
Foreword

The typical development of a successful theory in computer science traverses
three sometimes overlapping phases: an experimental phase, where phenom-
ena are studied almost in a trial and error fashion, a busy phase of realization,
where people use the results of the experimental phase in an “uncoordinated”
fashion, and a contemplative phase, where people look for the essence of what
has been previously achieved. In compiler optimization these three phases cur-
rently coexist. New heuristics are still being proposed and purely evaluated on
some benchmarks, and known techniques are still being implemented specif-
ically for a new operating system or variants of programming languages, but
increasingly many attempts now try to understand the full picture of compiler
optimization in order to develop general frameworks and generators.

This monograph is a typical contribution to third phase activities in that
it presents a uniform framework capturing a large class of imperative pro-
gramming languages and their corresponding transformations, together with
directions for cookbook style implementation. Thus besides clarifying appro-
priateness and limitations of the considered methods it also tries to open
these methods even to non-experts.

More technically, the monograph adresses the issue of extension: which
principles are stable, i.e., remain valid when extending intraprocedurally suc-
cessful methods to the interprocedural case, and what needs to be done in
order to overcome the problems and anomalies arising from this extension.
This investigation characterizes the power and flexibility of procedure mech-
anisms from the data flow analysis point of view.

Even though all the algorithms considered evolve quite naturally from
basic principles, which directly leads to accessible correctness and optimal-
ity considerations, they often outperform their “tricky” handwritten coun-
terpart. Thus they constitute a convincing example for the superiority of
concept-driven software development.

The monograph presents a full formal development for so-called syntac-
tic program analysis and transformation methods including complete proofs,
which may be quite hard to digest in full detail. This rigorous development,
on purpose structurally repetitive, is tailored to stress similarities and dif-
ferences between the intraprocedural and interprocedural setting, down to
the very last detail. However, the reader is not forced to follow the techni-



VI Foreword

cal level. Rather, details can be consulted on demand, providing students
with a deep yet intuitive and accessible introduction to central principles of
intraprocedural and interprocedural optimization, compiler experts with pre-
cise information about the obstacles when moving from the intraprocedural
to the interprocedural case, and developers with concise specifications of easy
to implement yet high-performance interprocedural analyses.

Summarizing, this thesis can be regarded as a comprehensive account
of what, from the practical point of view, are the most important program
analysis and transformation methods for imperative languages. I therefore
recommend it to everybody interested in a conceptual, yet far reaching entry
into the world of optimizing compilers.

Bernhard Steffen



Prologue

The present monograph is based on the doctoral dissertation of the author
[Kn1]. It presents a new framework for optimal interprocedural program op-
timization, which covers the full range of language features of imperative
programming languages. It captures programs with (mutually) recursive pro-
cedures, global, local, and external variables, value, reference, and procedure
parameters. In spite of this unique generality, it is tailored for practical use.
It supports the design and implementation of provably optimal program opti-
mizations in a cookbook style. In essence, this is achieved by decomposing the
design process of a program optimization and the proof of its optimality with
respect to a specific optimality criterion into a small number of elementary
steps, which can independently be proved using only knowledge about the
specification of the optimization. This contrasts with heuristically based ap-
proaches to program optimization, which are still dominant in practice, and
often ad hoc. The application of the framework is demonstrated by means of
the computationally and lifetime optimal elimination of partially redundant
computations in a program, a practically relevant optimization, whose in-
traprocedural variant is part of many advanced compiler environments. The
purpose of considering its interprocedural counterpart is twofold. On the one
hand, it demonstrates the analogies between designing intraprocedural and
interprocedural optimizations. On the other hand, it reveals essential differ-
ences which must usually be faced when extending intraprocedural optimiza-
tions interprocedurally. Optimality criteria satisfiable in the intraprocedural
setting can impossible to be met in the interprocedural one. Optimization
strategies being successful in the intraprocedural setting can fail interproce-
durally. The elimination of partially redundant computations is well-suited
for demonstration. In contrast to the intraprocedural setting, computational
and lifetime optimal results are in general impossible in the interprocedu-
ral setting. The placement strategies leading to computationally and lifetime
optimal results in the intraprocedural setting, can even fail to guarantee
profitability in the interprocedural setting. We propose a natural constraint
applying to a large class of programs, which is sufficient for the successful
transfer of the intraprocedural elimination techniques to the interprocedural
setting. Under this constraint, the resulting algorithm generates interproce-
durally computationally and lifetime optimal results, making it unique. It is



VIII Prologue

not only more powerful than its heuristic predecessors but also more efficient,
and reduces in the absence of procedures to its intraprocedural counterpart.

