Foreword

When Mikael asked me to write this foreword, I happily agreed. Since the
time I wrote my own Ph.D. thesis 1984 on incremental programming environ-
ments, compilers, and generator tools for such systems, I have been interested
in the problem of automatically generating practical tools from formal seman-
tics language specifications. This problem was unsolved in my own work at
that time, which focused on incremental environment architecture, debug-
ging, and code generation aspects, and could generate parts of incremental
programming environments from specifications. However, I always wished for
a good opportunity to attack the semantics problem in a practical context.

This opportunity came in the fall of 1989, when Mikael Pettersson started
as a graduate student in the PELAB research group (Programming Environ-
ments Laboratory) at Linkdping University, of which I recently had become
leader. Mikael shared my interest in efficient programming language imple-
mentations and generator tools, and was very research minded from the start.
Already during his undergraduate studies he read many research papers on
language implementation techniques and formal semantics, at that time pri-
marily Denotational Semantics, and did several experimental designs. This
also became the topic of his first 2-3 years of research, on the problem of
generating fast compilers that emit efficient code from denotational specifi-
cations. Mikael developed the DML system (Denotational Meta Language),
which included a subset of Standard ML, concrete syntax notation for pat-
tern matching, and implementation techniques that made generated compil-
ers both execute quickly and emit efficient code.

Around 1990-92, we became increasingly aware of the Natural Semantics
specification formalism, which was gaining in popularity and seemed to be
rather easy to use, yet providing high abstraction power and good modularity
properties. During 1992 my group had just started to cooperate in an Esprit
project with Gilles Kahn’s group at the Sophia-Antipolis branch of INRIA in
France. Kahn proposed the Natural Semantics formalism 1985, and his group
had since then developed the Centaur system which includes Typol as the
meta-language and tool for Natural Semantics specifications. This system
provides a nice interactive environment for prototyping language specifica-
tions; however, generated compilers and interpreters execute quite slowly.

v



VI

Therefore, Mikael, with my support, decided to slightly change his Ph.D.
thesis topic. The new goal was to develop techniques and tools for gener-
ating very efficient language implementations from Natural Semantics spec-
ifications. Generated implementations should be comparable with or better
than hand-written ones in performance. This was an ambitious goal that
nobody had realized before.

After studying the new area, analyzing possible approaches, and imple-
mentation techniques used by logic programming and functional program-
ming languages, Mikael completed the first RML prototype in February 1994.
At that time RML was both relational and non-deterministic, similar to most
logic programming languages, so the name Relational Meta Language was ap-
propriate. Even the first prototype was rather efficient compared to Typol,
but better was to come. Mikael observed that the great majority of lan-
guage specifications in Natural Semantics are deterministic. Only seldom is
non-determinism really needed, and in those cases specifications can usually
be reformulated in a deterministic way. Mikael decided to make RML de-
terministic to enable further improvements in efficiency. A year later, with
the addition of more sophisticated optimizations in the RML compiler, the
generated code had improved another factor of five in performance. You can
read about all the details in this book.

I am very proud of Mikael’s work. His RML system is the first generator
tool for Natural Semantics that can produce really efficient implementations.
The measured efficiency of generated example implementations seems to be
roughly the same as (or sometimes better than) comparable hand imple-
mentations in Pascal or C. Another important property is compatibility and
modularity. Generated modules are produced in C, and can be readily inte-
grated with existing frontends and backends.

I feel quite enthusiastic about the future prospects of automatically gen-
erating practically useful implementations from formal specifications of pro-
gramming languages, using tools such as RML. Perhaps we will soon reach
the point where ease of use and efficiency of the generated result will make it
as attractive and common to generate semantic processing parts of translators
from Natural Semantics specifications, as is currently the case for generating
scanners and parsers using tools such as Lex and Yacc. Only the future will
tell.

Link6ping, October 1998
Peter Fritzson



Preface

Abstract

Natural semantics has become a popular tool among programming language
researchers. It is used for specifying many aspects of programming languages,
including type systems, dynamic semantics, translations between represen-
tations, and static analyses. The formalism has so far largely been limited
to theoretical applications, due to the absence of practical tools for its im-
plementation. Those who try to use it in applications have had to translate
their specifications by hand into existing programming languages, which can
be tedious and error-prone. Hence, natural semantics is rarely used in appli-
cations.

Compiling high-level languages to correct and efficient code is non-trivial,
hence implementing compilers is difficult and time-consuming. It has become
customary to specify parts of compilers using special-purpose specification
languages, and to compile these specifications to executable code. While this
has simplified the construction of compiler front-ends, and to some extent
their back-ends, little is available to help construct those parts that deal
with semantics and translations between higher-level and lower-level repre-
sentations. This is especially true for the Natural Semantics formalism.

In this thesis, we introduce the Relational Meta-Language, RML, which
is intended as a practical language for natural semantics specifications. Run-
time efficiency is a prerequisite if natural semantics is to be generally accepted
as a practical tool. Hence, the main parts of this thesis deal with the problem
of compiling natural semantics, actually RML, to highly efficient code.

We have designed and implemented a compiler, rm12c, that translates
RML to efficient low-level C code. The compilation phases are described in
detail. High-level transformations are applied to reduce the usually enor-
mous amount of non-determinism present in specifications. The resulting
forms are often completely deterministic. Pattern-matching constructs are
expanded using a pattern-match compiler, and a translation is made into
a continuation-passing style intermediate representation. Intermediate-level
CPS optimizations are applied before low-level C code is emitted. A new and
efficient technique for mapping tailcalls to C has been developed.

We have compared our code with other alternative implementations. Our

VII



VIII

benchmarking results show that our code is much faster, sometimes by orders
of magnitude. This supports our thesis that the given compilation strategy
is suitable for a significant class of specifications.

A natural semantics specification for RML itself is given in the appendix.

Acknowledgements

I thank my thesis supervisor Peter Fritzson for giving me free reins to explore
my interests in formal semantics and language implementation technology. I
also thank the members of my thesis committee, Reinhard Wilhelm, Isabelle
Attali, Tore Risch, and Bjorn Lisper, for their interest in my work, and my
friends and colleagues at the Department of Computer Science at LinkOping
University. And finally, I thank my family for being there.

Addendum

This book is a revised version of the Ph.D. dissertation I defended in Decem-
ber 1995 at the University of Link6ping. The RML system has evolved in
several directions since then, and I summarize the main developments here.

In the RML type system, implicit logical variables have been replaced by
a polymorphic type ’a lvar with explicit binding and inspection operators,
and the notion of equality types has been borrowed from Standard ML.

Top-level declarations are now subject to a dependency analysis and re-
ordering phase before type checking, as in Haskell [129, Section 4.5.11].

More techniques for implementing tailcalls in C have been tested, includ-
ing one used by two Scheme compilers [63]. However, no real performance
improvements have been achieved to date.

The RML compiler has been made much more user-friendly. The type
checker now gives accurate and relevant error messages, and a new compiler
driver automates the many steps involved in compiling and linking code.
Work is underway to support debugging and profiling [139].

Students at Linkoping University have used the system to construct com-
pilers for real-world languages, including Java and Modelica [95]. The experi-
ence has been positive, but a simplified foreign C code interface, a debugger,
and support for more traditional programming are sometimes requested.

The Swedish National Board for Industrial and Technical Development
(NUTEK) and the Center for Industrial Information Technology (CENIIT)
supported my research at Linkoping University. Recent developments where
implemented during my postdoc at INRIA Sophia-Antipolis 1997-98, funded
by the Swedish Research Council for Engineering Sciences (TFR).

Uppsala, October 1998
Mikael Pettersson



