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Vector Algebra

1.1 Vectors and scalars

This book is concerned with the mathematical description of physical quanti-
ties. These physical quantities include vectors and scalars, which are defined
below.

1.1.1 Definition of a vector and a scalar

A vector is a physical quantity which has both magnitude and direction. There
are many examples of such quantities, including velocity, force and electric field.
A scalar is a physical quantity which has magnitude only. Examples of scalars
include mass, temperature and pressure.

In this book, vectors will be written in bold italic type (for example, u is a
vector) while scalar quantities will be written in plain italic type (for example,
a is a scalar). There are two other commonly used ways of denoting vectors
which are more convenient when writing by hand: an arrow over the symbol
(@) or a line under the symbol ().

Vectors can be represented diagrammatically by a line with an arrow at the
end, as shown in Figure 1.1. The length of the line shows the magnitude of the
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vector and the arrow indicates its direction. If the vector has magnitude one,
it is said to be a unit vector. Two vectors are said to be equal if they have the
same magnitude and the same direction.

Fig. 1.1. Representation of a vector.

Example 1.1

Classify the following quantities according to whether they are vectors or
scalars: energy, electric charge, electric current.

Energy and electric charge are scalars since there is no direction associated
with them. Electric current is a vector because it flows in a particular direction.

1.1.2 Addition of vectors

Two vector quantities can be added together by the ‘triangle rule’ as shown
in Figure 1.2. The vector @ + b is obtained by drawing the vector a and then
drawing the vector b starting from the arrow at the end of a.

Fig. 1.2. Addition of vectors.

The vector —a is defined as the vector with magnitude equal to that of a
but pointing in the opposite direction.
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By adding @ and —a we obtain the zero vector, 0. This has magnitude zero
and so does not have a direction; nevertheless it is sensible to regard 0 as a
vector.

1.1.3 Components of a vector

Vectors are often written using a Cartesian coordinate system with axes z,y, 2.
Such a system is usually assumed to be right-handed, which means that a screw
rotated from the z-axis to the y-axis would move in the direction of the z-axis.
Alternatively, if the thumb of the right hand points in the z direction and the
first finger in the y direction, then the second finger points in the z direction.

Suppose that a vector a is drawn in a Cartesian coordinate system and
extends from the point (z1, y1, 21) to the point (z2, y2, 22), as shown in
Figure 1.3. Then the components of the vector are defined to be the three
numbers a; = T2 — 1, a3 = ¥2 — ¥1 and a3 = 22 — z1. The vector can then be
written in the form a = (a1, a2, a3).

//El'yz’ ZZ)

a
(x,,%,2,)

Fig. 1.3. The components of the vector a are (z2 — 1,y2 — Y1, 22 — 21)-

By introducing three unit vectors e;, e; and ez, which point along the
coordinate axes z, y and z respectively, the vector can also be written in the
form a = aje; + azes + azes. Using this form, the sum of the two vectors a
and bis a+b=ae; +aze; +azes +bje; +brez + bse; = (az +b1)61 + ((12 +
by)es + (a3 + bs)es. It follows that vectors can be added simply by adding their
components, so that the vector equation ¢ = a + b is equivalent to the three
equations ¢; = a; + by, c2 = az + ba, c3 = a3 + bs. '
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The magnitude of the vector is written |a|. It can be deduced from Pythago-
ras’s theorem that the magnitude of the vector can be written in terms of its
components as |a| = v/a? + a2 + a2.

The position of a point in space (z,y, z) defines a vector which points from
the origin of the coordinate system to the point (z,y, z). This vector is called
the position vector of the point, and is usually denoted by the symbol r, with
components given by r = (z,y, z).

Example 1.2

The vectors @ and b are defined by a = (1,1,1), b= (1,2,2). Find the magni-
tudes of @ and b, and find the vectors @ + b and a — b.

The magnitude of the vector a is |a| = v/12 + 12 + 12 = v/3. The magnitude
of bis |b] = V12 + 22 + 22 = 3. The vector a+ b is (1,1,1) +(1,2,2) = 2,3,3)
and @ — b= (0,-1,-1). ’

1.2 Dot product

The dot product or scalar product of two vectors is a scalar quantity. It is written
@ - b and is defined as the product of the magnitudes of the two vectors and
the cosine of the angle between them:

a-b =|a||b|cosé. (1.1)

A number of properties of the dot product follow from this definition:

¢ The dot product is commutative, i.e. a-b=b-a.

e If the two vectors @ and b are perpendicular (orthogonal) then a - b = 0.

e Conversely, if @ - b = 0 then either the two vectors a and b are perpendicular
or one of the vectors is the zero vector.