The remainder of this prologue summarizes the background of this mono-
graph, and provides a brief introduction to program optimization intended
to make its presentation more easily amenable to novice readers in the field.

Optimizing Compilers. In essence, a compiler is a program translating
programs of some source language L1 into semantically equivalent programs
of some target language L2. One of the most typical applications of a compiler
is the translation of a source program written in a high-level programming
language into a machine program (often simply called “machine code” or just
“code”), which can be executed on the computer the compiler is implemented
on. Of course, compilers are expected to produce highly efficient code, which
has led to the construction of optimizing compilers [ASU, WG, Mor].

Source Language

Machine Language

Compiler

Optimizer

Data Flow Analysis

Fig. 1.1. Structure of an optimizing compiler

Figure 1.1 illustrates the general structure of an optimizing compiler.
The central component is called an optimizer . Basically, this is a program
designed for detecting and removing inefficiencies in a program by means
of appropriate performance improving transformations. Traditionally, these
transformations are called program optimizations . This general term, how-
ever, is slightly misleading because program optimization cannot usually be
expected to transform a program of “bad” performance into a program of
“good” or even “optimal” performance. There are two quite obvious rea-



Prologue IX

sons for this limitation. First, “bad,” “good,” and “optimal” are qualitative
properties lacking a (precise) quantitative meaning. Second, interpreting the
term optimization naively, does not impose any restrictions on the kind of
transformations considered possible; restrictions, for example, which are usu-
ally imposed by automation requirements. Following the naive interpretation,
optimization would require replacing a sorting algorithm of quadratic time
complexity by a completely different sorting algorithm where the second fac-
tor is replaced by a logarithmic one. Optimizations of this kind would require
a profound understanding of the semantics of the program under considera-
tion, which is usually far beyond the capabilities of an automatic analysis.

The original domain of program optimization is different. Usually, it leaves
the inherent structure of the algorithms invariant, and improves their perfor-
mance by avoiding or reducing the computational effort at run-time, or by
shifting it from the run-time into the compile-time. Typical examples are loop
invariant code motion, strength reduction, and constant folding. Loop invari-
ant code motion moves computations yielding always the same value inside
a loop to a program point outside of it, which avoids unnecessary recompu-
tations of the value at run-time. Strength reduction replaces operations that
are“expensive” by “cheaper” operations, which reduces the computational
effort at run-time. Constant folding evaluates and replaces complex compu-
tations, whose operands are known at compile-time, by their values, which
shifts the computational effort from the run-time to the compile-time of the
program.

In practice, the power of an optimization is often validated by means of
benchmark tests, i.e., by measuring the performance gain on a sample of pro-
grams in order to provide empirical evidence of its effectivity. The limitations
of this approach are obvious. It cannot reveal how “good” an optimization
really is concerning the relevant optimization potential. In addition, it is
questionable to which extent a performance improvement observed can be
considered a reliable prediction in general. This would require that the sam-
ple programs are “statistically representative” because the performance gain
of a specific optimization depends highly on the program under consideration.

In this monograph, we contrast this empirical approach by a mathematical
approach, which focuses on proving the effectivity of an optimization. Central
is the introduction of formal optimality criteria, and proof of the effectivity
or even optimality of an optimization with respect to the criteria considered.
Usually, these criteria exclude the existence of a certain kind of inefficiencies.
Following this approach optimality gets a formal meaning. An optimization
satisfying a specific optimality criterion guarantees that a program subjected
to it cannot be improved any further with respect to this criterion, or hence
with respect to the source of inefficiencies it addresses. Thus, rather than
aiming at assuring of a specific percentage of performance improvement, our
approach guarantees that a specific kind of inefficiency is proved to be absent
after optimization.



