
CHAPTER 1

The Internet

Information Server

(IIS) Application

THE RATE AT WHICH COMPUTER SCIENCE IS GROWING IS probably tiring for computer
programmers who must stay on top of cutting-edge technology. Keeping up with
changes in this field is more than a full-time job. Usually, you purchase a book on
a new programming topic and immediately hear that another new technology has
surfaced. This is especially true concerning the Internet. Technologies emerge
faster than anyone can truly master.

If you are an Internet programmer or are learning to become one, you have to
choose the technology you want to specialize in, but never stop watching for the
new ones. When a new technology starts to become the dominant player and the
one you are specializing in is in infirmity, you should be ready to climb on the
new bandwagon. For example, at one time, Common Gateway Interface (CGI)
was the main technology of the Internet. It is still being used, but better tech-
nologies have been invented and CGI is no longer everyone’s favorite.

However, while the entire Internet industry becomes more dynamic every
day, the basics remain static, so it is not too difficult to adapt to a new technology
regardless of how loud the propaganda is. HTTP (currently at version 1.1) is still
the protocol used and HTML (at version 4) is still the language used for content
presentation on Web pages.

How Does the Internet Work?

When you surf the Internet, you basically ask for certain files located in a particu-
lar computer in a given location where those files are stored. In a typical Web site,
the computer where the files are stored is expected to be up and running all the
time, and its main job is to serve anyone who requests a file. Not surprisingly, this
computer is called a server, more precisely: a Web server. The file returned by the
Web server is displayed in the user’s Web browser. Note that the term Web server
can be used to refer to the computer or to the software package that is used in the
Web server computer.

1

Kurniawan_001_218 8/18/00 7:36 AM Page 1

For this whole process of requesting a file and sending a file to happen, both
the server and the user (called the client) must have a valid Internet address. The
server address is something like http://www.apress.com or another type of
Internet address. The client address depends on where the user accesses the
Internet. When you connect to the Internet through an Internet Service Provider
(ISP), for example, you are given a temporary Internet address, so the server
knows where to send the requested file. When you are connected through your
corporate LAN, you could have a fixed IP address or you could be given a tempo-
rary IP address also.

When you click or type in a URL, the following process happens:

• The browser connects to the server.

• The browser requests a file.

• The server responds by sending the requested page to the browser, and
then closes the connection.

Of course, a connection to the server can only be established if the server is run-
ning and is not too busy serving other requests.

What happens after the server sends the requested file depends on the user.
The user can just close the browser and walk away or request another file from
the server. However, when the server is connected for the second time, it cannot
tell whether it is the second request from the same user or a first request from
some other user.

The fact that the server cannot remember users who have previously request-
ed pages has a deep impact on how an Internet application is developed. Pro-
grammers who are used to the conventional client/server programming might
find it confusing at first to figure out how an Internet application works. For now,
just keep this information in mind. Further discussion on this issue will be found
in Chapter 7.

The architecture of an Internet application is shown in Figure 1-1.
Also keep in mind that the server does not serve only one user. For an

Internet application, anyone connected to the Internet can request a page from
the server. At times, in popular Web sites, thousands of requests come in simulta-
neously. And, if you are running a corporate intranet application, everyone with
access can request a page. Therefore, it is very important for the Web application
to be as efficient as possible.

The Available Technologies

In the software industry, including Web technology, Microsoft products seem to
be more and more dominant. As far as Web technology is concerned, Microsoft

Chapter 1

2

Kurniawan_001_218 8/18/00 7:36 AM Page 2

provides a total solution. You can use Microsoft products exclusively to deliver a
scalable Web solution. If you decide to do so, choosing each component in the
system is easy because Microsoft products don’t compete with each other. It is
almost certain that you will choose Windows NT or Windows 2000 Server for your
operating system, IIS as your Web server, SQL Server for your database server, and
Component Object Model (COM) technology as your developing framework. The
good news is, if you have been using a Microsoft compiler, you won’t need to
change the programming language.

On the other hand, if you are more inclined toward other products and ven-
dors, your choice is more varied. Getting the right combination of products is
often a political issue, not to mention that there is always a risk of incompatibility
between products from different manufacturers. A typical Web solution without
Microsoft presence could include a Unix or Linux operating system; an Apache
(still the most popular today) or a Java Web server; a MySQL, Oracle, Informix,
Sybase, or other database; and PERL or PHP or Java as your language of choice.

