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Relay Feedback 

Åström and Hägglund [1] suggest the relay feedback test to generate sustained os-
cillation as an alternative to the conventional continuous cycling technique. It is 
very effective in determining the ultimate gain and ultimate frequency. Luyben [2] 
popularizes the relay feedback method and calls this method “ATV” (autotune 
variation). The acronym also stands for all-terrain vehicle, since ATV provides a 
useful tool for the rough and rocky road of system identification. 

As pointed out by Luyben, the motivation for using the relay feedback (ATV) 
has grown out of a study of an industrial distillation column. The distillation col-
umn is an important unit in chemical process industries. It is rather difficult to ob-
tain a linear transfer function model for highly nonlinear columns. Attempts have 
been made using step or pulse tests. Unfortunately, the system results in an ex-
tremely long time constant, e.g. h 870≈τ [2]. Moreover, very large deviations oc-
cur in the linear model as the size or direction of the input is changed. Simulation 
studies also reveal that, sometimes, very small changes of magnitude (less than 
0.01%) have to be made to get an accurate linear model. This immediately rules 
out the use of this kind of input design in real plants because plant data are never 
known to anywhere near this order of accuracy. Luyben shows that the simple re-
lay feedback tests provide an effective way to determine linear models for such 
processes. It has become a standard practice in chemical process control, as can be 
seen in recent textbooks in process control [3,4]. Wang et al. [5] discuss various 
aspects of the relay feedback. 

The distinct advantages of the relay feedback are: 

1. It identifies process information around the important frequency, the ultimate 
frequency (the frequency where the phase angle is π− ). 

2. It is a closed-loop test; therefore, the process will not drift away from the nomi-
nal operating point. 

3. For processes with a long time constant, it is a more time-efficient method than 
conventional step or pulse testing. The experimental time is roughly equal to 
two to four times the ultimate period. 
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3.1 Experimental Design 

Consider a relay feedback system where G(s) is the process transfer function, y  is 
the controlled output, sety  is the SP, e is the error and u  is the manipulated input 
(Figure 3.1A). 

An on–off (ideal) relay is placed in the feedback loop. The Åström–Hägglund 
relay feedback system is based on the observation: when the output lags behind the 
input by π−  radians, the closed-loop system may oscillate with a period uP . Fig-
ure 3.1(B) illustrates how the relay feedback system works. A relay of magnitude h 
is inserted in the feedback loop. Initially, the input u is increased by h . As the out-
put y starts to increase (after a dead time D ), the relay switches to the opposite po-
sition, hu −= . Since the phase lag is π− , a limit cycle with a period uP  results 
(Figure 3.1). The period of the limit cycle is the ultimate period. Therefore, the ul-
timate frequency from this relay feedback experiment is 

u
u

P

π
ω

2
=  (3.1)

From the Fourier series expansion, the amplitude a can be considered to be the 
result of the primary harmonic of the relay output. Therefore, the ultimate gain can 
be approximated as [1,6] 

4
u

hK aπ
=  (3.2)

where h  is the height of the relay and a is the amplitude of oscillation. These two 
values can be used directly to find controller settings. Notice that Equations 3.1 
 

 
Figure 3.1. (A) Block diagram for a relay feedback system and (B) relay feedback 
test for a system with positive steady state gain 
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and 3.2 give approximate values of uu K and ω . A more accurate expression will 
be derived shortly. 

The relay feedback test can be carried out manually (without any autotuner). The 
procedure requires the following steps. 

1. Bring the system to steady state. 

2. Make a small (e.g. 5%) increase in the manipulated input. The magnitude of 
change depends on the process sensitivities and allowable deviations in the con-
trolled output. Typical values are between 3 and 10%. 

3. As soon as the output crosses the SP, the manipulated input is switched to the 
opposite position (e.g. –5% change from the original value). 

4. Repeat step 2 until sustained oscillation is observed (Figure 3.1). 

5. Read off ultimate period uP  from the cycling and compute uK  from Equation 
3.2. 

This procedure is relatively simple and efficient. Physically, it implies moving 
the manipulated input against the process. Consider a system with a positive steady 
state gain (Figure 3.1). When you increase the input (as in step 1), the output y 
tends to increase also. As a change in the output is observed, you switch the input 
to the opposite direction. This is meant to bring the output back down to the SP. 
However, as soon as the output comes down to the SP, you switch the input to the 
upper position. Consequently, a continuous cycling results, but the amplitude of 
oscillation is under your control (by adjusting h ). More importantly, in most cases, 
you obtain the information you need for tuning of the controller. 