X Prologue

Data Flow Analysis. Optimization must preserve semantics. It is thus
usually preceded by a static analysis of the argument program, usually called
data flow analysis (DFA), which checks the side-conditions under which an
optimization is applicable. For imperative programming languages like Algol,
Pascal, or Modula, an important classification of DFA techniques is derived
from the treatment of programs with procedures. Intraprocedural DFA is
characterized by a separate and independent investigation of the procedures
of a program making explicit worst-case assumptions for procedure calls. In-
terprocedural DFA takes the semantics of procedure calls into account, and is
thus theoretically and practically much more ambitious than intraprocedural
DFA. In contrast, local DFA considering (maximal sequences of) straight-line
code only, so-called basic blocks , which are investigated separately and inde-
pendently, is considerably simpler, but also less powerful than intraprocedural
and interprocedural DFA. In distinction to local DFA, intraprocedural and
interprocedural DFA are also called global DFA. Figure 1.2 illustrates this
classification of DFA techniques, which carries over to program optimization,
i.e., local, intraprocedural, and interprocedural optimization are based on
local, intraprocedural, and interprocedural DFA, respectively.

Global DFADFALocal

Intraprocedural DFA Interprocedural DFA

Data Flow Analysis (DFA)

Fig. 1.2. Taxonomy of data flow analysis

DFA is usually performed on an intermediate program representation. A
flexible and widely used representation is the control flow graph (CFG) of
a program. This is a directed graph, whose nodes and edges represent the
statements and the branching structure of the underlying program. Figure
1.3 shows an illustrative example. In order to avoid undecidability of DFA
the branching structure of a CFG is usually nondeterministically interpreted.
This means, whenever the control reaches a branch node, it is assumed that
the program execution can be continued with any successor of the branch
node within the CFG. Programs containing several procedures can naturally
be represented by systems of CFGs. The control flow caused by procedure
calls can be made explicit by combining them to a single graph, the inter-



Prologue XI

procedural flow graph; intuitively, by connecting the call sites with the flow
graphs representing the called procedures.

z := a+b

x := a+b

a := c

x := a+b

y := a+b

y := a+b

1

2

3 4

5

6 7

8

11

14 15

13

16

18

9

1210

17

Fig. 1.3. Control flow graph

Code Motion: A Practically Relevant Optimization. Code motion is
one of the most widely used program optimizations in practice, for which
there are two quite natural optimization goals concerning the number of
computations performed at run-time, and the lifetimes of temporaries, which
are unavoidably introduced as a side-effect of the transformation. Code mo-
tion is thus well suited for demonstrating the practicality of our optimization
framework because it is designed for supporting the construction of provably
optimal optimizations. The code motion transformation we develop (interpro-
cedurally with respect to a natural side-condition) satisfies both optimality
criteria informally sketched above: it generates programs which are compu-
tationally and lifetime optimal . The corresponding transformation to meet
these criteria is not only unique, it is even more efficient than its heuristic



XII Prologue

predecessors. In the following we illustrate the central idea underlying this
transformation in the intraprocedural context.

3

a := c

h

h

y := 

x := 

h h := a+b:= a+b

x := a+b

y := a+b

z := h

1

2

4

5

6 7

8

1110

14

16

15

12

9

13

17

18

Fig. 1.4. A first code motion optimization

In essence, code motion improves the efficiency of a program by avoid-
ing unnecessary recomputations of values at run-time. For example, in the
program of Figure 1.3 the computation of a + b at node 10 always yields
the same value. Thus, it is unnecessarily recomputed if the loop is executed
more than once at run-time. Code motion eliminates unnecessary recompu-
tations by replacing the original computations of a program by temporaries
(or registers), which are correctly initialized at appropriate program points.
For example, in the program of Figure 1.3 the original computations of a+ b
occurring at the nodes 10, 16, and 17 can be replaced by a temporary h,
which is initialized by a+ b at the nodes 8 and 9 as illustrated in Figure 1.4.



Prologue XIII

Admissible Code Motion

Code motion must preserve the semantics of the argument program. This
leads to the notion of admissible code motion. Intuitively, admissibility re-
quires that the temporaries introduced for replacing the original computa-
tions of a program are correctly initialized at certain program points as illus-
trated above. In addition, it requires that the initializations of the temporaries
do not introduce computations of new values on paths because this could in-
troduce new run-time errors. Illustrating this by means of the program of
Figure 1.3, the second requirement would be violated by initializing the tem-
porary h at node 5 as shown in Figure 1.5. This introduces a computation
of a + b on the path (1,4,5,7,18), which is free of a computation of a + b
in the original program. Under the admissibility requirement, we can obtain
computationally and lifetime optimal results as indicated below.