However, because you have chosen this book from the shelf, chances are you
are using Microsoft products. If you are new to Microsoft’s Internet technologies,
please read the next section. It describes the existing technologies and the posi-
tion of each.

The Internet Information Server (IIS) Application

3

Internet/Intranet

Web Browser Client Side

Server Side

Database

Operating System

Web Server

Web

Application

Figure 1-1. Web application architecture

Kurniawan_001_218 8/18/00 7:36 AM Page 3

The Facts about Microsoft Internet Technologies

Before the arrival of the IIS applications technology in Visual Basic, there were
and still are three types of Web applications in use that can run using IIS. They are
Common Gateway Interface (CGI), Internet Server Application Programming
Interface (ISAPI), and Active Server Pages (ASP).

CGI is easy to program and is the slowest Web technology available on the
Windows platform. In Windows operating systems, the Web server creates a sepa-
rate process for each HTTP request and communicates with the process through
environment variables and standard input (stdin) and standard output (stdout)
streams. If 1,000 clients access a CGI application at the same time, the server cre-
ates 1,000 instances of the CGI application to handle the requests. Each instance
requires its own memory space and system resources.

Because process creation and interprocess communication are time and re-
source consuming operations, it’s not surprising that a CGI application is the
slowest compared with other available technologies. CGI applications are usually
implemented as a C/C++ executable or with a scripting language like PERL. The
output of a CGI application is generated using the basic output functions of the
language, for example, printf in C. CGI programs are not as bad in Unix, which is
designed to handle multiple processes with very little overhead.

ISAPI is the fastest among the three applications and was developed specifi-
cally for IIS as a high-performance Windows alternative to CGI. ISAPI is an API for
developing extensions to the IIS server and other HTTP servers that support the
ISAPI interface. Compiled as a runtime dynamic link library (DLL) file, the ISAPI
model reduces the overhead required by multiple requests because only one DLL
is needed for multiple requests.

The first time an ISAPI DLL is requested, the server loads it into memory.
Unless the Web server is shut down, the DLL stays in memory waiting for another
request. Therefore, there is no overhead for process creation after the first request.
Furthermore, ISAPI applications run in the same address space as the Web server
and have access to all the same resources. There is no need for interprocess com-
munication. However, ISAPI applications development is also the hardest, requir-
ing implementation using C++/MFC. This factor alone deters many from select-
ing this solution.

There is also a maintenance problem with ISAPI. Even a minor change
requires a recompile and relink of the ISAPI application. Also, an ISAPI DLL can
cause the Web server to crash if it is not thoroughly tested before being deployed
and run in the Web server process. Fortunately, with IIS 4.0 and later, you can
select to run ISAPI DLLs in separate processes, with performance being sacrificed
of course. Note that ISAPI applications are not the same as ISAPI filters, which are
DLLs that allow preprocessing of requests and postprocessing of responses for
site-specific handling of HTTP requests and responses.

Chapter 1

4

Kurniawan_001_218 8/18/00 7:36 AM Page 4

ASP is certainly the current star. Introduced as part of IIS 3.0, its benefits are
in the simplicity of the available scripting languages, and you get performance
that is much more superior than that of a CGI application.

When IIS receives a request for a file with an .asp extension, IIS passes it to
ASP.DLL, the scripting engine that is an ISAPI application. Because ASP must
interpret and compile scripts before executing them, complex scripts can be four
times slower than plain HTML and two to three times slower than ISAPI on the
first request. Afterward, the compiled version of the page is cached in server mem-
ory, making subsequent requests substantially faster.

ASP is not limited to a particular programming language. VBScript and JScript
are the two most commonly used languages to create ASP scripts. However, any
language for which a third-party ActiveX scripting engine is available can also be
used. This includes PerlScript, REXX, and Python. You can even use more than
one scripting language on a single ASP page, even though this is not a recom-
mended practice because doing so will make processing slower. ASP applications
often include custom ActiveX components that are called from ASP pages to
enhance scalability.

To get a feel of how each type of application rates as compared with another,
Table 1-1 summarizes a test result of the three types of applications in three types
of operations: DataGrab, GetObject, and ServerVars.

