
Preface and Introduction

The basic stochastic approximation algorithms introduced by Robbins and
Monro and by Kiefer and Wolfowitz in the early 1950s have been the subject
of an enormous literature, both theoretical and applied. This is due to the
large number of applications and the interesting theoretical issues in the
analysis of “dynamically defined” stochastic processes. The basic paradigm
is a stochastic difference equation such as θn+1 = θn+εnYn, where θn takes
its values in some Euclidean space, Yn is a random variable, and the “step
size” εn > 0 is small and might go to zero as n → ∞. In its simplest form,
θ is a parameter of a system, and the random vector Yn is a function of
“noise-corrupted” observations taken on the system when the parameter is
set to θn. One recursively adjusts the parameter so that some goal is met
asymptotically. This book is concerned with the qualitative and asymptotic
properties of such recursive algorithms in the diverse forms in which they
arise in applications. There are analogous continuous time algorithms, but
the conditions and proofs are generally very close to those for the discrete
time case.

The original work was motivated by the problem of finding a root of
a continuous function ḡ(θ), where the function is not known but the ex-
perimenter is able to take “noisy” measurements at any desired value of
θ. Recursive methods for root finding are common in classical numerical
analysis, and it is reasonable to expect that appropriate stochastic analogs
would also perform well.

In one classical example, θ is the level of dosage of a drug, and the
function ḡ(θ), assumed to be increasing with θ, is the probability of success
at dosage level θ. The level at which ḡ(θ) takes a given value v is sought.
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The probability of success is known only by experiment at whatever values
of θ are selected by the experimenter, with the experimental outcome being
either success or failure. Thus, the problem cannot be solved analytically.
One possible approach is to take a sufficient number of observations at
some fixed value of θ, so that a good estimate of the function value is
available, and then to move on. Since most such observations will be taken
at parameter values that are not close to the optimum, much effort might be
wasted in comparison with the stochastic approximation algorithm θn+1 =
θn + εn[v − observation at θn], where the parameter value moves (on the
average) in the correct direction after each observation. In another example,
we wish to minimize a real-valued continuously differentiable function f(·)
of θ. Here, θn is the nth estimate of the minimum, and Yn is a noisy
estimate of the negative of the derivative of f(·) at θn, perhaps obtained
by a Monte Carlo procedure. The algorithms are frequently constrained in
that the iterates θn are projected back to some set H if they ever leave
it. The mathematical paradigms have posed substantial challenges in the
asymptotic analysis of recursively defined stochastic processes.

A major insight of Robbins and Monro was that, if the step sizes in
the parameter updates are allowed to go to zero in an appropriate way as
n → ∞, then there is an implicit averaging that eliminates the effects of the
noise in the long run. An excellent survey of developments up to about the
mid 1960s can be found in the book by Wasan [250]. More recent material
can be found in [16, 48, 57, 67, 135, 225]. The book [192] deals with many
of the issues involved in stochastic optimization in general.

In recent years, algorithms of the stochastic approximation type have
found applications in new and diverse areas, and new techniques have been
developed for proofs of convergence and rate of convergence. The actual
and potential applications in signal processing and communications have
exploded. Indeed, whether or not they are called stochastic approximations,
such algorithms occur frequently in practical systems for the purposes of
noise or interference cancellation, the optimization of “post processing”
or “equalization” filters in time varying communication channels, adaptive
antenna systems, adaptive power control in wireless communications, and
many related applications. In these applications, the step size is often a
small constant εn = ε, or it might be random. The underlying processes
are often nonstationary and the optimal value of θ can change with time.
Then one keeps εn strictly away from zero in order to allow “tracking.” Such
tracking applications lead to new problems in the asymptotic analysis (e.g.,
when εn are adjusted adaptively); one wishes to estimate the tracking errors
and their dependence on the structure of the algorithm.

New challenges have arisen in applications to adaptive control. There
has been a resurgence of interest in general “learning” algorithms, moti-
vated by the training problem in artificial neural networks [7, 51, 97], the
on-line learning of optimal strategies in very high-dimensional Markov de-
cision processes [113, 174, 221, 252] with unknown transition probabilities,
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in learning automata [155], recursive games [11], convergence in sequential
decision problems in economics [175], and related areas. The actual recur-
sive forms of the algorithms in many such applications are of the stochastic
approximation type. Owing to the types of simulation methods used, the
“noise” might be “pseudorandom” [184], rather than random.