Several characteristics can be seen from the relay feedback test. Consider the 
most common FOPDT systems. 

( )
1+

=
−

s
eKsG

Ds
p

τ
 (3.3)

where pK  is the steady state gain, D  is the dead time and τ  is the time constant. 
Figure 3.2 indicates that, if the normalized dead time τ/D  is less than 0.28, the ul-
timate period is smaller than the process time constant. In terms of plant test, that 
implies the relay feedback test is more time efficient than the step test. The reason 
is that it takes almost 3τ  to reach 95% of the steady state value in a step test and 
the time required for the relay feedback is also roughly equal to 3 uP  (to establish a 
stable oscillation). Therefore, the relay feedback system is more time efficient than 
the step test for systems with 

28.0/ <τD  (3.4)

Since the dead time cannot be too large (it often comes from the measurement 
delay), the temperature and composition loops in process industries seem to fall 
into this category. In other words, Equation 3.4 is fairly typical for many slow 
chemical processes, especially for units involved with composition changes. 
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Figure 3.2. Pu/τ as function of the normalized dead time D/τ  

3.2 Approximate Transfer Functions: Frequency-domain 
Modeling 

After the relay feedback experiment, the estimated ultimate gain uK̂ and ultimate 
frequency uω̂ can be used directly to calculate controller parameters. Alterna-
tively, it is possible to back-calculate the approximated process transfer functions. 
The other data useful in finding the transfer function are the dead time D and/or the 
steady state gain pK . 

In theory, the steady state gain can be obtained from plant data. One simple way 
to find pK  is to compare the input and output values at two different steady states. 
That is: 

/pK y u= ∆ ∆  (3.5)

where y∆  denotes the change in the controlled variable and u∆  stands for the de-
viation in the manipulated input. However, precautions must be taken to make sure 
that the sizes of the changes in u are made small enough such that the gain in Equa-
tion 3.5 truly represents the linearized gain. For highly nonlinear processes, these 
changes are typically as small as 10–3 to 10–6 % of the full range [2]. Such small 
changes would only be feasible using a mathematical model. Trying to obtain reli-
able steady state gains from plant data is usually impractical. 

The dead time D in the transfer function can be easily read off from the initial 
part of the relay feedback test. It is simply the time it takes for y to start  
responding to the change in u (Figure 3.1). For the FOPDT system, it is simply the 
time to reach the peak amplitude in a half period, as will be shown in Chapter 4. 
Therefore, it is more likely that we will have information on the dead time rather 
than the steady state gain. 
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Now we are ready to find an approximate model. Typical transfer functions in 
process control are assumed and parameters can be calculated. The transfer func-
tions have the following forms: 

Model I  (integrator plus dead time) 

( )
Ds

pK e
G s

s

−

=  (3.6)

Model P  (pure dead time) 

( ) Ds
pG s K e−=  (3.7)

Model 1  (FOPDT) 

( )
1
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pK e

G s
sτ

−

=
+

 (3.8)

Model 2a (second-order plus dead time) 

( )
( )21

Ds
pK e

G s
sτ

−

=
+

 (3.9)

Model 2b (second-order plus dead time with two unequal lags) 

( ) ( )( )1 21 1

Ds
pK e

G s
s sτ τ

−

=
+ +

 (3.10)

In these five models, model I and model P have two unknown parameters, models 
1 and 2a have three unknown parameters and model 2b has four unknown parame-
ters. Therefore, additional information, such as  or pD K , is needed if the last three 
models are employed. As pointed out by Tyreus and Luyben [7], the simplest inte-
grator-plus-time-delay model (model I) provides good approximation for slow 
chemical processes, e.g. systems showing a small τ/D  value. It is the model we 
recommend for slow processes.  

The relay feedback experiment has the following steps: 

1. If necessary, the dead time D can be read off from the initial response, or the 
time to the peak amplitude, and the steady state gain can be obtained from 
steady state simulation. 

2. The ultimate gain uK̂ and ultimate frequency uω̂ are computed (Equations 3.1 
and 3.2) after the relay feedback experiment. 