In the DataGrab operation, the applications pull data from a database using a
database-access COM component written in Visual Basic. The component object
provides a method that can be used to connect to a small Access database, send
an SQL query string, and return the query result. Unfortunately, there is no result
for CGI for this category.

The GetObject operation includes instantiating a simple COM component,
calling a method provided by that COM component, and sending the result of the
call to the client.

In the third operation, the ServerVars, each application accesses 18 server
variables and sends the result to the client.

The test was undertaken using the Microsoft Web Capacity Analysis Tool
(WCAT) that can be found on the IIS Resource Kit CD. This tool runs simulated
workloads on client/server configurations to allow you to test how IIS and your
network configuration respond to a variety of different client requests.

The tests whose results are given in Table 1-1 were run with five clients, each
running 20 threads for a total of 100 virtual clients. The virtual clients fired requests
at the server and recorded how many of the requests were served, in other words,
how many pages per second the server was able to serve. The CGI application was
PERL scripts run by PERL for Win32. The numbers in the table are relative figures,
where higher figures reflect better performance. For example, the ISAPI applica-
tion is nearly three times faster than ASP in the ServerVars operation.

The Internet Information Server (IIS) Application

5

Kurniawan_001_218 8/18/00 7:36 AM Page 5

Where Does the IIS Application Stand?

The IIS application is the most recent Internet technology from Microsoft that
ships with Visual Basic 6 and later. When you create an IIS application with VB,
you create classes that resemble classes in other VB projects. These classes in IIS
applications are called WebClasses. The technology that the IIS application is
based on is also known as the WebClass technology.

An IIS application is a Visual Basic application that resides on a Web server
and responds to requests from Web browsers. An IIS application sends plain text
to the client-side to present its user interface, therefore you have a great deal of
flexibility. You can send standard HTML tags to make your IIS application browser
independent, or, if the project requirement says so, you can send output to cater
to a specific browser.

To the user, an IIS application appears to be made up of a series of HTML
pages. To the developer, an IIS application is made up of a special type of object
called a WebClass. This WebClass in turn contains a series of resources called
WebItems. The WebClass acts as the central functional unit of the application,
processing data from the browser and sending information to the users.

At a glance, an IIS application looks very similar to ASP. However, the IIS ap-
plication was conceived after the delivery of ASP. Therefore, it was designed to
overcome the disadvantages that are inherent to ASP. Despite its popularity, ASP
has the following disadvantages:

1. You use VBScript, JScript, or other scripting languages. All are interpreted
languages, and interpreted languages are slower than compiled lan-
guages. Scripts are also less likely to scale well to large numbers of users.

2. With ASP, people can see your code once they get access to the server. In
most cases this is not a big deal, unless of course you have invented a
new algorithm for generating random numbers. Even though code en-
cryption is supported in the new version of ASP, version 3, the method
used is still very weak and can be easily cracked.

Chapter 1

6

Table 1-1. Relative Performance of Dynamic Pages in Different Technologies*

ISAPI ASP CGI

DataGrab 69.37 57.19 N/A

GetObject 209.14 169.64 1

ServerVars 560.07 195.97 33.16

*From Microsoft Internet Information Server Resource Kit, Microsoft Press, pages 59–61, 1998,

Chapter 3. A dozen writers contributed to this work; the contributing writer for Chapter 3

was Jon Singer.

Kurniawan_001_218 8/18/00 7:36 AM Page 6

3. For long pages, it’s very hard to differentiate code from HTML tags.
Undifferentiated script scatters business logic throughout the applica-
tion, making it hard to find bugs and increasing the cost of maintenance.

4. Scripts are not as reusable as classes.

5. Some Windows functionality is beyond ASP’s reach without the help of
COM components. This includes accessing the Registry, issuing a shell
command, and so on.

ASP developers usually try to overcome these weaknesses by using compo-
nents. If you are an expert ASP developer, you must be familiar with the motto:
the less script, the better, to create a scalable ASP application. It is therefore
understandable that IIS applications, which can be regarded as 100 percent
component-based solutions, are considered better ASP. An IIS application over-
comes the disadvantages of ASP by possessing the following characteristics:

1. It is a compiled application created using Visual Basic 6 or later. Thus, it is
faster.

2. Only you can see the source code, so privacy and copyright are relatively
secure.

3. There is a separation between the code and the presentation layer.

4. WebClasses are reusable.

5. An IIS application is a VB application, therefore it enjoys all the benefits
that a VB application has.

The only advantage of ASP over IIS applications is the fact that simple ASP
applications that consist only of pages can be hosted in an external ISP. ISPs nor-
mally do not allow you to install custom components on their server for security
and other reasons. They can’t afford to have their server down simply because one
of the users’ components crashes, bringing down other people’s innocent applica-
tions.