Methods such as infinitesimal perturbation analysis [101] for the estima-
tion of the pathwise derivatives of complex discrete event systems enlarge
the possibilities for the recursive on-line optimization of many systems that
arise in communications or manufacturing. The appropriate algorithms are
often of the stochastic approximation type and the criterion to be mini-
mized is often the average cost per unit time over the infinite time interval.

Iterate and observation averaging methods [6, 149, 216, 195, 267, 268,
273], which yield nearly optimal algorithms under broad conditions, have
been developed. The iterate averaging effectively adds an additional time
scale to the algorithm. Decentralized or asynchronous algorithms introduce
new difficulties for analysis. Consider, for example, a problem where com-
putation is split among several processors, operating and transmitting data
to one another asynchronously. Such algorithms are only beginning to come
into prominence, due to both the developments of decentralized processing
and applications where each of several locations might control or adjust
“local variables,” but where the criterion of concern is global.

Despite their successes, the classical methods are not adequate for many
of the algorithms that arise in such applications. Some of the reasons con-
cern the greater flexibility desired for the step sizes, more complicated
dependence properties of the noise and iterate processes, the types of
constraints that might occur, ergodic cost functions, possibly additional
time scales, nonstationarity and issues of tracking for time-varying sys-
tems, data-flow problems in the decentralized algorithm, iterate-averaging
algorithms, desired stronger rate of convergence results, and so forth.

Much modern analysis of the algorithms uses the so-called ODE (ordi-
nary differential equation) method introduced by Ljung [164] and exten-
sively developed by Kushner and coworkers [123, 135, 142] to cover quite
general noise processes and constraints by the use of weak ergodic or aver-
aging conditions. The main idea is to show that, asymptotically, the noise
effects average out so that the asymptotic behavior is determined effec-
tively by that of a “mean” ODE. The usefulness of the technique stems
from the fact that the ODE is obtained by a “local analysis,” where the
dynamical term of the ODE at parameter value θ is obtained by averaging
the Yn as though the parameter were fixed at θ. Constraints, complicated
state dependent noise processes, discontinuities, and many other difficulties
can be handled. Depending on the application, the ODE might be replaced
by a constrained (projected) ODE or a differential inclusion. Owing to its
versatility and naturalness, the ODE method has become a fundamental
technique in the current toolbox, and its full power will be apparent from
the results in this book.
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The first three chapters describe applications and serve to motivate the
algorithmic forms, assumptions, and theorems to follow. Chapter 1 pro-
vides the general motivation underlying stochastic approximation and de-
scribes various classical examples. Modifications of the algorithms due to
robustness concerns, improvements based on iterate or observation aver-
aging methods, variance reduction, and other modeling issues are also in-
troduced. A Lagrangian algorithm for constrained optimization with noise
corrupted observations on both the value function and the constraints is
outlined. Chapter 2 contains more advanced examples, each of which is
typical of a large class of current interest: animal adaptation models, para-
metric optimization of Markov chain control problems, the so-called Q-
learning, artificial neural networks, and learning in repeated games. The
concept of state-dependent noise, which plays a large role in applications,
is introduced. The optimization of discrete event systems is introduced by
the application of infinitesimal perturbation analysis to the optimization
of the performance of a queue with an ergodic cost criterion. The math-
ematical and modeling issues raised in this example are typical of many
of the optimization problems in discrete event systems or where ergodic
cost criteria are involved. Chapter 3 describes some applications arising in
adaptive control, signal processing, and communication theory, areas that
are major users of stochastic approximation algorithms. An algorithm for
tracking time varying parameters is described, as well as applications to
problems arising in wireless communications with randomly time varying
channels. Some of the mathematical results that will be needed in the book
are collected in Chapter 4.

