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Markov Chain Monte Carlo Sampling

Recently, Monte Carlo (MC) based sampling methods for evaluating
high-dimensional posterior integrals have been rapidly developing. Those
sampling methods include MC importance sampling (Hammersley and
Handscomb 1964; Ripley 1987; Geweke 1989; Wolpert 1991), Gibbs sam-
pling (Geman and Geman 1984; Gelfand and Smith 1990), Hit-and-Run
sampling (Smith 1984; Bélisle, Romeijn, and Smith 1993; Chen 1993; Chen
and Schmeiser 1993 and 1996), Metropolis—Hastings sampling (Metropolis
et al. 1953; Hastings 1970; Green 1995), and hybrid methods (e.g., Miiller
1991; Tierney 1994; Berger and Chen 1993). A general discussion of the
Gibbs sampler and other Markov chain Monte Carlo (MCMC) methods is
given in the Journal of the Royal Statistical Society, Series B (1993), and an
excellent roundtable discussion on the practical use of MCMC can be found
in Kass et al. (1998). Other discussions or instances of the use of MCMC
sampling can be found in Tanner and Wong (1987), Tanner (1996), Geyer
(1992), Gelman and Rubin (1992), Gelfand, Smith, and Lee (1992), Gilks
and Wild (1992), and many others. Further development of state-of-the-
arts MCMC sampling techniques include the accelerated MCMC sampling
of Liu and Sabatti (1998, 1999), Liu (1998), and Liu and Wu (1997), and
the exact MCMC sampling of Green and Murdoch (1999). Comprehensive
accounts of MCMC methods and their applications may also be found in
Meyn and Tweedie (1993), Tanner (1996), Gilks, Richardson, and Spiegel-
halter (1996), Robert and Casella (1999), and Gelfand and Smith (2000).
The purpose of this chapter is to give a brief overview of several commonly
used MCMC sampling algorithms as well as to present selectively several
newly developed computational tools for MCMC sampling.
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2.1 Gibbs Sampler

The Gibbs sampler may be one of the best known MCMC sampling al-
gorithms in the Bayesian computational literature. As discussed in Besag
and Green (1993), the Gibbs sampler is founded on the ideas of Grenander
(1983), while the formal term is introduced by Geman and Geman (1984).
The primary bibliographical landmark for Gibbs sampling in problems of
Bayesian inference is Gelfand and Smith (1990). A similar idea termed as
data augmentation is introduced by Tanner and Wong (1987). Casella and
George (1992) provide an excellent tutorial on the Gibbs sampler.

Let 8 = (01,62,...,0,)' be a p-dimensional vector of parameters and
let w(@|D) be its posterior distribution given the data D. Then, the basic
scheme of the Gibbs sampler is given as follows:

Gibbs Sampling Algorithm

Step 0. Choose an arbitrary starting point 8y = (01,0,62,0, .- -,8p,0)’, and
set ¢ = 0.

Step 1. Generate 0,’.{.1 = ((91,1'_’_1,92’“_1, e ,0,),,-“)’ as follows:

o Generate 0y ;11 ~ w(01]62,i,.-.,60p,i,D);
o Generate 02,i+1 ~ 7r(02|01,,~+1, 03,,', ceey Gm, D);

o Generate 0p,i+1 ~ 7T(0p|017i+1,62,,'+1, e ,0,,_1,,-“, D)
Step 2. Set i =i+ 1, and go to Step 1.

Thus each component of @ is visited in the natural order and a cycle in
this scheme requires generation of p random variates. Gelfand and Smith
(1990) show that under certain regularity conditions, the vector sequence
{0;, i = 1,2,...} has a stationary distribution 7(8|D). Schervish and
Carlin (1992) provide a sufficient condition that guarantees geometric con-
vergence. Other properties regarding geometric convergence are discussed
in Roberts and Polson (1994). To illustrate the Gibbs sampler, we consider
the following two simple examples:

Example 2.1. Bivariate normal model. The purpose of this example
is to examine the exact correlation structure of the Markov chain induced
by the Gibbs sampler. Assume that the posterior distribution w(6|D) is a
bivariate normal distribution Ny(u,Y) with

n= M1 and X = 0-% pPO102
B2 poioy 05 )’
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where uj, 0j, j = 1,2, and p are known. Then the Gibbs sampler requires
sampling from

61 ~ N(m +P%(92 —M2);Uf(1—l)2))
2
and
b ~ N (u2+PZ—i(91 —M1)>U§(1—92)>-

Let {6; = (61,i,62,;)', i > 0} denote the Markov chain induced by the
Gibbs sampler for the above bivariate normal distribution. If we start from
the stationary distribution, i.e., 8y ~ N(u,X), then each of {6 ,, i > 0}
and {6, i > 0} is an AR(1) process.

To see this, let {214,224, @ > 0} be an iid. N(0,1) random variable
sequence. Then the structure of the Gibbs sampler implies

010 = p1 + 01210,

o
O20=p2+p 2 (01,0 — 1) + 02/ 1 — p2220,
1

o
and

ag
01,i41 = p1 + P0—1(92,z’ —p2) + o1V 1= p%21i41,
2

ag
O2,i01 = fiz + p— (B1,i01 — i) + 02y/1 — p222 141, (2.1.1)
1

g
for 4 > 0, Now, we consider the first component 6 ;1. From (2.1.1), for
i >0,

ag g
01,i+1 =p1 + pa—l pU_Q(el,i — 1) + o2/ 1 — pPay
2 | o1

+o1vV1—p221i41
=p1 + p? (01 — 1) + por/1 — P22

+o1V1— pzzl,i_H. (212)

Let ¢ = p? and of? = o}(1 — p*). Let {27, i > 0} denote an i.i.d.
N(0,1) random variable sequence. Since 21 ; and 2, ;41 are independently
and identically distributed as N(0,1), then we can rewrite (2.1.2) as

01,0 = 1+ 0'1ZE;, (2.1.3)

01’1'4_1 = u1 + ’(b(al’i — ,ul) + sz;‘+1 for i > 0. (214)

Thus, {61, i > 0} is an AR(1) process with lag-one autocorrelation 1) = p*.
Similarly, {62,;, ¢ > 0} is also an AR(1) process with lag-one autocorrela-

tion 1) = p2. The only difference is that we use 0% = 024/1 — p* instead of
ot in (2.1.4), and use po and o2 instead of y1 and oy in (2.1.3).
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Roberts and Sahu (1997) obtain a similar result for a general multivari-
ate normal target distribution 7(6|D), that is, the Markov chain induced
by the Gibbs sampler is a multivariate AR(1) process.