How Fast Is an IIS Application Compared with ASP?

After having stated that IIS applications are better than ASP, let me present further
performance results. I tested three types of operations: Server Variables 1, Server
Variables 2, and Database Access. For each type, an ASP application and an IIS

The Internet Information Server (IIS) Application

7

Kurniawan_001_218 8/18/00 7:36 AM Page 7

application were written, and the code for the ASP page and the WebClass was ba-
sically the same.

In all of the ASP pages, no COM component was used. Each category of oper-
ation was performed five times for each application, and the results were aver-
aged. VB’s Timer function was used to measure performance. The Timer function
returns a number representing the number of seconds elapsed since midnight.
The precision is to a hundredth of a second.

The function was invoked twice, once at the beginning of the process and
once at the end of it. By subtracting the first number from the second one, the
result of how long (in hundredths of a second) it takes the Web server to complete
the process is obtained. The results are summarized in Tables 1-2a and 1-2b. The
code for each application and the complete testing procedure are given in
Appendix F.

In Server Variables 1, both applications read 16 server variables and sent
them to the browser. Server Variables 2 was similar to Server Variables 1, but the
process was repeated 100 times. Server Variables 2 was conducted because Server
Variables 1 was too easy for the IIS application. As a result, the two Timer function
invocations resulted in the same number, which provides assurance that the pro-
cess took less than 10 milliseconds. I then had two options: go to the museum to
borrow a much slower machine or give my CPU some extra work doing the same
function in a loop. I chose the latter, which was more practical. This was imple-
mented as Server Variables 2.

Why didn’t I drop Server Variables 1? At first I was tempted to do so, but then I
realized that it might also be useful to compare performance for very simple oper-
ations, such as Server Variables 1. This, at least, wiped out the suspicion that ASP
applications might be more superior in small applications.

Chapter 1

8

Table 1-2a. Test Results for ASP Applications

TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 AVERAGE

Server Variables 1 0.06s 0.06s 0.06s 0.00s 0.05s 0.046s
Server Variables 2 5.05s 4.28s 3.85s 4.01s 4.07s 4.252s
Database Access 4.33s 4.45s 4.77s 4.72s 4.78s 4.61s

Table 1-2b. Test Results for IIS Applications

TEST 1 TEST 2 TEST 3 TEST 4 TEST 5 AVERAGE

Server Variables 1 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
Server Variables 2 0.16s 0.16s 0.16s 0.16s 0.16s 0.16s
Database Access 4.01s 3.57s 3.35s 3.39s 3.68s 3.60s

Kurniawan_001_218 8/18/00 7:36 AM Page 8

The third test, Database Access, performed three database operations: Insert,
Select, and Delete. It first inserted 300 records into an empty Access database
table, and then selected all the records and displayed them in an HTML page be-
fore deleting all the records.

The results show that for Server Variables 2, on average, it took 4.252 seconds
for the ASP application and 0.16 seconds for the IIS application. The IIS applica-
tion is about 27 times faster than the ASP application in this category. In Database
Access, however, the performance difference is not that obvious. This is under-
standable because most of its time was spent on opening and establishing the
connection, and then waiting for the database engine to perform the database
operations.

Please note that the results of this experiment have no relation to the results
presented in Table 1-1 because the tools used and the environment were different.

Comparison with Form-based VB Applications

IIS applications are also different from traditional form-based Visual Basic applica-
tions. In an IIS application, the user interface consists of a series of HTML pages
rather than traditional Visual Basic forms. An HTML page is like a form in that it
contains all the visual elements that make up the application’s user interface.

