
Apress™
Books for Professionals by Professionals™

Sample Chapter: "Tips and Tricks"
(pre-production "galley" stage)

Advanced Transact-SQL for SQL Server
2000
Practical T-SQL solutions (with code) to common problems

by Itzik Ben-Gan, MVP and Tom Moreau, Ph.D.
ISBN # 1-893115-82-8

Copyright ©2000 Apress, L.P., 901 Grayson St., Suite 204, Berkeley, CA 94710. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic or other record, without the prior agreement and written permission of the publisher.

629

CHAPTER 17

Tips and Tricks

THIS CHAPTER IS DEVOTED TO tips and tricks that solve common needs of T-SQL users
and programmers. The solutions presented here were collected from our experience
and also from the experience of our colleagues, who were kind enough to contribute
their unique solutions to problems they encountered.

We would like to express our thanks to all those who contributed their tips.

Unlearning an Old Trick

Before you begin learning new tricks, there is one you should unlearn. Consider
the query in Listing 17-1, which determines the first and last order dates in the
Northwind database.

Listing 17-1: Query Using MIN() and MAX() on Same Column

SELECT

 MIN (OrderDate),

 MAX (OrderDate)

FROM

 Orders

Prior to version 7.0, this query would have produced a table scan instead of
using the index on OrderDate. The optimizer wasn’t bright enough to figure out
that it could tap the index twice and come up with the desired information.

The workaround for this problem involved a nested subquery, as shown in
Listing 17-2.

Listing 17-2: Using a Nested Subquery to Use an Index

SELECT

 MIN (OrderDate),

 (SELECT MAX (OrderDate) FROM Orders)

FROM

 Orders

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

630

For this query, the optimizer first performed the nested subquery, which was a
quick tap on the index. It then did the outer query, which again made a quick tap
on the index. If you run these queries in SQL Server 7.0 or 2000, you get identical
performance in I/O and speed, as well as identical query plans. What is even more
stunning is the fact that the Query Analyzer uses a JOIN. This is because it goes to
the index twice and then needs to meld the two pieces of information—the MIN()
and the MAX()—to return the results.

At this point, you don’t really need to change any existing code because the
results and performance are the same. However, if there is no index you can use,
and you use the nested subquery trick, you will get two table scans or two clustered
index scans. If you eliminate the subquery, you get only one table scan or clustered
index scan. Therefore, in versions of SQL Server before version 7.0, the subquery
trick would do no harm and would have the same performance as the non-sub-
query version if there is no index it could use. However, using this trick in SQL
Server 7.0 and 2000 gives worse performance.

Keep in mind that indexes can sometimes get dropped, and if this code is not
converted, you could be in for a surprise.

Getting NULLs to Sort Last Instead of First

NULLs are special. They are like spoiled children that always need special attention.
When you compare them with other values, the result is UNKNOWN even when you
compare them with other NULLs. You always need to take special steps, like using
the IS NULL operator instead of an equality operator when you look for NULLs. How-
ever, in some situations, NULLs are considered to be equal. Those situations include
the UNIQUE constraint, GROUP BY, and ORDER BY.

ORDER BY considers NULLs to be equal to each other, but the ANSI committee
does not define whether they should have a lower or higher sort value than all
other known values, so you might find different implementations in different sys-
tems. SQL Server sorts NULLs before all other values.

What do you do if you want to sort them after all other values? For example,
suppose you want to return all customers from the Northwind sample database,
ordered by Region. If you issue the query shown in Listing 17-3, you will get NULLs first.

Listing 17-3: NULLs Sort First

SELECT

 *

FROM

 Customers

ORDER BY

 Region

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

631631

You can use the CASE expression in the ORDER BY clause to return 1 when the
region is NULL and 0 when it is not NULL (for similar uses of the CASE expression, please
refer to Chapter 4). You can use this result as the first sort value, and the Region as
the second. This way, 0s representing known values will sort first, and 1s represent-
ing NULLs will sort last. Listing 17-4 shows the query.

Listing 17-4: NULLs Sort Last

SELECT

 *

FROM

 Customers

ORDER BY

 CASE

 WHEN Region IS NULL THEN 1

 ELSE 0

 END,

 Region

This is all nice and well, but now that the ORDER BY clause uses an expression
and not an explicit column, the optimizer will not consider using the index on the
region column (which might improve the query performance by not performing
an explicit sort operation). Prior to SQL Server 2000, there was not much you could
do about it, but with SQL Server 2000, you can create an indexed view with the CASE
expression as one of its columns. You can also have the CASE expression as a computed
column in the Customers table and create a composite index on the computed
column and the original Region column, as Listing 17-5 shows.

Listing 17-5: Adding a Computed Column and an Index on It to the Customers Table

ALTER TABLE Customers

 ADD RegionNullOrder AS

 CASE

 WHEN region IS NULL THEN 1

 ELSE 0

 END

GO

CREATE INDEX idx_nci_RegionNullOrder_Region ON

 Customers (RegionNullOrder, Region)

GO

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

632

Now you can rewrite your query as Listing 17-6 shows, and if you turn SHOWPLAN
on to display the execution plan, you will see that it makes use of the new index, as
shown in Listing 17-7. The SHOWPLAN option is covered in Appendix C.

Listing 17-6: NULLs Sort Last and an Index Is Used

SET SHOWPLAN_TEXT ON

GO

SELECT

 *

FROM

 Customers

ORDER BY

 RegionNullOrder,

 Region

GO

Listing 17-7: SHOWPLAN’s Output, the Index on the Computed Column Is Used

|--Bookmark Lookup(BOOKMARK:([Bmk1000]),

 OBJECT:([Northwind].[dbo].[Customers]))

 |--Index Scan(OBJECT:(

 [Northwind].[dbo].[Customers].[idx_nci_RegionNullOrder_Region]),

 ORDERED FORWARD)

Using a Parameter for the Column in the ORDER
BY Clause (by Bruce P. Margolin)

The ORDER BY clause accepts only explicit column names or expressions; it won’t
accept a column name stored in a variable. Suppose you want to write a stored
procedure that returns an ordered output of the authors in the Authors table in the
pubs sample database, but you want to pass it a parameter that tells it which column
to ORDER BY. There are a few ways to approach this problem. You can use either the
column number or name as a parameter and use a CASE expression to determine
the column, or you can use the column number or name with dynamic execution.

Using the Column Number as Parameter
and CASE to Determine the Column

You can pass the column number as a parameter to a stored procedure and use a CASE
expression in the ORDER BY clause to pick the relevant column, as Listing 17-8 shows.

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

633633

Listing 17-8: Passing the ORDER BY Column as a Parameter,
Using a Column Number, First Try

CREATE PROC GetAuthors1

 @colnum AS int

AS

SELECT

 *

FROM

 authors

ORDER BY

 CASE @colnum

 WHEN 1 THEN au_id

 WHEN 2 THEN au_lname

 WHEN 3 THEN au_fname

 WHEN 4 THEN phone

 WHEN 5 THEN address

 WHEN 6 THEN city

 WHEN 7 THEN state

 WHEN 8 THEN zip

 WHEN 9 THEN contract

 ELSE NULL

 END

GO

Notice, however, what happens when you try to execute the GetAuthors1 stored
procedure, providing 1 as an argument to indicate that you want the output to be
sorted by au_id, as shown in Listing 17-9.