3. Different model structures (Equations 3.6–3.10) are fitted to the data. 

3.2.1 Simple Approach 

Once the model is selected, we can back-calculate the model parameters from two 
equations describing the ultimate gain and the ultimate frequency. 
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 Model I (Friman and Waller [8]) 

2u
p

u u u
K

K K P
ω π

= =  
(3.11)

42
u

u

PD ==
ω
π  (3.12)

Notice that no a priori process knowledge is needed for this model. Moreover, 
computation of  and pK D  is quite straightforward. 

Model P 

1
P

u
K

K
=  (3.13)

2
uPD =  (3.14)

Similar to model I, no a priori process knowledge is necessary. 

Model 1 

( )
u

uD
ω

ωπ
τ

−
=

tan  (3.15)

( )2
1p u

u

K K
τ

ω

−
=  (3.16)

For model 1, either  or pD K  is needed to solve for the time constant. For example, 
if the dead time is read off from the relay test, then we can compute τ  from Equa-
tion 3.15. Then, pK  can be found by solving Equation 3.16. 

Model 2a 

( )
u

uD
ω

ωπ
τ

2/tan −
=  (3.17)

( )
u

up KK
ω

τ
1−

=  (3.18)

The equations describing model 2a are quite similar to those for model 1. Again, 
we need to know pKD or  before finding model parameters. 
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Model 2b 

( ) ( )1 1
1 2tan tanu u uDπ ω ω τ ω τ− −− = − − −  (3.19)

( ) ( )2 2
1 2

1
ˆ

1 1

p

u
u u

K
K ω τ ω τ

=
   + +      

 (3.20)

Since we have four parameters in model 2b, both  and pK D  have to be known in 
order to solve for the two time constants 1τ  and 2τ . This is the most complex 
model structure in our models, and it is often sufficient for process control applica-
tions. 

Let us use an FOPDT system to illustrate the parameter estimation procedure.  

Example 3.1  WB column [9] 

( ) 12.8
16.8 1

seG s
s

−

=
+

 

This is the transfer function between the top composition Dx and the reflux flow 
R . From a relay feedback test, we obtain the following ultimate gain and ultimate 
frequency: ˆ 1.71uK = and ˆ 1.615uω = . Note that these two values are only an ap-
proximation to the true values: 2.1uK = and 1.608uω = . 

Parameters can be calculated for different model structures: 

Model I (no prior knowledge on pK and D ) 

( )
0.970.94 seG s

s

−

=  

Model P (no prior knowledge on pK and D ) 

( ) 1.940.58 sG s e−=  

Model 1 (assume D is known, i.e. D = 1) 

( ) ( )
13.2
14.0 1

seG s
s

−
=

+
 

Model 2a (assume D is known) 

( )
( )2

1.12
0.59 1

seG s
s

−

=
+

 

Model 2b (assume pK  and D are known) 

( ) ( ) ( )
12.8

13.5 1 0.0009 1

seG s
s s

−

=
+ +

 

Despite varying in model parameters, all these four models have the same ultimate 
gain and ultimate frequency. That is, the models are correct around the ultimate 
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frequency, which is important for the controller design. However, if we extrapolate 
the model to different frequencies, e.g. 0=ω , then the results can be completely 
misleading. For example, the steady state gain of model 2a is only 1.12, which is 
less than 10% of the true value. We have to be very cautious when using these 
models.                                                                                        ■ 

3.2.2 Improved Algorithm 

In theory, if the model structure is correct and the ultimate gain and ultimate fre-
quency are correctly identified, then we could have a very good approximation of 
the transfer function. For example, if the uK  and uω  in the previous example are 
close to the true values, then we will not have errors in the steady state gains and 
time constant for model 1. Unfortunately, since Equations 3.1 and 3.2 only give 
approximations to the ultimate gain and ultimate frequency, the parameters derived 
from Equations 3.15 and 3.16 can deviate significantly from the true system pa-
rameters. This implies the observed ultimate period ûP  and the computed ultimate 
gain are not the true values. 

In order to have a better approximation of the transfer function, fundamental 
analysis of the relay feedback system is necessary. First, one would like to know 
what the period of oscillation from the relay feedback experiment really represents. 
In other words, given a transfer function with known parameters, what is the ex-
pression for the period of oscillation observed from the relay feedback experiment, 

ûP ? The following theorem [1] provides the answer. 