The book also develops “stability” and combined “stability–ODE” meth-
ods for unconstrained problems. Nevertheless, a large part of the work
concerns constrained algorithms, because constraints are generally present
either explicitly or implicitly. For example, in the queue optimization prob-
lem of Chapter 2, the parameter to be selected controls the service rate.
What is to be done if the service rate at some iteration is considerably
larger than any possible practical value? Either there is a problem with the
model or the chosen step sizes, or some bizarre random numbers appeared.
Furthermore, in practice the “physics” of models at large parameter values
are often poorly known or inconvenient to model, so that whatever “conve-
nient mathematical assumptions” are made, they might be meaningless at
large state values. No matter what the cause is, one would normally alter
the unconstrained algorithm if the parameter θ took on excessive values.
The simplest alteration is truncation. Of course, in addition to truncation,
a practical algorithm would have other safeguards to ensure robustness
against “bad” noise or inappropriate step sizes, etc. It has been some-
what traditional to allow the iterates to be unbounded and to use stability
methods to prove that they do, in fact, converge. This approach still has
its place and is dealt with here. Indeed, one might even alter the dynamics
by introducing “soft” constraints, which have the desired stabilizing effect.
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However, allowing unbounded iterates seems to be of greater mathematical
than practical interest. Owing to the interest in the constrained algorithm,
the “constrained ODE” is also discussed in Chapter 4. The chapter con-
tains a brief discussion of stochastic stability and the perturbed stochastic
Liapunov function, which play an essential role in the asymptotic analysis.

The first convergence results appear in Chapter 5, which deals with the
classical case where the Yn can be written as the sum of a conditional mean
gn(θn) and a noise term, which is a “martingale difference.” The basic
techniques of the ODE method are introduced, both with and without
constraints. It is shown that, under reasonable conditions on the noise,
there will be convergence with probability one to a “stationary point” or
“limit trajectory” of the mean ODE for step-size sequences that decrease
at least as fast as αn/ log n, where αn → 0. If the limit trajectory of the
ODE is not concentrated at a single point, then the asymptotic path of the
stochastic approximation is concentrated on a limit or invariant set of the
ODE that is also “chain recurrent” [9, 89]. Equality constrained problems
are included in the basic setup.

Much of the analysis is based on interpolated processes. The iterates
{θn} are interpolated into a continuous time process with interpolation
intervals {εn}. The asymptotics (large n) of the iterate sequence are also
the asymptotics (large t) of this interpolated sequence. It is the paths of
the interpolated process that are approximated by the paths of the ODE.

If there are no constraints, then a stability method is used to show that
the iterate sequence is recurrent. From this point on, the proofs are a special
case of those for the constrained problem. As an illustration of the meth-
ods, convergence is proved for an animal learning example (where the step
sizes are random, depending on the actual history) and a pattern classifica-
tion problem. In the minimization of convex functions, the subdifferential
replaces the derivative, and the ODE becomes a differential inclusion, but
the convergence proofs carry over.

Chapter 6 treats probability one convergence with correlated noise se-
quences. The development is based on the general “compactness methods”
of [135]. The assumptions on the noise sequence are intuitively reasonable
and are implied by (but weaker than) strong laws of large numbers. In some
cases, they are both necessary and sufficient for convergence. The way the
conditions are formulated allows us to use simple and classical compact-
ness methods to derive the mean ODE and to show that its asymptotics
characterize that of the algorithm. Stability methods for the unconstrained
problem and the generalization of the ODE to a differential inclusion are
discussed. The methods of large deviations theory provide an alternative
approach to proving convergence under weak conditions, and some simple
results are presented.

In Chapters 7 and 8, we work with another type of convergence, called
weak convergence, since it is based on the theory of weak convergence of
a sequence of probability measures and is weaker than convergence with
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probability one. It is actually much easier to use in that convergence can
be proved under weaker and more easily verifiable conditions and gener-
ally with substantially less effort. The approach yields virtually the same
information on the asymptotic behavior. The weak convergence methods
have considerable theoretical and modeling advantages when dealing with
complex problems involving correlated noise, state dependent noise, decen-
tralized or asynchronous algorithms, and discontinuities in the algorithm.
It will be seen that the conditions are often close to minimal. Only a very
elementary part of the theory of weak convergence of probability measures
will be needed; this is covered in the second part of Chapter 7. The tech-
niques introduced are of considerable importance beyond the needs of the
book, since they are a foundation of the theory of approximation of random
processes and limit theorems for sequences of random processes.