Listing 17-9: Error When Trying to Invoke the GetAuthors1 Stored Procedure

EXEC GetAuthors1

 @colnum = 1

Server: Msg 245, Level 16, State 1, Procedure GetAuthors1, Line 5

Syntax error converting the varchar value '172-32-1176'

to a column of data type bit.

The reason for this error is that the CASE expression’s return value’s datatype is
determined by the highest datatype, according to the datatypes precedence rules
(see the Books Online for details). In this case, the bit datatype of the contract column
has the highest precedence, so it determines the datatype of the result of the CASE

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

634

expression. Error 245 indicates that the author ID '172-32-1176', which is of the
datatype varchar, cannot be converted to bit, of course.

You can get around this problem by casting the problematic contract column
to a char datatype, as Listing 17-10 shows.

Listing 17-10: Passing the ORDER BY Column as a Parameter,
Using a Column Number, Second Try

ALTER PROC GetAuthors1

 @colnum AS int

AS

SELECT

 *

FROM

 authors

ORDER BY

 CASE @colnum

 WHEN 1 THEN au_id

 WHEN 2 THEN au_lname

 WHEN 3 THEN au_fname

 WHEN 4 THEN phone

 WHEN 5 THEN address

 WHEN 6 THEN city

 WHEN 7 THEN state

 WHEN 8 THEN zip

 WHEN 9 THEN CAST(contract AS CHAR(1))

 ELSE NULL

 END

GO

Note that you will have the same problem with numeric columns, but simply
casting a numeric column to a character datatype won’t be sufficient. You will also
need to prefix the cast values with the proper number of zeros so that they will sort
properly. For example, suppose you have a qty column holding the value 10 in one
row and 2 in another row. Simply casting those values to the character strings '10'
and '2', respectively, will result in 2 being sorted after '10', because a character
sort will be performed here instead of a numeric sort.

To avoid this problem, you can prefix the qty column with the proper number
of zeros, causing all of the cast values to have the same length as the maximum
possible length of the qty column, say ten digits in our example. Listing 17-11
shows how this can be achieved.

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

635635

Listing 17-11: Prefixing a Numeric Value with Zeros

RIGHT (REPLICATE ('0', 10) + CAST (qty AS varchar (10)), 10)

Using Dynamic Execution

Another option using the column number is to construct the SELECT statement in a
variable, and execute it dynamically with the EXEC command, as Listing 17-12 shows.

Listing 17-12: Passing the ORDER BY Column as a Parameter,
Using Dynamic Execution

CREATE PROC GetAuthors2

 @colnum AS int

AS

DECLARE

 @cmd AS varchar (8000)

SET @cmd =

 'SELECT *' + CHAR (13) + CHAR(10) +

 'FROM authors' + CHAR (13) + CHAR(10) +

 'ORDER BY ' + CAST (@colnum AS varchar (4))

EXEC(@cmd)

GO

Using the Column Name as Parameter
and CASE to Determine the Column

Finally, you can pass the column name as a sysname (nvarchar(128)), which is used for
identifiers, and check it using a CASE expression similar to the first example, but now it
checks for column names rather than column numbers, as Listing 17-13 shows.

Listing 17-13: Passing the ORDER BY Column as a Parameter,
Using a Column Name

CREATE PROC GetAuthors3

 @colname AS sysname

AS

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

636

SELECT

 *

FROM

 authors

ORDER BY

 CASE @colname

 WHEN 'au_id' THEN au_id

 WHEN 'au_lname' THEN au_lname

 WHEN ...

 WHEN 'contract' THEN CAST (contract AS CHAR (1))

 ELSE NULL

 END

GO

Formatting Output that May Be Null (by Robert Skoglund)

Sometimes you need a SQL trick because of the requirements of the front end. For
example, suppose your client-side GUI uses a multiline edit box for displaying the
customer’s address. Some of your customers have region information, such as
state or province, and for others this is NULL. Concatenating NULL with anything will
give you a NULL. What is needed is a way to provide the formatted address infor-
mation while handling NULL information.

Using the Northwind database, Robert creates a view of the form as shown in
Listing 17-14.

Listing 17-14: A View to Build a String and Handle NULLs

CREATE VIEW MailingList

AS

SELECT

 CustomerID,

 CompanyName + CHAR (13) + CHAR (10) +

 Address + CHAR (13) + CHAR (10) +

 City + CHAR (13) + CHAR (10) +

 CASE WHEN Region IS NOT NULL THEN Region + CHAR (13) + CHAR (10)

 ELSE ''

 END + Country AS ContactAddress

FROM

 Customers

The carriage returns and line feeds—CHAR(13) + CHAR(10)—are provided to for-
mat the text for the multiline edit box. When Region is not NULL, then Region plus
the carriage return and line feed are added to the address. Otherwise, an empty

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

637637

string is added. Robert’s original design involved the use of the SUBSTRING() function,
which has been replaced here with a CASE construct.

Embedding Stored Procedure Rowsets in SELECT
and SELECT INTO Statements

Chapter 11 covers user-defined functions and shows you how to build table-val-
ued functions that return a rowset. You can embed a call to such a function in a
SELECT query that performs a join, for example, or even in a SELECT INTO statement
to create a target table and populate it with the result of the function. User-defined
functions (UDFs) are not available in SQL Server 7.0. You can create a stored proce-
dure that accepts parameters and returns a rowset as a result, but you can’t embed it
naturally in SELECT or SELECT INTO statements. However, you insist! Of course, you
refuse to be left empty handed.

Suppose you wanted to embed the result of the stored procedure shown in
Listing 17-15, which returns authors from the pubs sample database for a given
state, into your SELECT or SELECT INTO statements.

Listing 17-15: Creation Script for Stored Procedure AuthorsInState

USE pubs

GO

CREATE PROC AuthorsInState

 @state char(2)

AS

SELECT

 *

FROM

 authors

WHERE

 state = @state

GO

You have three options: using the INSERT EXEC statement, the OPENROWSET() function, or
the OPENQUERY() function. These options are presented in the next three sections.
Later, in the section “Using OPENROWSET() in a View,” you will build on your skill
with OPENROWSET. Finally, in the section “Choosing between SQL and OPENQUERY(),”
you will see how to make the decision to use OPENQUERY().

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

638

Using the INSERT EXEC Statement

You can create a temporary table with the same structure as the rowset returned
from the stored procedure, as Listing 17-16 shows.

Listing 17-16: Schema Creation Script for the #TmpAuthors Table

CREATE TABLE #TmpAuthors

(

 au_id varchar(11) NOT NULL,

 au_lname varchar(40) NOT NULL,

 au_fname varchar(20) NOT NULL,

 phone char(12) NOT NULL,

 address varchar(40) NULL,

 city varchar(20) NULL,

 state char(2) NULL,

 zip char(5) NULL,

 contract bit NOT NULL

)

You can then use the INSERT EXEC statement to populate it, as Listing 17-17 shows.