*a-a=|aj’

e Since the quantity |b| cosf represents the component of the vector b in the
direction of the vector a, the scalar a - b can be thought of as the magnitude
of @ multiplied by the component of b in the direction of a (see Figure 1.4).

¢ The dot product is distributive over addition, i.e. a - (b+c)=a-b+a-c.
This follows geometrically from the fact that the component of b+ ¢ in the
direction of a is the same as the component of b in the direction of a plus
the component of ¢ in the direction of a (see Figure 1.5).
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Fig. 1.4. The component of b in the direction of a is |b| cos 6.

b+c

[] []

a

Y

Fig. 1.5. Geometrical demonstration that the dot product is distributive over addi-
tion.
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A formula for the dot product @ - b in terms of the components of the two
vectors @ and b can be derived from the above properties. Considering first
the unit vectors e;, e; and es, it follows from the fact that these vectors have
magnitude 1 and are orthogonal to each other that

erreg=1,e-ea=1,e3-e3=1, e -ex=0,e3-e3=0, e3-e; =0.

The dot product of a and b is therefore

a-b = (are; +aze; +aze3) - (bre1 + boes + bze3)
= arbier - ey + azhoes - €3 + azbses - e3
= a1b; +azb; + azbs. (12)
Example 1.3

Find the dot product of the vectors (1,1,2) and (2,3,2).
(1,1,2)-(2,3,2) =1x2+1x3+2x2=09.
Example 1.4

For what value of ¢ are the vectors (c,1,1) and (-1,2,0) perpendicular?
They are perpendicular when their dot product is zero. The dot product is
—c+ 2+ 0 so the vectors are perpendicular if ¢ = 2.

Example 1.5

Show that a triangle inscribed in a circle is right-angled if one of the sides of
the triangle is a diameter of the circle.

a a

Fig. 1.6. Geometrical construction to show that « is a right angle.

Introduce two vectors a and b as shown in Figure 1.6. Since these two
vectors are both along radii of the circle they are of equal magnitude. The two
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sides ¢ and d of the triangle are then given by ¢ = a+b and d = a —b. The dot
product of these two vectorsis ¢-d = (a+b)-(a—b) = |a|>—a-b+b-a—|bJ> = 0.
Since the dot product is zero the vectors are perpendicular, so the angle a is a
right angle. This is just one of many geometrical results that can be obtained
using vector methods.

1.2.1 Applications of the dot product

Work done against a force

Suppose that a constant force F' acts on a body and that the body is moved a
distance d. Then the work done against the force is given by the magnitude of
the force times the distance moved in the direction opposite to the force; this
is simply —F - d (Figure 1.7).

Y

d

Fig. 1.7. The work done against a force F' when an object is moved a distance d is
—F-d.

Equation of a plane

Consider a two-dimensional plane in three-dimensional space (Figure 1.8). Let
T be the position vector of any point in the plane, and let @ be a vector
perpendicular to the plane. The condition for a point with position vector r to
lie in the plane is that the component of r in the direction of a is equal to the
perpendicular distance p from the origin to the plane. The general form of the
equation of a plane is therefore '

T - a = constant.

An alternative way to write this is in terms of components. Writing r = (z, y, 2)
and a = (a1, a3, a3), the equation of a plane becomes

a1T + axy + agzz = constant. (1.3)



8 Vector Calculus
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Fig. 1.8. The equation of a plane is r - @ = constant.

EXERCISES

1.1 Classify the following quantities according to whether they are vec-
tors or scalars: density, magnetic field strength, power, momentum,
angular momentum, acceleration.

1.2 Ifa = (2,0,3) and b = (1,0, -1), find |al, |b],a+b,a—band a-b.

: What is the angle between the vectors a and b?

13 If u = (1,2,2) and v = (—6,2,3), find the component of u in the
direction of v and the component of v in the direction of u.

1.4 Find the equation of the plane that is perpendicular to the vector
(1,1,-1) and passes through the point z =1,y =2, z = 1.