An HTML page referenced in an IIS application is saved to an .htm file, which
is analogous to a .frm file in that it is used to render and display the page to the
end user. Also, in an IIS application, you don’t use VB to create the HTML pages
that makes up the application’s user interface. A Web graphic designer creates the

The Internet Information Server (IIS) Application

9

Table 1-3. A Comparison between IIS Applications and Form-based VB Applications

FORM-BASED

VB APPLICATIONS IIS APPLICATIONS

User interface VB forms HTML pages

User interface elements Controls HTML elements*

File format .frm files .htm or .html files

Creator Developer Developer with artistic skill or Web

graphic designer

Run time VB runtime on both Web browser on the client-side and

the client- and the IIS, ASP engine and WebClass

server-sides runtime on the server-side

* You could embed Java applets or ActiveX controls in your HTML pages, but they are beyond the

scope of this book.

Kurniawan_001_218 8/18/00 7:36 AM Page 9

pages using an HTML authoring program. Table 1-3 summarizes the difference
between form-based applications and IIS applications.

The Structure of IIS Applications

An IIS application consists of the following parts:

• One or more WebClasses that are generated automatically when the IIS
application project is created.

• Zero or more HTML templates and their events.

• Zero or more custom WebItems and their events.

• An .asp file used to host the WebClass in IIS. This file is generated automati-
cally when you compile or run a WebClass project.

• A WebClass runtime component, MSWCRUN.DLL, that helps process
requests.

• A project DLL that contains your VB code and is accessed by the runtime
component.

The structure is best illustrated by Figure 1-2.

Chapter 1

10

Internet/Intranet

Web Browser
Client Side

Server Side

Internet

Information

Server

Active

Server

Pages

WebClass

Runtime

WebClass

VB Code

PROJECT.ASP MSWCRUN.DLL PROJECT.DLL

HTML

Templates

Figure 1-2. The structure of an IIS application

Kurniawan_001_218 8/18/00 7:36 AM Page 10

Software Requirements for the Development Computer

To create and test an IIS application, you need to have a Web browser and a Web
server installed on your development computer. You can use any of the combina-
tions in Table 1-4 for development purposes only.

IIS 5.0 is installed on Windows 2000 Server by default. The Web servers for
Windows NT Server 4.0 and Windows NT Workstation 4.0 can be found in the
Option Pack 4.0 CD. If you are using Windows 98, you must install the Virtual
Private Network (VPN) to install Personal Web Server.

Web Server Administration

If you are using the Personal Web Server, you use the Personal Web Manager to
administer your site. What you can do as an administrator is quite limited com-
pared to the functions available when using IIS. To display the Personal Web
Manager, select Start ➔ Programs ➔ Internet Explorer ➔ Personal Web Server ➔
Personal Web Manager. Your screen should look like Figure 1-3.

If you are using Window NT 4.0, there are two tools you can use to administer
IIS. The first is Internet Service Manager, which is hosted in the Microsoft
Management Console (MMC) and can be administered within a local area net-
work (LAN). The second tool, Internet Service Manager (HTML), can be accessed
remotely using a Web browser from an intranet or the Internet.

Internet Service Manager uses a Web site listed as Administration Web Site
to access IIS properties. When IIS is installed, a port number between 2,000 and
9,999 is randomly selected and assigned to this Web site for security reasons. On
another machine, other than the machine that hosts IIS, you can only access this
site if you know the port number and append it to the URL.

Configuration options for both tools are the same with exceptions in some
logging and security features.

To start Internet Service Manager, select Start ➔ Programs ➔ Windows NT 4.0
Option Pack ➔ Microsoft Internet Information Server ➔ Internet Service
Manager.

The Internet Information Server (IIS) Application

11

Table 1-4. Software Requirements for Developing IIS Applications

OPERATING SYSTEM WEB SERVER

Windows 2000 Server Internet Information Server 3.0 or later with ASP

Windows NT Server 4.0 Internet Information Server 3.0 or later with ASP

Windows NT Workstation 4.0 Peer Web Services 3.0 or later with ASP

Windows 95 or Windows 98 or later Personal Web Server 3.0 or later with ASP

Kurniawan_001_218 8/18/00 7:36 AM Page 11

Chapter 1

12

Figure 1-4. Microsoft Management Console in Windows NT 4.0

Figure 1-3. Personal Web Manager

Kurniawan_001_218 8/18/00 7:36 AM Page 12

To start Internet Service Manager (HTML), select Start ➔ Programs ➔
Windows NT 4.0 Option Pack ➔ Microsoft Internet Information Server ➔ Internet
Service Manager (HTML). To use it remotely, you need to type the domain name
and the assigned port number for the Administration Web Site, for example,
http://www.apress.com:9869.