Listing 17-17: Using the INSERT EXEC Statement

INSERT INTO #TmpAuthors

 EXEC AuthorsInState 'CA'

Now you can use the temporary table in SELECT or SELECT INTO statements just
like any other table, as Listings 17-18 and 17-19 show.

Listing 17-18: Embedding the Result of the INSERT EXEC Statement
in a SELECT Statement

SELECT

 *

FROM

 #TmpAuthors

GO

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

639639

Listing 17-19: Embedding the Result of the INSERT EXEC Statement
in a SELECT INTO Statement

SELECT

 *

INTO

 #TmpAuthors2

FROM

 #TmpAuthors

GO

Using the OPENROWSET() Function

The OPENROWSET() function is used to issue ad hoc queries against heterogeneous
data sources. You can also use it to invoke remote stored procedures. As a result,
you can use it to invoke the AuthorsInState stored procedure as if the local server
were a remote one. Listing 17-20 shows how to embed the OPENROWSET() function in
a SELECT statement.

Listing 17-20: Embedding the Result of the OPENROWSET Function
in a SELECT Statement

SELECT

 T1.*

FROM

 OPENROWSET('SQLOLEDB','<server>';'<user>';'<pass>',

 'EXEC pubs..AuthorsInState ''CA''') AS T1

Listing 17-21 shows you how to embed the OPENROWSET() function in a SELECT
INTO statement.

Listing 17-21: Embedding the Result of the OPENROWSET Function
in a SELECT INTO Statement

SELECT

 *

INTO

 #TmpAuthors

FROM

 OPENROWSET('SQLOLEDB', <server>';'<user>';'<pass>,

 'EXEC pubs..AuthorsInState ''CA''') AS T1

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

640

Using the OPENQUERY() Function

The OPENQUERY() function is used to issue pass-through queries against a linked
server. You can also use it to invoke a remote stored procedure from the linked
server. You can refer to your own local server as a linked server by turning on the
'Data Access' server option as Listing 17-22 shows.

Listing 17-22: Turning On the 'Data Access' Server Option

EXEC sp_serveroption '<server>', 'Data Access', 'true'

Now you can embed the OPENQUERY() function in a SELECT statement as
Listing 17-23 shows.

Listing 17-23: Embedding the Result of the OPENQUERY Function
in a SELECT Statement

SELECT

 T1.*

FROM

 OPENQUERY([<server>],

 'EXEC pubs..AuthorsInState ''CA''') AS T1

You can also embed the OPENQUERY() function in a SELECT INTO statement, as
Listing 17-24 shows.

Listing 17-24: Embedding the Result of the OPENQUERY Function
in a SELECT INTO Statement

SELECT

 *

INTO

 #TmpAuthors

FROM OPENQUERY([<server>],

 'EXEC pubs..AuthorsInState ''CA''')

Using OPENROWSET() in a View

From time to time, you have to use vendor products that do not support stored
procedures. Rather, they can do SELECTs on tables and views. This is no problem;
with the OPENROWSET() function, you can create a view that acts as a wrapper for the
stored procedure call. Check out Listing 17-25.

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

641641

Listing 17-25: Creating a View on a Stored Procedure Call

CREATE VIEW StoredProcWrapper

AS

SELECT

 *

FROM

 OPENROWSET

 (

 'SQLOLEDB',

 'SERVER=.;Trusted_Connection=yes',

 'SET FMTONLY OFF EXEC sp_who2'

)

Here, the SERVER=. piece refers to the default instance of SQL Server on a machine
on which SQL Server 2000 is running. You will have to specify the correct instance
if you are not using the default, e.g., SERVER=BMCI03\BMCI03_02.

Choosing between SQL and OPENQUERY()

The server closest to the data is the one that should work with that data. Consider
the following scenario, using the Northwind database. You have a Customers table
on your local server, but you want to know the quantity of product ID 17 purchased by
your local Canadian customers on the remote server, and you want it broken down
by customer ID. The code in Listing 17-26 shows you how to do this with an SQL
statement that uses the four-part naming convention to reference the tables.

Listing 17-26: Using Remote Tables with the Four-Part Naming Convention

SELECT

 C.CustomerID,

 SUM (OD.Quantity) AS Quantity

FROM

 Customers C

 JOIN

 Remote.Northwind.dbo.Orders O ON O.CustomerID = C.CustomerID

 JOIN

 Remote.Northwind.dbo.[Order Details] OD ON OD.OrderID = O.OrderID

WHERE

 C.Country = 'Canada'

 AND

 OD.ProductID = 17

GROUP BY

 C.CustomerID

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

642

This query did all of the work on the local server, even though the remote
server had most of the data. Now compare this to using the OPENQUERY() function,
as shown in Listing 17-27.

Listing 17-27: Using OPENQUERY() to Do the Majority of the Work
on the Remote Server

SELECT

 C.CustomerID,

 O.Quantity

FROM

 Customers C

 JOIN

 OPENQUERY

 (

 Remote,

 'SELECT

 O.CustomerID,

 SUM (OD.Quantity) AS Quantity

 FROM

 Northwind..Orders O

 JOIN

 Northwind..[Order Details] OD ON OD.OrderID = O.OrderID

 WHERE

 OD.ProductID = 17

 GROUP BY

 O.CustomerID'

) O ON O.CustomerID = C.CustomerID

WHERE

 C.Country = 'Canada'

Here, the heavy work was done on the remote server where you had most of
the data. Even the aggregation could be done there. Also, consider where you want
the query to execute. In this case, the local server had the least amount of the data
but it was the one managing the query.

You can also execute the query on the “remote” server and reference the
Customers table from the “local” server, as shown in Listing 17-28.

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

643643

Listing 17-28: Running the Query on the Remote Server

SELECT

 C.CustomerID,

 SUM (OD.Quantity) AS Quantity

FROM

 Local.Northwind.dbo.Customers C

 JOIN

 Orders O ON O.CustomerID = C.CustomerID

 JOIN

 [Order Details] OD ON OD.OrderID = O.OrderID

WHERE

 C.Country = 'Canada'

 AND

 OD.ProductID = 17

GROUP BY

 C.CustomerID

The trick here is to experiment with where you run the query and whether
you directly access the remote table (via four-part naming) or use the OPENQUERY()
function.

Using CASE in a JOIN (by Robert Vieira)

Suppose that you have a “Provider” institution that may have multiple children
that are all “Company” institutions. Companies have Regions and Sites. Also, a
Provider has both restricted and unrestricted users. The problem is to figure out
the algorithm.

If a Provider user is unrestricted, then they will only have the Provider institution
in their institution list. If they are a restricted user, then they will have the Provider
plus all the companies to which they have rights. Therefore, the query needed is a
bit different depending on whether they have just the provider or a list of companies.

The code shown in Listing 17-29 gets the institution list that the user can see
(all institutions under the provider if it only finds the Provider row; just the list of
company rows if it finds more than the provider). It works quite well. It does the
query without a stored procedure, and all in a single round trip to the server.