Example 2.2. Constrained multiple linear regression model. We
consider a constrained multiple linear regression model given by (1.3.1) to
model the New Zealand apple data described in Example 1.1. Let

Q={B=(B1,B2,---,510) :0< B1 < B < ... < P10, B € R} (2.1.5)

denote the constraints given in (1.3.2). We take a joint prior for (8, 0?) of
the form

7(8,0%) o —5r(Brolmo, o), (216)

for 02 > 0 and B € €, where 7(B10|p10,0%,) is a normal density with mean
1o and variance 0'%0. The modification of the usual flat noninformative
prior to include the informative distribution on ;¢ is necessary to prevent
too much weight being given to the unconstrained and therefore unbounded
parameter (19. Chen and Deely (1996) specify pio = 0.998, and o7, =
0.089 by using method-of-moments, a well-known type of empirical Bayes
estimation, from the data on growers with mature trees only. Using (2.1.6),
the posterior distribution for (3,0?%) based on the New Zealand apple data
D is given by

_exp{—(B10 — 110)?/20%,}

2
(8,0 |D) - c(D)(a2)(”+1)/2
2
1 n 10
Xexp —55 Z Yi — sz’jﬂj ) (2.1.7)
i=1 j=1

for 02 > 0 and B € Q, where y; is the total number of cartons of fruit

produced and z;; = number of trees at age j + 1 for j = 1,2,...,10 for
the ith grower, ¢(D) is the normalizing constant, and n = 207 denotes the
sample size. Due to the constraints, the analytical evaluation of posterior
quantities such as the posterior mean and posterior standard deviation of
B; does not appear possible. However, the implementation of the Gibbs
sampler for sampling from the posterior (2.1.7) is straightforward. More
specifically, we run the Gibbs sampler by taking

ﬂj'ﬂla"'aﬂj—laﬂj-l—la'"aﬂlOaUQaD ~ N(gjaé_?) (218)
SUbjeCt to /8]'—1 < ﬂ] < /Bj-i-l (ﬂO = 0) fOI‘j =12,...,9,

BrolB1,- .-, Be,0°, D ~ N(pbio + (1 — ¢)po, (1 —9)oip)  (2.1.9)



2.2. Metropolis—Hastings Algorithm 23

subject to 819 > B9 and
n 10 2
O'2|ﬂ,D ~ Ig <g’ Ez—l(y Ej_l ]/BJ) ) ’ (2110)

2

where in (2.1.8) and (2.1.9), ¢ = 0%,/ (03, + 6%),

n -1 n
(9]' = (Z .’L’Z) Z Yi — Zmilﬂl mij s (2111)
i=1

i=1 I#]

and

n -1
8 = <Z _1;%) a2 (2.1.12)
=1

for j =1,...,10, and ZG(, n) denotes the inverse gamma distribution with
parameters (£,7n), whose density is given by

m(0?[€,n) x (o2) EVen/o",

2.2 Metropolis—Hastings Algorithm

The Metropolis—Hastings algorithm is developed by Metropolis et al. (1953)
and subsequently generalized by Hastings (1970). Tierney (1994) gives
a comprehensive theoretical exposition of this algorithm, and Chib and
Greenberg (1995) provide an excellent tutorial on this topic.

Let ¢(0,9) be a proposal density, which is also termed as a candidate-
generating density by Chib and Greenberg (1995), such that

/q(0,19) a9 = 1.

Also let U(0,1) denote the uniform distribution over (0, 1). Then, a general
version of the Metropolis—Hastings algorithm for sampling from the poste-
rior distribution 7 (6@|D) can be described as follows:

Metropolis—Hastings Algorithm

Step 0. Choose an arbitrary starting point @y and set ¢ = 0.

Step 1. Generate a candidate point 8* from ¢(0;,-) and u from U(0,1).

Step 2. Set ;11 = 0" if u < a(0;,0") and 6,1 = 8; otherwise, where the
acceptance probability is given by

. [w(¥|D)q(v,0)
a(6,9) = min {W’ 1} . (2.2.1)
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Step 3. Set i =i + 1, and go to Step 1.

The above algorithm is very general. When ¢(6,9) = ¢(9), the
Metropolis—Hastings algorithm reduces to the independence chain Metropo-
lis algorithm (see Tierney 1994). More interestingly, the Gibbs sampler is
obtained as a special case of the Metropolis—Hastings algorithm by choos-
ing an appropriate ¢(@, ). This relationship is first pointed out by Gelman
(1992) and further elaborated on by Chib and Greenberg (1995).

Another family of proposal densities is given by the form ¢(6,9) = g, (9—
0), where ¢;(-) is a multivariate density (see Miiller 1991). The candidate
6" is thus drawn according to the process 8* = 6 + w, where w is called
the increment random variable and follows the distribution ¢;. Because the
candidate is equal to the current value plus noise, Chib and Greenberg
(1995) call this case a random walk chain. Many other algorithms such as
the Hit-and-Run algorithm and dynamic weighting algorithm, which will
be presented later in this chapter, are also special cases of this general
algorithm.

The performance of a Metropolis—Hastings algorithm depends on the
choice of a proposal density ¢g. As discussed in Chib and Greenberg (1995),
the spread of the proposal density ¢ affects the behavior of the chain in at
least two dimensions: one is the “acceptance rate” (the percentage of times
a move to a new point is made), and the other is the region of the sample
space that is covered by the chain. If the spread is extremely large, some
of the generated candidates will have a low probability of being accepted.
On the other hand, if the spread is chosen too small, the chain will take
longer to traverse the support of the density. Both of these situations are
likely to be reflected in high autocorrelations across sample values. In the
context of ¢; (the random walk proposal density), Roberts, Gelman, and
Gilks (1997) show that if the target and proposal densities are normal,
then the scale of the latter should be tuned so that the acceptance rate is
approximately 0.45 in one-dimensional problems and approximately 0.23 as
the number of dimensions approaches infinity, with the optimal acceptance
rate being around 0.25 in six dimensions. For the independence chain, in
which we take ¢(@,9) = ¢(19), it is important to ensure that the tails of the
proposal density ¢(9}) dominate those of the target density 7(8|D), which
is similar to a requirement on the importance sampling function in Monte
Carlo integration with importance sampling (Geweke 1989).

To illustrate the Metropolis—Hastings algorithm, we consider a problem
of sampling a correlation coefficient p from its posterior distribution.

Example 2.3. An algorithm for sampling a correlation p. Assume
that D = {y; = (y1i,y2i)', ¢ = 1,2,...,n} is a random sample from a
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bivariate normal distribution N2(0,X), where

-~ (: )

Assuming a uniform prior U(—1, 1) for p, the posterior density for p is given
by

w(p|D) x (1 — p2)7n/2 exp {— (S11 — 2pS12 + 522)} , (2.2.2)

1
2(1-p?)
where —1 < p < 1,and Sps = Y- ; Yri¥si for 7,8 = 1,2. Generating p from
(2.2.2) is not trivial since 7(p|D) is not log-concave. Therefore, we con-
sider the following Metropolis—Hastings algorithm with a “de-constraint”
transformation to sample p. Since —1 < p < 1, we let

—1+¢€f

p =
Then
2¢t
(1+e8)?

Instead of directly sampling p, we generate { by choosing a normal pro-
posal N(&, &g), where ¢ is a maximizer of the logarithm of w(£|D), which

m(§|D) = n(p|D)

can be obtained by, for example, the standard Newton—Raphson algorithm
or the Nelder—-Mead algorithm implemented by O’Neill (1971), and &g is

minus the inverse of the second derivative of log 7(£|D) evaluated at & = é,
that is,

o _ @logn(elD)
13 dg?

¢=¢
The algorithm to generate £ operates as follows:

Step 1. Let £ be the current value.

Step 2. Generate a proposal value £* from N (é , &2).

Step 3. A move from £ to £* is made with probability

#(£°D) (5 - )
L3,
=(€D)s (ﬂf—*)

€
where ¢ is the standard normal probability density function.

min (2.2.4)

After we obtain £, we compute p by using (2.2.3).
Since the above algorithm does not use a random walk proposal density,
the optimal acceptance rate, 0.23, of Roberts, Gelman, and Gilks (1997)
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cannot be applied here. A detailed study of how this algorithm performs is
thus left as an exercise. The above algorithm can also be extended to the
cases where 7(p|D) is a conditional posterior distribution that depends on
other parameters. For example, the conditional posterior distribution for
p may be written as 7(p|@, D). Then, the Metropolis—Hastings algorithm
to sample from 7 (p|@, D) proceeds in a similar way. The idea of a normal
proposal that is matched to the conditional posterior appears for the first
time in Chib and Greenberg (1994). A nice feature of this extension is that
the normal proposal density for this more general case becomes adaptive
since it depends on the values of the other parameters from the current
and previous iterations. This semiautomatic updating feature makes the
proposal density closer to the true conditional posterior, which may lead
to a more efficient Metropolis—Hastings algorithm.