Theorem 3.1  Consider the relay feedback system with a transfer function G(s) and 
an ideal relay (Figure 3.1). Let ( ),sHG T z  be the pulse transfer function of ( )G s  
with a sampling time of sT . If there is a periodic oscillation, then the period of os-
cillation ûP  is given by  

( )ˆ / 2, 1 0uHG P − =  

Åström and Hägglund [1] prove the theorem starting form the discrete-time 
state-space equations. The result, ( )ˆ / 2, 1 0uHG P − = , is obtained by finding the z-
domain equivalent. The continuous-time response of an ideal relay (Figure 3.1) can 
be discretized at the point when the relay switches. The z-transforms of the input 
and output are ( )/ 1h z +  and 0 respectively. Since this is a self-oscillation system, 
the propagation of the input is described by the gain ( )ˆ / 2, 1 0uHG P − = . This 
equation can be used to find the period of oscillation for a known system. In identi-
fication, ûP  is observed from the response and one is able to use this to back-
calculate system parameters. Unlike the continuous-time analysis based on the 
primary harmonic, the discrete-time expression gives a sound basis for finding the 
system parameters, since no assumption is made in the derivation. 

Based on the theorem, a better relationship between ˆuω  (or ûP ) and the system 
parameters can be derived. For the transfer functions of interest (models 1, 2a and 
2b), the following results can be derived from the modified z-transform [10]: 
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Model 1 
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Equations 3.21–3.23 provide alternative expressions between the observed ultimate 
period , e.g. ˆuω , and system parameters. For example, Equation 3.21 relates ˆuω  to 
D  and τ  in a way that differs substantially from the standard phase angle equa-
tion (i.e. Equation 3.15). 

( )1ˆ ˆtanu uDπ ω ω τ−− = − −  

Again, we can derive a better expression for the amplitude ratio part at the ulti-
mate frequency, since the expression in Equation 3.2 is based on the first harmonic 
of the Fourier series expansion. The square-wave response of u (Figure 3.1) con-
sists of many frequency components: 

( )
( )( )

0

sin 2 14
2 1n

n thu t
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ω
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∞

=

+
=

+∑  (3.24)

Therefore, it becomes obvious that the amplitude observed in the relay feedback 
response is contributed from multiple frequencies, ωωωω ˆ5 ,ˆ3 ,ˆ= , etc. In theory, 
one can have a better estimate of the amplitude ratio by employing more terms. An 
iterative procedure is necessary if more than one term is employed (e.g. finding 
G(s) from the single-term solution and including the higher frequency information, 

uωω ˆ3= , to find a new G(s) and the procedure is repeated until G(s) converges). 
However, experimental results show that the estimation of system parameters can 
be improved substantially by improving the expression for period of oscillation 
alone, as shown in the next section. Furthermore, for higher order systems, there is 
little incentive to improve the expression for the amplitude by including more 
terms, since higher order harmonics (e.g. uωω ˆ3=  or uωω ˆ5= ) are attenuated by 
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the process. If only one term is employed, then the equations describing the ampli-
tude ratio are exactly the same as Equations 3.16, 3.18 and 3.20. 

3.2.3 Parameter Estimation 

From the ongoing analysis, the procedure for the evaluation of the transfer function 
has the following steps: 
1. Select model structure. 
2. Compute model parameters according to Table 3.1. 

Table 3.1 summarizes the information required and the corresponding equations 
to find the approximate transfer function. Most of these equation sets can be solved 
sequentially. Notice that if the improved algorithm is used, then better estimates of 
the ultimate gain and ultimate frequency can be calculated from the model. For 
model 2b, if some information is not known, then a different procedure should be 
employed. For example, if pK  is not available, we can perform a second relay 
feedback test [11] or use a biased relay (Chapters 7 and 12) to find additional in-
formation. Nonetheless, the equations noted in Table 3.1 are generally applicable 
regardless of the procedure. 

3.2.4 Examples 

Several examples are used to illustrate the advantages of the improved algorithm. 
Consider a first-order plus dead time system. 