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

644

Listing 17-29: Using CASE in a JOIN

USE RiskNet

-- GET INSTITUTION CHILDREN

SELECT

 v.InstitutionID,

 v.Name,

 v.HierarchyLevelID,

 v.HierarchyLevelName,

 v.Disabled,

 v.CompanyID,

 v.ParentInstitutionID

FROM

 vInstitution v

 JOIN

 Security.dbo.AccountInstSecurityRole s

 ON s.InstitutionID =

 CASE -- If count is 1 or less, then is unrestricted,

 -- otherwise, different join

 WHEN (SELECT

 COUNT(*)

 FROM

 vInstitution v

 JOIN

 Security.dbo.AccountInstSecurityRole s

 ON (v.InstitutionID = s.InstitutionID)

 WHERE

 v.ParentInstitutionID = @ProviderInstitution

 AND

 s.AccountID = @LoginID

 AND

 v.HierarchyLevelID > 1

 AND

 v.Disabled = 0

) <= 1

 THEN v.ParentInstitutionID

 ELSE v.InstitutionID

 END

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

645645

WHERE

 v.ParentInstitutionID = @ProviderInstitution

 AND

 s.AccountID = @LoginID

 AND

 v.HierarchyLevelID > 1

 AND

 v.Disabled = 0

ORDER BY

 v.Name

Using COALESCE() with a LEFT JOIN

Consider the following scenario. You have a table of customers and another table
containing their phone numbers. They can have a home and/or a business phone
number. You wish to produce a phone list consisting of the customer’s name and
either the business number or home number, but not both. You also prefer to see
the business number in the event that the customer has both a business and a
home number. The list must show whether the number is a business or home
phone number. Finally, you do not wish to see any customers who have no phones—
after all, this is a phone list. The tables and some sample data are presented in
Listing 17-30.

Listing 17-30: Tables and Sample Data for the Phone List

CREATE TABLE Customers

(

 CustomerNo int NOT NULL

 PRIMARY KEY,

 LastName varchar (10) NOT NULL,

 FirstName varchar (10) NOT NULL

)

GO

INSERT Customers VALUES (1, 'Smith', 'John')

INSERT Customers VALUES (2, 'Jones', 'Jim')

INSERT Customers VALUES (3, 'Stockwell', 'Mary')

INSERT Customers VALUES (4, 'Harris', 'Mike')

GO

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

646

CREATE TABLE Telephones

(

 CustomerNo int NOT NULL

 REFERENCES Customers (CustomerNo),

 TelType char (1) NOT NULL

 CHECK (TelType IN ('H', 'B')),

 TelephoneNo int NOT NULL,

 PRIMARY KEY (CustomerNo, TelType)

)

GO

INSERT Telephones VALUES (1, 'H', 5550000)

INSERT Telephones VALUES (1, 'B', 5550001)

INSERT Telephones VALUES (2, 'H', 5550002)

INSERT Telephones VALUES (3, 'H', 5550003)

INSERT Telephones VALUES (3, 'B', 5550004)

GO

The solution requires two LEFT JOINs—both from the Customers table to the
Telephones table. One LEFT JOIN will pick out the business numbers while the
other will pick out the home numbers. The traps associated with LEFT JOINs are
outlined in Chapter 1. The filter criteria for the unpreserved table, Telephones, are
placed with the ON clauses to ensure that only those rows conforming to the filter
criteria are chosen.

The trick is to determine which customers have phones. This is where the
COALESCE() function comes to the rescue. This function takes a comma-delimited
list of values and returns the first non-NULL value in the list. If all of the values are
NULL, it returns a NULL. For this problem, you can list one column from each of the
unpreserved tables. If COALESCE() returns a non-NULL value, then you have found a
customer with a phone.

You also need to present the correct number according to the selection criteria—
business numbers are preferred over home numbers. Here, too, you use the
COALESCE() function and place the columns from the Telephones table in the order
(business, home). The final solution is presented in Listing 17-31.

Listing 17-31: Generating the Phone List

SELECT

 C.CustomerNo,

 C.LastName,

 C.FirstName,

 COALESCE (TB.TelephoneNo, TH.TelephoneNo) AS TelephoneNo,

 COALESCE (TB.TelType, TH.TelType) AS TelType

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

647647

FROM

 Customers C

 LEFT JOIN

 Telephones TB ON C.CustomerNo = TB.CustomerNo

 AND TB.TelType = 'B'

 LEFT JOIN

 Telephones TH ON C.CustomerNo = TH.CustomerNo

 AND TH.TelType = 'H'

WHERE

 COALESCE (TB.TelephoneNo, TH.TelephoneNo) IS NOT NULL

This example can be extended to add cell phone numbers.

Case-Sensitive Searches (by Umachandar Jayachandran)

If you have a case-insensitive installation but you still want to issue a few case-
sensitive queries, then the following trick is for you. Consider the case-insensitive
query shown in Listing 17-32, which retrieves authors with the last name “green”
from the pubs sample database.

Listing 17-32: Authors with the Last Name “green”, Case-Insensitive Search

SELECT

 *

FROM

 Authors

WHERE

 au_lname = 'green'

In a case-insensitive installation, this query returns one row, although the
actual last name stored in the row is “Green” and not “green”. This is, by definition,
how case-insensitivity should work. To run a case-sensitive search, you can cast
both the searched value and the au_lname column to a binary datatype. Since the
letter G has a different binary value than the letter g, “Green” will not be equal to
“green”, and so the query shown in Listing 17-33 will find no match.

Listing 17-33: Authors with the Last Name “green”, Case-Sensitive Search

SELECT

 *

FROM

 Authors

WHERE

 CAST (au_lname AS varbinary (40)) = CAST ('green' AS varbinary(40))

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

648

The problem is that using the CONVERT and CAST functions preclude the use of
an index because the searched column is now inside a function. However, by adding
a redundant equality comparison between the au_lname column and the searched
value as is, as shown in Listing 17-34, the optimizer can use an index on the
au_lname column, and then check for the case.

Listing 17-34: Authors with the Last Name “green”, Case-Sensitive Search
Using an Index

SELECT

 *

FROM

 Authors

WHERE

 au_lname = 'green'

 AND

 CAST (au_lname AS varbinary (40)) = CAST ('green' AS varbinary (40))

Getting Correct Values from @@ Functions

System functions starting with @@ supply very useful information. For example,
@@IDENTITY holds the last identity value inserted by the session (see Chapter 6 for
details), @@ROWCOUNT holds the number of rows affected by the last statement, and
@@ERROR holds an integer number representing the way the last statement that was
run finished (see Chapter 7 for details).

The problem with system functions is that most of them are very volatile—
almost every statement can change their values, and thus you lose the previous
value that was stored in them. For this reason, it is a good practice to store their
values in local variables for safekeeping, and later inspect the local variables.

This will be better explained with an example. The script shown in Listing 17-37
creates the T1 table which will be used to generate some errors that you will try to trap.

Listing 17-37: Schema Creation Script for the T1 Table

CREATE TABLE T1

(

 pk_col int NOT NULL PRIMARY KEY CHECK (pk_col > 0),

 ident_col int NOT NULL IDENTITY (1,1)

)

Now run the code shown in Listing 17-38, which inserts new rows and checks
whether there was a duplicate key violation (error 2627) or a CHECK constraint violation
(error 547).

