
Foreword

Is computing an experimental science? For the roots of program optimization
the answer to this question raised by Robin Milner ten years ago is clearly
yes: it all started with Donald Knuth’s extensive empirical study of Fortran
programs. This benchmark-driven approach is still popular, but it has in
the meantime been complemented by an increasing body of foundational
work, based on varying idealizing assumptions ranging from ‘space is for free’
over ‘there are sufficiently many registers’ to ‘programs consist of 3-address
code’. Evaluation of the adequacy of these assumptions lacks the appeal of
run-time measurements for benchmarks, which is so simple that one easily
forgets about the difficulties in judging how representative the chosen set of
benchmarks is. Ultimately, optimizations should pass the (orthogonal) tests
of both communities.

This monograph is based on foundational, assumption-based reasoning,
but it evolved under the strong pressure of the experimental community, who
expressed doubts concerning the practicality of the underlying assumptions.
Oliver Rüthing responded by solving a foundational problem that seemed
beyond the range of efficient solutions, and proposed a polynomial algorithm
general enough to overcome the expressed concerns.
Register Pressure:. A first formally complete solution to the problem of reg-
ister pressure in code motion – hoisting computations enlarges the corre-
sponding life-time ranges – was proposed for 3-address code. This assump-
tion allowed a separate treatment of single operator expressions in terms of
a bitvector analysis.

The algorithm, although it improves on all previous approaches, was crit-
icized for not taking advantage of the flexibility provided by complex ex-
pression structures, which essentially boils down to the following trade-off
patterns:

– if (two) operand expressions are only used once, within one large expres-
sion, one should hoist its evaluation and release the registers holding the
operand values;

– if there are multiple uses of the operand expressions, then one should keep
the operand values and delay the evaluation of the large expressions.

Based on matching theory, Rüthing proposes an algorithm that optimally
resolves this ‘trade-off’ problem in polynomial time.



VI Foreword

Interacting Transformations:. Optimizing transformations may support and/
or impede each other, as illustrated by the two trade-off patterns in the pre-
vious paragraph: hoisting a large expression is supportive in the first but im-
peding in the second. In this sense, the corresponding optimal algorithm can
be regarded as a complete solution to a quite complex interaction problem.
In this spirit, Oliver Rüthing additionally investigates the complexity and
the interaction potential of assignment motion algorithms comprising both
hoisting and sinking, and establishes a surprisingly low complexity bound for
the ‘meta-iteration’ cycle, resolving all the so-called second-order effects.

Finally, the monograph sketches how these two results can be combined in
order to achieve independence of the assignment granularity. In particular,
the combined algorithm is invariant under assignment decomposition into 3-
address code, as required for many other optimization techniques. This is of
high practical importance, as this increased stability under structural changes
widens the range of application while maintaining the optimizing power. I
am optimistic that conceptual results like this, which seriously address the
concerns of the experimental community, will help to establish fruitful cross-
community links.

Summarizing, this monograph, besides providing a comprehensive account
of the practically most accepted program analysis and transformation meth-
ods for imperative languages, stepwise develops a scenario that overcomes
structural restrictions that had previously been attacked for a long time with
little success. In order to do justice to the conceptual complexity behind this
breakthrough, Rüthing provides all the required formal proofs. They are not
always easy to follow in full detail, but the reader is not forced to the tech-
nical level. Rather, details can be consulted on demand, providing students
with a deep, yet intuitive and accessible introduction to the central principles
of code motion, compiler experts with precise information about the obsta-
cles when moving from the 3-address code to the general situation, and the
algorithms’ community with a striking application of matching theory.

Bernhard Steffen



Preface

Code motion techniques are integrated in many optimizing production and
research compilers and are still a major topic of ongoing research in pro-
gram optimization. However, traditional methods are restricted by the narrow
viewpoint on their immediate effects. A more aggressive approach calls for
an investigation of the interdependencies between distinct component trans-
formations.

This monograph shows how interactions can be used successfully in the design
of techniques for the movement of expressions and assignments that result
in tremendous transformational gains. For expression motion we present the
first algorithm for computational and lifetime optimal placement of expres-
sions that copes adequately with composite expressions and their subexpres-
sions. This algorithm is further adapted to situations where large expressions
are split into sequences of assignments. The core of the algorithm is based
upon the computation of maximum matchings in bipartite graphs which are
used to model trade-off situations between distinct lifetime ranges.

Program transformations based upon assignment motion are character-
ized by their mutual dependencies. The application of one transformation
exposes additional opportunities for others. We present simple criteria that
guarantee confluence and fast convergence of the exhaustive transformational
process. These criteria apply to a number of practically relevant techniques,
like the elimination of partially dead or faint assignments and the uniform
elimination of partially redundant expressions and assignments.

This monograph is a revised version of my doctoral dissertation which was
submitted to the Faculty of Engineering of the Christian-Albrechts University
at Kiel and accepted in July 1997.

Acknowledgements

First of all, I would like to thank Prof. Dr. Hans Langmaack for giving me the
opportunity to work in his group and doing the research that finally found its
result in my doctoral thesis, on which this monograph is based. I thank him
for sharing his wealth of experience on the substance of computer science.



VIII Preface

I am particularly grateful to Bernhard Steffen, who raised my interest
in the field of program optimization and abstract interpretation. I certainly
benefited most from the excellent cooperation with him and his group, among
whom Jens Knoop had a predominant role. Our close cooperation started in
Kiel and continued uninterrupted after he joined Bernhard’s group in Passau.
Jens was always willing to discuss my sometimes fuzzy new ideas and finally
took on the proof-reading of earlier and mature versions of the book, which
would not be as it is without his support. Finally, I thank Alan Mycroft for
acting as the third referee of my thesis and for giving me lots of valuable
comments.

In addition, I would like to thank Preston Briggs, Dhananjay Dhamdhere,
Vinod Grover, Rajiv Gupta, Barry Rosen, Mary Lou Soffa, and Kenneth
Zadeck for several stimulating discussions, mostly at conferences or via email
exchange. I owe special thanks to Preston Briggs, as he was the one who
called my attention to the problem of lifetime dependencies in code motion.

Last but not least, I want to thank my wife Sabine for steadily encouraging
me, and, together with our children Laura, Thore, and Aaron, providing the
pleasant and lively atmosphere in which I could relax from the up and downs
during writing this book.

Dortmund, September 1998 Oliver Rüthing


