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The present book apparently falls outside of the scope of the LNCS series:
the theory of dynamical systems is mainly used for systems defined by, say,
differential equations, and very little for programs. Yet, to consider programs
as dynamical systems sheds light at least on the relationship between discrete-
time systems and continuous-time ones; this is an important issue in the area
of hybrid systems, where control engineers and software designers learned to
work hand in hand.

As a matter of fact, program traces constitute time-to-state functions,
and programs which define sets of traces characterize reactive systems as
used in industry and services. Quite similarly, differential systems define sets
of time-to-state functions, and they serve in many disciplines, e.g. physics,
engineering, biology, and economics. Thus, we must relate programs as well
as differential equations to dynamical systems.

The concepts of invariance and attraction are central to the understand-
ing of dynamical systems. In the case of programs, we use the quite similar
notions of invariance, viz. safety, and reachability, viz. termination or liveness;
reachability amounts to finite-time attraction and weakest preconditions de-
termine largest basins of reachability. Accordingly, the basic programming
concepts of fairness, fault-tolerance and self-stabilization correspond, in the
case of dynamical systems, to recurrence (repeated return to desired states),
structural stability (return to desired dynamics after system perturbation),
and absorption (return to a desired invariant after state perturbation).

Linear dynamical systems are usually analyzed in terms of analytical ex-
pressions which provide explicit solutions for simple differential or difference
equations. In the case of nonlinear dynamical systems, exact solutions cannot
be obtained in general, and the qualitative analysis is then carried out on the
system specifications themselves, viz. on differential equations. For instance,
attraction is proven using an energy-like function: the successive dynamical
states are abstracted to decreasing non-negative reals. Also, the qualitative
analysis of concrete dynamics can be reduced to that of symbolic ones, in
which each state is a symbol abstracting a set of concrete states; this shows
discrete dynamics can serve as qualitative abstractions of continuous ones.

Similarly to nonlinear systems, programs in general cannot be understood
in terms of analytical solutions. Weakest preconditions often become too com-
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plex, and practical reasoning methods apply on the programs themselves. For
example, invariance is checked by structural induction, and termination is
verified using an energy-like function from the successive dynamical states
to decreasing non-negative integers. Moreover, the verification of a concrete
program, very much as in the case of a concrete nonlinear dynamical system,
is better carried out in terms of an abstract, simpler one. This paradigm of
abstraction underlies many useful techniques in mathematics as well as in
computing; let us recall automata simulation, data representation, abstract
interpretation, and time abstraction.

Interestingly enough, the mathematical theory of dynamical systems not
only supports abstraction-based methods, e.g. symbolic dynamics, but also
introduces basic compositional techniques such as sequential and iterative
composition. What could then computing science contribute to that theory?
The answer is clear: scaling up. Actually, the central results in the classical
theory of dynamical systems concern single-level individual systems. For us,
the main challenge is to design systems for many complementary goals and
at various abstraction levels. To this end, we intensively use the principles
of modular composition and stepwise refinement. The same approach could
give rise to possible original contributions of computing science in the area of
dynamical systems. Indeed, the present book shows how to construct complex
dynamics by a systematic composition of simple ones, and thus provides a
roadmap to compositional design techniques for scaled-up dynamical systems.

Programming theory has taken great advantage of logic and algebra. It
should similarly benefit from the theory of dynamical systems; this synergy
would entail a common scientific platform for system engineering at large,
including software engineering. Examples of such cross-fertilization already
exist. Discrete-event control systems and hybrid systems, combining contin-
uous and discrete time, are specified, analyzed, and synthesized using finite-
state automata. Synchronization of dynamics provides a means of secure com-
munication. Emergent computations can be implemented by cellular neural
networks. Distributed dynamics help to analyze agent-based systems.

The nice matching between dynamics and computational intuitions ex-
plains the success of automata-based requirements, dynamics-based archi-
tectures, state-based specifications, object-oriented systems, proof dynam-
ics, and design-process models. At each abstraction level, dynamics can be
specified at will using programs, automata, logic, algebra, or calculus. For
many-sided and multi-level systems such as the web or a house, the crucial
issues are the choice of the right level of dynamics, the interaction of internal
dynamics with partially defined external ones, and the scaling-up of state-,
control- and time-refinements.

The author must be thanked warmly for providing us with many stimu-
lating ideas on these attractive themes.
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State-transition systems model machines, programs, and specifications [20,
23, 284, 329], but also the growth and decline of ant populations, financial
markets, diseases and crystals [22, 35, 178, 209, 279]. In the last decade,
the growing use of digital controllers in various environments has entailed
the convergence of control theory and real-time systems toward hybrid sys-
tems [16] by combining both discrete-event facets of reality with Nature’s
continuous-time aspects. The computing scientist and the mathematician
have re-discovered each other. Indeed, in the late sixties, the programming
language Simula, “father” of modern object-oriented languages, had already
been specifically designed to model dynamical systems [76].

Today, the importance of computer-based systems in banks, telecommu-
nication systems, TVs, planes and cars results in larger and increasingly
complex models. Two techniques had to be developed and are now fruitfully
used to keep analytic and synthetic processes feasible: composition and ab-
straction. A compositional approach builds systems by composing subsystems
that are smaller and more easily understood or built. Abstraction simplifies
unimportant matters and puts the emphasis on crucial parameters of systems.

In order to deal with the complexity of some state-transition systems and
to better understand complex or chaotic phenomena emerging out of the
behavior of some dynamical systems, the aim of this monograph is to present
first steps toward the integrated study of composition and abstraction in
dynamical systems defined by iterated relations.

The main insights and results of this work concern a structural form of
complexity obtained by composition of simple interacting systems presenting
opposed attracting behaviors. This complexity expresses itself in the evolu-
tion of composed systems, i.e., their dynamics, and in the relations between
their initial and final states, i.e., the computations they realize. The theoret-
ical results presented in the monograph are then validated by the analysis
of dynamical and computational properties of low-dimensional prototypes of
chaotic systems (e.g. Smale horseshoe map, Cantor relation, logistic map),
high-dimensional spatiotemporally complex systems (e.g. cellular automata),
and formal systems (e.g. paperfoldings, Turing machines).

Acknowledgements. This monograph is a revision of my PhD thesis which was
completed at the Université catholique de Louvain (Belgium) in March 96.
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I had a dream.
I was there, under the sun,

Waiting for nothing, for happiness.
Quelque chose attira mon attention.

Etait-ce cet oiseau qui volait vers moi ?
Il y avait tant de monde que j’avais peine à distinguer

D’où venait cette douce magie qui m’enrobait.
Puis des notes, une musique sublime, se dévoilèrent,

Et tu apparus, Vénus, d’un océan de joie,
Enivrant de ta douceur bleue le ciel et tous ses astres.
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