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

649649

Listing 17-38: Unsuccessful Attempt to Trap Both Primary Key
and CHECK Constraint Violations

INSERT INTO T1 VALUES(0) -- violate the check constraint

IF @@ERROR = 2627

 PRINT 'PRIMARY KEY constraint violation'

ELSE IF @@ERROR = 547

 PRINT 'CHECK constraint violation'

GO

The first IF that checks for a PRIMARY KEY violation is a statement in its own
right. It runs successfully, and thus @@ERROR will return 0 when the second IF that
checks for a CHECK constraint violation is run. This code will never trap a CHECK con-
straint violation.

To avoid this problem, you can save the value of @@ERROR in a variable, as
Listing 17-39 shows.

Listing 17-39: Successful Attempt to Trap Both Primary Key
and CHECK Constraint Violations

DECLARE

 @myerror AS int

INSERT INTO T1 VALUES(0) -- violate the check constraint

SET @myerror = @@ERROR

IF @myerror = 2627

 PRINT 'PRIMARY KEY constraint violation'

ELSE IF @myerror = 547

 PRINT 'CHECK constraint violation'

GO

Now, suppose you want to capture the number of rows affected by the state-
ment, and the last identity value inserted, by storing @@ROWCOUNT and @@IDENTITY in
your own local variables. You could run the code shown in Listing 17-40.

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

650

Listing 17-40: Unsuccessful Attempt to Capture @@IDENTITY, @@ROWCOUNT,
and @@ERROR

DECLARE

 @myerror AS int,

 @myrowcount AS int,

 @myidentity AS int

INSERT INTO T1 VALUES(10) -- used to make the next statement cause a PK violation

INSERT INTO T1 VALUES(10) -- PK violation

SET @myidentity = @@IDENTITY

SET @myrowcount = @@ROWCOUNT

SET @myerror = @@ERROR

PRINT '@myidentity: ' + CAST(@myidentity AS varchar)

PRINT '@myrowcount: ' + CAST(@myrowcount AS varchar)

PRINT '@myerror : ' + CAST(@myerror AS varchar)

GO

The output, shown in Listing 17-41, shows that @myerror stores 0 instead of
2627 (primary key violation), and @myrowcount mistakenly stores 1 instead of 0. The
variable assignment prior to assigning @@ERROR to @myerror was successful, and thus
the original value of @@ERROR was lost, and the number of rows affected is 1.

Listing 17-41: Output of Unsuccessful Attempt to Capture @@IDENTITY,
@@ROWCOUNT, and @@ERROR

@myidentity: 3

@myrowcount: 1

@myerror : 0

To make sure none of the environment variables are lost, you can assign values
to all of them in one statement using a SELECT statement instead of multiple SET
statements, as shown in Listing 17-42.

Listing 17-42: Successful Attempt to Capture @@IDENTITY,
@@ROWCOUNT, and @@ERROR

DECLARE

 @myerror AS int,

 @myrowcount AS int,

 @myidentity AS int

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

651651

INSERT INTO T1 VALUES(10) -- PK violation

SELECT @myidentity = @@IDENTITY,

 @myrowcount = @@ROWCOUNT,

 @myerror = @@ERROR

PRINT '@myidentity: ' + CAST(@myidentity AS varchar)

PRINT '@myrowcount: ' + CAST(@myrowcount AS varchar)

PRINT '@myerror : ' + CAST(@myerror AS varchar)

GO

The output in Listing 17-43 shows that all of the environment variables were
successfully captured.

Listing 17-43: Output of Successful Attempt to Capture @@IDENTITY,
@@ROWCOUNT, and @@ERROR

@myidentity: 3

@myrowcount: 0

@myerror : 2627

Using PWDCOMPARE() and PWDENCRYPT()
in SQL Server 6.5 and 7.0 (by Brian Moran)

This tip demonstrates how to use the undocumented PWDCOMPARE() and PWDENCRYPT()
functions when moving between SQL Server 6.5 and SQL Server 7.0, but the same
techniques can be used to build your own password encryption tools in SQL
Server 2000. The problem at hand has to do with the fact that SQL Server 6.5’s ver-
sions of PWDENCRYPT() and PWDCOMPARE() are not supported in SQL 7.0. Passwords
created in 6.5 can’t be decrypted in SQL Server 7.0 using PWDCOMPARE.

PWDENCRYPT() and PWDCOMPARE() are internal, undocumented features used by
SQL Server to manage passwords. PWDENCRYPT() is a one-way hash that takes a clear
string and returns an encrypted version of the string. PWDCOMPARE() is used to com-
pare an unencrypted string to its encrypted representation to see if it matches.
Microsoft cautions people against using internal undocumented features, but some-
times you just can’t help yourself. With that said, yes there is a secret, undocumented,
relatively unknown way to make “strings” encrypted with the SQL Server 6.5 version of
PWDENCRYPT() work with the SQL Server 7.0 version of PWDCOMPARE().

Let’s assume you’ve built an application that stores a four-character PIN number
that is used within the application for a simple password check. You could have
spent a bunch of time writing your own encryption algorithms, or you could have
used the Microsoft Cryptography API, but you’re a rebel so you decided to use the
undocumented and unsupported PWDENCRYPT() and PWDCOMPARE() functions. You use

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

652

PWDENCRYPT() to encrypt the PIN and then use PWDCOMPARE() to check a clear text
version of the PIN against the encrypted version to see if they match. Everything
worked perfectly until you tried to upgrade to SQL Server 7.0, at which time the
PWDCOMPARE() function started returning FALSE even when the clear text and encrypted
versions of the PIN string did match. How do you make the old encrypted PIN num-
bers work with PWDCOMPARE() when you upgrade to a newer version of SQL Server?

SQL Server 7.0 must have a way to compare the old SQL Server 6.5 passwords
encrypted with PWDENCRYPT() since the passwords from an upgraded SQL Server 6.5
database work fine. Doing a little detective work with the T-SQL source code
behind sp_addlogin and sp_password can give you all the answers you are looking
for. (Reading system procedures is always a great way to learn new tricks!) These
two stored procedures both make internal use of the SQL Server encryption functions,
and they both need to deal with SQL Server 6.5 versions of passwords.

Reading the sp_addlogin T-SQL code and supporting Books Online docu-
mentation shows a possible value of 'skip_encryption_old' for the @PWDENCRYPT()
parameter, and the Books Online tell us this value means, “The password is not
encrypted. The supplied password was encrypted by an earlier version of SQL
Server. This option is provided for upgrade purposes only.”

Reading further through the T-SQL code for sp_addlogin clearly shows that
the SQL Server 7.0 version of PWDENCRYPT() is not applied to the @passwd string if
@encryptopt = 'skip_encryption_old'. But SQL Server 7.0 does apply some CONVERT()
gymnastics to the @passwd parameter to store the string in the “new” SQL Server 7.0
datatype format for passwords. The relevant snippet of T-SQL code from
sp_addlogin is shown in Listing 17-44.

Listing 17-44: Excerpt from sp_addlogin

ELSE IF @encryptopt = 'skip_encryption_old'

BEGIN

 SELECT @xstatus = @xstatus | 0x800, -- old-style encryption

 @passwd = CONVERT(sysname,CONVERT(varbinary(30),

 CONVERT(varchar(30), @passwd)))

Pay close attention to the three-step CONVERT() process that SQL Server makes
the @passwd parameter jump through. You’ll be reusing it shortly.