Example 3.2 FOPDT process 

( )
1016.5

20 1

seG s
s

−

=
+

 

From a relay feedback experiment with 0.04h = we have ˆ 33.26uP = and 
0.26a = . If D  and/or pK  are available, we can back-calculate τ . The τ  values 

calculated from Equations 3.15 and 3.16 are 16.3τ =  and 16.09 respectively. The 
improved algorithm (Equation 3.21) gives a better estimate in τ , 19.97τ = , by 
improving the expression in the period of oscillation alone. The result from Equa-
tion 3.21 is almost exact (the difference may have resulted from reading off a  and 

uP  from the response curve). Figure 3.3 shows the multiplicative modeling errors, 
( ) ( )( ) ( )ˆ ˆ

me G i G i G iω ω ω= − , for the transfer function Ĝ  estimated from Equations 3.15, 
3.16 and 3.21. The results show that the error me  is significantly less when τ  is 
calculated from Equation 3.21 alone. ■ 

In the following examples, we assume  and pK D  are known and the time con-
stant τ  for models 1 and 2a is obtained by taking the average of the values calcu-
lated from the corresponding equations for the case of the simple algorithm. Next, 
the effects of dead time on the estimation of the ultimate gain and ultimate fre-
quency are also investigated. In the original ATV method, ˆuK  is calculated from 
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Table 3.1. Equations for different model structures 

Model Simple algorithm Improved algorithm Prior information 

Model I Equations 3.11 and 
3.12 – None 

Model P Equations 3.13 and 
3.14 – None 

Model 1 Equations 3.15 and 
3.16 

Equations 3.21 and 
3.16 

 or pD K  

Model 2a Equations 3.17 and 
3.18 

Equations 3.22 and 
3.18 

 or pD K  

Model 2b Equations 3.19 and 
3.20 

Equations 3.23 and 
3.20 

 and pD K  

 

 
Figure 3.3. Multiplicative errors of an FOPDT system obtained from Equations 3.15, 
3.16 and 3.21 

 
Equation 3.2 and ˆuω  is derived from Equation 3.1. In the proposed method, 

 and u uK ω  are back-calculated from the estimated transfer function ( )Ĝ s . Again, 
this is shown in the following transfer function: 

Example 3.3  Variable dead time 

( ) 16.5
20 1

DseG s
s

−

=
+

 

Equation 3.21 

Equation 3.15 
Equation 3.16 
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The percentage errors in  and u uK ω  are compared for these two methods over a 
range of dead time (D = 0.1–60). The results (Figure 3.4) show that the errors in 

uK  for the simple method are quite significant (5–20%). Furthermore, the error in 
uω  is almost nil for the improved method. ■ 
Similar behavior can also be observed for a second-order lag with time-delay 

system. 

Example 3.4 Second-order system with two unequal lags 

( ) ( )( )
37.3

7200 1 2 1

DseG s
s s

−

=
+ +

 

Figure 3.5 shows that a better estimation of ( )Ĝ s  can be achieved over a range of 
 ( 60)D D < . Again, improvements can be made in finding the correct uK and uω  

by using a more accurate expression in the period of oscillation.  ■ 
Since the estimated transfer function is typically employed in the analysis and 

design of a feedback control system, the impact of the modeling errors in closed-
loop performance is evaluated. A model-based controller, IMC, is employed to 
analyze the performance. One of the advantages of the IMC is that we can specify 
the desired trajectory in the design. Figure 3.6 compares the SP responses of IMC 
when different models ˆ 'G  are employed in the design of the controllers. Consider  

 

 
Figure 3.4. Percentage errors in Ku and ωu for the FOPDT system over a range of 
dead time D 
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the FOPDT system 

( )
1016.5

20 1

seG s
s

−

=
+

 

The SP response of the control system, designed according to ( )Ĝ s  from the sim-
ple algorithm, tends to be more sluggish than the desired trajectory (Figure 3.6). 
The proposed method improves this situation, as shown in Figure 3.6. Despite the 
fact that a tighter response can be achieved by shortening the closed-loop time con-
stant under modeling errors, one has to realize that the value of a model-based con-
troller is that one can foresee the closed-loop response. In other words, a good 
model always helps. 