2.3 Hit-and-Run Algorithm

The Hit-and-Run (H&R) algorithm is a special case of the Metropolis—
Hastings algorithm. Its original form is proposed independently by Boneh
and Golan (1979) and Smith (1980) for generating points uniformly dis-
tributed over bounded regions in mathematical programming problems.
Smith (1984) calls the H&R a “Mixing Algorithm” and he then proves
the convergence of the algorithm. This algorithm has not been studied for
about 10 years until Bélisle, Romeijn, and Smith (1993) propose a more
general form of the H&R algorithm that generates a sample of points from
an arbitrary continuous target distribution. However, Bélisle, Romeijn, and
Smith (1993) prove the convergence assuming that the target density is
bounded and has bounded support. Chen and Schmeiser (1996) further
generalize the H&R algorithm to a general target density for evaluating
multidimensional integrals and Chen and Schmeiser (1993) also consider
the performance of H&R compared to the Gibbs sampler. In the context of
Bayesian computation, Berger and Chen (1993) use the H&R, for sampling
from a multinomial distribution with a constrained parameter space; Yang
and Berger (1994) apply the H&R algorithm for estimation of a covari-
ance matrix using the reference prior; and Yang and Chen (1995) employ
the H&R algorithm with parameter transformations for Bayesian analy-
sis of random coefficient regression models using noninformative priors. A
slightly different but related algorithm termed adaptive direction sampling
can be found in Gilks, Roberts, and George (1994) and Roberts and Gilks
(1994).

Assume that the posterior distribution 7(8|D) has support 2. Then, the
general H&R algorithm, requiring a distribution for the direction, a density
g; for the signed distance, and an acceptance probability a;, can be stated
as follows:
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Hit-and-Run Algorithm
Step 0. Choose an arbitrary starting point 8y and set i = 0.

Step 1. Generate a direction d; from a distribution on the surface of the
unit sphere.

Step 2. Find the set Q; = Q:(d;,0;) = {)\ € R|6; + \d; € Q}.

Step 3. Generate a signed distance \; from density g;(A|d;,8;), where
A € Q.

Step 4. Set 8" = 0; + \;d;. Then set

0;0, = {0*, with the probability a;(6%|6;) 23.1)

0;, otherwise.

Step 5. Set i =i + 1, and go to Step 1.

Chen and Schmeiser (1996) discuss various choices for the distributions
of d;, the densities g;, and the probabilities a;. Let the distribution of the
direction d;, as used in Step 2 of H&R, have density r(d;), with the surface
of the unit sphere as its support. Then, assume that:

(i) for any density g;(\|d;, ;) in Step 3, g;(\|d;, 8;) > 0 and
9i(=Al — d;, 0;) = gi(N|d;, 0,);
(if) for the distribution of the direction, r(d;) > 0;
(iii) for any a; in Step 4, 0 < a;(0%]|8;) < 1; and
(iv) for any 6,0" € Q
* 0* -0 *
5 (1661 | g—gp+) -w(®1OmOID)
6-06"
1601 | g —ge®") -as6l6")n(6" D)
= ( To-o | o]

Under the assumptions above, the Markov chain {6;, ¢ = 0,1,2,...}
converges to its stationary distribution 7(8|D).

The most common choice of (d;) is a uniform distribution on the surface
of the unit sphere. Common choices of g; and a; are given as follows:

Choice I:
w(6; + A\d;| D)
fQi(di,oi) w(0; + Ud,|D) d

gi(\d;, 8;) = for A € Q;(d;, 6;),
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and
al(0*|0;) = a}(6;|6*), 0< a'(6%|6;) <1 for all 8;,8* € Q.
Typically a}(6%|6;) = 1.

Choice II:

Choose g;(\|d;, 8;) to be one of the following:
(a) If Q is bounded, then

1
gi'(\|di, 0;) = - for A € Q;(d;, 0,),

(Q2:(d;,0,))
where m denotes Lebesgue measure.

(b) If Q is unbounded, then choose gI'(\|d;, 8;) to be a symmetric-about-

zero, continuous distribution with unbounded support €;(d;, 8;) and

shape depending only on €2;(d;, 8;). For example, g!' can be a normal

distribution, Cauchy distribution, or double-exponential distribution

with location parameter zero and scale parameter depending only on
Qi(d;, 0;).

Independent of the choice (a) or (b), choose a;(8%|6;) to be either:
(c) Barker’s method (Barker 1965)

m(0"|D)
(6:|D) +m(6°|D)

g%\ —
a; (0%16;) -
or

(d) Metropolis’s method
1T/ n* — i
a; (0%|6;) = min (1, —
™
Choice III:

Choose gI''(\|d;, ;) = g;(8; + Ad;), where g; depends only on Q;(d;, 8;),
and

0" (6710:) = min{w(8; + Ady)/w(6:),1},

where w(8;) = 7(60;|D)/g9:(0;).

These choices are motivated by Hastings (1970). For a given g; in Choice
ITI, the results of Peskun (1973) imply that when Q is a finite set, the
choice of al'! is optimal in the sense of minimizing the asymptotic variance

of the sample average (1/n) Y., h(0;), where h(-) is a real function of 8

i=1
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satisfying
/ Ih(8)[x(6|D) db < oo.
RP

With Choice I, Kaufman and Smith (1998) develop an optimal direction
choice algorithm for H&R and prove that there exists a unique optimal
direction choice distribution for r(-). The other theoretical properties of
H&R can be found in Bélisle, Romeijn, and Smith (1993), and Chen
and Schmeiser (1993, 1996). Regarding applications of H&R to Bayesian
computation, Berger (1993) comments that

“This method is particularly useful when 6 has a sharply
constrained parameter space.”

To illustrate the H&R algorithm, we revisit the constrained multiple lin-
ear regression model discussed in Section 2.1.

Example 2.4. Constrained multiple linear regression model (Ex-
ample 2.2 continued). Instead of using the Gibbs sampler to sample
(B,0?%) from 7(B,02|D) given in (2.1.7), we use the H&R algorithm. All
eleven dimensions are sampled within a Gibbs sampling framework, with
the ten B dimensions sampled with H&R and o2 sampled from its known
conditional gamma density in the Gibbs step. For illustrative purposes, we
state the H&R logic for sampling 8 = (81, B2, - - -, f10)’ from its conditional
posterior distribution for a given value of ¢ and D:

Step 0. Choose a starting point 3, € 2 and set ¢ = 0.

Step 1. Generate a uniformly distributed unit-length direction d; = (d1,;,
dai, - .-, dio,i).

Step 2. Find the set ; = (R}, RY), where
Rl = inf{X: B; + Ad; € O} and RY = sup{\: B; + \d; € Q}.
A
Step 3. Generate a signed distance \; from the density

B 7(B; + A\d;,0%|D)
[i2 7(B; + udi, 0*|D) du
1

i (N) , A€ (R RY). (2.3.2)

Step 4. Set Bi+1 = Bi + )\zdz
Step 5. Set i =i+ 1 and go to Step 1.

Here we use the probability a; = 1. Sampling in each step is straightfor-
ward. A random unit-length direction d; can be generated in Step 2 by
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independently generating z; ~ N(0,1) and setting

—1/2
10 /
E : 2
dl,i =2z Zj
j=1

for I = 1,2,...,10; see, for example, Devroye (1986). The density given
in (2.3.2) is a truncated normal probability density function, where the
mean and variance are easy-to-compute functions of o2, 3;, d;, and D.
Computationally, the H&R algorithm is slightly more efficient than the
usual (one-coordinate-at-a-time) Gibbs sampler. Implementation difficulty
of the two sampling algorithms is similar.