NOTE Listing 17-47 at the end of this section includes a code sample for using
these functions in a SQL Server 7.0 or 2000 environment.

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

653653

Now take a look at the T-SQL code for sp_password. One of the checks is to see if
the old password matches. You’ll see the snippet of code shown in Listing 17-45.

Listing 17-45: Excerpt from sp_password

PWDCOMPARE(@old, password,

 (CASE WHEN xstatus & 2048 = 2048 THEN 1 ELSE 0 END))

This shows that the SQL Server 7.0 version of PWDCOMPARE() now takes three
parameters rather than two parameters like the SQL Sever 6.5 version used. Some
experimentation helped me understand that the third parameter is optional and
defaults to 0. When set to 0, PWDCOMPARE() uses the “new” SQL Server 7.0 algorithm,
but setting this parameter to 1 tells SQL Server 7.0 to use the “old” SQL Server 6.5
version of the PWDCOMPARE() algorithm.

Listing 17-46 has a stored procedure sample that shows how you can leverage
these tricks to use effectively “old” SQL Server 6.5 encrypted strings with the SQL
Server 7.0 version of PWDCOMPARE(). This stored procedure assumes your application
asks a user to provide their Social Security Number (SSN) and “secret” PIN, which
were stored in a table called MyTable. The value of the PIN had previously been
encrypted using the SQL Server 6.5 version of PWDENCRYPT().

Listing 17-46: Creation Script for the CompareSQL65EncryptedString Stored
Procedure

CREATE PROCEDURE CompareSQL65EncryptedString

(

 @SSN char(9),

 @pin char(4),

 @return int OUTPUT)

AS

IF EXISTS

(

SELECT

 *

FROM MyTable (NOLOCK)

WHERE

 SSN = @ssn

 AND

 PWDCOMPARE(@pin,

 CONVERT(sysname,

 CONVERT(varbinary(30),CONVERT(varchar(30),pin))),

 1) = 1

)

 SELECT @return = 1

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

654

ELSE

 SELECT @return = 0

GO

For those of you running SQL Server 7.0 or 2000, the code snippet in Listing
17-47 shows how to use the current versions of PWDENCRYPT() and PWDCOMPARE() to
create your own one-way hash password-management algorithms.

Listing 17-47: Using the PWDENCRYPT() and PWDCOMPARE() Functions

DECLARE

 @ClearPIN varchar (255),

 @EncryptedPin varbinary(255)

SELECT

 @ClearPin = 'test'

SELECT

 @EncryptedPin = CONVERT (varbinary(255), PWDENCRYPT (@ClearPin))

SELECT

 PWDCOMPARE (@ClearPin, @EncryptedPin, 0)

The final SELECT statement will return 1, indicating TRUE. In other words, @ClearPin
is put through a one-way encryption hash, and SQL Server tells you the unencrypted
string matches the encrypted version.

Creating Sorted Views

You cannot sort a view, right? Not until SQL Server 7.0! You can now use the
TOP n PERCENT feature of the SELECT statement to take all of the rows. How? Just take
TOP 100 PERCENT. Check out the code in Listing 17-48.

Listing 17-48: Creating a Sorted View

CREATE VIEW SortedView

AS

SELECT TOP 100 PERCENT

 C.CompanyName,

 O.OrderDate

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

655655

FROM

 Customers C

 JOIN

 Orders O ON O.CustomerID = C.CustomerID

ORDER BY

 O.OrderDate

GO

See Chapter 8 for more details on the effects of this technique.

Getting Rows in Order

In the relational model, table rows don’t have any specific order. According to the
ANSI standards, a query that uses the ORDER BY clause doesn’t return a table; rather,
it returns a cursor. This is why an ORDER BY clause is not allowed in a view, and why
the TOP clause is not ANSI compliant. Both deal with rows in a specific order.

The TOP T-SQL extension and the special needs it can answer are covered in
Chapter 4. There are still other needs, though, dealing with rows with a specific
order, that simple TOP queries cannot answer. The following sections deal with
examples of such needs.

Getting Rows m to n

If you order the authors in the pubs sample database by author ID, you can use a
simple TOP query to ask for the first five authors. However, if you want the second
group of five authors—authors six to ten—things become a little bit more complex.

You can use the ANSI-compliant query shown in Listing 17-49. For each
author, this query performs a correlated subquery that calculates the number of
authors with author IDs that are smaller than or equal to the current author ID.

Listing 17-49: Getting Rows m to n in One Query

SELECT

 *

FROM

 Authors AS A1

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

656

WHERE

 (

 SELECT

 COUNT(*)

 FROM

 Authors AS A2

 WHERE

 A2.au_id <= A1.au_id

) BETWEEN 6 AND 10

ORDER BY

 au_id

Note that this query has poor performance, as it needs to scan the Authors
table as many times as there are authors in the table. This query also requires the
column that you order by, in this case the au_id column, to be unique. We can improve
our query’s performance by splitting our solution into two steps. First we can place
the authors’ rows in a temporary table, along with their ordinal position according
to the author ID column. We can achieve this by using the IDENTITY() function (the
IDENTITY() function is discussed in detail in Chapter 6), as Listing 17-50 shows.

Listing 17-50: Placing the Authors in a Temporary Table
Along with Their Ordinal Positions

SELECT

 IDENTITY (int, 1, 1) AS rownum,

 *

INTO

 #TmpAuthors

FROM

 Authors

ORDER BY

 au_id

You can now issue a simple query to retrieve authors six to ten, as
Listing 17-51 shows.

Listing 17-51: Retrieving Authors Six to Ten from the Temporary Table

SELECT

 *

FROM

 #TmpAuthors

WHERE

 rownum BETWEEN 6 AND 10

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

657657

Note that this technique did not always work prior to SQL Server 2000 (tested
on SQL Server 7.0, Service Pack 2). When using the SELECT INTO statement, some-
times the Identity values were calculated prior to the sort, making this solution
improper for the problem at hand. SQL Server 2000 solved this problem, and if you
examine the execution plan of the SELECT INTO statement, you can actually see that
a sort is performed prior to calculating the IDENTITY value. In both versions, however,
if you create the temporary table manually with an additional IDENTITY column
and use an INSERT SELECT statement to populate it, the execution plans show that
a sort is performed prior to calculating the IDENTITY values, making this solution
valid for both versions. Hopefully this bug will be resolved in SQL Server 7.0 in one
of the next service packs.

If you want to do everything in a single statement, you can use the TOP feature
of the SELECT statement. First, you need to determine the first ten authors, which
you do with a TOP 10, and you ORDER BY au_id ASC. This SELECT then acts as a derived
table from which you can do a TOP 5, this time with ORDER BY au_id DESC. This gives
you the second group of five; however, it is sorted in reverse order to what is desired.
This result is then used as a derived table, where you do a regular SELECT and just
sort the rows with au_id ASC. The solution is presented in Listing 17-52.

