located at the conclusion
of this chapter under “Specifying User Callbacks as Storage Modules”.

TIP The session_start() function returns TRUE no matter what the
actual outcome is. Therefore, it does no good to use it in if conditionals or
in conjunction with die() statements.

Gilmore_13 12/4/00 1:09 PM Page 335

session_destroy()

The function session_destroy() will destroy all persistent data corresponding to
the current user session. Its syntax is:

boolean session_destroy()

Keep in mind that this will not destroy any cookies on the user’s browser. How-
ever, if you are not interested in using the cookie beyond the end of the session,
just set session.cookie_lifetime to 0 (its default value) in the php.ini file. An
example of the function’s usage is:

<?

session_start();

// do some session stuff

session_destroy();

?>

Now that you know how to create and destroy sessions, you are ready to begin
working with the various session variables. Perhaps the most important one is the
SID. This is easily obtainable through using the session_id() function.

session_id()

The function session_id() returns the user’s SID originally created by
session_start(). This is its syntax:

string session_id([string sid])

If you supply a session ID as the optional input parameter sid, the user’s ses-
sion ID will be changed. Keep in mind, however, that this will not resend the
cookie. Executing this example:

<?

session_start ();

print "Your session identification number is ".session_id();

session_destroy();

?>

results in output similar to the following being displayed to the browser:

Your session identification number is 967d992a949114ee9832f1c11cafc640

Chapter 13

336

Gilmore_13 12/4/00 1:09 PM Page 336

So how can you begin creating your own session variables? The function ses-
sion_register() takes care of this job handily.

session_register()

The function session_register() registers one or more variable names with the
user’s current session. Its syntax is:

boolean session_register (mixed varname1 [, mixed varname2 …])

Keep in mind that you are not registering variables, but rather the names of
the variables. Session_register() will also call session_start() internally,
implicitly beginning a new session if one does not already exist.

Before exemplifying the usage of session_register(), I would like to intro-
duce another session-oriented function that can verify whether or not a particu-
lar variable has been registered. The function is entitled
session_is_registered().

session_is_registered()

It is often useful to determine whether or not a variable has already been regis-
tered. This task can be accomplished with session_is_registered(). Its syntax is:

boolean session_is_registered (string varname)

To illustrate the usage of session_register() and session_is_registered(),
I’ll refer to what seems to be everyone’s favorite basic session example: a hit
counter. This is illustrated in Listing 13-5.

Listing 13-5: A user-specific hit counter
<?

session_start();

if (! session_is_registered('hits')) :

session_register('hits');

endif;

$hits++;

print "You've seen this page $hits times";

?>

Just as you can create session variables, you can destroy them. This is accom-
plished with session_unregister().

Cookies and Session Tracking

337

Gilmore_13 12/4/00 1:09 PM Page 337

session_unregister()

A session variable can be destroyed with a call to session_unregister(). Its syntax
is:

boolean session_unregister (string varname)

The input parameter varname is the name of the session variable that you
would like to destroy.

<?

session_start();

session_register('username');

// ...use the variable $username as needed, then destroy it.

session_unregister('username');

session_destroy();

?>

As is the case with session_register(), remember that you do not specify the
input parameter varname as an actual variable (that is, with a preceding dollar sign
[$]). Instead, you just use the name of the variable.

session_encode()

The function session_encode() offers a particularly convenient method for for-
matting session variables for storage, for example in a database. Its syntax is:

boolean session_encode()

Executing this function will result in all session data being formatted into a
single string. This string can then be inserted into a database for storage pur-
poses.

Consider Listing 13-6 for an example of how session_encode() is used.
Assume that a “registered” user has a cookie containing that user’s unique ID
stored on a computer. When the user requests the page containing Listing 13-6,
the user ID is retrieved from the cookie. This value is then assigned to be the ses-
sion ID. Certain session variables are created and assigned values, and then all of
this information is encoded using session_encode() and inserted into a MySQL
database.

Chapter 13

338

Gilmore_13 12/4/00 1:09 PM Page 338

Listing 13-6: Using session_encode() to store data in a MySQL database
<?

// Initiate session and create a few session variables

session_register('bgcolor');

session_register('fontcolor');

// assume that the variable $usr_id (containing a unique user ID)

// is stored in a cookie on the user's machine.