3

h

h

a := c

h

h

y := 

y := 

z := x := 

x := a+b

h := a+b

1

2

4

5

76

8

11

14

10 12

9

15

16

18

17

13

Fig. 1.5. No admissible code motion optimization



XIV Prologue

Computationally Optimal Code Motion

Intuitively, an admissible code motion is computationally optimal , if the num-
ber of computations on every program path cannot be reduced any further by
means of admissible code motion. Achieving computationally optimal results
is the primary goal of code motion. The central idea to meet this goal is to
place computations

– as early as possible, while maintaining admissibility.

This is illustrated in Figure 1.6 showing the program, which results from the
program of Figure 1.3 by means of the “as-early-as-possible” placing strategy.
All unnecessary recomputations of a + b are avoided by storing the value of
a+b in the temporary h and replacing all original computations of a+b by h.
Note that this program cannot be improved any further. It is computationally
optimal.

Lifetime Optimal Code Motion

The “as-early-as-possible” placing strategy moves computations even if there
is no run-time gain. In the running example this is particularly obvious when
considering the computation of a + b at node 3, which is moved without
any run-time gain. Though unnecessary code motion does not increase the
number of computations on a path, it can be the source of superfluous register
pressure, which is a major problem in practice. The secondary goal of code
motion therefore is to avoid any unnecessary motions of computations while
maintaining computational optimality. This is illustrated in Figure 1.7 for
the running example of Figure 1.3.

Like the program of Figure 1.6, it is computationally optimal. However,
computations are only moved, if it is profitable: the computations of a+ b at
nodes 3 and 17, which cannot be moved with run-time gain, are not touched
at all. The problem of unnecessary code motions is addressed by the crite-
rion of lifetime optimality. Intuitively, a computationally optimal code mo-
tion transformation is lifetime optimal , if the lifetimes of temporaries cannot
be reduced any further by means of computationally optimal code motion.
Intuitively, this means that in any other program resulting from a compu-
tationally optimal code motion transformation, the lifetimes of temporaries
are at least as long as in the lifetime optimal one. The central idea to achieve
lifetime optimality is to place computations

– as late as possible, while maintaining computational optimality.

The “as-late-as-possible” placing strategy transforms computationally opti-
mal programs into a unique lifetime optimal program. This is an important
difference to computational optimality. Whereas computationally optimal re-
sults can usually be achieved by several transformations, lifetime optimality
is achieved by a single transformation only.

Figures 1.8 and 1.9 illustrate the lifetime ranges of the temporary h for
the programs of Figures 1.6 and 1.7, respectively.



Prologue XV

3

h

h

a := c

h := a+b

h

h := a+b

h

h

y := 

x := 

y := 

z := x := 

1

2

5

6 7

98

10 11 12 13

14 15

16 17

18

4

Fig. 1.6. A computationally optimal program

Summarizing, the “as-early-as-possible” code motion transformation of
Figure 1.6 moves computations as far as possible in order to achieve compu-
tationally optimal results; the “as-late-as-possible” code motion transforma-
tion of Figure 1.7 moves computations only as far as necessary. Therefore,
we call the first transformation the busy code motion transformation and the
second one the lazy code motion transformation, or for short the BCM - and
LCM -transformation.

In this monograph, we will show how to construct intraprocedural and in-
terprocedural program optimizations like the BCM - and LCM -transformation
systematically. However, we also demonstrate that usually essential differ-
ences have to be taken into account when extending intraprocedural optimiza-
tions interprocedurally. We illustrate this by developing the interprocedural
counterparts of the BCM - and LCM -transformation for programs with re-
cursive procedures, global, local, and external variables, value, reference and
procedure parameters. We show that interprocedurally computationally and



XVI Prologue

3

h

a := c

hy := 

z := x := a+b

1

2

5

6 7

98

10 11 12 13

14

16 17

18

4x := a+b

:= a+bh

15 h := a+b
hy := 

Fig. 1.7. The computationally and lifetime optimal program

lifetime optimal results are in general impossible. Therefore, we propose a
natural constraint which is sufficient to meet both criteria for a large class
of programs. The resulting algorithms are unique in achieving interproce-
durally computationally and lifetime optimal results for this program class.
Their power is illustrated by a complex example in Section 10.6. Additionally,
a detailed account of the example considered in the prologue for illustrating
the intraprocedural versions of busy and lazy code motion can be found in
Section 3.5.