Generally, the proposed method improves the estimation in G(s) at the nominal 
condition (with perfect knowledge of  and pK D ). The robustness with respect to 
errors in the dead time is investigated. Since the improved method calculates 

 and u uK ω  by finding the transfer function ( )Ĝ s  first, followed by solving the 
corresponding equations for them, it is more sensitive to the errors in the dead time 
than the original method. Let us take another FOPDT system as an example. 

Example 3.5 Error in the observed dead time 

( ) 16.5
20 1

seG s
s

−

=
+

 

 

 
Figure 3.5. Percentage errors in Ku and ωu for a second-order plus dead time sys-
tem over a range of delay time D  
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Figure 3.6. SP responses of IMC designed according to the estimated transfer 
functions Ĝ(s) (the closed-loop constant is 20 for the desired trajectory) 

Figure 3.7 shows the estimate of uK and uω  for both methods when the per-
centage errors in dead time range from –50% to 50%. Despite the fact that the er-
rors in uK  and uω  are less for the improved method over a reasonable range of er-
rors in dead time, it is more sensitive to the error in D . Therefore, care should be 
taken in reading off the dead time from the initial responses or the time to the peak 
amplitude.  ■ 

3.3 Approximate Transfer Functions: Time-domain 
Modeling 

Up to this point, the model identification is based on the frequency domain ap-
proach, which is based on the describing functions. A method to derive FOPDT-
type systems was proposed by Wang et al. [12] using a single relay test.  In a sepa-
rate attempt, Majhi and Atherton [3] proposed a technique to identify plant pa-
rameters, but the method needs a correct initial guess and convergence is not guar-
anteed. Kaya and Atherton [14] describe another method (A-locus) to identify low-
order process parameters from relay autotuning. Panda and Yu [15] develop ana-
lytical models to represent relay responses produced by different systems. The re-
lay output consists of a series of step changes in manipulated variables (with oppo-
site sign). Hence, the stabilized output is a sum of infinite terms of step responses 
due to those step changes. For systems with dead time D , the actual relay output 
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Figure 3.7. Percentage errors in Ku and ωu for a first-order system over a range of 
variation in the dead time 

lags behind the input by a time unit D . The inputs and outputs can be synchro-
nized by shifting the output forward in time by an amount D , as shown in Figure 
3.8B, and, in doing this, the dead time D  can be eliminated from the expression 
for relay responses, as will be shown later.  The shifted version of a typical relay 
feedback response provides the basis for the derivation. 

It is assumed that the relay response is formed by n-number of step changes, of 
opposite directions ( u± ), in input. The switching period for each step change is 

2uP , except for the initial step change.  In Figure 3.9, in the first interval, as time 
changes from 0t =  to t D= , the response 1y  is produced due to the first step 
change 1u . Again, in the second interval, time progressing from D  to / 2uD P+ , 
response 2y  results due to the combined effects of step changes 1u  and 2u . Simi-
larly, the effect of 1u , 2u  and 3u  produces 3y  during the third time interval 
( / 2uD P+  to uD P+ ). Two half periods ( / 2uP ) are of special interest in Figure 
3.9. The even values of n  result in descending half period 2ny , and the odd values 
of n  formulate the ascending half periods 2 1ny + . It is interesting to note that the  
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Figure 3.8. Schematic representation of the shifted version of relay feedback re-
sponse for the development of their analytical expressions: (A) original relay feed-
back responses and (B) output y shifted by D  

 
Figure 3.9. Shifted version of relay input u and output y response of a typical 
SOPDT system 
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generalized response term ny  slowly forms a convergent series. Let us use a sec-
ond-order system to illustrate the derivation as they are rich in system dynamics.1 

3.3.1 Derivation for a Second-order Overdamped System 

The transfer function of an SOPDT system with a damping coefficient greater than 
one can be expressed as ( )G s =  ( ) ( )1 21 1Ds

pK e s sτ τ−  + +  , where pK  is the steady state 
gain, 1τ  and 2τ  are process time constants with 1 2τ τ> , and D  is the dead time.  
The original step response of an overdamped SOPDT can be given by 

1 2( ) / ( ) /1 1[1 ]t D t Dpy K a e b eτ τ− − − −= − +  

where 1a  and 1b  are given by 
1 2

1 1
1 2 1 2

  and   a bτ τ
τ τ τ τ

= =
− −

 

Under the shifted version (Figure 3.8B), the first segment of the relay response 1y  
is simply the step response without dead time in the time index: 