// use session_id() to set the session ID to be the user's

// unique user ID stored in the cookie and In the database

$id = session_id($usr_id);

// these variables could be set by the user via an HTML form

$bgcolor = "white";

$fontcolor = "blue";

// encode all session data into a single string

$usr_data = session_encode();

// connect to the MySQL server and select users database

@mysql_pconnect("localhost", "web", "4tf9zzzf") or die("Could not connect to MySQL

server!");

@mysql_select_db("users") or die("Could not select user database!");

// update the user's page preferences

$query = "UPDATE user_info set page_data='$usr_data' WHERE user_id= '$id'";

$result = mysql_query($query) or die("Could not update user information!");

?>

As you can see, the capability to quickly convert all of the session variables
into a single string eliminates the need to keep track of several column names
when storing and retrieving data and eliminates several lines of code that would
otherwise be needed to store and retrieve this data.

session_decode()

Any session data previously encoded with session_encode() can be decoded with
session_decode(). Its syntax is:

string session_decode(string session_data)

Cookies and Session Tracking

339

Gilmore_13 12/4/00 1:09 PM Page 339

The input parameter session_data is the encoded string of session variables,
presumably returned from a file or database retrieval. The string is decoded, and
all session variables in the string are regenerated back to their original variable
format.

Listing 13-7 illustrates how previously encoded session variables are regener-
ated by using session_decode(). Assume that a MySQL table entitled “user_info”
is built from just two columns: user_id and page_data. The user’s UID, stored in a
cookie on the user’s computer, is used to retrieve encoded session data stored in
the page_data column. The page_data column stores an encoded string of vari-
ables, one of which is the user’s preferential background color, stored in the vari-
able $bgcolor.

Listing 13-7: Decoding session data stored in a MySQL database
<?

// assume that the variable $usr_id (containing a unique user ID)

// is stored in a cookie on the user's machine.

$id = session_id($usr_id);

// connect to the MySQL server and select user's database

@mysql_pconnect("localhost", "web", "4tf9zzzf") or die("Could not connect to MySQL

server!");

@mysql_select_db("users") or die("Could not select company database!");

// select data from the MySQL table

$query = "SELECT page_data FROM user_info WHERE user_id= '$id'";

$result = mysql_query($query);

$user_data = mysql_result($result, 0, "page_data");

// decode the data

session_decode($user_data);

// output one of the regenerated session variables

print "BGCOLOR: $bgcolor";

?>

As you can see from the previous two listings, session_encode() and ses-
sion_decode() are enormously useful and efficient for storing and retrieving ses-
sion data.

Chapter 13

340

Gilmore_13 12/4/00 1:09 PM Page 340

Specifying User Callbacks as Storage Modules

While storing session information in files works pretty well, you may be interested
in storing data using other mediums, probably a database. Or perhaps you are
interested in reusing the same scripts on different sites, but with different data-
bases. Another common dilemma is the need to share session data across various
servers, something that is rather difficult when using PHP’s default routines of
storing session data in a file. You’ll be happy to know that realizing all of these
extensions to PHP’s session handling is really an easy task, given PHP’s capability
to allow users to specify their own storage routines via a predefined function
called session_set_save_handler().

The function session_set_save_handler() defines the user-level session stor-
age and retrieval functions. Its syntax is:

void session_set_save_handler (string open, string close, string read, string

write, string destroy, string gc)

The six input parameters correspond to the six functions that are transpar-
ently called by PHP’s session-handling functions. The function
session_set_save_handler() allows you to redefine these functions without
affecting the scripts that call PHP’s predefined session functions. Although you
can change the names of the functions to be whatever you wish, each must take
as input a specified set of parameters. Before proceeding to an example, take a
look at Table 13-2 to understand the roles of these six functions and their input
parameters.

Cookies and Session Tracking

341

NOTE In order to make use of session_set_save_handler(), you must set
session.save_handler to user in the php.ini file.

Gilmore_13 12/4/00 1:09 PM Page 341

Table 13-2: Six input parameters for the function session_set_savehandler()

PARAMETER DESCRIPTION

sess_close() Called when a script implementing the session

functions finishes. This is not the same as

sess_destroy(), which is used to actually

destroy the session variables. There aren’t any

input parameters for sess_close().

sess_destroy($session_id) Deletes all session data. The input parameter

$session_id specifies which session is to be

destroyed.

sess_gc($maxlifetime) Deletes any sessions that have expired. The

expiration time is denoted by the input

parameter $maxlifetime, specified in

seconds. This parameter is read from the

php.ini file and corresponds to

session.gc_lifetime.

sess_open($sess_path, $sess_name) Called when a new session is initialized, either

by session_start() or session_register().