When using the Internet Service Manager (non-HTML version), the MMC is
invoked and looks similar to Figure 1-4.

In Windows 2000 Server, Internet Service Manager is called Internet Inform-
ation Services snap-in. Hosted in the MMC, the IIS snap-in has been integrated
with other administrative functions of Windows 2000. Internet Information Server
is now called Internet Information Service, and Default SMTP Site has become
Default SMTP Virtual Server.

The Internet Service Manager (HTML version) is still available in Windows
2000 Server, however, you can no longer access it from the Start menu.

Where to Go from Here?

HTML is at the basis of every Web application. An understanding of HTML is
therefore a mandatory preparation for anyone trying to build a Web application.
This book provides a crash course and complete reference on HTML in Appendix
A. Those unfamiliar with HTML should take a few minutes to look at Appendix A.
Those who have been working with HTML should continue to Chapter 2 and refer
to Appendix A when necessary for helpful reference.

The Internet Information Server (IIS) Application

13

Kurniawan_001_218 8/18/00 7:36 AM Page 13

Kurniawan_001_218 8/18/00 7:36 AM Page 14

CHAPTER 2

The WebClass and

the WebItem

THIS CHAPTER INTRODUCES YOU TO YOUR FIRST Internet Information Server (IIS)
application and the concept behind WebClasses. Those who claim to be ASP
(Active Server Pages) developers will recognize that WebClasses are more than
ASP pages plus COM objects. Those familiar with traditional form-based Visual
Basic (VB) applications will probably be struck by the similarities between the
type of applications they are used to working with and this new genre. Both are
heavily event-driven. Developers who are not in these two categories will find that
an IIS application is very easy to develop. In fact, I would say that IIS applications
are the easiest and fastest Web applications to build.

This chapter starts with a description of how to create an IIS application
using the wizard in VB 6. The WebClass will naturally be the subsequent topic. It
then digs deeper by discussing WebItems and events. A few sample applications
will be created to demonstrate these topics. The chapter concludes with a brief
note explaining which Web browsers to use in the development phase.

Creating Your First IIS Application

Visual Basic 6 provides a wizard that helps you create an IIS Application in three
easy steps:

1. Double-click the VB icon on your desktop. If not previously disabled, the
New Project window is displayed. If the window doesn’t appear, select
File ➔ New Project.

2. Scroll down until you see the IIS Application icon and click on it, as
shown in the Figure 2-1.

3. Click the Open button.

That’s all it takes to create an IIS application.

15

Kurniawan_001_218 8/18/00 7:36 AM Page 15

By clicking the Open button, you actually start a wizard in VB, which tells VB
to perform some magic. This wizard creates an IIS application of the simplest
form. VB then displays a window similar to Figure 2-2.

Instead of a form, as in the traditional VB application, VB creates a WebClass.
In the Project Explorer, which you can display at any time by pressing Ctrl+R, the
WebClass is wrapped inside the Designers folder. In most cases, you only need
one WebClass for each IIS application. However, there are times when your appli-
cation requires more modularity and code reusability, in which case, the use of
multiple WebClasses is more than justifiable. With multiple WebClasses in the
same application, navigation between WebClasses is the main issue. This topic
will be addressed in Chapter 3.

You can now run the new application. However, before you run the applica-
tion, it is a good idea to save the project. When you save the project, there are two
files you need to save: a .dsr file and a .vbp file. The .dsr file is the designer file that
holds your code and other information contained in your WebClass. The .vbp file
is the project file. You should save them both in the same directory. This directory
will become your project directory, and you should only store files related to your
project in this directory.

Chapter 2

16

Figure 2-1. The IIS Application icon

Kurniawan_001_218 8/18/00 7:36 AM Page 16

VB will also automatically create several files in the same directory. The .asp
file is the one you should be most interested in. When end users want to access
your IIS application, they will use a Web browser to call this .asp file. The Web
browser, through the HTTP protocol, will tell the Web server that it wants the .asp
file. The Web server then runs the .asp file, which in turn creates an instance of
your WebClass.

Virtual Directories

If you are the type of person who is not satisfied with short explanations, you are
probably wondering how the Web server finds the .asp file. Read on to find the
answer.