1.5 Use vector methods to show that the diagonals of a rhombus are
perpendicular.

1.6 What is the angle between any two diagonals of a cube?

1.7 Use vectors to show that for any triangle, the three lines drawn from

each vertex to the midpoint of the opposite side all pass through the
same point.
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1.3 Cross product

The cross product or vector product of two vectors is a vector quantity, written
a x b. Since it is a vector, its definition must specify both its magnitude and
direction. The magnitude of @ x b is |a||b| sin §, where 8 is the angle between the
two vectors a and b. The direction of a x b is perpendicular to both @ and b in a
right-handed sense, i.e. a right-handed screw rotated from a towards b moves in
the direction of @ x b (Figure 1.9). We may therefore write a xb = |a||b| sinf u,
where u is a unit vector perpendicular to @ and b in a right-handed sense.

aXxb

Y

a

Fig. 1.9. The cross product of @ and b is perpendicular to @ and b, in a right-handed
sense.

The cross product has the following properties:

o The cross product is not commutative. Because of the right-hand rule, a x b
and b x a point in opposite directions, so @ x b = —b x a.

o If the two vectors @ and b are parallel then a x b = 0.

e axa=0.

e The magnitude of the cross product of @ and b is the area of the parallelogram
made by the two vectors a and b (Figure 1.10). Similarly the area of the
triangle made by a and b is |a X b|/2.

e The cross product of @ and b only depends on the component of b perpen-
dicular to a. This is apparent from Figure 1.10 since the component of b
perpendicular to a is |b|sin§.

o The cross product is distributive over addition, i.e. a x (b+¢) = axb+axc.
This is demonstrated geometrically in Figure 1.11, where the vector a points
into the page. The vectors b, ¢ and b + ¢ do not necessarily lie in the page,
but from the previous point the cross products of these vectors with a only
depend on their projections onto the page. The effect of taking the cross
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a

Fig. 1.10. The area of the parallelogram is the length of its base, |a|, multiplied by
its height, |b|sin 6. : '

product with @ on any vector is to project it onto the page, rotate through
/2 clockwise and then multiply by |a|. Thus the triangle made by the vectors
b, ¢ and b + ¢ becomes rotated and scaled as in Figure 1.11 but remains a
triangle.

b+c
axb
axc

aXx(b+c)

Fig. 1.11. Geometrical demonstration that the cross product is distributive over
addition. The vector @ points into the page.

A formula for the cross product a x b in terms of the components of the two
vectors @ and b can be derived in a similar manner to that carried out for the
dot product. Consider first e; x ey. Since these two vectors have magnitude
1 and are perpendicular, sinf = 1 and the magnitude of e; x e is 1. The
direction of e; X e, is perpendicular to both e; and e, in a right-handed sense,
SO e; X ez = e3.

It follows that the unit vectors e;, e; and ez obey

e;xe; =0, exxe; =0, esxes =0, e; Xey; =e3, exXe3 =e;, €3Xe; = €.

The cross product of a and b is therefore
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axb = (a1e1+azez +azes) x (bre; + baes + bses)
= ajbre; X ey +arbse; X €3 +azb es X €1
+agbz ez X es + azb; e3 x e; + azby ez x ey
= (a2b3 — azbs)e; + (asby — arbs)es + (a1 — azb;)es. (1.4)

This can also be written as the determinant of a 3 x 3 matrix as follows:

€ €2 e3
axb=|a; ay a3
by b2 b3

Example 1.6

Find the cross product of the vectors (1,3,0) and (2,-1,1).
(1,3,0) x (2,-1,1) =(3-0,0-1,-1—6) = (3,-1,-7).

Example 1.7

Find a unit vector which is perpendicular to both (1,0,1) and (0,1, 1).

A perpendicular vector is (1,0,1) x (0,1,1) = (-=1,-1,1). To make this a
unit vector we must divide by its magnitude, which is v/3, so the unit vector
perpendicular to (1,0,1) and (0,1,1) is (-1, -1,1)//3.

Example 1.8

What is the area of the triangle which has its vertices at the points P = (1,1, 1),
Q=1(2,3,3)and R=(4,1,2)?

First construct two vectors that make up two sides of the triangle. The
vector from P to Q is @ = (1,2,2) and the vector from P to R is b = (3,0, 1).
The cross product of these vectors is @ x b = (2,5, —6). The area of the triangle
is then |a x b|/2 = v/65/2 ~ 4.03.