2.4 Multiple-Try Metropolis Algorithm

Liu, Liang, and Wong (1998a) propose a novel algorithm, called the
Multiple-Try Metropolis (MTM) algorithm. The algorithm proceeds as fol-
lows. Let T'(0,9) be a proposal transition density function, which may or
may not be symmetric. A requirement for 7(6,d) is that 7(6,9) > 0 if
and only if T'(9, 0) > 0. Furthermore, define

w(0,9) = 7(0)D)T(0,9)A(6,9), (2.4.1)

where \(6,9) is a nonnegative symmetric function in @ and ¥ so that
A(0,79) > 0 whenever T'(0,9) > 0. Suppose the current state is 8;. In an
MTM transition, the next state is generated as follows:

Multiple-Try Metropolis

Step 1. Generate k trials 91, Y2, ..., ¥ from the proposal distribution
T(6;,9). Compute w(¥;,0;) for j =1,2,...,k.

Step 2. Select 9; among the ¥;’s with probability proportional to
w(9;,0;), 7 = 1,2,...,k. Then draw 97, 93, ..., 9;_; from the
distribution T'(9;,9"), and let 9}, = 6;.

Step 3. Generate u from U(0,1). Set 8,11 = 9; if u < a and 0,41 = 6;
otherwise, where the acceptance probability is given by

a=min« 1, = = * .
U)( 1719l) + U)( 25191) T+ +w("-9ka'l9l)
Liu, Liang, and Wong (1998a) show that the MTM transition rule satis-
fies the detailed balance, and hence, induces a reversible MC with 7(8|D)

as its equilibrium distribution. They also present several choices of A(8, )
in (2.4.1). When T'(8,9) is symmetric and \(8,9) = [T'(6,9)] !, the MTM
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algorithm reduces to the method of “orientation biased-Monte Carlo” de-
scribed in Frenkel and Smit (1996), where they provide a specialized proof
in the context of simulating molecular structures of materials. As discussed
in Liu, Liang, and Wong (1998a), the MTM algorithm is more advanta-
geous, since it allows one to explore more thoroughly the “neighboring
region” defined by T'(68,4), and it is particularly useful when one identifies
certain directions of interest but has difficulty implementing a Gibbs sam-
pling type move due to unfavorable conditional distributions. Liu, Liang,
and Wong (1998a) also propose several variations of the MTM algorithm.
These include a conjugate-gradient MC algorithm, a random-ray algorithm,
and a Griddy—Gibbs MTM, which are closely related to the adaptive direc-
tion sampling algorithm of Gilks, Roberts, and George (1994) and Roberts
and Gilks (1994), the H&R algorithm of Chen and Schmeiser (1993, 1996),
and the Griddy—Gibbs algorithm of Ritter and Tanner (1992). For illus-
trative purposes, we briefly describe the random-ray algorithm as follows.
Suppose the current state is 8;. The random-ray algorithm executes the
following update:

¢ Randomly generate a unit-length direction d.

e Draw 1, ¥2, ..., ¥ from the proposal transition T4(6;,19) along
the direction d. One possible way to do this is to generate a random
sample {ry,72,...,7} from N(0,0?), where o2 can be chosen large,

and set ¥y, = 6;+7;d. Another approach is to generate r; ~ U[—0, o].

e Conduct the other MTM steps as described in the Multiple-Try
Metropolis algorithm.

The implementational details for the other variations can be found in Liu,
Liang, and Wong (1998a), and are omitted here for brevity.

2.5 Grouping, Collapsing, and Reparameterizations

In this section, we discuss several useful tools to improve convergence of
MCMC sampling. In particular, we focus on the grouped and collapsed
Gibbs techniques of Liu (1994) and Liu, Wong, and Kong (1994), and the
hierarchical centering method of Gelfand, Sahu, and Carlin (1995, 1996).

2.5.1 Grouped and Collapsed Gibbs

Liu (1994) proposes a method of “grouping” and “collapsing” when using
the Gibbs sampler in which he shows that both grouping and collapsing
are beneficial based on operator theory. To illustrate his idea, we consider
a three-dimensional posterior distribution 7(8|D), where 8 = (61, 62,63)’.
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Liu (1994) considers the following three variations of the Gibbs sampler
to sample from 7(@|D):

Algorithm 1:  Standard (Original) Gibbs Sampler

The standard Gibbs sampler requires drawing:
(i) 61 ~ m(61]|62,63,D);

(ii) 82 ~ m(62]61,63,D);

(iii) 3 ~ m(03]601,62,D).

Algorithm 2:  Grouped Gibbs Sampler

The grouped Gibbs sampler requires drawing:
(i) (61,62) ~ m(61,62/03, D);
(11) 03 ~ 7T(03|91,92,D).

In Algorithm 2, we first group (61,62) together and then simulta-
neously draw (0;,62) from their joint conditional posterior distribution
7F(01,02|63,D).

Algorithm 3:  Collapsed Gibbs Sampler

The collapsed Gibbs sampler requires drawing:
(i) (61,62) ~ m(61,62|D);
(11) 03 ~ 7T((93|61,92,D).

The main difference between Algorithms 2 and 3 is the implementation
of step (i). In particular, the collapsed Gibbs draws (61,62) from their
marginal posterior distribution instead of the conditional posterior dis-
tribution as in Algorithm 2. Liu (1994) also mentions that if one uses a
“mini-Gibbs” to draw (61, 62) in step (i), that is, to sample 6; ~ 7 (61162, D)
and then 6y ~ (62|61, D), the collapsed Gibbs requires that the chain from
the mini-Gibbs sampler converges before step (ii). In practice, it may be
difficult or expensive to directly draw (6;,62) jointly from 7(6;,62|D). In
this case, we consider the following modified version of the collapsed Gibbs
sampler:

Algorithm 3(a): Modified Collapsed Gibbs Sampler

The modified collapsed Gibbs sampler is similar to the original version by
changing step (i) to:

(ia) 01 ~ 7r(01|92,D);
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(lb) 92 ~ 7T(02|01,D).

We can show that the modified Gibbs sampler still leaves the tar-
get posterior distribution invariant. To see this, let 8; = (61,;,62,,65,)
and ;41 = (01,i41,02,i+1,05,i+1)" be two consecutive states. Then the
construction of Algorithm 3(a) yields the following transition probability
kernel:

T(0;,0;11) = 7(01,i41/02,i, D)7 (02,i41101,i41, D)
X 77(93,i+1|01,i+1702,i+1;D)- (251)
It follows that

/Rs T(0,~, 0,~+1)7r(0,~|D) d0,~ = 7((0,'+1|D). (2.5.2)

(The proof of (2.5.2) is left as an exercise.) Thus, 7(8|D) is invariant with
respect to the transition probability kernel T'(8;,0;+1). The modified ver-
sion of the collapsed Gibbs sampler is useful and practically advantageous
since drawing from the conditional posterior distributions is usually easier
than sampling from the joint unconditional one. This is particularly true
when dealing with higher-dimensional problems.

Using norms of the forward and backward operators of the induced
Markov chain, Liu (1994) shows that the collapsed Gibbs works better
than the grouped Gibbs, while the latter is better than the original Gibbs.
It is expected that the collapsed Gibbs may work better than the modi-
fied collapsed Gibbs, while the modified version of collapsed Gibbs may be
more beneficial than the original Gibbs. However, between the modified col-
lapsed Gibbs and the grouped Gibbs, it is not straightforward to see which
one works better. The performance of these two algorithms may depend
on the correlations between #; and 6;. If 8; and 6, are highly correlated,
the grouped Gibbs is expected to work better. Otherwise, the modified
collapsed Gibbs may have better performance.