Listing 17-52: Retrieving Authors Six through Ten

SELECT

 *

FROM

(

 SELECT TOP 5

 *

 FROM

 (

 SELECT TOP 10

 *

 FROM

 Authors

 ORDER BY

 au_id ASC

) X

 ORDER BY

 au_id DESC

) Y

ORDER BY

 au_id ASC

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

658

Getting the First n Rows for Each Occurrence of…

Things can get even more complex than the previous example. Suppose you want
to provide the first three orders for each customer for all orders shipped to the U.S.
(order data appears in the Orders table in the Northwind sample database). You
can use a query similar to, but slightly more complex than, the one used in the pre-
vious section to supply a solution using a single query. The solution is shown in
Listing 17-53.

Listing 17-53: Getting the First Three Orders for Each U.S. Customer in One Query

SELECT

 *

FROM

 Orders AS O1

WHERE

 ShipCountry = 'USA'

 AND

 (

 SELECT

 COUNT(*)

 FROM

 Orders AS O2

 WHERE

 ShipCountry = 'USA'

 AND

 O2.CustomerID = O1.CustomerID

 AND

 O2.OrderID <= O1.OrderID

) <= 3

ORDER BY

 CustomerID,

 OrderID

This query suffers from the same problems as the one in the previous section,
mainly from poor performance. It incurred a scan count of 123 and had 2,329 logical
reads against the Orders table.

However, the problem can be approached in a totally different way. For example,
if you have the exact list of customer IDs, you can perform a UNION ALL between a
number of queries, each of which retrieves the first three orders for a certain cus-
tomer. Listing 17-54 shows a template for such a query.

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

659659

Listing 17-54: Getting the First Three Orders for Each Customer,
for a Known List of Customers

SELECT

 *

FROM

 (

 SELECT TOP 3

 *

 FROM

 Orders

 WHERE

 ShipCountry = 'USA'

 AND

 CustomerID = <first_cust>

 ORDER BY

 CustomerID,

 OrderID

) AS T1

UNION ALL

SELECT

 *

FROM

 (

 SELECT TOP 3

 *

 FROM

 Customers

 WHERE

 ShipCountry = 'USA'

 AND

 CustomerID = <second_cust>

 ORDER BY

 CustomerID,

 OrderID

) AS T2

UNION ALL

...

UNION ALL

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

660

SELECT

 *

FROM

 (

 SELECT TOP 3

 *

 FROM

 Customers

 WHERE

 ShipCountry = 'USA'

 AND

 CustomerID = <last_cust>

 ORDER BY

 CustomerID,

 OrderID

) AS Tn

To make this query dynamic so that it will run for an unknown list of customers
simply as they appear in the Orders table, you can use this template to build the query
in a variable, and execute it dynamically, as shown in Listing 17-55. This script iterates
through all customers in a loop, retrieves a customer with a higher customer ID in
each iteration, and adds another SELECT statement to the UNION ALL query.

Listing 17-55: Getting the First Three Orders for Each Customer,
for an Unknown List of Customers

DECLARE

 @lastindid AS char (5),

 @i AS int,

 @cmd AS varchar (8000)

SET @cmd = ''

SET @i = 1

SELECT

 @lastindid = MIN (CustomerID)

FROM

 Orders

WHERE

 ShipCountry = 'USA'

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

661661

WHILE @lastindid IS NOT NULL

BEGIN

 SET @cmd = @cmd +

 'SELECT * FROM ' +

 '(SELECT TOP 3 * FROM Orders ' +

 'WHERE ShipCountry = ''USA'' AND CustomerID = ''' + @lastindid + ''' ' +

 'ORDER BY CustomerID,OrderID) AS T' +

 CAST(@i AS varchar) + CHAR (13) + CHAR(10)

 SELECT

 @lastindid = MIN (CustomerID),

 @i = @i + 1

 FROM

 Orders

 WHERE

 ShipCountry = 'USA'

 AND

 CustomerID > @lastindid

 IF @lastindid IS NOT NULL

 SET @cmd = @cmd + 'UNION ALL' + CHAR (13) + CHAR(10)

END

PRINT @cmd -- just for debug

EXEC (@cmd)

You might think that I/O performance is improved significantly as the I/O
statistics for the dynamically constructed UNION ALL query show a scan count of 13
and 99 logical reads, but you need to take into account the I/O generated as a
result of the loop that dynamically constructs the UNION ALL statement. The total
logical reads are very high due to the loop. This solution might not render better
performance, but it may give you some ideas about constructing statements
dynamically.

Now, for the pièce de résistance. Have a go at the query in Listing 17-56.

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

662

Listing 17-56: Getting the First Three Orders for Each Customer
for an Unknown List of Customers, Using a Correlated Subquery

SELECT

 O1.*

FROM

 Orders O1

WHERE

 O1.ShipCountry = 'USA'

 AND

 O1.OrderID IN

(

 SELECT TOP 3

 O2.OrderID

 FROM

 Orders O2

 WHERE

 O2.ShipCountry = 'USA'

 AND

 O2.CustomerID = O1.CustomerID

 ORDER BY

 O2.OrderID

)

ORDER BY

 O1.CustomerID,

 O1.OrderID

The scan count is 123 while the logical reads are 927. This query uses the TOP
feature inside a correlated subquery with an IN predicate. The outer query needs to
find those OrderIDs that correspond to the first three OrderIDs for each CustomerID.
The correlation is on CustomerID. This solution gives you the rows you want for
the lowest query cost.

Top Countries per Employee

You have seen, in Chapter 2, the use of correlated subqueries, including those on
the HAVING predicate of a GROUP BY clause. This problem requires you to find the
country for which each employee has the most orders shipped. You will use the
Orders table of the Northwind database. You can use a correlated subquery on the
HAVING predicate of the GROUP BY clause, as shown in Listing 17-57.

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

663663

Listing 17-57: Determining the Country that Keeps Each Employee the Busiest

SELECT

 O1.EmployeeID,

 O1.ShipCountry,

 COUNT (*) AS Orders

FROM

 Orders O1

GROUP BY

 O1.EmployeeID,

 O1.ShipCountry

 HAVING

 COUNT (*) =

(

 SELECT TOP 1

 COUNT (*) AS Orders

 FROM

 Orders O2

 WHERE

 O2.EmployeeID = O1.EmployeeID

 GROUP BY

 O2.EmployeeID,

 O2.ShipCountry

 ORDER BY

 Orders DESC

)

ORDER BY

 O1.EmployeeID

The COUNT(*) in the SELECT list of the outer query is there just to provide supporting
information. The problem simply required finding out who served which country
the most.

Are You Being Served?

This next problem is a variation on the previous one. It requires you to find the
employee who processes the most shipments for each country. Again, you will use
the Orders table in the Northwind database. The first try solves the problem in a
single SELECT, with a correlated subquery on the GROUP BY clause. This is shown in
Listing 17-58.