1 2/ /1 1 11 t tpy K a e b eτ τ− −= − +    (3.25)

At the second instant, the time is reset to zero at the initial point. The step response 
(relay output) is given by (i.e. introducing a time shift by D  amount in Equation 
3.22) 

1 2 1 22 1 1 1 11 2 1
t D t D t t

p py K a e b e K a e b eτ τ τ τ
+ +− − − −   

= − + − − +   
   

 

Here, the first term represents the effect of the first step change (occurred at D  
time earlier) and the second term shows the effect of the second step input, switch-
ing to the opposite direction. The above equation can be simplified to 

[ ] 1 1 2 22 1 11 2 2 2
t tD D

py K a e e b e eτ τ τ τ− − − −    = − − − + −  ÷  
    

 (3.26)

The relay response at the third interval is the result of three step changes, lags by 
an amount / 2uD P+  from input. After introducing a time shift of / 2uD P+  in 
Equation 3.22, the net effect becomes 

1 2

1 2 1 2

/ 2 / 2
3 1 1

/ 2 / 2
1 1 1 1

1

       2 1 2 1

u u

u u

t D P t D P
p

t P t P t t

y K a e b e

a e b e a e b e

τ τ

τ τ τ τ

+ + + +− −

+ +− − − −

  = − +  
  

    − − + + − +    
    

 

which can be simplified further as 
                                                        

1 One may skip the derivation in Section 3.3.1 and refer directly to Tables 3.2 and 3.3 for the 
results. 
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[ ] 1 1 1 2

2 2

/ 2
23 1 1

/ 2
2

1 2 2 2 2

       2 2

u u

u u

t D P P t

p

D P P

y K a e e e b e

e e

τ τ τ τ

τ τ

+− − − −

+− −

  
= − + − × − + +  

  
 × − +  
 

 (3.27)

It can be seen that the terms in the right-hand side (RHS) of the above equation are 
slowly forming a series. 

With the progress of time, the response becomes stabilized and the general ex-
pression for the nth term can be described as 

[ ] 1 1

1 1 1

1 2 2 2

2

( 2 ) / 2

1

( 2 ) ( 1)
2 2 2

( 2) / 2 ( 2 ) ( 1)
2 21

2

1 2 2

       2 2 2 2

       2 2

       2 2

u

u u u

u u u

u

D n Pt

n p

n P n P P

D n P n P n Pt

P

y K a e e

e e e

b e e e e

e

τ τ

τ τ τ

τ τ τ τ

τ

+ −− −

− −− − −

+ − − −− − − −

−

 = − + − ××⋅ − 
 


− + − ×××+ − 




+ − +


 − ×××+ − 
 

 (3.28)

The RHS of Equation 3.28 has three parts, and each part consists of an infinite se-
ries, 1F , 2F  and 3F . 

1 21 1 2 1 3 -   
t t

n py K F a e F b e Fτ τ
− − 

= + 
 

 

If n  is odd, the first series 1F  is simply 

[ ]1 1 2 2 2 1F = − + − +××× =  

The second series becomes: 

1 2 2 3 42 2 2 2 2 2
D

n n n nF e r r r r rτ
−

− − − −
 

= − + − +×××− + 
  

 

where 1r e ν−=  and 1 12uPν τ= . This above series is convergent and can be put 
into the following form (note that terms are rearranged from the back side of the 
above expression): 

( ) ( )

1

D / 2 2 3
2

2 3
/ 2

e 2 1lim

2 2    2 1
1 1 u

n

n

P

F r r r r

r r r
r e

τ

τ

− −

→ ∞

−

= + − + − + ×××

 = − + − + ××× = =  + +
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In a similar way, the 3F  of the RHS of Equation 3.28 can also be simplified. Ulti-
mately, the response can be given by 

1 2

1 2

1 1/ 2 / 2
2 21

1 1
u u

t t
n p P Py K a e b e

e e
τ τ

τ τ

− −

− −

      ÷  = − +  ÷   + +    
 (3.29)

This represents the ascending response ( n  is odd). Since this response is dis-
symmetric, the general form can be employed as 

( )1 2

1 2

1 1/ 2 / 2
2 21 1

1 1
u u

t t n
n p P Py K a e b e

e e
τ τ

τ τ

− −

− −

      ÷  = − + − −  ÷   + +    
 (3.30)

One can refer to Panda and Yu [15] for the derivations for critically damped and 
underdamped SOPDT systems, as well as for high-order systems. 