When you install a Web server (in this case, IIS or its little brothers Personal
Web Server and Peer Web Services), the wwwroot directory under the inetpub
directory is the Web server home directory. If, let’s say, the computer that hosts
the Web server is called BigMomma and you put an HTML file called
CompanySecrets.html in the wwwroot directory, you can use a Web browser to
request the HTML file by typing http://BigMomma/CompanySecrets.html in the
Web browser URL box.

Or if you are browsing from the same computer, you can just type http://
localhost/CompanySecrets.html (or localhost/CompanySecrets.html as a shorter
version). Accessed from the Internet, the URL will look something like http://
www.yourdomain.com/CompanySecrets.html.

The WebClass and the WebItem

17

Figure 2-2. The Project Explorer for an IIS application

Kurniawan_001_218 8/18/00 7:36 AM Page 17

Like other home directories, a Web server home directory can also have sub-
directories. In fact, a Web application (all sorts of Web applications including CGI,
PERL, and ASP) will reside in one of the subdirectories, separating the application
and all its components from other Web applications.

Therefore, if you have a Web application called DailyNews, you need to store
all files that are part of your application in the DailyNews subdirectories under
the wwwroot directory. This way, the Web server knows how to find your files
when the user types a URL such as http://www.yourdomain.com/DailyNews/
MainPage.html to access a file from the Internet, or http://MachineName/
DailyNews/MainPage.html to access the file from an intranet.

Does this mean that you must create your IIS application project directory
under the wwwroot directory? The answer is no and here’s why. You can store your
project files in any directory as long as you let the Web server know where they
are. The directory containing your Web application files is often called a virtual
directory or virtual root. A virtual directory, or virtual root, is a directory outside
the Web server’s home directory, which browsers identify as a subdirectory of the
Web server home directory.

For each Web application, you can either store the application files in a subdi-
rectory under the wwwroot directory or in a virtual directory. The latter is what VB
chooses to use for an IIS application. With the creation of every IIS application, VB
handles the details of creating a virtual directory for that application and reports
the location of the new virtual directory to the Web server.

Running the Application

Similar to other VB applications, the quickest way to run an IIS application is by
pressing F5. The first time you run the application, VB will prompt you to decide
how the application will start (see Figure 2-3). Let the default settings stand and
click OK.

If this is the first time the application is run, it will not yet have a virtual root.
VB can take the initiative to create one and map it as a virtual directory.
Nevertheless, VB requires that you type in the name of the virtual directory in the
Create Virtual Directory dialog box that appears (see Figure 2-4).

Most people use the project name as the name of the virtual directory.
However, there is no such rule that states you can’t use another name. Because
the virtual directory becomes part of the URL that your users have to type to get
to your application, there is a compelling reason to use a name that’s short, easy
to remember, and not necessarily the project name.

After typing in an appropriate name for the virtual directory, click OK. An
appropriate name means a name that consists of one word and doesn’t contain
punctuation marks that may wreak havoc with Web servers, such as “or !.

Chapter 2

18

Kurniawan_001_218 8/18/00 7:36 AM Page 18

If you haven’t saved the project, this new virtual root will be associated with
the system’s temporary directory, usually the C:\Temp directory. Therefore, you
should always save your project before you run it for the first time.

Once you click the OK button, VB will do all the donkey work to bring the ap-
plication into existence. It launches the default browser on your computer and
displays your starting page (see Figure 2-5).

Take a look at the URL http://localhost/Bulbul/WebClass1.ASP. Because VB
is running the application on the same computer where the Web server resides,

The WebClass and the WebItem

19

Figure 2-3. When the IIS Application is first run, you must decide how
the application should start.

Figure 2-4. When first run, an IIS Application requires the
name of the virtual directory.

Kurniawan_001_218 8/18/00 7:36 AM Page 19

the word localhost is associated with the computer name. Bulbul (named after my
brown dog) is the Web application name, and WebClass1.ASP is the .asp file VB
automatically created for this new project.

Every time you run your IIS application from the VB IDE the following events
occur:

1. VB creates the global.asa and one .asp file for each WebClass in the proj-
ect. Information about the global.asa file can be found in subsequent
chapters, and the .asp file will be explained in the next section of this
chapter.