Acknowledgements

I am greatly indebted to many people, in particular, my academic teachers,
colleagues, friends, and parents, who contributed in various, quite different



Prologue XVII

h

h

a := c

h

h

h

y := 

y := 

z := x := 

h := a+b
hx := 

1

2

3 4

5

6 7

8

11

14

9

12

15

16

18

17

10 13

:= a+b

Fig. 1.8. Lifetime ranges after the BCM -transformation

ways to the origin of this monograph, and I wish to express my deepest
gratitude to all of them.

Both I and my research, and as a consequence the present monograph,
owe a lot to my academic teachers and my colleagues at Kiel and Passau
University, above all to Hans Langmaack and to Bernhard Steffen. Professor
Langmaack introduced me to the foundations of computer science and the
specifics of compiler construction from the very beginnings of my studies,
and later on I conducted my research for the doctoral dissertation underlying
this monograph as a member of his research group. I am very grateful for
the valuable and inspiring advice he gave, for his constant motivation and
support. These thanks belong to the same extent to Professor Steffen. It was
Bernhard who aroused my interest for the theory of abstract interpretation
and its application to program optimization, the topic of this monograph,
and also the general theme of in the meantime more than 10 years of most
intensive, enjoyable, and fruitful collaboration going far beyond the joint
publications we accomplished over the years. In particular, I would like to



XVIII Prologue

h

x := a+b

a := c

:= a+bh

x := a+b

h

z := 

y := 

y := 

h

:= a+b
h

1

2

3 4

5

6 7

8

1110

14 15

12

9

13

1716

18

Fig. 1.9. Lifetime ranges after the LCM -transformation

thank Bernhard for writing the foreword to this monograph. Moreover, I am
also very grateful to Oliver Rüthing, my close colleague at Kiel University,
and collaborator on several joint publications in the field of program analysis
and optimization. Not just because we shared an office, Oliver accompanied
the development of my doctoral dissertation at very close range, and I would
like to thank him cordially for many discussions on technical and nontechnical
topics, and invaluable comments, which helped improving it.

I would also like to thank Dhananjay M. Dhamdhere, Rajiv Gupta, Flem-
ming Nielson, Robert Paige, Thomas Reps, Barry K. Rosen, and F. Kenneth
Zadeck for many stimulating discussions, mostly during conferences and Pro-
fessor Nielson’s guest professorship at Kiel University. I am also grateful to
Hardi Hungar for his hints on recent references to decidability and complex-
ity results concerning formal reachability, and to Thomas Noll and Gerald
Lüttgen for their careful proof-reading of a preliminary version of this mono-
graph. My special thanks belong to Reinhard Wilhelm for taking over the
third report on the underlying thesis.



Prologue XIX

Moreover, I greatly acknowledge the financial support of the Deutsche
Forschungsgemeinschaft for providing me a research fellowship at Kiel Uni-
versity for several years, and also its generous support for joining several
conferences, in particular, the ACM SIGPLAN’92 Conference on Program-
ming Languages Design and Implementation in San Francisco, where the
intraprocedural version of the lazy code motion transformation considered as
a running example in this monograph was originally presented. Without this
support, conducting my research would have been much more difficult.

I am also especially grateful to Gerhard Goos, editor-in-chief of the se-
ries of Lecture Notes in Computer Science, and an anonymous referee for
reviewing my doctoral dissertation for publication in this series. I greatly
acknowledge their helpful comments and suggestions for improving the cur-
rent presentation. Last but not least, I would cordially like to thank Alfred
Hofmann at Springer-Verlag for the smooth and competent cooperation, his
assistance and thoroughness in publishing this monograph, and particularly
for his patience in awaiting the final version of the manuscript.

My deepest gratitude, finally, belongs to my parents for their continuous
encouragement, support, and love.

Passau, May 1998 Jens Knoop