The two input parameters $sess_path and

$sess_name are read from the php.ini file and

correspond to the session.save_path and

session.name parameters, respectively.

sess_read($key) Used to retrieve the value corresponding to a

session variable, denoted by the input

parameter $key.

sess_write($key, $value) Used to write the session data. Any data saved

by sess_write() can later be retrieved by

sess_read(). The input parameter $key

corresponds to a session variable name, and

$value corresponds to the value assigned to

$key.

Now that you know more about the functions that you need to define, I’ll pro-
vide an example of a MySQL-based implementation of the session-handling func-
tions. This example is given in Listing 13-8.

Chapter 13

342

Gilmore_13 12/4/00 1:09 PM Page 342

Listing 13-8: MySQL implementation of the session-handling functions
<?

// MySQL implementation of session-handling functions

// mysql server host, username, and password values

$host = "localhost";

$user = "web";

$pswd = "4tf9zzzf";

// database and table names

$db = "users";

$session_table = "user_session_data";

$SESS_TBLNAME = "user_session_data";

// retrieve sess.gc_lifetime value from php.ini file

$sess_life = get_cfg_var("sess.gc_lifetime");

// Function: mysql_sess_open()

// mysql_sess_open() connects to the MySQL server

// and selects the database.

function mysql_sess_open($save_path, $session_name) {

GLOBAL $host, $user, $pswd, $db;

@mysql_pconnect($host, $user, $pswd)

or die("Can't connect to MySQL server!");

@mysql_select_db($SESS_$db) or die("Can't select session database!");

}

// Function: mysql_sess_close()

// mysql_sess_close() is not needed in the MySQL implementation.

// *However*, it still must be defined.

function mysql_sess_close() {

return true;

}

// Function: mysql_sess_read()

// mysql_sess_read() reads the information from the MySQL database.

function mysql_sess_read($key) {

GLOBAL $session_table;

Cookies and Session Tracking

343

Gilmore_13 12/4/00 1:09 PM Page 343

$query = "SELECT value FROM $session_table WHERE sess_key = '$key' AND

sess_expiration >". time();

$result = mysql_query($query);

// If session value Is found, return it

if (list($value) = mysql_fetch_row($result)) :

return $value;

endif;

return false;

}

// Function: mysql_sess_write()

// mysql_sess_write() writes the information to the MySQL database.

function mysql_sess_write($key, $val) {

GLOBAL $sess_life, $session_table;

// set expiration time

$expiration = time() + $sess_life;

$query = "INSERT INTO $session_table VALUES('$key', '$expiration',

'$value')";

$result = mysql_query($query);

// if the insert query failed because of the primary key already exists,

// perform an update instead.

if (! $result) :

$query = "UPDATE $session_table SET sess_expiration = '$expiration',

sess_value='$value' WHERE sess_key = '$key'";

$result = mysql_query($result);

endif;

}

// Function: mysql_sess_destroy()

// mysql_sess_destroy() deletes all table rows having the session key = $sess_id

function mysql_sess_destroy($sess_id) {

GLOBAL $session_table;

$query = "DELETE FROM $session_table WHERE sess_key = '$sess_id'";

$result = mysql_result($query);

Chapter 13

344

Gilmore_13 12/4/00 1:09 PM Page 344

return $result;

}

// Function: mysql_sess_gc()

// mysql_sess_gc() deletes all table rows

// having an expiration < current time - session.gc_lifetime

function mysql_sess_gc($max_lifetime) {

GLOBAL $session_table;

$query = "DELETE FROM $session_table WHERE sess_expiration < " . time();

$result = mysql_query($query);

return mysql_affected_rows();

}

session_set_save_handler("mysql_sess_open", "mysql_sess_close", "mysql_sess_read",

"mysql_sess_write", "mysql_sess_destroy", "mysql_sess_gc");

?>

Once you have defined these six functions, you are then free to execute each
through its abstract name (sess_close(), sess_destroy(), sess_gc(),
sess_open(), sess_read(), or sess_write()). The convenience in this lies in the
fact that you could then build as many implementations as necessary and then
redefine session_set_save_handler() whenever necessary.

Project: Create a Visitor Log

It’s often useful to record information about your site’s visitors. As you already
know, this is a common practice among Web advertising agencies, portals, and
any of a number of other sites interested in learning more about their visitors.
While these systems can get enormously complicated, there are still a number of
benefits that can be obtained from the creation of a relatively simple logging sys-
tem. I’ll show you how to build just such a simple system using PHP, MySQL, and
cookies.

Cookies and Session Tracking

345

CAUTION This project incorporates the Chapter 8 browser detection proj-
ect. If you skipped over either Chapter 8 or the project, I would strongly rec-
ommend at least reviewing the project code before proceeding.