The above three-component Gibbs sampler is also studied by Liu, Wong,
and Kong (1994) and further discussed by Roberts and Sahu (1997), when
the target distribution 7(8|D) is normal. Regarding the grouping or block-
ing strategy for the Gibbs sampler, Roberts and Sahu (1997) provide a
comprehensive study by comparing rates of convergence of various block-
ing combinations, and thus we refer the reader to their paper for further
discussion. In general, grouping or blocking is beneficial, but often more
computationally demanding. In particular, Roberts and Sahu (1997) show
that if all partial correlations of a normal (Gaussian) target distribution
are nonnegative, i.e., all of the off-diagonal elements of the inverse covari-
ance matrix are nonpositive, then the grouped (blocked) Gibbs sampler
has a faster rate of convergence than the standard (original) Gibbs sam-
pler. That is, grouping positively correlated parameters in Gibbs sampling
is always beneficial. However, Roberts and Sahu (1997) also find some ex-
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amples showing that blocking can also make an algorithm converge more
slowly.

2.5.2  Reparameterizations: Hierarchical Centering and
Rescaling

As pointed out by Roberts and Sahu (1997), high correlations among the
coordinates of 6 diminish the speed of convergence of the Gibbs sampler
(see also Hills and Smith 1992). The correlations among the coordinates
are determined by the particular parameterization of the problem. Gelfand,
Sahu, and Carlin (1995, 1996) argue that a hierarchically centered parame-
terization leads to faster mixing and convergence because it generally leads
to smaller intercomponent correlations among the coordinates in Bayesian
linear models. Roberts and Sahu (1997) further examine the hierarchically
centered parameterization and they demonstrate that hierarchical centering
yields faster mixing Gibbs samplers.

Here we illustrate this idea with a one-way analysis of variance model
with random effects.

Example 2.5. One-way analysis of variance with random effects.
Gelfand, Sahu, and Carlin (1996) and Roberts and Sahu (1997) consider
the following one-way analysis of variance model. Assume that the error
variance o2 is known and suppose that we have a single observation y; for
each population, i.e.,

Yyi=p+ao;+e, i=12,...,m, (2.5.3)

where €; ~ N(0,07), a; ~ N(0,02), i ~ N(po,0,), and o7, is also known.
We denote the data by D = y = (y1,¥2,---,ym) - Gelfand, Sahu, and
Carlin (1996) rewrite (2.5.3) in a hierarchical form. Defining n; = p + «,
we have

yilni ~ N(n;,02), nilw~ N(u,02), and g~ N(po,0}).

This transformation from (ai,aa,...,am) to (N1,M2,...,0m)" is thus re-
ferred to as hierarchical centering. Working in p—n space, Gelfand, Sahu,
and Carlin (1996) obtain

bo? \ 12
corr(n;, u|/D) = (l-i— 20‘2> (2.5.4)
o202
and
bo2 \
cot 1) = (14 272 ) (2.5.5)
o202



2.5. Grouping, Collapsing, and Reparameterizations 35

where b = 62 + 02 + mo?. The correlations given in (2.5.4) and (2.5.5) tend
to 0 for fixed 02 and o2 if 02 — co. On the other hand, if 0% — oo, the
correlations do not approach 0, and in fact will tend to 1 if ai — 0.

In p—a space, we can obtain

bo? \ 12
corr(ay, p|D) = (1 + = e2> (2.5.6)
o2a?
and
bo? \ !
corr(a;, aj|D) = <1+ 2062> : (2.5.7)
o303

The correlations given in (2.5.6) and (2.5.7) tend to 0 as 02> — oo, but do
not approach 0 as 03 — 00, and in fact will tend to 1if o, — oo as well. In
practice, when the random effects are needed, the error variance is much
reduced. Thus o2 will rarely dominate the variability, so that the centered
parameterization will likely be preferred. Roberts and Sahu (1997) obtain
similar results by studying the rate of convergence of the Gibbs sampler.

Hierarchical centering is also useful for Bayesian nonlinear models. We
will address this issue in Section 2.5.4 below. In the same spirit as hierar-
chical centering, hierarchical rescaling is another useful tool to reduce the
correlations between the location coordinates and the scalar coordinates.
We will illustrate hierarchical rescaling in the next subsection using ordinal
response models.

2.5.8 Collapsing and Reparameterization for Ordinal
Response Models

Consider a probit model for ordinal response data. Let y = (y1,y2,---,Yn)’
denote an n x 1 vector of n independent ordinal random variables. Assume
that y; takes a value of I (1 <[ < L, L > 2) with probability

pi = ®(y + zB) — ®(y-1 + 2ih), (2:5.8)

fori =1,...,nand [ = 1,...,L, where —0c0 = 79 < 71 < 72 < ... <
YL—1 < 7L = 00, ®(+) denotes the N(0,1) cumulative distribution function
(cdf), which defines the link, x; is a p X 1 column vector of covariates,
and B = (f1,-..,0p)" is a p x 1 column vector of regression coefficients.
To ensure identifiability, we take 73 = 0. Let v = (va,...,7z-1)" and
D = (y, X, n) denote the data, where X is the n x p design matrix with ]
as its it* row. Thus, the likelihood function is

L(B,7|D) = H [@(vy; + 2iB) = 2(vye—1 + iB)] - (2.5.9)

=1
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We further assume that (8,+) has an improper uniform prior, i.e.,
m(B,) 1. The posterior distribution for (3,-) takes the form

™(8,7|D) o< L(B,7|D)7(8,7)
= [[ (@, + iB) — B(yi—1 + 2}B)] - (2.5.10)
i=1
Chen and Shao (1999a) obtain necessary and sufficient conditions for

the propriety of the posterior defined by (2.5.10). To facilitate the Gibbs
sampler, Albert and Chib (1993) introduce latent variables z; such that

yi =1 iff v <z <y,

forl =1,2,...,L. Let z = (21,22,...,2,)". The complete-data likelihood
is given by

L(B,7,2|D) o [ [lexp{ -3 (zi — iB)*}1{vym1 < zi < v},
=1

(2.5.11)

where 1{v,;,—1 < z; < 7y, } is the indicator function, and the joint posterior
density for (8,4, z) is given by

(83,7, 2|D) {H[exp{—%(zz' —2iB) " {1 <z < }]} :

(2.5.12)

Then, Albert and Chib (1993) incorporate the unknown latent variables
z as additional parameters to run the Gibbs sampler. The original Gibbs
sampler for the ordinal probit model proposed by Albert and Chib (1993),
which is referred to as the Albert—Chib algorithm thereafter, may be im-
plemented as follows:

Albert—-Chib Algorithm
Step 1. Draw 8 from
Blz,y ~ N(X'X) X'z, (X'X)™1).
Step 2. Draw z; from
zi ~ N(@iB,1), -1 <2 <y
Step 3. Draw ~ from
2wy, 8,z ~ Ulay,bi], (2.5.13)
where a; = max {'yl,l,rﬁi)lc zi}, b; = min {W“’yg}ﬂl zz-}, and 4(—

is v with ~; deleted.
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Since, in Step 1 all p components of the regression coefficient vec-
tor are drawn simultaneously, the Albert—Chib algorithm is indeed a
grouped Gibbs sampler. The implementation of the Albert—Chib algorithm
is straightforward since the conditional posterior distributions are normal,
truncated normal, or uniform. When the sample size n is not too big, the
Albert—Chib algorithm works reasonably well. However, when n is large,
say n > 50, slow convergence of the Albert—Chib algorithm may occur.
Cowles (1996) points out this slow convergence problem. Because the inter-
val (a;,b;) within which each 7; must be generated from its full conditional
can be very narrow, the cutpoint values may change very little between suc-
cessive iterations, making the iterates highly correlated. Of course, slower
convergence of the ~; is also associated with the fact that the variance of
the latent variables is fixed at one. The empirical study of Cowles (1996)
further shows that the slow convergence of the cutpoints may also seri-
ously affect the convergence of 8. To improve convergence of the original
Gibbs sampler, she proposes a Metropolis—Hastings algorithm to generate
the cutpoints from their conditional distributions; henceforth, this algo-
rithm is called the Cowles algorithm. Instead of directly generating v; from
(2.5.13), the Cowles algorithm generates (v, z) jointly, which is essentially
the same idea as the (modified) collapsed Gibbs sampler described in Sec-
tion 2.5.1. The joint conditional distribution m (-, 2|3, D) can be expressed
as the product of the marginal conditional distributions w(v|8,D) and
w(z|7v, B, D). The Cowles algorithm can be described as follows:

Cowles Algorithm
Step 1. Draw 3 from
Blz,y ~ N((X'X)7' X'z, (X'X)7).
Step 2. Draw z; from
zi ~ N(@iB,1), vy—1 <2z <.
Step 3. Draw ~ from the conditional distribution
w(718,D) < [[ [®(vy: — #i8) — B(vy—1 —2iB)].  (2.5.14)
i=1

In the Cowles algorithm, a Metropolis—Hastings scheme is used to draw
<. That is, given the value ;_; from the previous iteration, a vector of pro-
posal cutpoint values, v/, 1 = 2,3,...,L —1, is generated from a truncated
normal distribution

Vi1 ~ N(wg1,02), (2.5.15)
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where 7/ ; < < Y41,j—1- The acceptance probability for the vector +*
of new cutpoints is a = min{1, R}, where

R=— H {‘I){ ’Yl+1J 1= V,j-1)/07} = ‘I){(’Yz 1= Yi-1)/0}
’Yl+1 " )/U'y} (I){('Ylflyjfl '71*)/07}

a ®(v,, —z:B) — ®(vy,_1 — x;8)

21 (v —2B) — B(yy-1,5-1 — TiB)

(2.5.16)

However, our experience suggests that in the Cowles algorithm, the trun-
cated normal-distribution in (2.5.15) might not serve as a good proposal
density for the conditional posterior density in (2.5.14), since it is not spread
out enough (see Tierney (1994), and Section 2.2). Further, Cowles (1996)
points out that a good o7 in (2.5.15) is difficult to obtain even when using
a conventional updating scheme.

To overcome the difficulties arising in the Cowles algorithm, Nan-
dram and Chen (1996) develop an improved algorithm using a Dirichlet
proposal distribution based on a rescaling transformation. Similar to hier-
archical centering, the hierarchically rescaled transformations proposed by
Nandram and Chen (1996) are

§=1/y_1, ¥* =8, B* =68, and z* =4z. (2.5.17)

Note that in (2.5.17), 76 = 00 < =0< 3 <--- <], <7y =
1 < v} = o0, and that effectively there are only L — 3 unknown cutpoints
in the reparameterized model. Let v* = (v3,73,...,7f_5)'- Thus, when
L = 3, there are no unknown cutpoints in 4*, which is advantageous when
one deals with a 3-level ordinal response model. For L = 3, the Nandram—
Chen algorithm can be implemented as follows:

Nandram—-Chen Algorithm
Step 1. Draw 8* from

B*lz*,y* ~ N(X'X)'X'z,64(X'X)™1).
Step 2. Draw 2} from

2186 ~ N@B56), 7y <2 <
Step 3. Draw 62 from

n+p+L-—2

2B,z ~ Ig{ 3 ,%[(z*—Xﬂ*)’(z*—Xﬂ*)]}.
For L > 3, the Nandram—Chen algorithm requires an additional step to
draw +*. That is,
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Step 4. Draw ~* from the conditional posterior distribution

w(v*|8*, 6%, D)

o H { (M) ® (%) } . (2.5.18)

Instead of using a truncated normal proposal density as in the Cowles
algorithm, Nandram and Chen (1996) construct a Dirichlet proposal den-
sity for m(v*|B*, 42, D). The motivation for the Dirichlet proposal density
is given as follows. Let ¢q—1 = v — /" ,, ! = 2,...,L — 1, and let
q = ((h;(Iz,---aCIL—z)I, qi 2 05 l = 1725"'5-[‘ — 2 and 21112712(11 =1 By
the fundamental mean value theorem,

@(7% ; ﬂ) @(7%“’1gm"ﬁ) d)(é"” 5iﬂ )qy,-—l,

(2.5.19)
where &, is a real number between v, and v, _,, ¢ =1,2,3,...,n, and
¢(-) is the standard normal density function. Then by (2.5.19),
where

n (6~ "
~1To (57, n G, and m =31y =1}
=1 =1
for | = 1,2,...,L. While in the Cowles algorithm the proposal density
is based on g¢;(£), Nandram and Chen (1996) use g2(q) to construct a
proposal density. This is quite natural because if there are no covariates,
we can associate g with the bin “probabilities.” Assigning an improper
prior to the bins and treating the bin counts as data, the joint posterior
distribution of these bin “probabilities” is a Dirichlet distribution with the
bin counts as the posterior parameters.
An approximation of 7(v*|8*, 2, D) motivated by (2.5.20) is

L—2
n(qlB*,62,D) o ] ™, (2.5.21)

where 0 < oy < 1,1 =1,...,L — 2, are the tuning parameters. (That is,
q has a Dirichlet distribution.) The proposal density (2.5.21) is attractive
because we can draw the entire vector q at once, and it does not depend on
B* and 2. In addition, the Dirichlet proposal density will be more useful
when more complex link functions (e.g., logistic and complementary log-
log) are used. Moreover, one can choose the ¢; in (2.5.21) by taking the o4
so as to make the dispersion of the posterior distribution of ¢ comparable
to or at least as large as that of the distribution of 4*. The rest of the im-
plementation for drawing «4* simultaneously from its conditional posterior
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distribution is the same as the one given in the Cowles algorithm, and thus
the details are omitted.

Nandram and Chen (1996) conduct several simulation studies, and their
empirical results show that the Nandram—Chen algorithm substantially im-
proves convergence of the Gibbs sampler compared to the Albert—Chib and
Cowles algorithms. A partial explanation for this is that:

(a) hierarchical rescaling reduces the correlations between the cutpoints
and the latent variables; and

(b) the meaningful choice (from a theoretical or statistical viewpoint) of
the proposal density has better properties than the truncated normal
proposal density used in the Cowles algorithm.

The Nandram-Chen algorithm works well if the cell counts n; are rela-
tively balanced. When the cell counts are unbalanced, in particular, if some
of those counts are close to zero, w(q|8*,82, D) in (2.5.21) may not serve as
a good proposal density. For these cases, Chen and Dey (1996) propose a
Metropolis-Hastings algorithm using a “de-constraint” transformation to
draw v*. A similar transformation of the cutpoints is also considered in
Albert and Chib (1998). Let

* __ ’Yl*—l +eCl
m= 1+ e

and ¢ = ({2,---,C(r—2)"- Then the conditional posterior distribution for
is

,1=2,...,L-2, (2.5.22)

Cz
* 2 *| % <2 ’Yl 1 €
m(¢|B", 6%, D) oc m(v*|8", 6, H2 TAredE (252
where v* is evaluated at v} = (77 ; +€%)/(1+e%) for [ =2,3,...,L — 2.
The remaining steps of the Metropolis—Hastings algorithm are the same as
the algorithm for sampling p as described in Example 2.3. This modified
Nandram—Chen algorithm is thus called the Chen—Dey algorithm.