3.3.2 Results 

Different types of transfer function are considered, and the analytical expressions 
for their relay feedback output response are developed following the above proce-
dure. Table 3.2 gives a list of first-, second-, and third-order plus dead time proc-
esses and their corresponding mathematical expressions for the stabilized relay 
feedback output responses. These equations ny  denote the upward or ascending 
trend (or sometimes, curves in the lower part of midline for higher order systems) 
of relay feedback output (while time t  changes from 0 to / 2uP ). The downward 
or descending trend can be obtained by reversing the sign of the output ( ny− ). 

  In Table 3.2, the individual expressions, for relay feedback responses of first-, 
second- and third-order systems contain terms similar to those of the corresponding 
equations for the step responses, except that they differ only in weighting factor 
( ( )/ 22 / 1 uPe τ−+ ). If we compare the terms of the expressions of the relay feed-
back response with those of step response of a process, we see that they differ by a 
weighting factor of ( )/ 22 / 1 uPe τ−+ . For an FOPDT system, the response starts 
( 0t = ) from the minimal point, at y a= − , and ends ( / 2ut P= ) at the maximal 
point, at y a= . Also note that, for an unstable FOPDT system, stable limit cycles 
can occur only if / ln(2)D τ < . For the lead/lag second-order system (No. 6 in Ta-
ble 3.2), the expression is applicable to systems with left-half plane ( 3 0τ > ) or 
right-half plane ( 3 0τ < ) zero. 

Analytical expressions of relay feedback output responses for higher order sys-
tems are presented in Table 3.3. They are of much interest because, when we see, 
for example, the expression for fifth-order process, the equation contains mainly 
five terms (except ‘1’) and each of these terms represents corresponding lower or-
der processes. The first term inside the third bracket of the first line/row appears to 
be for an FOPDT. The second term (having two terms inside the first bracket) is 
for an SOPDT (critically damped). The third term (having three terms inside the 
first bracket) is for a third-order process. The terms in the second row/line (having 
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four terms inside) are for a fourth-order process. In the third or last row/line there 
are five terms for a fifth-order process. Hence, the number of terms (size of the se-
ries) for a particular order of process is rhythmic. These tables are similar to the ta-
bles of inverse Laplace transform and will help in finding an equation for relay 
feedback responses. 

3.3.3 Validation 

Two kinds of response can be observed in the analytical expressions in Tables 3.2 
and 3.3. These responses are tabulated in Figure 3.10. Systems with serial numbers 
1 and 2 in Table 3.2 always produce a monotonic response, where, at 0t = , the re-
sponse from the model starts at the lowermost (or uppermost) point (A or B) and, 
at / 2ut P= , it ends at the other extreme point (B or C). Processes with serial 
numbers 3, 4, 5 and 6 in Table 3.2 may give a non-monotonic response, as shown 
in Figure 3.10. The third type is higher order systems without dead time (i.e. 

3n ≥ ). For this type of system, this value occurs at the mid-point of the half pe-
riod, as also shown in Figure 3.10. 

Figure 3.10 shows the correctness of the derived mathematical models.  If the 
relay height is other than unity, then the model for the relay output response will be 
just multiplied by actual value of relay height h . 

3.4 Conclusion 

In this chapter the relay feedback test is introduced and the steps required to per-
form the experiment are also given. It can be carried out with or without a com-
mercial autotuner. Once you have obtained the information on the ultimate fre-
quency, the controller settings can be decided using the original or modified 
Ziegler–Nichols methods. You can also go a step further to find an appropriate 
transfer function for the process. This can be useful for implementing MPC or dead 
time compensator (Smith predictor). Better approximation can be achieved using 
the improved algorithm. Finding transfer functions using the biased relay plus hys-
teresis was discussed by Wang et al. [12]. Finally, analytical expressions for relay 
feedback responses are tabulated for different types of process. This can be useful 
if the model structure is known. 
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Figure 3.10. Validation of analytical expressions for relay output of different  sys-
tems: solid line is relay output and dashed line is model output. (A denotes starting 
of one cycle that ends at B. Again from B next cycle starts and ends at C). 
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