Gilmore_13 12/4/00 1:09 PM Page 345

As I’ve already said, our system will be relatively simple, monitoring only vis-
its to the site index page. When the visitor arrives, the PHP script checks to see
whether or not a valid cookie resides on the visitor’s computer. If one does, this
signifies that the user has previously visited in a specified time frame (preset by
the site administrator in an initialization file), and the script will not count this
visit. If there is no cookie (or there is a previously set cookie that has expired),
then either the user has never visited or the preset time frame between visits has
been surpassed, and the information is recorded to the MySQL table. Further-
more, a new cookie is sent to the visitor’s computer.

How can this script be constructed using PHP? First, you need to create the
MySQL table that holds the information:

mysql>create table visitors (

->browser char(85) NOT NULL,

->ip char(30) NOT NULL,

->host char(85) NOT NULL,

->timeOfVisit datetime NOT NULL

->);

What is the purpose of each column? The column browser contains informa-
tion directly relating to the user’s browser. This information is supplied by the
PHP variable $HTTP_USER_AGENT. The column ip contains the user’s IP address. The
column host contains ISP information from where the IP address emanates.
Finally, the column timeOfVisit specifies the date and time that the visitor arrived
at the site.

Next, create the application initialization file, init.inc, as shown in Listing 13-
9. It holds both the global variables and core functions. Notice that the functional-
ity of the Chapter 8 project script sniffer.php is used in the viewStats() function.
This script will be included along with the init.inc file when necessary. Take a
moment to review this script and its comments.

Chapter 13

346

NOTE A powerful visitor-logging application is available for free down-
load from the PHP resource site phpinfo.net (http://www.phpinfo.net). You
can also check out a live implementation onsite. However, you’ll need to
dust off that French textbook before going there!

Gilmore_13 12/4/00 1:09 PM Page 346

Listing 13-9: Creating the application initialization file (init.inc)

<?

// file: init.inc

// purpose: initialization file for Visitor Logging project

// Database connection variables

$host = "localhost";

$user = "web";

$pswd = "4tf9zzzf";

// database name

$database = "myTracker";

// polls table name

$visitors_table = "visitors";

// Connect to the MySQL Server

@mysql_pconnect($host, $user, $pswd) or die("Couldn't connect to MySQL server!");

// Select the database

@mysql_select_db($database) or die("Couldn't select $database database!");

// Number of recent visitors to display in table

$maxNumVisitors = "5";

// Cookie Name. You can set this to whatever you wish.

// However, the current setting will work just fine.

$cookieName = "visitorLog";

// Value stored in the cookie.

$cookieValue="1";

/*

Timeframe between acknowledgement of subsequent visit by same user

If $timeLimit is set to 0, every user visit to that page will be recorded

regardless of the frequency. All other integer settings will be regarded as number

of SECONDS that must pass between visits in order to be recorded.

*/

$timeLimit = 3600;

Cookies and Session Tracking

347

Gilmore_13 12/4/00 1:09 PM Page 347

// How would you like the table displayed?

$header_color = "#cbda74";

$table_color = "#000080";

$row_color = "#c0c0c0";

$font_color = "#000000";

$font_face = "Arial, Times New Roman, Verdana";

$font_size = "-1";

// function: recordUser

// purpose: Record user Information in the MySQL table $visitors_table

function recordUser() {

GLOBAL $visitors_table, $HTTP_USER_AGENT, $REMOTE_ADDR, $REMOTE_HOST;

/*

If the visitor is operating on the internal site server, set the $REMOTE_HOST to

'localhost'. Alternatively, you may want to eliminate the recording of all

internal visitors, since it's likely to be yourself or another development team

member.

/*

if ($REMOTE_HOST == "") :

$REMOTE_HOST = "localhost";

endif;

// format a valid MySQL datetime format

$timestamp = date("Y-m-d H:i:s");

// Insert the user data into the MySQL table

$query = "INSERT INTO $visitors_table VALUES

('$HTTP_USER_AGENT', '$REMOTE_ADDR',

'$REMOTE_HOST', '$timestamp')";

$result = @mysql_query($query);

} // recordUser

// function: viewStats

// purpose: Extract and format information in the MySQL table $visitors_table

function viewStats() {

// Include some global variables

GLOBAL $visitors_table, $maxNumVisitors, $table_color, $header_color;

Chapter 13

348

Gilmore_13 12/4/00 1:09 PM Page 348

GLOBAL $row_color, $font_color, $font_face, $font_size;

// Select the most recent $maxNumVisitors from the MySQL table.