2.5.4 Hierarchical Centering for Poisson Random Effects
Models

A Poisson regression model with AR(1) random effects is used for modeling
the pollen count data in Example 1.3. Using (1.3.3), the complete-data
likelihood is given by

L(B,0”,p,e|D) =exp{y'(XB + €) — J,Q(B,€) — J,C(y)}
% (27T0,2)—n/2(1 _ p2)—(n—1)/2

1
X exp {—ge'z_le} ) (2.5.24)
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!

where y = (y1,...,yn), € = (€1,... ,€,)", X is the n x 8 matrix of co-

variates with the ¢t row equal to x}, J, is an n x 1 vector of ones, and
Q(B, €) is an n x 1 vector with the #th element equal to ¢; = exp {e; + z}3},

C(y) is an n x 1 vector with the jth element log(y;!), and D = (n,y,X).In
(2.5.24), ¥ = (0y;) with o;; = p'*~J|, where pli~J! is the correlation between
(€i,€;), and —1 < p < 1. Assume that a noninformative prior for (3,02, p)
has the form

(8,02, p) o (62) %+ exp(—o25), (2.5.25)

where the hyperparameters g > 0 and -y > 0 are prespecified. Then, the
joint posterior distribution for (8,02, p, €) is given by

7(B,0%, p,€|D) x L(B, 02, p,e|D)(c?) ™%+ exp(—o2y0), (2.5.26)

where the likelihood L(8, 02, p, €| D) is defined by (2.5.24). It can be shown
that if X* is of full rank, where X* is a matrix induced by X and y with its
" row equal to 1{y; > 0}x}, then the posterior distribution 7 (3, 02, p, €| D)
is proper.

Unlike the one-way analysis of variance model with random effects in
Example 2.5, the Poisson regression model with AR(1) random effects is
not a linear model. The exact correlations among the parameters €, 3, o2,
and p are not clear. However, it is expected that the correlation patterns in
the Poisson regression model are similar to that of the one-way analysis of
variance model. Ibrahim, Chen, and Ryan (1999) observe that the original
Gibbs sampler without hierarchical centering results in very slow conver-
gence and poor mixing. In particular, the correlation p appears to converge
the slowest. They further find that the hierarchical centering technique is
perfectly suited for this problem, and appears quite crucial for convergence
of the Gibbs sampler.

Similar to the one-way analysis of variance model, a hierarchically
centered reparameterization is given by

n=XB+e. (2.5.27)
Using (2.5.26), the reparameterized posterior for (3,02, p,n) is written as

7(B,0”, p,n|D) xexp{y'n — J,Q(n) — J,C(y)}
x (2#02)771/2(1 _p2)f(n71)/2

xexp{=ors (1= XB)S (- XB)}, (2529

tth element

where n = (91,12,-.. ,1,)", and Q(n) is an nx 1 vector with the
equal to ¢ = exp(n).
The Gibbs sampler for sampling from the reparameterized posterior

7(B, 02, p,n|D) requires the following steps:
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Step 1. Draw 7 from its conditional posterior distribution

(1= XPI% Hu = XB)),

202

1B, %, ) xxp {y'n — Q) -
(2.5.29)
Step 2. Draw 8 from
Bn,o%,p,D ~ Ng((X'S'X) 'X'S ', 0?(X'E1X) 1),
Step 3. Draw o? from its conditional posterior
a*1B,p,n, D ~ IG(&*,7"),

where §* = §p + n/2, v* = v + %(TI - XB)'s~Y(n — XpB), and
ZG(6*,~v*) is an inverse gamma, distribution.

Step 4. Draw p from its conditional posterior

m(plo®, B,m, D)

(n— 1
o (1—p% (=72 exp {_F

(n—XB)'S " (n— Xﬂ)} .

In Step 1, it can be shown that m(n|8, 02, p, D) is log-concave in each
component of i) (see Exercise 2.7). Thus i can be drawn using the adaptive
rejection sampling algorithm of Gilks and Wild (1992). The implementation
of Steps 2 and 3 is straightforward, which may be a bonus of hierarchical
centering, since sampling 8 is much more expensive before the reparame-
terization. In Chapter 9, we will also show that the hierarchical centering
reparameterization can greatly ease the computational burden in Bayesian
variable selection. In Step 4, we can use the algorithm in Example 2.3 for
sampling p.

2.6 Acceleration Algorithms for MCMC Sampling

The major problems for many MCMC algorithms are slow convergence
and poor mixing. For example, the Gibbs sampler converges slowly even
for a simple ordinal response model as discussed in Section 2.5.3. In the
earlier sections of this chapter, we discuss several tools for speeding up
an MCMC algorithm, which include grouping (blocking) and collapsing
(Liu 1994; Liu, Wong, and Kong 1994; Roberts and Sahu 1997), reparam-
eterizations (Gelfand, Sahu, and Carlin 1995 and 1996; Roberts and Sahu
1997). The other useful techniques are adaptive direction sampling (Gilks,
Roberts, and George 1994; Roberts and Gilks 1994), Multiple-Try Metropo-
lis (Liu, Liang, and Wong 1998a), auxiliary variable methods (Besag and
Green 1993; Damien, Wakefield, and Walker 1999), simulated tempering
(Marinari and Parisi 1992; Geyer and Thompson 1995), and working pa-
rameter methods (Meng and van Dyk 1999). In this section, we present
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two special acceleration MCMC algorithms, i.e., grouped move and Multi-
grid MC sampling (Liu and Wu 1997; Liu and Sabatti 1998 and 1999) and
covariance-adjusted MCMC sampling (Liu 1998), which provide us with a
general framework of how to further improve mixing and convergence of an
MCMC algorithm.

2.6.1 Grouped Move and Multigrid Monte Carlo Sampling

Goodman and Sokal (1989) present a comparative review of the multi-
grid Monte Carlo (MGMC) method, which is a stochastic generalization of
the multigrid (MG) method for solving finite-difference equations. Liu and
Wu (1997) and Liu and Sabatti (1998 and 1999) generalize Goodman and
Sokal’s MGMC via groups of transformations with applications to MCMC
sampling. They propose a Grouped Move Multigrid Monte Carlo (GM-
MGMCQ) algorithm and a generalized version of the MGMC algorithm for
sampling from a target posterior distribution.

Assume that the target posterior distribution w(@|D) is defined on 2
and that an MCMC algorithm such as the Gibbs sampler or Metropolis—
Hastings algorithm is used to generate a Markov chain {0;, i =0,1,2,...}
from the target distribution 7(8|D). We call the MCMC algorithm used to
generate the 8; the parent MCMC algorithm. Let I' be a locally compact
transformation group (Rao 1987) on . Then the GM-MGMC algorithm
of Liu and Wu (1997) and Liu and Sabatti (1998) proceeds as follows:

GM-MGMC Algorithm
MCMC Step. Generate an iteration 8; from the parent MCMC.
GM Step. Draw the group element g from
g ~ m(gl6:)H(g) x m(g(6,)|D)J, (8, H(dg), (2.6.1)
and adjust
0; + g(6;).