When one considers how stochastic approximation algorithms are used
in applications, the fact of ultimate convergence with probability one can
be misleading. Algorithms do not continue on to infinity, particularly when
εn → 0. There is always a stopping rule that tells us when to stop the
algorithm and to accept some function of the recent iterates as the “final
value.” The stopping rule can take many forms, but whichever it takes, all
that we know about the “final value” at the stopping time is information
of a distributional type. There is no difference in the conclusions provided
by the probability one and the weak convergence methods. In applications
that are of concern over long time intervals, the actual physical model might
“drift.” Indeed, it is often the case that the step size is not allowed to go
to zero, and then there is no general alternative to the weak convergence
methods at this time.

The ODE approach to the limit theorems obtains the ODE by appro-
priately averaging the dynamics, and then by showing that some subset of
the limit set of the ODE is just the set of asymptotic points of the {θn}.
The ODE is easier to characterize, and requires weaker conditions and
simpler proofs when weak convergence methods are used. Furthermore, it
can be shown that {θn} spends “nearly all” of its time in an arbitrarily
small neighborhood of the limit point or set. The use of weak convergence
methods can lead to better probability one proofs in that, once we know
that {θn} spends “nearly all” of its time (asymptotically) in some small
neighborhood of the limit point, then a local analysis can be used to get
convergence with probability one. For example, the methods of Chapters 5
and 6 can be applied locally, or the local large deviations methods of [63]
can be used. Even when we can only prove weak convergence, if θn is close
to a stable limit point at iterate n, then under broad conditions the mean
escape time (indeed, if it ever does escape) from a small neighborhood of
that limit point is at least of the order of ec/εn for some c > 0.

Section 7.2 is motivational in nature, aiming to relate some of the ideas
of weak convergence to probability one convergence and convergence in
distribution. It should be read only “lightly.” The general theory is covered
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in Chapter 8 for a broad variety of algorithms, using what might be called
“weak local ergodic theorems.” The essential conditions concern the rates
of decrease of the conditional expectation of the future noise given the past
noise, as the time difference increases. Chapter 9 illustrates the relative
convenience and power of the methods of Chapter 8 by providing proofs of
convergence for some of the examples in Chapters 2 and 3.

Chapter 10 concerns the rate of convergence. Loosely speaking, a stan-
dard point of view is to show that a sequence of suitably normalized iterates,
say of the form (θn − θ̄)/

√
εn or nβ(θn − θ̄) for an appropriate β > 0, con-

verges in distribution to a normally distributed random variable with mean
zero and finite covariance matrix V̄ . We will do a little better and prove
that the continuous time process obtained from suitably interpolated nor-
malized iterates converges “weakly” to a stationary Gauss–Markov process,
whose covariance matrix (at any time t) is V̄ . The methods use only the
techniques of weak convergence theory that are outlined in Chapter 7.

The use of stochastic approximation for the minimization of functions of
a very high-dimensional argument has been of increasing interest. Owing
to the high dimension, the classical Kiefer–Wolfowitz procedures can be
very time consuming to use. As a result, there is much current interest in
the so-called random-directions methods, where at each step n one chooses
a direction dn at random, obtains a noisy estimate Ŷn of the derivative
in direction dn, and moves an increment −εnŶn. Although such methods
have been of interest and used in various ways for a long time [135], con-
vincing arguments concerning their value and the appropriate choices of
the direction vectors and scaling were lacking. The paper [226] proposed
a different way of getting the directions and attracted needed attention
to this problem. The proof of convergence of the random-directions meth-
ods that have been suggested to date are exactly the same as that for the
classical Kiefer–Wolfowitz procedure (as in Chapter 5). The comparison of
the rates of convergence under the different ways of choosing the random
directions is given at the end of Chapter 10, and shows that the older and
newer methods have essentially the same properties, when the norms of
the direction vectors dn are the same. It is seen that the random-directions
methods can be quite advantageous, but care needs to be exercised in their
use.

The performance of the stochastic approximation algorithms depends
heavily on the choice of the step size sequence εn, and the lack of a general
approach to getting good sequences has been a handicap in applications.
In [195], Polyak and Juditsky showed that, if the coefficients εn go to zero
“slower” than O(1/n), then the averaged sequence

∑n
i=1 θi/n converges to

its limit at an optimal rate. This implies that the use of relatively large
step sizes, while letting the “off-line” averaging take care of the increased
noise effects, will yield a substantial overall improvement. These results
have since been corroborated by numerous simulations and extended math-
ematically. In Chapter 11, it is first shown that the averaging improves the
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asymptotic properties whenever there is a “classical” rate of convergence
theorem of the type derived in Chapter 10, including the constant εn = ε
case. This will give the minimal window over which the averaging will yield
an improvement. The maximum window of averaging is then obtained by
a direct computation of the asymptotic covariance of the averaged process.
Intuitive insight is provided by relating the behavior of the original and
the averaged process to that of a three-time-scale discrete-time algorithm
where it is seen that the key property is the separation of the time scales.