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

664

Listing 17-58: Employee Who Serves Each Country the Most, First Try

SELECT

 O1.ShipCountry,

 O1.EmployeeID,

 COUNT (*) AS Orders

FROM

 Orders O1

GROUP BY

 O1.ShipCountry,

 O1.EmployeeID

 HAVING

 COUNT (*) =

(

 SELECT TOP 1

 COUNT (*) AS Orders

 FROM

 Orders O2

 WHERE

 O2.ShipCountry = O1.ShipCountry

 GROUP BY

 O2.ShipCountry,

 O2.EmployeeID

 ORDER BY

 Orders DESC

)

ORDER BY

 O1.ShipCountry

The inner query has to calculate the count for every occurrence of ShipCountry
and EmployeeID. The outer query is also calculating the counts. This gives a scan
count of 22 and 36,042 logical reads. It solves the problem, but perhaps there is a
way to reduce the I/O.

Since the counts have to be used twice, you can do the calculation once and
store the results in a temporary table. This is done in Listing 17-59.

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

665665

Listing 17-59: Employee Who Serves Each Country the Most, Second Try

SELECT

 O1.ShipCountry,

 O1.EmployeeID,

 COUNT (*) AS Orders

INTO

 #Temp

FROM

 Orders O1

GROUP BY

 O1.ShipCountry,

 O1.EmployeeID

SELECT

 T1.*

FROM

 #Temp T1

WHERE

 T1.Orders =

(

 SELECT

 MAX (T2.Orders)

 FROM

 #Temp T2

 WHERE

 T2.ShipCountry = T1.ShipCountry

)

ORDER BY

 T1.ShipCountry

The correlated subquery no longer involves the GROUP BY clause. The total scan
count is 2, while the logical reads are just 24. The relative query cost for this version is
23.04 percent versus 76.96 percent for the previous version. Now you’re cookin’!

Can’t improve on perfection? You can dispense with the temporary table by
casting its query as a derived table. The same derived table appears twice in the
statement. However, there is only one scan and 21 counts. Looks like the optimizer
is smart enough not to consider it twice. See the code in Listing 17-60.

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

666

Listing 17-60: Employee Who Serves Each Country the Most, Third Try

SELECT

 T1.*

FROM

 (SELECT

 O1.ShipCountry,

 O1.EmployeeID,

 COUNT (*) AS Orders

 FROM

 Orders O1

 GROUP BY

 O1.ShipCountry,

 O1.EmployeeID) T1

WHERE

 T1.Orders =

(

 SELECT

 MAX (T2.Orders)

 FROM

 (SELECT

 O1.ShipCountry,

 O1.EmployeeID,

 COUNT (*) AS Orders

 FROM

 Orders O1

 GROUP BY

 O1.ShipCountry,

 O1.EmployeeID) T2

 WHERE

 T2.ShipCountry = T1.ShipCountry

)

ORDER BY

 T1.ShipCountry

SQL Puzzle 17-1: Top Gun: The Best of the Best

Congratulations! You have reached the final puzzles of this book. By now,
you are ready to take on anything. Resist the urge to go to the Answers
section, even though it is only a few pages away. It will be worth it.

In the two previous problem scenarios, you saw which country kept each
employee the busiest and who the best employee was, broken down by the country

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

667667

served. This puzzle requires you to find the standings of the top sellers. In other words,
you are interested only in those employees who were the number one sellers in a
country. The employee who appears as numero uno the most is the top employee.

SQL Puzzle 17-2: Filling a Table
with Magic Square Data in T-SQL

This puzzle encapsulates various T-SQL elements and requires creativity.
It deals with magic squares, a subject that is the source for many mathe-

matical puzzles. The solution to the magic squares problem will be found in the
T-SQL world.

What Is a Magic Square?

A magic square is a square matrix—a matrix with the same number of rows and
columns for which if you sum up the values in each row, column, and diagonal you
always get the same number. For example, a 3 × 3 magic square might look like this:

Notice that if you sum up the values in each row, column, and diagonal, you
always get 15. There is a simple method for filling an odd-sized magic square on
paper, and you can use that method to fill the magic square’s data in a table with
T-SQL. Filling an even-sized magic square is too complex to handle with T-SQL, so
we will not consider even-sized magic squares in this puzzle.

The rules for filling an odd-sized magic square are very simple:

1. Write the first number (1) in the middle cell of the first row.

8 1 6

3 5 7

4 9 2

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

668

2. Write the next consecutive number in the cell that is one cell to the right,
and one cell above the current cell. If this cell is occupied, go to the cell
beneath the current cell. When you bump to an edge of the magic square,
you go all the way around. Think of the square as a ball where all of the
edges of the rows, columns, and diagonals are connected to each other.

3. Repeat the second step until the magic square is full.

Figure 17-1 shows the steps involved in filling the magic square presented earlier.

Representing a Magic Square in a Table

A normalized table will represent the magic square, with each row in the table
representing a cell in the square. Each row in the table records the cell’s row and
column coordinates in the square, as well as its value. This table structure allows
you to represent a magic square of any given size.

Figure 17-1: Filling the magic square

���������		
��
	���		�������	�����
�	���	����		�����	��

Tips and Tricks

669669

CREATE TABLE MagicSquare

(

 row int NOT NULL,

 col int NOT NULL,

 value int NOT NULL,

 CONSTRAINT PK_magicsquare_row_col PRIMARY KEY (row, col),

 CONSTRAINT UNQ_magicsquare_value UNIQUE (value)

)

SQL Puzzle 17-2-1: Filling a Table
with a Magic Square’s Data in T-SQL

Your first task is to write a stored procedure that accepts the magic
square’s size as a parameter and fills your table with its data. First, you

need to clear all existing rows in the table. Second, you will insert the first number in
the middle cell of the first row. Third and last, you will insert the rest of the num-
bers in a WHILE loop. To make it a real challenge, you will limit yourself to using a non-
blocked WHILE loop with a single INSERT statement.

The template of the FillMagicSquare stored procedure looks like this:

CREATE PROC FillMagicSquare

 @size AS int

AS

DELETE MagicSquare

-- Insert the first number in the middle cell in the first row

INSERT INTO MagicSquare

 (row, col, value)

VALUES

 (...) -- ?

-- Insert the rest of the numbers in a while loop

WHILE ... -- ?

 INSERT INTO MagicSquare(row, col, value)

 ... -- ?

GO

���������		
��
	���		�������	�����
�	���	����		�����	��

Chapter 17

670

SQL Puzzle 17-2-2: Displaying the Magic Square
as a Cross-Tab Table

Your second task is to display the magic square in a more meaningful
cross-tab format. For example, if the size of your magic square is 3, the

output should look like this:

It shouldn’t be too hard to generate a cross-tab query that provides such an output
for a known magic square size, but your solution should produce such an output with-
out a prior knowledge of the size of the magic square stored in the table.

SQL Puzzle 17-2-3: Checking whether the Table
Represents a Magic Square Correctly

Your last task is to write a single IF statement that checks whether the
table represents a magic square correctly or not. You are not allowed to

use a complex condition, such as ORs or ANDs. The template for your IF statement
looks like this:

IF ... -- ?

 PRINT 'This is a Magic Square. :-)'

ELSE

 PRINT 'This is not a Magic Square. :-('

You can assume that the table consists of a complete square—that is, that all
cell coordinates exist in the table.

The answers to these puzzles can be found on pages 721–733.

ol1 Col2 Col3

8 1 6

3 5 7

4 9 2

���������		
��
	���		�������	�����
�	���	����		�����	��

