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Background Mathematics

1.1 Introduction

The companion volume of this book, ‘Analytic methods for partial differential
equations’, is concerned with solution of partial differential equations using
classical methods which result in analytic solutions. These equations result
when almost any physical situation is modelled, ranging from fluid mechanics
problems, through electromagnetic problems to models of the economy. Some
specific and fundamental problems were highlighted in the earlier volume,
namely the three major classes of linear second order partial differential
equations. The heat equation, the wave equation and Laplace’s equation will
form a basis for study from a numerical point of view for the same reason as
they did in the analytic case. That is, the three equations are the canonical
forms to which any quasi-linear second order equation may be reduced using
the characteristic transformation.

The history of the numerical solution of partial differential equations is
much more recent than the analytic approaches, and the development of the
numerical approach has been heavily influenced by the advent of high speed
computing machines. This progress is still being seen. In the pre-computer
days, the pressures of war were instrumental in forcing hand-worked numerical
solutions to problems such as blast waves to be attempted. Large numbers of
electro-mechanical machines were used with the ‘programmer’ controlling the
machine operators. Great ingenuity was required to allow checks to be made
on human error in the process. The relaxation method was one of the results
of these processes.

Once reliable and fast electronic means were available, the solution of more
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2 Numerical Methods for Partial Differential Equations

and more complex partial differential equations became feasible. The earliest
method involved discretising the partial derivatives and hence converting the
partial differential equation into a difference equation. This could either be
solved in a step-by-step method as with the wave equation, or required the
solution of a large set of sparse linear algebraic equations in the case of Laplace’s
equation. Hence speed was not the only requirement of the computing machine.
Storage was also crucial. At first, matrix blocks were moved in and out of
backing store to be processed in the limited high speed store available. Today,
huge storage requirements can be met relatively cheaply, and the progress in
cheap high speed store and fast processing capability is enabling more and
more difficult problems to be attempted. Weather forecasting is a very well-
known area in which computer power is improving the accuracy of forecasts:
admittedly now combined with the knowledge of chaos which gives some degree
of forecast reliability.

In the chapters which follow the numerical solution of partial differential
equations is considered, first by using the three basic problems as cases which
demonstrate the methods. The finite difference method is considered first. This
is the method which was first applied in the early hand-computed work, and
is relatively simple to set up. The area or volume of interest is broken up
into a grid system on which the partial derivatives can be expressed as simple
differences. The problem then reduces to finding the solution at the grid points
as a set of linear algebraic equations. Hence some attention is paid to solving
linear algebraic equations with many elements in each row being zero. The use
of iterative solutions can be very effective under these circumstances.

A number of theoretical considerations need to be made. Firstly, it needs to
be established that by taking a finer and finer grid, the difference equation
solution does indeed converge to the solution of the approximated partial
differential equation. This is the classical problem of accuracy in numerical
analysis. However real computers execute their arithmetic operations to a finite
word length and hence all stored real numbers are subject to a rounding error.
The propagation of these errors is the second main theme of numerical analysis
in general, and partial differential equations in particular. This is the problem of
numerical stability. Do small errors introduced as an inevitable consequence of
the use of finite word length machines grow in the development of the solution?
Questions of this sort will be considered as part of the stability analysis for
the methods presented. There will be exercises in which the reader will be
encouraged to see just how instability manifests itself in an unstable method,
and how the problem can be circumvented.

Using finite differences is not the only way to tackle a partial differ-
ential equation. In 1960, Zienkiewicz used a rather different approach to
structural problems in civil engineering, and this work has developed into a
completely separate method of solution. This method is the finite element
method (Zienkiewicz, 1977). It is based on a variational formulation of the
partial differential equation, and the first part of the description of the method
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requires some general ways of obtaining a suitable variational principle. In
many problems there is a natural such principle, often some form of energy
conservation. The problem is then one of minimising an integral by the choice
of a dependent function. The classic method which then follows is the Rayleigh—
Ritz method. In the finite element method, the volume over which the integral
is taken is split up into a set of elements. These may be triangular or prismatic
for example. On each element a simple solution form may be assumed, such
as a linear form. By summing over each element, the condition for a minimum
reduces to a large set of linear algebraic equations for the solution values at
key points of the element, such as the vertices of the triangle. Again the use of
sparse linear equation solvers is required.

This first chapter is concerned with some of the mathematical preliminaries
which are required in the numerical work. For the most part this chapter is
quite independent of the equivalent chapter in the first volume, but the section
on classification reappears here for completeness.

1.2 Vector and Matrix Norms

The numerical analysis of partial differential equations requires the use of
vectors and matrices both in setting up the numerical methods and in analysing
their convergence and stability properties. There is a practical need for mea-
sures of the ‘size’ of a vector or matrix which can be realised computationally, as
well as be used theoretically. Hence the first section of this background chapter
deals with the definition of the norm of a vector, the norm of a matrix and
realises some specific examples.

The norm of vector x is a real positive number, |Ix||, which satisfies the
axioms:

(i) |Ix]] >0 if x#0 and |x||=0 if x=0;
(i) |lex|| = |e|||x|| for a real or complex scalar c¢; and
(iii) |Ix+yll <[] + Iy ll.

If the vector x has components z, ..., z, then there are three commonly used
norms:

(i) The one-norm of x is defined as

n

X[l = [21] + |z2] + - + [&n] = ) 2. (1.2.1)
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(ii) The two-norm of x is
1
. n 2
lIx|l2 = (Jz1]* + |z2|* + - - + |zal*)7 = [Z ‘xiF] ' (12.2)
i=1

(iii) The infinity norm of x is the maximum of the moduli of the components
or
Ixfloo = max [zl (1.2.3)

In a similar manner the norm of a matrix A is a real positive number giving a
measure of the ‘size’ of the matrix which satisfies the axioms

(i) ||Al| >0 if A#0 and [|A]|=0 if A=0;
(i) ||cA|| = |e|]|A4]|| for a real or complex scalar ¢;
(iii) ||A+ B|| < [|All +|B||; and

(iv) [IABJ| < |IA[l1|B-

Vectors and matrices occur together and so they must satisfy a condition
equivalent to (iv), and with this in mind matrix and vector norms are said
to be compatible or consistent if

|lAx|| < [|All l|xll, vz € R™(or C™).

There is a class of matrix norms whose definition depends on an underlying
vector norm. These are the subordinate matrix norms. Let A be an n X n matrix
and x € S where

S = {(n x 1) vectors : ||x|| = 1};

now in general ||Ax|| varies as x varies (x € S). Let xo € S be such that ||Ax]||
attains its maximum value. Then the norm of matrix A, subordinate to the
vector norm ||.||, is defined by

I14]] = [[Axo]| = max, || Ax||. (1.2.4)

The matrix norm that is subordinate to the vector norm automatically satisfies
the compatibility condition since, if x = x; € S, then

l|Ax1]| < [|Axo|| = [IAll = [|All[[x1]| since |[xi]| =1.

Therefore ||Ax|| < ||A]]||x|| for any x € R™. Note that for all subordinate
matrix norms

I|| = max ||Ix|| = max [|x||=1. 1.2.5
11 = s, (11| = e, 1] (125)
The definitions of the subordinate one, two and infinity norms with ||x|| = 1

lead to:
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e The one norm of matrix A is the maximum column sum of the moduli of the
elements of A, and is denoted by |[|A]|.

o The infinity norm of matrix A is the maximum row sum of the moduli of the
elements of A, and is denoted by ||A||co-

¢ The two norm of matrix A is the square root of the spectral radius of AR A
where A# = (A)T (the transpose of the complex conjugate of A). This norm

is denoted by ||A[|2. The spectral radius of a matrix B is denoted by p(B)
and is the modulus of the eigenvalue of maximum modulus of B.

Hence for example if
_ (-1 1 Hjg_ T4 (10 =7
A= ( 3 _2) then A"A=A"A= (_7 5 )
has eigenvalues 14.93 and 0.067. Then using the above definitions
JAlli =1+3=4, ||Allo =3+2 =25, ||4]]2 = V14.93 = 3.86.
Note that if A is real and symmetric

AT =4 and ||All> = [o(A")]% = [0*(A)]* = p(A4) = max |\i|.

A number of other equivalent definitions of ||A||2 appear in the literature.
For example the eigenvalues of A A are denoted by 0,03,...02 and the o;
are called the singular values of A. By their construction the singular values

will be real and non-negative. Hence from the above definition
l|Allz2 = o1

where

01 = max o;.
1<i<n

For a symmetric A, the singular values of A are precisely the eigenvalues of A
apart from a possible sign change, and
All2 = [Axl,

where ) is the largest absolute value eigenvalue of A. A bound for the spectral
radius can also be derived in terms of norms. Let ); and x; be corresponding
eigenvalue and eigenvector of the n X n matrix A4, then Ax; = \;x;, and

1A% = [[Xaxs]| = [ []x]]-
For all compatible matrix and vector norms
IXil ]| = [|Axs]| < [|A[] [|%]|-

Therefore |A;| < ||A|[, i = 1(1)n. Hence p(A) < ||A|| for any matrix norm that
is compatible with a vector norm.

A few illustrative exercises which are based on the previous section now
follow.
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EXERCISES

1.1

1.2

1.3

14

A further matrix norm is ||A||g or the Euclidean norm, defined by
2
14llE = Za’ij'
2]

Prove that
14]l2 < 1Al < n*/?||A]l2

for an nth order matrix A. Verify the inequality for the matrix

1.2 -20
1.0 06 |°

Compute the four norms ||A||1, ||4]l2, ||Allc and ||A]|g for the
matrix

1 01

2 30

21 4

and find the characteristic polynomial of this matrix and hence its
eigenvalues. Verify that

Al < [14]]
fori=1,2,3.
Compute the spectral radius of the matrix
9 -2 1
4 5 =2
1 -3 -5

and confirm that this value is indeed less than or equal to both ||A||
and ||A}|oo-

For the solution of a set of linear algebraic equations
Ax=Db
the condition number is given by
k= ||All2l|[A7H|2-

The input errors, such as machine precision, are multiplied by this
number to obtain the errors in the solution z. Find the condition
number for the matrix

1 2 6
2 6 24
6 24 120
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1.5 Sketch the curve of k(A) as defined above, against the variable ¢ for

the matrix
1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 ¢

Large values of x will indicate where there will be high loss of
accuracy in the solution of linear equations with the matrix A. For
¢ = 1/5 the matrix is the 3 x 3 Hilbert matrix.

1.3 Gerschgorin’s Theorems

The first of the theorems which gives bounds on eigenvalues is

Theorem 1.1

The largest of the moduli of the eigenvalues of the square matrix A cannot
exceed the largest sum of the moduli of the elements along any row or any
column. In other words p(A) < ||4]|1, or ||4]|oo-

Proof
Let A; be an eigenvalue of the n x n matrix A and x; be the corresponding
eigenvector with components vy, vy, ...,v,. Then Ax; = \;x; becomes in full
a11v1 + a12V2 + -+ + A1pVn = AjU1
a21V1 + @2U2 + -+ + A2pUp = U2
511 + Gs2V2 + - -+ AspUp = AUs

Let v, be the largest in modulus of vy,...,v,, noting that v, # 0. Select the
sth equation and divide by v, giving

v v V,
Ai = ag1 (_1> + as2 (_2) + -+ asy (_n) .
Us Us Vg

Therefore

since
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If this is not the largest row sum then |);| < the largest row sum. In particular
this holds for
|Ail = lrgggnlx\sl-

Since the eigenvalues of AT are the same as those for A the theorem is also
true for columns.

The second theorem gives the approximate position of the eigenvalues of
a matrix and is Gerschgorin’s circle theorem or first theorem, or Brauer’s
theorem.

Theorem 1.2

Let P, be the sum of the moduli of the elements along the sth row excluding the
diagonal element ass. Then each eigenvalue of A lies inside or on the boundary
of at least one of the circles |A — ass| = Ps.

Proof

By the previous proof

(Y v v
Ai = ag1 (—‘) + as2 (—2) +tag+ o+ am (—")
Vs Vs Vs

v»
Ai —assl =D agi=L = |agl.
Vg

j#s J#s

Hence

The third theorem is Gerschgorin’s second theorem:

Theorem 1.3

If p of the circles of Gerschgorin’s circle theorem form a connected domain that
is isolated from the other circles, then there are precisely p eigenvalues of the
matrix A within this connected domain. In particular, an isolated Gerschgorin’s
circle contains one eigenvalue.

Proof

Split the matrix A into its diagonal elements D and off-diagonal elements C to
give

A = diag(ai) +C=D+C (1.3.1)
and then using P; as defined in the circle theorem, the matrices (D+€C) can be

considered. For € = 0 the matrix D is returned whereas € = 1 gives A. However
the characteristic polynomial of (D + €C') has coeflicients which are themselves
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polynomials in €, and therefore the roots of this characteristic polynomial are
continuous in €. Hence eigenvalues traverse continuous paths as € varies, by the
circle theorem as, for any eigenvalue, the eigenvalues lie in circular discs with
centres a;; and radii eP;.

Suppose the first s discs form a connected domain. The discs may be
reordered if this is not the case. Then (n—s) discs with radii Psy1, Psg2,..., Py
are isolated from the s with radii P;, P,,..., P,. This also applies to the discs
of radii eP; for all € € [0,1]. When € = 0, the eigenvalues are a11,...,an, and
clearly the first s lie inside the domain corresponding to the first s discs, and
the other (n — s) lie outside. Hence by the continuity this state must continue
through to € = 1 to prove the theorem.

When the eigenvalues \; of a matrix A are estimated by the circle theorem,
the condition |A;| < 1 is equivalent to ||A||oo < 1 or ||4||; < 1, for we have
A —ass| < Ps. Hence —Ps < A — as5 < Ps 50 that —P, + ags < A < P, + ags.
Now A will satisfy —1 < A< 1,if Py—ass <land Py+as, <1lfors=1,...,n,
as

n
”AHOO = lrélsagxnzl |asj’ =P+ lass' <L (1'3'2)
j=

Now P; is the sum of the moduli of the elements of 4 in the sth row (excluding
ass), and a,s; may be positive or negative. Hence inequality (1.3.2) is equivalent
to

n
Dolagl <1, s=1,...,n, (1.3.3)
P

or to ||Al|oc < 1 for rows. For any consistent pairs of matrix and vector norms,
I ]| = [1Ax]] = [|Ax]] < [IA]] {|x||
and hence |A| < ||A]||. Hence

||A]|3 = max eigenvalue of A¥ A

< [|A7Ally < [IA7 |14l = [|AllolIAllr-

Hence ||A||3 < ||A]]1]|4|o0, and so if both inequalities hold it follows auto-
matically that ||A]|s < 1. Hence Gerschgorin’s circle theorem can be used to
establish conditions for stability which will be dealt with in Chapter 2.

[Note: It can be shown that if the off-diagonal elements of a real tri-diagonal
matrix are one-signed then all its eigenvalues are real (Smith, 1978).]

The following exercises can now be attempted to complete the understand-
ing of this section.
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EXERCISES

1.6 Use Gerschgorin’s theorems to investigate the regions in which the
eigenvalues of the matrix

lie, and confirm that they lie in the range [0, 4].

1.7 Use Gerschgorin’s theorems to investigate whether an estimate of
the condition number & for the matrix of exercise 1.4 can be found.
For a symmetric matrix, x reduces to the ratio of the eigenvalue of
largest modulus to that with the smallest modulus. This exercise
highlights the shortcomings of the theorems.

1.8 Consider the same problem as in exercise 1.7. but with the n x n
matrix whose elements are defined by
ai,j = (’L +] - 1)'
This is an example of a well-known class of very ill-conditioned
matrices.

1.9 Use Gerschgorin’s theorems to find bounds on the condition factor
k(A) for the matrix

1 02 03 O
1 8 1 0
0 1 10 4
0 4 100

1.4 Iterative Solution of Linear Algebraic
Equations

In general the use of difference methods for the solution of partial differential
equations leads to an algebraic system Ax = b where A is a given matrix which
is sparse and of large order. Direct methods for solving this system, such as
Gaussian elimination (Evans, 1995) tend to be inefficient and it is more usual
to use an iterative method. The problem with elimination methods is that
the initially sparse matrix begins to fill-in as the process develops, and more
and more of the originally zero elements now have to be processed. There is
a consequential cost in both storage and processor time. Iterative methods do
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not alter the matrix structure and so preserve sparseness, though in some cases
problems of convergence may become an issue.

Consider splitting the matrix A into three components in which L is lower
triangular, D is diagonal and U is upper triangular. Let us suppose that

diy w2 Uz ... Ui,
loy do2 ues ... wug,
A= |11 lzs2 dsz ... w3,
lnl ln2 ln3 B d'nn
Then
A=L+D+U, (1.4.1)
with
[0
l 0
L= | N :
lnmo1 O
[[di1
D = ,
L dnn
0 wup
U = 0
0 Un—1,n
L 0
and Ax = b becomes
(L+D+U)x=b (1.4.2)
or
Dx=—-(L+U)x+b. (1.4.3)
Assuming that D~ exists, this leads to the iterative scheme
xD) = _D YL+ U)x™) + Db, z© given, (1.4.4)

which is the Jacobi method.

The matrix formulation used in the above manipulations do not provide the
easiest method of implementation. The obvious implementation is to rewrite the
linear equations with the diagonal term on the left-hand side and then iterate
equation by equation as in the example below. Consider the set of equations

2 1 1 4
-1 3 1 |x=]|-5
1 2 —4 6
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which yields the iteration

2x§r+l) = 4- :rgr) — mgr)
33:2"“) = -5+ xY) - xgr)
—4:1cg+1) = 6-— a:(lr) - ngr).

Starting with the zero vector for x(?) gives the results in Table 1.1.

Table 1.1.
I T2 X3
0.0 0.0 0.0
2.000 —1.6667 —1.5000

3.5833 | —0.5000 | —1.83333
3.16667 0.13889 | —0.85417
2.35764 | —0.32639 | —0.63889
2.48264 | —0.66782 | —1.07378
2.87080 | —0.48119 | —1.21325
2.84722 | —0.30531 | —1.02289
2.66410 | —0.37663 | —0.94085
2.65874 | —0.46501 | —1.02228

© 00U W= OIS

20 | 2.72244 | —0.41584 | —1.02716

Intuitively, faster convergence would be expected the greater in magnitude
the diagonal elements are compared with the off-diagonal elements. This is
known as diagonal dominance and is only weakly exhibited in this exam-
ple. Hence there is quite slow convergence to the correct result of (2.72222,

—0.4166667, —1.0277778).

An improvement to this method is obtained by using the newly calculated
elements as soon as they are available. Hence the elements which multiply L in
(1.4.4) are known and could also be placed on the left-hand side of the iteration

to give
(L + D)x™*! = —-Ux" + b,

giving the Gauss—Seidel iteration
x™ = (L + D)"'UX" + (L + D)™ 'b.
Note that (1.4.5) can be written
Dx™! = —[x™! —Ux"+b

or
x" =x" + D™Y(b - Lx"*! — Ux" — Dx").

(1.4.5)

(1.4.6)

(1.4.7)

(1.4.8)



1. Background Mathematics

Hence the new approximation is given by the old approximation together with

a displacement (or correction).

In a practical form the above example set up for Gauss—Seidel iteration has

the form:
2:Egr+1) — 4 :L_gr) _ .’I?:(;)
3:1:§,r+1) -5+ xY“) — mér)
_41_:({4—1) 6 — $§r+1) _ 2xg‘+l)

and the iterations are shown in Table 1.2.

Table 1.2.

T I T2 xr3

0 0.0 0.0 0.0

1 2.000 —1.000 —1.5000
2 3.25 —0.08333 | —0.72917
3 | 2.40625 | —0.62153 1.2092
4 | 2.91536 | —0.21918 | —0.91706
5 | 2.60444 | —0.49283 | —1.09531
6 | 2.79406 | —0.37021 | —0.98659
7 | 2.67840 | —0.44501 —1.05290
8 | 2.74895 | —0.39938 | —1.01245
9 | 2.70592 | —0.42721 —1.03712
20 | 2.72229 | —0.41662 | —1.027737

Here the better convergence of the Gauss-Seidel method over Jacobi’s
method can be seen. In the practical applications of these methods to partial
differential equations, the nature of the finite differencing often yields diago-
nally dominant matrices which give quite rapid convergence without the need
for storing full matrices. Methods of increasing the convergence rate are of
considerable interest and include the following approach.

If successive displacements are all one-signed, as they usually are for
the approximating difference equations of elliptic problems, it would seem
reasonable to expect convergence to be accelerated if a larger (displacement
correction) was given than is defined above. This leads to the successive over
relaxation or SOR iteration defined by

x"tl — %7 +wD—1[b —Lx™ _Ux" — Dxr] (149)

where w, the acceleration parameter or relaxation factor, generally lies in the
range 1 <w < 2.
Thus, (1.4.9) becomes

(D + wL)x™! = DX" + wb — wUx" — wDx" (1.4.10)
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which can be rewritten as
x™! = (D +wL)" (1 — w)D — wU]x" + w(D + wL)"'b. (1.4.11)
All the iterative schemes described so far have the form
x"t! = Gx" + Hb. (1.4.12)

The rate of convergence of a scheme will be shown to be dictated by the
magnitude of the dominant eigenvalue of the matrix G. Choosing the relaxation
parameter in SOR. suitably can result in savings in computational effort by
a significant factor. In some special cases, optimal parameters can be found
analytically, and the reader is referred to Young (1971) and Varga (1962)
for further details. Usually experimentation and experience enable the user
to obtain near optimal parameters.

The success of an iterative method depends on the rate of convergence.
A point iterative method is one in which each component of x" is calculated
explicitly in terms of existing estimates of other components. A stationary
iterative method is one in which x" is calculated from known approximations
by the same cycle of operations for all r. Jacobi, Gauss-Seidel and SOR are
stationary iterative methods and have the form (1.4.12) where G is the iteration
matrix and Hb is a column of vectors of known values. Equation (1.4.12) was
derived from the original equations Ax = b and hence the unique solution of
Ax = b is the solution of

x = Gx + Hb. (1.4.13)
Define
A" =x"t1 _x" and e"=x-x" (1.4.14)
which leads recursively to
‘ e" =Grel. (1.4.15)

Hence the iteration will converge if and only if lim,_,oc G = 0. We assume that
the eigenvalues of G are real and that an eigenvector basis exists. Taking the
eigenvectors vy, ..., Vn to be arranged so that v; has corresponding eigenvalue
Ai, where

lAtl Sl)‘i—lL i:27"'7n$

we note that € can be expressed uniquely as a linear combination of the
eigenvectors to give

e =yvi+72va + -+ TnVn (1.4.16)
where v;, i=1,...,n, are scalars. Then
Ge® = G(mvi+72va+ - +YnVn)

= YMAIVI+Y2XeVe -+ TrAnVa

A
= A\ (71V1 +'72—2

ve+ -+ )\—nv
/\12 "/n)\ln
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and hence
A\" An\"
GreO — )\11‘ T1V1 +,Y2 _2 V2++'7n —_— Vn ). (1417)
/\1 )\1

Letting p = |\], results in the definitions that \; is called the dominant
eigenvalue of G and p is the spectral radius. Hence the iteration will converge
for arbitrary x° if and only if the spectral radius p of G is less than one. If r is
large, then (1.4.17) can be written

e’ ~ /\§71v1.
Hence if the ith component in e” is e; and the ith component of v, is vy; then
lei| = p"|[v1v1il-

Ultimately, therefore the error in the approximation decreases by a factor ~ 1/p

with each iteration
(=)
’e:_*+1 - p .

Suppose that we require to continue the iteration until no component of e”
exceeds E. We then require |e]| < E, i =1,...,n. Set

m= lrélzasxn |y1v14]-

Then approximately, the requirement is p™m < E, or

In(m/E
r> —%—) (since p <1 and —Inp > 0). (1.4.18)
—In
Thus 7, the number of iterations required to reduce to E the error in each
component of x" is inversely proportional to — In p.
How do we know when to terminate the iteration?
Realistically, our only measure is to test

Ar — x'r'+l —-x"

Now
x>x"+ AT+ AT L AT
and
e'~ e = et —em ) (e — e Y)
or

X X" e A (X7 —-x") = AT~ ATL
Thus, for sufficiently large r,

T

1-X°

XX+ AT+ A + A2+ ) =x" + (1.4.19)
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It follows that if we are to expect errors no greater than E in the components

of x™ we must continue our iterations until
™
i

1-X

<E. (1.4.20)

max
1<in

This result tells us that the current correction A" should really be multiplied
by (1—X;)~!. This is an important result because if we want an approximation
to x with an error no greater than E we might be tempted to terminate the

iteration at the first r for which ||A"|| < E, where ||.|| denotes the infinity
norm ||4] = masx Ay,
<i<n

If A\; = 0.99 (which is quite possible), such a termination would give a very
poor result, the iteration should be continued until ||A"|| >~ 0.01E.

For most problems A; will not be known analytically, in which case its value
must be estimated. One straightforward way of doing this is as follows.

For sufficiently large r

AT~ AT (1.4.21)

Hence

laT|| = Al 1A,
v 14|

|A1] = p = A7 1|
where ||AT|| can be defined as

17 = max |+ ~ 7|
or
AT = |27*! — 2| + |25t —afl + - + et - 2
or 1
47| = [(z7+! —2D)? + (a5t — 25)? + - + (a7 - 27)"] 7

Equation (1.4.21) justifies the basis of the SOR iterative method because it
proves that when )\; is positive the corresponding components of successive
correction or displacement vectors are of the same sign. The following set of
exercises may now be attempted on iterative methods of solution.

EXERCISES

1.10 Use both Jacobi’s iterative method and that of Gauss—Seidel to find
iteratively the solution of the linear equations

2 1 05 1
-1 3 1 |x=1]2
05 -1 4 1
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1.11

1.12

1.13

1.14

1.15

Find the spectral radii of the G matrices of equation (1.4.12) for
the matrix in Exercise 1.10 and hence find the theoretical rates
of convergence. How do these rates compare with the actual rates
obtained in the first exercise?

Now attempt the same problem with the SOR method with a range
of w from 1 < w < 1.4. For this you will probably need to program
the algorithm. Draw a graph of the rate of convergence against the
relaxation parameter w.

Investigate the rates of convergence of Jacobi’s method and the
Gauss—Seidel method on the matrix
1 0 1
A=1]-11 o0
1 2 -3

This is a pathological example: normally the Gauss—Seidel method
is more rapidly convergent than Jacobi.

The SOR method for tridiagonal matrices has an optimum w given

by
2

1+ /1= p(Cy)
where
Cy= D”l(L +U)

is the iteration matrix for Jacobi’s method. Apply this optimised
method to the set of equations:

2 -2 0 0 Ty 1
-1 3 -1 0 T2 | 1
0 -1 6 -1 zs| |1
0 0 -1 1 T4 1

Experiment with values of w slightly away from the optimum to show
the sensitivity of the convergence rate to the w value used.

Consider the matrix
2 -2 0 1 T 1
-1 3 -1 0 2| |1
0O -1 6 -1 z3| |1
0 0 -1 11 Ty 1

which differs from the one in Exercise 1.14 by just the element (1,4).
Apply the SOR iteration to this matrix to see how much the change
of one element affects the optimum w. The new matrix is not tri-
diagonal so the theorem of Exercise 1.14 does not apply.
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1.5 Further Results on Eigenvalues and
Eigenvectors

In this section various results and proofs concerning eigenvalues and eigenvec-
tors are collected together. These results are used freely in the following chap-
ters. Let a square matrix A have eigenvector x and corresponding eigenvalue
A, then Ax = Ax.
Hence
A(Ax) = A%x = Mx = \’x (1.5.1)

resulting in A2 having eigenvalue A\? and eigenvector x. Similarly
APx = XPx, p=3,4,... (1.5.2)

and AP has eigenvalue AP and eigenvector x. These results may be generalised
by defining
f(A) = apAP + ap_1AP" 1 +--- +aol.

This is a polynomial in A when ap, ..., ao are scalars. Then,
F(A)x = (@p)? + - +ag)x = f(\)x (15.3)

and f(A) has eigenvalue f()\) and eigenvector x. More generally we have the
following simple theorem.

Theorem 1.4

The eigenvalue of [f1(A4)]71f2(A) corresponding to the eigenvector x is
F2(A)/f1(X), where fi1(A) and f2(A) are polynomials in A.

Proof

We have
fi(A)x = fiA)x, fa(A)x = fa(A)x
Pre-multiply by [f1(4)]~! to give

(A AA)x = [f(A) 7 L(0)x
and hence
(A% = ()] x
and
[F1(A)] 7 fa(A)x = fa(N)[F1(A)] ™ x.
Eliminating [f;(A)])x gives

_ f2(0)

-1

X.
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Similarly the eigenvalue of f2(A)[f1(A4)]~! corresponding to the eigenvector x
is f2(N)/f1(N).

The second set of results concerns the eigenvalues of an order n tridiagonal
matrix and forms the next theorem.

Theorem 1.5
The eigenvalues of the order n tridiagonal matrix
a b
c a b
c a b
c a b
c a
are s
As = a+2[vVbc] cos T ST 1(1)n (1.5.4)

where a, b and ¢ may be real or complex. This class of matrices arises commonly
in the study of stability of the finite difference processes, and a knowledge of
its eigenvalues leads immediately into useful stability conditions.

Proof
Let A represent an eigenvalue of A and v the corresponding eigenvector with
components vy, vz, ..., V. Then the eigenvalue equation Av = \v gives
(@=Xvi+bvy, = 0
cv1+(a—Ave+bvs = 0
cvj—1 + (a — )\)’l)j + b’l)j+1 = 0
CUp-1+(a—ANv, = 0.

Now define vg = v,41 = 0 and these n equations can be combined into one
difference equation

cvj_1+(a—)\)vj+bvj+1 =0, j=1,...,n (1.5.5)

The solution is of the form v; = BmJ] + Cm}, where B and C are arbitrary
constants and mi, mg are roots of the equation

C+(a—ANm+bm?=0. (1.5.6)
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Hence the conditions
Vg = Un41 = 0
give
0=B+C, and 0=Bm!t'+Cmj*!

which implies
my n+1 )
(_.) :1:62287‘-, 3:1,2,...,17/,

m2
or
mi i2sm
—_— en+l .
ma

From (1.5.6), mymg = ¢/b and m; + mg = —(a — A)/b. Hence

C % ism [+ % —ism
my=(-) erT and mp=|{;) e=H
b b

which gives
3 i —isw
A =a+b(m; +my) =a+b(9)2 (eﬁ—l +en—+1),
Hence the n eigenvalues are

A = a+2vVbccos —, s=1,2,...,n (1.5.7)

ST
n+1’

as required.

The jth component of the corresponding eigenvector is

v; = Bm’l+Cm;
- 5(5)! (¢4 - o)

2iB (%) 5 sin (:iﬁ) .

So the eigenvector v corresponding to A, is

vl = (E) : sin ST (E) sin _25m
s b n+1"\b n+1’
c\ 2 3sm c\ 3 nsm
- in——,..., (T i . 1.5.8
() n 2 () ] o9
As an example consider the tridiagonal matrix
1-2r T
T 1-—2r T
T 1-2r r
r 1-—2r T

T 1-2r



1. Background Mathematics 21

of order n — 1 with
a=1-2r, b=r, c=r.

Then the previous theorem tells us that the eigenvalues are

ST

As (1-2r)+2r (;)%cos—n—

1-2r [1~cosﬁ}
n

= 1— 4rsin? ﬂ.
2n
Many of the methods which arise in the solution of partial differential
equations require the solution of a tridiagonal set of linear equations, and for
this special case the usual elimination routine can be simplified. The algorithm
which results is called the Thomas algorithm for tridiagonal systems, and is
described below.
Suppose that it is required to solve

by -a T dy

—ag b2 —C2 T2 dz

—az b3 —c3 z3 d3
—Qn-1 bn_1 —cp-a Tn-1 dn_1

—Qn b, Tn dp,

The algorithm is based on Gauss elimination. In each column only one sub-
diagonal element is to be removed. In each equation b; and d;, 1 = 2,...,n,
change as a result of the elimination. Denote the quantities that replace b; and
d; by o; and s; respectively. For convenience set a3 = b; and s; = d; then

cia s1a
ay = b2._1_2, 32=d2+—1~2,
aq Qg
coa Saa.
a3 = by— =23, 53 =d3 + 23
Q2 Q9
etc.
In general
i—1Q4 Si—1a
ai=bi-61 lz’ s; =d; + ! ll. (159)
Qi1 Qi1
Once the elimination is complete the z;, i = 1,...,n, are found recursively by
back substitution.
The complete algorithm may be expressed as:
ar = by, 81 =djy,
Ci—1G4 Si—1a; .
a; = bi— 111, Si:di—"g, z:2,...,n,
Qi1 Q-1
s S; + ¢y .
g o= S golEema) o o0

ap, (07
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Conditions for the applicability of the method are considered next.

We have not used partial pivoting and so we need to investigate the
conditions for which the multipliers a;/a;—1, ¢ = 2,...,n, have magnitude
not exceeding unity for stable forward elimination and ¢;/a;, i=2,...,n—1,
have magnitude not exceeding unity for stable back substitution.

Suppose that a; > 0, b; > 0, ¢; > 0 then,

(i) assuming that b; > ai4+1+ci—1,%=1,...,n—1, the forward elimination is
stable; and

(ii) assuming that b; > a;+c¢;, ¢ =1,...,n— 1, the back-substitution is stable.

The proof can be found in Smith (1978).
Some assorted exercises on these ideas are now presented.

EXERCISES

1.16 Use the characteristic polynomial directly to confirm that the eigen-
values given in (1.5.4) are correct for n = 2.

1.17 Find the characteristic polynomial and hence the eigenvalues of the

matrix
4 10
2 41
0 2 4
and compare the result with the formula (1.5.4).

1.18 Use the Thomas algorithm to solve the tridiagonal set of equations

4 1 0 1

2 4 1|{x=1]2

0 2 4 3

1.19 By counting operations establish that Gaussian elimination requires
the order of n3/3 multiplication and division operations. This is
a measure of the work load in the algorithm. The easiest way to

establish this result is to code up the algorithm (which will be a
useful tool for later anyway) and then use the formulae:

= i = n(n + 1)
i=1 2
Zn: 2 n(n+1)(2n+1)
= 5 ,

i=1

7
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What is the equivalent count for Thomas’s algorithm?

1.20 Compare the work load in Thomas’ algorithm with that for say
m iterations of Gauss-Seidel. Given the convergence rate from
the eigenvalues of the G matrix of (1.4.12), construct advice for
prospective users on whether to use the Thomas algorithm or Gauss—
Seidel.

1.21 Extend the Thomas algorithm to deal with upper Hessenberg ma-
trices with the form

Pau a2 a3 ... ... aln'
b2 a2 Q23 ... ... Q2n
0 b3 asz ... ... Q3n

Y 0 0 ... by ap,l

which is tridiagonal with non-zero elements in the top right-hand
part of the matrix.

1.22 Extend Thomas’s algorithm to quindiagonal matrices which have in
general diagonal elements with two non-zero elements on either side
in each row, except in the first two and last two rows which just have
two non-zero elements on one side for the first row, and in addition
one non-zero element on the opposite side in the second row.

1.6 Classification of Second Order Partial
Differential Equations

Consider a general second order quasi-linear equation defined by the equation

Rr4+Ss+Tt=W (1.6.1)
where
0z 0z 8%z 8%z 8%z
p—-é;, q———a—y, T'—a—xz-, S_—a_.'BTy and t—a—y2 (1.6.2)
with

R=R(z,y), S=S5(z,y), T=T(z,y) and W =W(z,y,zp,q).
(1.6.3)
Then the characteristic curves for this equation are defined as curves along
which highest partial derivatives are not uniquely defined. In this case these
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derivatives are the second order derivatives r, s and t. The set of linear
algebraic equations which these derivatives satisfy can be written down in
terms of differentials, and the condition for this set of linear equations to have
a non-unique solution will yield the equations of the characteristics, whose
significance will then become more apparent. Hence the linear equations follow
as dz = pdx + qdy and also

dp = rdzx+ sdy
dqg = sdx+tdy (1.6.4)
to give the linear equations
Rr+Ss+Tt = W
rdx+sdy = dp (1.6.5)
sdr +tdy = dq
and there will be no unique solution when
R S T
dr dy 0|=0 (1.6.6)
0 dxr dy

which expands to give the differential equation

dy\’ dy
=] =-S{= T =0. 1.6.
= (da:) <da: + (16.7)
But when the determinant in (1.6.6) is zero, the other determinants in Cramer’s

rule for the solution of (1.6.5) will also be zero, for we assume that (1.6.5) does
not have a unique solution. Hence the condition

R T W
dr 0 dp|=0 (1.6.8)
0 dy dq

also holds, and gives an equation which holds along a characteristic, namely
—~Rdy dp—T dx dg+ W dxdy =0 (1.6.9)

or
dpdy  ..dg dy

Returning now to (1.6.6), this equation is a quadratic in dy/dz and there
are three possible cases which arise. If the roots are real the characteristics
form two families of real curves. A partial differential equation resulting in real
characteristics is said to be hyperbolic. The condition is that

S% —4RT > 0. (1.6.11)
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The second case is when the roots are equal to give the parabolic case and the
condition
S? —4RT =0, (1.6.12)

and when the roots are complex the underlying equation is said to be elliptic
with the condition
S? —4RT < 0. (1.6.13)

The importance of characteristics only becomes apparent at this stage. The
first feature is the use of characteristics to classify equations. The methods that
will be used subsequently are quite different from type to type. In the case of
hyperbolic equations, the characteristics are real and are used directly in the
solution. Characteristics also play a role in reducing equations to a standard
or canonical form. Consider the operator

o2 02 02
~_ 4+ 8 T—
522 TP azay T 1o
and put £ = {(z,y), 7 =1n(z,y) and 2z = ( to see what a general change
of variable yields. The result is the operator

R (1.6.14)

0%¢ 0%¢
A({I, gy)a—fz + 2B(£z7 fy: Nz, ﬂy)@?‘
0%¢
+A(77z, "Iy)W = F({, 7,¢, CQCT)) (1'6‘15)
where
A(u,v) = Ru® + Suv + Tv? (1.6.16)
and
1
B(u1,v1,u2,2) = Rujuy + §S(u1v2 + ugvy) + Trpvs. (1.6.17)

The question is now asked for what ¢ and 7 do we get the simplest form?
Certainly if £ and 5 can be found to make the coefficients A equal to zero,
then a simplified form will result. However the condition that A should
be zero is a partial differential equation of first order which can be solved
analytically (Sneddon, 1957). Different cases arise in the three classifications.
In the hyberbolic case when S? — 4RT > 0, let Ra? + Sa+ T = 0 have roots
A1 and Ap then § = fi(z,y) and n = fa(x,y) where fi(z,y) and fo(z,y) are
the solutions of the two factors in the related ordinary differential equations

[Z_i + ,\l(x,y)] [Z_z + Ag(x,y)} ~0. (1.6.18)

Hence the required transformations are precisely the defining functions of the

characteristic curves. It follows that with this change of variable the partial

differential equation becomes
0%¢
nog

= ¢(£7 , Ca C(v CTI) (1619)
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which is the canonical form for the hyperbolic case.

In the parabolic case, S2 — 4RT = 0, there is now only one root, and any
independent function is used for the other variable in the transformation. Hence
A(&z,€y) = 0, but it is easy to show in general that

A(&zaﬁy)A(nza"?y) - B2(§xa§yv 77:::1"7y) = (4RT - 82)('5:67711 - fynm)z

and therefore as S = 4RT, we must have B({;, &y, Tz, Ty) = 0 and A(nz,ny) #
0 as n is an independent function of z and y. Hence when S? = 4RT, the
transformation £ = f1(z,y) and n = any independent function yields

32
3—nﬁ = $1(Em, ¢ CerC) (1.6.20)

which is the canonical form for a parabolic equation.
In the elliptic case there are again two sets of characteristics but they are
now complex. Writing £ = a + i@ and n = a — i3 gives the real form

0%¢ 1 (0% 0%
3oy 1 (W + 8_ﬁ2) (1.6.21)
and hence the elliptic canonical form
9%¢ | 0%
5?.7 + W = 1/1(0» ﬁ7 C) Cav Cﬂ) (1622)

Note that Laplace’s equation is in canonical form as is the heat equation, but
the wave equation is not. As an example of reduction to canonical form consider
the linear second order partial differential equation

0%y Pu | 0% | ,0u

gU ¥ T = 0. 1.6.2
557 " 2a5ay T a7 T = (1.6.23)

Then the equation of the characteristic curves is

dy 2 dy
Z) 9222 41=0 1.6.24
(dx) ar t (1.6:24)
or factorising
@ 1) o (1.6.25)
o =0. .6.
Therefore the transformation for the canonical form is:
po= =y } (1.6.26)
g = =z

and the required partial derivatives are:

u 8% (9p\? 0% [0q)\>
5——5‘;(5“) *w(a—) (1.627)
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and ) )
0y 9%*u (Opdp
dzdy ~ Op® (ay 8:1:) (1.6.28)
which yields the reduced form
Pu,, P Pu _ P Fu o P
ox? 0zdy  Oy: = 0Op?  O¢? op?  Ip?
2
= g—qu (1.6.29)
with the transformed equation being
10% Ou
gé'q—z' = a_p. (1.6-30)

From a numerical point of view, the canonical forms reduce the number
of different types of equation for which solutions need to be found. Effectively
effort can be concentrated on the canonical forms alone, though this is not
always the best strategy, and in this spirit the parabolic type will now be
considered in detail in the next chapter. Before considering this work the reader
may wish to pursue some of the ideas of the previous section in the following
exercises.

EXERCISES

1.23 Classify the following partial differential equations as parabolic,
elliptic or hyperbolic:
0?2 0? 0?2
(o) 35+ ot S8 =
oz 0xdy Oy

o%p 9%  0p
®) 57—zt o, =0
9 ¢ 0
© 5t " 222 3z ="
62¢ 82¢_
(d)é—a;2—+x55§—0.

1.24 Find the regions of parabolicity, ellipticity and hyperbolicity for the
partial differential equation:

8%u 5 o 0%u 0?%u
@4‘3(1) Y m-i-(x'l‘y)a—yz

=u

and sketch the resulting regions in the (z,y) plane.
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1.25 Find the analytic form of the characteristic curves for the partial
differential equation
0%u

6—1:2'+2(:l:+

1\ 6% + 4z 0%u .
y) 0zdy  y 0y? y
and hence categorise the equation.

1.26 Reduce the equation
0%z 0%z 0%z 0z

Z L == p 9
0x2 0zdy + oy: Oy
to canonical form.
1.27 Reduce the equation
0%z 8%z 0%z
—+3—=+ = =0
ox? + dzdy + Oy?
to canonical form, and hence find the general analytic solution.

1.28 Reduce the equation

8%z +2 8%z +3(92z _,

Oz 8zdy 0y

to canonical form. Make a further transformation to obtain a real
canonical form.