1.3.1 Applications of the cross product

Solid body rotation

Suppose that a solid body is rotating steadily about an axis. What is the
velocity vector of a point within the body?

Consider a body rotating with angular velocity 2 (this means that in a
time ¢ the body rotates through an angle ¢ radians). Since there is a rotation
axis, a vector §2 can be defined, with magnitude |£2| = 2 and directed along
the rotation axis. Since this vector could point in either direction, the following
form of the right-hand rule is used to define the direction of §2: a screw rotating
in the same direction as the body moves in the direction of §2. Alternatively, if
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the fingers of the right hand point in the direction of the rotation, the thumb of
the right hand points in the direction of 2. This means that for a body which
is rotating to the right, 2 points upwards (Figure 1.12).

Fig. 1.12. Motion of a rotating body.

Now consider the motion of a point at a position vector r, which makes
an angle 6 with the rotation axis. The speed at which this point moves is {2d,
where d is the perpendicular distance from the point to the rotation axis. Since
d = |r|sin @ (Figure 1.12), the speed of motion is v = £2|r|sin 8. Note that this
is equal to |§2 x 7|. Now consider the direction of the motion. In Figure 1.12,
where both £2 and r lie in the plane of the page, the direction of motion is
into the page, perpendicular to both §2 and  and so in the direction of §2 x r.
Therefore the velocity vector of the point at 7 is

v=Nxr, (1.5)

since this vector has both the correct magnitude and the correct direction.

Equation of a straight line

The equation of a straight line can be written in terms of the cross product
as follows. Suppose that a is the position vector of a particular fixed point on
the line, and that u is a vector pointing along the line (Figure 1.13). Then any
point 7 on the line can be reached from the origin by travelling first along the
vector a onto the line and then some multiple of the vector u along the line:

r=a+ \u, (1.6)



1. Vector Algebra 13

where ) is a parameter. This is referred to as the parametric form of the equa-
tion of a line.

(0]

Fig. 1.13. The equation of a line is r = a + Au.

To obtain a form of (1.6) that does not involve the parameter A, the term
involving the vector u must be eliminated. This can be done by taking the
cross product of (1.6) with w. This gives 7 X u = a X u. Since the vector @ x u
is a constant, it can be relabelled b, giving the second form for the equation of
a straight line: :

rxu=b. 1.7

Physical applications of the cross product

There are many physical quantities that are defined in terms of the cross prod- '
uct. These include the following:

¢ A particle of mass m has position vector r and is moving with velocity v. Its
angular momentum about the origin is h = mr x v.

e A particle of mass m moves with velocity u in a frame which is rotating with
angular velocity §2. Due to the rotation, the particle experiences a sideways
force called the Coriolis force, F = 2mwu x §2. Since the Earth is rotating,
this force influences motion on the surface of the Earth. The effect deflects
particles to the right in the northern hemisphere and is strongest for motions
on large scales such as ocean currents and weather systems.

¢ A particle with electric charge ¢ moves with velocity v in the preseace of a
magnetic field B. This results in a force, called the Lorentz force, equal to
qv x B. This is the force which is responsible for the operation of an electric
motor.
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1.4 Scalar triple product

The scalar triple product of three vectors a, b and c is defined to be a - (b x c).
In fact the brackets here are unnecessary: (a - b) X ¢ is meaningless since (a - b)
is a scalar and so cannot be crossed with the vector ¢. Therefore the expression
a - b x cis well defined.

The formula for the scalar triple product in terms of the components of
the three vectors a, b and ¢ can be obtained using the formula for the cross
product (1.4):

a-bxc=abycs —aibzcy + azbzc; — azbicz + asbieca — asbacs. (18)

The scalar triple product has a number of properties, listed below. The first
four follow directly from (1.8).

e The dot and the cross can be interchanged:

a-bxec=axb-c.

The vectors a, b and ¢ can be permuted cyclically:

a-bxec=b-cxa=c-axb.

The scalar triple product can be written in the form of a determinant:

ay as as
a-bxc= by by b3
¢t €2 C3

If any two of the vectors are equal, the scalar triple product is zero.
Geometrically, the magnitude of the scalar triple product is the volume of

the three-dimensional object known as a parallelepiped formed by the three
~ vectors a, b and ¢ (Figure 1.14). This can be shown as follows. The area of the
parallelogram forming the base is |bx ¢|. The height is the vertical component
of @, which is the magnitude of the component of a in the direction of b x c.
This is |a - b x ¢|/|b x ¢|, so the volume is the area of the base multiplied by
the height, which is |a - b x ¢|. Similarly, the volume of the tetrahedron made
by the vectors @, b and c is |a - b x ¢|/6.

The scalar triple product of a, b and c is often written [a, b, ¢]. This notation
highlights the fact that the dot and the cross can be interchanged.
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Fig. 1.14. The volume of the object formed by the three vectors a, b and cis |a-bxc|.

Example 1.9

Find the scalar triple product of the vectors (1,2,1), (0,1,1) and (2,1,0).
First find the vector (0,1,1) x (2,1,0) = (-1,2,-2). Now dot this with
(1,2,1), giving the answer 1.

Example 1.10

Show that if three vectors lie in a plane, then their scalar triple product is zero.

If a, b and c lie in a plane, then the vector b x ¢ is perpendicular to the
plane and hence perpendicular to a. Since the dot product of perpendicular
vectors is always zero, it follows that a-bx ¢ =0.

Example 1.11

A particle with mass m-and electric charge ¢ moves in a uniform magnetic
field B. Given that the force F on the particle is F' = qv x B, where v is the
velocity of the particle, show that the particle moves at constant speed.

The equation of motion of the particle is written using Newton’s second
law, force equals mass times acceleration. The acceleration of the particle is
the rate of change of the velocity, written v, so the equation of motion is

qv X B=mwv.

Now taking the dot product of both sides of this equation with v, the scalar
triple product on the left-hand side gives zero since two of the vectors are equal.
Hence

. d d
0O=mv-v =ma(v-‘v)/2=ma (|”|2) /2,

so the speed of the particle, |v|, does not change with time.
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1.5 Vector triple product

The vector triple product of three vectors is @ x (b x c). The brackets are
important here, since a x (b x ¢) # (a x b) x ¢. Since only cross products are
involved, the result is a vector. An alternative expression for @ x (b x ¢) can
be obtained by writing out the components. Since

b x ¢ = (bacs — bzez)er + (bscr — bics)es + (bica — bacy)es,
the first component of @ x (b x c) is

[ax(bxc)i = ag(bics — brc1) — az(bser — bics)

b (0.262 + (1363) —-C1 (azbz + a3b3).

By adding and subtracting the quantity a;b;c;, this can be written
[a, X (b X C)]1 = b1(a1c1 + axcy + a363) - cl(albl + agbs + a3b3)
= bla-c-—cla.-b.

Similar equations hold for the second and third components, so the vector triple
product can be expanded as

ax(bxc)=(a-c)b-(a-b)e. (1.9)
From this result it also follows that

(@axb)xec=-cx(axb)=—(c-ba+(c-a)b. (1.10)

Example 1.12
Under what conditions are a x (b x c) and (a x b) x c equal?

By comparing (1.9) with (1.10), the two are equal if —(a - b)c = —(c- b)a.
This can alternatively be written b X (a x ¢) = 0.

Examplé 1.13

Find an alternative expression for (a x b) - (¢ x d).
Since the dot and cross can be interchanged in a scalar triple product,

(axbd)-(exd) = a-(bx(cxd))
= a ((b-d)c—(b-c)d)
(@a-c)b-d)—(a-d)(b-c).

Il
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1.6 Scalar fields and vector fields

A scalar or vector quantity is said be a field if it is a function of positidn.
An example of a scalar field is the temperature inside a room; in general the
temperature has a different value at different points in space, so the temperature
T is a function of position. This is indicated by writing T'(r), where 7 is the
position vector of a point in space, 7 = (z, ¥, z). Other examples of scalar fields
include pressure and density. An example of a vector field is the velocity of the
air within a room.

In general, a scalar field T is three-dimensional, i.e. it depends on all three
coordinates, T = T(z,y, z). Such fields are difficult to visualise. However, if
the scalar field only depends on two coordinates, T' = T(z,y), then it can be
visualised by sketching a contour plot. To do this, the line T'(z,y) = constant
is plotted for different values of the constant. For example, consider the scalar
field T(z,y) = #® + y2. The contour lines are the lines z? 4+ y*> = constant,
which are concentric circles centred at the origin, as shown in Figure 1.15(a).