Chapter 12 concerns decentralized and asynchronous algorithms, where
the work is split between several processors, each of which has control over
a different set of parameters. The processors work at different speeds, and
there can be delays in passing information to each other. Owing to the
asynchronous property, the analysis must be in “real” rather than “iter-
ate” time. This complicates the notation, but all of the results of the pre-
vious chapters can be carried over. Typical applications are decentralized
optimization of queueing networks and Q-learning.

Some topics are not covered. As noted, the algorithm in continuous time
differs little from that in discrete time. The basic ideas can be extended to
infinite-dimensional problems [17, 19, 66, 87, 144, 185, 201, 214, 219, 246,
247, 248, 277]. The function minimization problem where there are many
local minima has attracted some attention [81, 130, 258], but little is known
at this time concerning effective methods. Some effort [31] has been devoted
to showing that suitable conditions on the noise guarantee that there cannot
be convergence to an unstable or marginally stable point of the ODE.
Such results are needed and do increase confidence in the algorithms. The
conditions can be hard to verify, particularly in high-dimensional problems,
and the results do not guarantee that the iterates would not actually spend
a lot of time near such bad points, particularly when the step sizes are
small and there is poor initial behavior. Additionally, one tries to design
the procedure and use variance reduction methods to reduce the effects of
the noise.

Penalty-multiplier and Lagrangian methods (other than the discussion
in Chapter 1) for constrained problems are omitted and are discussed in
[135]. They involve only minor variations on what is done here, but they
are omitted for lack of space. We concentrate on algorithms defined on r-
dimensional Euclidean space, except as modified by inequality or equality
constraints. The treatment of the equality constrained problem shows that
the theory also covers processes defined on smooth manifolds.

We express our deep gratitude to Paul Dupuis and Felisa Vazquèz-Abad,
for their careful reading and critical remarks on various parts of the man-
uscript of the first edition. Sid Yakowitz also provided critical remarks for
the first edition; his passing away is a great loss. The long-term support and
encouragement of the National Science Foundation and the Army Research
Office are also gratefully acknowledged.
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Comment on the second edition. This second edition is a thorough
revision, although the main features and the structure of the book remain
unchanged. The book contains many additional results and more detailed
discussion; for example, there is a fuller discussion of the asymptotic be-
havior of the algorithms, Markov and non-Markov state-dependent-noise,
and two-time-scale problems. Additional material on applications, in par-
ticular, in communications and adaptive control, has been added. Proofs
are simplified where possible.

Notation and numbering. Chapters are divided into sections, and sec-
tions into subsections. Within a chapter, (1.2) (resp., (A2.1)) denotes Equa-
tion 2 of Section 1 (resp., Assumption 2 of Section 1). Section 1 (Subsection
1.2, resp.) always means the first section (resp., the second subsection of
the first section) in the chapter in which the statement is used. To refer to
equations (resp., assumptions) in other chapters, we use, e.g., (1.2.3) (resp.,
(A1.2.3)) to denote the third equation (resp., the third assumption) in Sec-
tion 2 of Chapter 1. When not in Chapter 1, Section 1.2 (resp., Subsection
1.2.3) means Section 2 (resp., Subsection 3 of Section 2) of Chapter 1.

Throughout the book, | · | denotes either a Euclidean norm or a norm
on the appropriate function spaces, which will be clear from the context.
A point x in a Euclidean space is a column vector, and the ith component
of x is denoted by xi. However, the ith component of θ is denoted by θi,
since subscripts on θ are used to denote the value at a time n. The symbol ′

denotes transpose. Moreover, both A′ and (A)′ will be used interchangeably,
e.g., both gε,′n (θ) and (gεn(θ))

′ denote the transpose of gεn(θ). Subscripts
θ and x denote either a gradient or a derivative, depending on whether
the variable is vector or real-valued. For convenience, we list many of the
symbols at the end of the book.
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