$query = "SELECT browser, ip, host, timeOfVisit FROM $visitors_table

ORDER BY timeOfVisit desc LIMIT 0, $maxNumVisitors";

$result = @mysql_query($query);

// format and print the retrieved data

print "<table cellpadding=\"2\" cellspacing=\"1\" width = \"800\" border =

\"0\" bgcolor=\"$table_color\">";

print "<tr bgcolor= \"$header_color\">

<th>Browser</th><th>IP</th><th>Host</th><th>TimeofVisit</th>

</tr>";

while($row = mysql_fetch_array($result)) :

// These functions are in 'sniffer.inc'

list ($browse_type, $browse_version) = browser_info ($row["browser"]);

$op_sys = opsys_info ($row["browser"]);

print "<tr bgcolor=\"$row_color\">";

print "<td><font color=\"$font_color\" face=\"$font_face\"

size=\"$font_size\">";

print "$browse_type $browse_version - $op_sys</td>";

print "<td><font color=\"$font_color\" face=\"$font_face\"

size=\"$font_size\">".$row["ip"]."</td>";

print "<td><font color=\"$font_color\" face=\"$font_face\"

size=\"$font_size\">".$row["host"]."</td>";

print "<td><font color=\"$font_color\" face=\"$font_face\"

size=\"$font_size\">";

print $row["TimeofVisit"]."</td>";

print "</tr>";

endwhile;

print "</table>";

} // viewStats

?>

Next, insert the script you see in Listing 13-10; it will be used to check for a
valid cookie and call the recordUser() function when necessary. I’ll include this
code along with a very simple index file entitled “index.php.”

Cookies and Session Tracking

349

Gilmore_13 12/4/00 1:09 PM Page 349

Listing 13-10: Checking for a valid cookie (index.php)
<?

include("init.inc");

// If no valid cookie is found

if (! isset($$cookieName)) :

// Set a new cookie

setcookie($cookieName, $cookieValue, time()+$timeLimit);

// Record the visitor information

recordUser();

endif;

?>

<html>

<head>

<title>Welcome to My Site!</title>

</head>

<body bgcolor="#c0c0c0" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

Welcome to my site. Check out who else has recently

visited.

</body>

</html>

How is the information that is stored in the MySQL database viewed in the
browser? This is accomplished simply by placing the function viewStats()in a
separate file(visitors.php), as shown here:

<html>

<?

// Include browser detection functionality

include("sniffer.inc");

// Include the initialization file

include("init.inc");

?>

<head>

<title>Most recent <?=$maxNumVisitors;?> visitors</title>

</head>

<body bgcolor="#ffffff" text="#000000" link="#808040" vlink="#808040"

alink="#808040">

<?

viewStats();

?>

</body>

</html>

Chapter 13

350

Gilmore_13 12/4/00 1:09 PM Page 350

Alternatively, you could place the entire HTML code in the viewStats() func-
tion and then just include sniffer.inc, init.inc, and a call to viewStats() in a sepa-
rate file. It depends on how much you would like to consolidate the formatting of
the page. Using the current table format settings in init.inc, a sample output pro-
duced by viewStats() is shown in Figure 13-1.

There are many modifications that you could make to this script to expand its
practicality. One commonly used way to track visitors is to assign an identification
number to each page that you would like to log and then track users as they navi-
gate from page to page. This could be accomplished using the above project by
simply expanding your MySQL table to include a column that stores a page iden-
tification number. Then modify the recordUser() function to have an input
parameter from which this ID number could be passed in for recording. You could
then vary each cookie to hold that page ID and check for that specific cookie as
the visitor requests each logged page.

What’s Next?

This chapter introduced one of the most exciting features of the PHP language:
session handling. In particular, the following topics were covered:

• Cookie basics

• Cookies and PHP

• Unique identification numbers

• User registration scenarios

• Introduction to sessions

• The php.ini session parameters

Cookies and Session Tracking

351

Figure 13-1. Sample output produced by viewStats()

Gilmore_13 12/4/00 1:09 PM Page 351

• PHP’s predefined session functions

• The session_set_save_handler() function

• A visitor-logging application

Sessions offer an enormous administrative advantage to developers inter-
ested in creating truly user-oriented Web sites. I strongly urge you to experiment
with PHP’s session-handling functionality, as I think you will find it particularly
useful.

This chapter concludes Part II of this book. Part III, “Advanced PHP,” begins
with a survey of PHP and XML integration. Stay tuned, as things are about to get
really interesting.

Chapter 13

352

Gilmore_13 12/4/00 1:09 PM Page 352