T,/
K%x ;TN

Fig. 1.15. (a) Contours of the scalar field T'(z,y) = z° + y2. (b) The vector field
u(z,y) = (v, ). '

Vector fields in two dimensions can also be visualised by a sketch. In this
case the simplest procedure is to evaluate the vector field at a sequence of points
and draw vectors indicating the magnitude and direction of the vector field at
each point. An example of this procedure is the drawing of wind speeds and
directions on weather maps. For example, consider the vector field u(z,y) =
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(y,z). At the point (1,0), u = (0,1), so at this point a vector of magnitude 1
pointing in the y direction is drawn. Similarly, at (0,1), u = (1,0) and at (1, 1),
u = (1,1). By considering a few additional points, a sketch of the vector field
can be built up (Figure 1.15(b)).

Summary of Chapter 1

e A wvector is a physical quantity with magnitude and direction.

¢ A scalar is a physical quantity with magnitude only.

¢ In Cartesian coordinates a vector can be written in terms of its components
as either a = (a1,a3,a3) or a = a;€; + aze, + ages, where e, ez and e3 are
unit vectors along the z-, y- and z-axes respectively.

* The magnitude of the vector a is |a| = \/a} + a2 + a2.

¢ The dot product or scalar product of a and b is a scalar,

a-b=|a||b|cosf = a1b; + azb; + asbs.

This can also be thought of as |a| multiplied by the component of b in the
direction of a. Applications of the dot product include the work done when
moving an object acted on by a force and the equation of a plane.

e The cross product or vector product of @ and b is a vector, a x b, with

magnitude |a||b|sin 8, perpendicular to @ and b in a right-handed sense. In
component form,

axb= (a2b3 - a3b2)el + (a3b1 - albg)e-z + (a1b2 - azbl)eg.

The magnitude of @ x b is |a| multiplied by the component of b perpendicular
to a, which is the area of the parallelogram made by a and b. Applications
of the cross product include the equation of a straight line and the rotation
of a rigid body.

o The scalar triple productisa-bxc=axb-c=b-c x a.

® The vector triple productis a x (b x ¢) = (a- c)b — (a - b)c.

e A scalar or vector quantity is a field if it is a function of position.
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EXERCISES

1.8 Find the equation of the straight line which passes through the points
(1,1,1) and (2,3,5), (a) in parametric form; (b) in cross product
form.

1.9 Using vector methods, prove the sine rule,

sinA _sinB _sinC
a b ¢

(1.11)
and the cosine rule,
¢ =a® + b* — 2abcosC (1.12)

for the triangle with angles A, B, C and sides a, b, c in the figure
~ below.

1.10 (a) Show that the set of vectors and the operation of vector addition
form a group. (The set of objects a, b, ¢, ... and the operation x form
a group if the following four conditions are satisfied: (i) for any two
elements a and b, a x b is in the set; (ii) (axb) xc = ax (b*¢); (iii)
there is an element I obeying a xI = I xa = a; (iv) each element a
has an inverse a~! such that axa™ =a ' xa=1.)

(b) Do the set of vectors and the dot product form a group?

(c) Do the set of vectors and the cross product form a group?
1.11 Simplify the following expressions:

(a) |la x b)? + (a - b)%;

(b) @ x (b x (a x b));

(c) (@=b)-(b—c) x (c—a);

(d) (axb)-(bxc)x(cxa).

1.12 The vector = obeys the two equations -a = 1 and  x a = b, where
a and b are constant vectors. Solve these equations to find an ex-
pression for z in terms of @ and b. Give a geometrical interpretation
of this question.
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1.13 Find the equation of the line on which the two planes 7 -a =1 and
7 - b =1 meet.

1.14 (a) Express the vector a x b in the form aa + 8b + e, assuming
that the vectors a, b and ¢ are not coplanar.
(b) Hence find an expression for (a x b - ¢)? that does not involve
any cross products.
(c) Hence find the volume of a tetrahedron made from four equilat-
eral triangles with sides of length 1.

1.15 A particle of mass m at position r and moving with velocity v is
subject to a force F directed towards the origin, F = — f(r)r. Show
that the angular momentum vector h = mr x v is constant.

" 1.16 Sketch the scalar field T'(z,y) = 22 — v.

1.17 Sketch the vector field u(z,y) = (z + y, —x).