In (2.6.1) H(dg) is the right-invariant Haar measure on Q and J,(6;)
is the Jacobian of g evaluated at 6;. Liu and Wu (1997) show that if T
is a locally compact group of transformations for 8 € €2 with a unimod-
ular right-invariant Haar measure H(dg), then ¢(6;) ~ w(8|D), provided
6; ~ w(8|D) and g ~ 7(g|@;). This result ensures that the target poste-
rior distribution 7(8|D) is the stationary distribution of the Markov chain
induced by the GM-MGMC algorithm. As discussed in Liu and Sabatti
(1998), the GM step is flexible: by selecting appropriate groups of trans-
formations one can achieve either the effect of reparameterization or that of
“blocking” or “grouping.” Liu and Sabatti use several examples to illustrate
these points.
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In many cases, directly sampling g in the GM step may be difficult or
expensive to achieve. For these cases, Liu and Sabatti (1998, 1999) propose
a Markov transition. Assume that Tg(g', 9)H (dg) is a Markov transition
function, which leaves (2.6.1) invariant and satisfies the transformation-
mvariance, i.e.,

To(g',9) = Ty=16(9'90, 990) (2.6.2)

for all g, ¢, and go in T'. Then, the GM-MGMC algorithm can be extended
to the following Generalized MGMC algorithm:

Generalized MGMC' Algorithm
MCMC Step. Generate an iteration 8; from the parent MCMC.
GM Step. Draw the group element g from
g ~ To,(I,9), (2.6.3)
and adjust
6; + 9(6;).

In (2.6.3), I denotes the identity of the group. Similar to the GM-MGMC
algorithm, it can be shown that g(6) ~ 7(@|D) provided 8 ~ 7(8|D).

In the GM-MGMC algorithm or the generalized MGMC algorithm, one
GM step is used. In some situations, multiple GM steps can also be applied.
For example, a three-step GM algorithm can be described by the follow-
ing cycle. Starting with 8; € Q, which is drawn from a parent MCMC
algorithm:

(i) draw g from a proper T,(I,g), which leaves (2.6.1) invariant and
satisfies (2.6.2), and update 8 = g(0);

(ii) draw g* from a proper Te- (I, g*) and update 0** = g*(6*); and
(iii) draw g** from T+ (I, g**) and update 8,1 = g**(6™").

Then, if 0,’ ~ 7r(0|D), then 0,'_,_1 ~ 7r(0|D)

The GM-MCMC algorithm is a flexible generalization of the Gibbs sam-
pler or the Metropolis—Hastings algorithm, which enables us to design more
efficient MCMC algorithms. The purpose of the GM step is to improve the
convergence or mixing rates of the parent MCMC algorithm. The nature
of the multiple GM steps allows us to achieve such an improvement in an
iterative fashion. That is, if the performance of a parent MCMC algorithm
is unsatisfactory, one can design a GM step, and then make an additional
draw in each iteration of the parent algorithm. From an implementational
standpoint, the GM step requires only adding a subroutine to the existing
code and does not require a change in the basic structure of the code. After
a one-step adjustment, the new MCMC algorithm induced by the GM step
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can be viewed as a new parent algorithm. Then, a similar adjustment can
be applied to this new parent algorithm. One can repeat this procedure
many times until a satisfactory convergence rate is achieved. Therefore, ac-
celerating an MCMC algorithm can be viewed as a continuous improvement
process.

Although the GM-MCMC algorithm provides a general framework for
speeding up an MCMC algorithm, finding a computationally feasible group
of transformations along with a unimodular right-invariant Haar measure
H(dyg) is a difficult task. Two simple groups are the multiplicative group,
ie., g(0) = g0, and the additive group, i.e., g(8) = 6 + g. For these
two special cases, the associated unimodular right-invariant Haar measures
are H(dg) = 1/g for the multiplicative group and H(dg) = 1 for the
additive group. Although both the multiplicative group and additive group
result in unimodular Haar measures, the linear combination of these two
group transformations, i.e., (@) = ¢10 + g, does not yield a unimodular
Haar measure (see Nachbin 1965). In addition, GM-MGMC may not always
improve convergence over the parent MCMC algorithm. In fact, Liu and
Sabatti (1998) provide an example showing that GM-MGMC can result
in a slower convergence rate than the parent MCMC algorithm. However,
in many cases, GM-MGMC can achieve a substantial improvement in the
convergence and mixing rate over a parent MCMC algorithm; see Liu and
Sabatti (1998) and Chen and Liu (1999) for several illustrative examples. In
practice, GM-MGMC can be viewed as an advanced experimental technique
for improving convergence of an MCMC algorithm, and it can be helpful
in getting a better understanding of the problem. As a practical guideline,
we suggest using a GM step as long as it is simple and easy to implement.

2.6.2 Covariance-Adjusted MCMC' Algorithm

Liu (1998) provides an alternative method for speeding up an MCMC al-
gorithm using the idea of covariance adjustment. Let {6;, i = 0,1,2,...}
be generated by the parent MCMC algorithm, having the stationary dis-
tribution w(@|D). Also let (&€,0) = M(8) be a one-to-one mapping from 2
on which the target distribution is defined onto the space = x A. Then, the
covariance-adjusted MCMC (CA-MCMC) algorithm at the ith iteration
consists of the following two steps:

CA-MCMC Algorithm

MCMC Step. Generate an iteration 6; from the parent MCMC and
compute (€, 8:) = M(8;).
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CA Step. Draw §; from the conditional posterior distribution 7 (d|€;, D)
and adjust 8; by

0 07 = M, 0)), (2:6.4)
where M~1(¢, 8) is the inverse mapping of (€,4d) = M(6).

Liu (1998) shows that the CA-MCMC algorithm converges to the target
distribution 7(@|D). That is, if the Markov chain induced by an MCMC
algorithm is irreducible, aperiodic, and stationary with the equilibrium dis-
tribution 7(8|D), so is the covariance-adjusted Markov chain. We refer the
reader to Liu’s paper for a formal proof. This result ensures that the CA
step guarantees the correctness of the CA-MCMC algorithm. In addition,
Liu (1998) also proves that the CA-MCMC algorithm converges at least
as fast as its parent MCMC algorithm in the sense that the CA-MCMC
algorithm results in a smaller reversed Kullback—Leibler information dis-
tance (e.g., Liu, Wong, and Kong 1995). This implies that the Markov
sequence induced by the CA-MCMC algorithm has less dependence than
that induced by the parent MCMC algorithm. This result essentially dis-
tinguishes the CA-MCMC algorithm from the GM-MGMC algorithm since
the latter does not always guarantee faster convergence than its parent
MCMC algorithm.

The key issue in using the CA-MCMC algorithm is how to construct
the §-variable so that the resulting algorithm is efficient and simple to im-
plement. A general strategy proposed by Liu (1998) is to construct the
d-variable based on parameters and their sufficient statistics. We use an
example given in Liu (1998) to illustrate this idea.

Example 2.6. One-way analysis of variance with random effects
(Example 2.5 continued). Consider the one-way analysis of the variance
model given in Example 2.5. Assume that the error variance o2 is known

and that a single observation y; for each population, i.e.,
yi=ptaite, i=1,2,...,m, (2.6.5)

where €; ~ N(0,02), a; ~ N(0,02), and 02 is also known. We assume that
m(p) oc 1 and let § = (1/m) Z:il y; and D = (y1,¥2,---,Ym)-

For this one-way analysis of the variance model, the vector of model
parameters is @ = (u, a1, @z, ..., a,)". We use the Gibbs sampler as the
parent MCMC algorithm. To apply the CA-MCMC algorithm, we need
to construct & and 4. In this example, p and & = (a1, as,...,0,)" may
be highly correlated (see (2.5.6) and (2.5.7)), which may cause slow con-
vergence of the original Gibbs sampler. To