2. VB compiles the WebClass and registers it to the Registry.

3. VB starts the Web browser and directs the Web browser to the .asp file
that hosts the WebClass.

4. The .asp file creates an instance of the WebClass and passes the HTTP
request to it.

5. The WebClass processes the request and sends the response back to the
Web browser via the Web server.

When you stop your application, VB will also unregister your WebClass from
the Registry and delete the global.asa and .asp files. Unless your operating system

Chapter 2

20

Figure 2-5. The starting page of a default IIS Application

Kurniawan_001_218 8/18/00 7:36 AM Page 20

crashes when the IIS application is running, you probably wouldn’t even realize
that one global.asa file and at least one .asp file exists. However, you can see these
files from Windows Explorer when the IIS application is running.

To better understand what happens behind the scenes, let’s take a look at the
Personal Web Manager.

1. Click the Advanced applet on the left side of the screen. Personal Web
Server displays all applications inside the home directory (see Figure
2-6). If you cannot see your application, don’t panic. Just scroll the win-
dow in the Virtual Directories frame.

2. Click the application directory, and then click Edit Properties.

The dialog box that appears shows the association between the physical
directory where the project resides and the alias known to the Web server (see
Figure 2-7). When the Web server receives a request for a page in a particular
application, the Web server always searches for this association to determine the
physical location of the file. Note that in this example the project directory is not
under the wwwroot directory.

If you are using IIS, open the Internet Services Manager Microsoft Manage-
ment Console (MMC), and you should see your virtual directory under Default

The WebClass and the WebItem

21

Figure 2-6. The virtual directories in the Personal Web Manager

Kurniawan_001_218 8/18/00 7:36 AM Page 21

Chapter 2

22

Figure 2-7. The Edit Directory dialog in Personal Web Manager

Figure 2-8. The virtual directory under Internet Service Manager

Kurniawan_001_218 8/18/00 7:36 AM Page 22

Web Site. Right-click the icon and click Properties. The dialog box similar to
Figure 2-8 is displayed.

The physical directory is displayed on the Local Path box.

Looking at the Code

Return to the VB IDE, and press CTRL+R to display the Project Explorer as shown in
Figure 2-9.

In the Project Explorer, right-click the WebClass1 icon, and select View Code
to bring up the code window.

You should examine the code in Listing 2-1.

Listing 2-1

Option Explicit

Option Compare Text

Private Sub WebClass_Start()

'Write a reply to the user

With Response

.Write "<html>"

.Write "<body>"

.Write "<h1>WebClass1's Starting Page" & _

"</h1>"

.Write "<p>This response was created in the Start event of " & _

"WebClass1.</p>"

.Write "</body>"

.Write "</html>"

End With

End Sub

The WebClass and the WebItem

23

Figure 2-9. The WebClass icon in the
Project Explorer

Kurniawan_001_218 8/18/00 7:36 AM Page 23

It is a bit surprising that an Internet application can run with a snippet as
small as this, isn’t it?

At the core of this code is the WebClass_Start() subroutine, which is the event
procedure for the Start event of the WebClass object. The code simply uses the
Write method of the Response object (this object will be explained in detail in
Chapter 3) to output the following string in one long line:

<html><body><h1>WebClass1's Starting Page</h1><p>This

response was created in the Start event of WebClass1.</p></body></html>

This string is the HTML code for the Web page displayed in the Web browser.
Switch to the Web browser to view this source code. To view the source code in
Internet Explorer, click Source from the View menu. In Netscape, click Page
Source from the View menu, or press Ctrl+U.

It’s as simple as that to create a Web page in IIS Applications. Once you
become a serious IIS application developer, you’ll use the Write method very
frequently. This method is definitely very important.

Even though there is nothing wrong with the code in Listing 2-1, the HTML
code produced is an eyesore when viewed from a browser’s source page. This is
especially true when the page is more complex. Why do you need to be concerned
about this code? At times, the HTML code you generate will not work as intended,
and you’ll need to view it from a Web browser. At those times, you’ll realize that
more readable HTML code is preferable.

The code in Listing 2-1 can be modified a bit. The modified version is dis-
played in Listing 2-2.

Listing 2-2

Option Explicit

Option Compare Text

Private Sub WebClass_Start()

'Write a reply to the user

With Response

.Write "<html>" & vbCr

.Write "<body>" & vbCr

.Write "<h1>WebClass1's Starting Page" & _

"</h1>" & vbCr

.Write "<p>This response was created in the Start event of " & _

"WebClass1.</p>" & vbCr

.Write "</body>" & vbCr

.Write "</html>"

End With

End Sub

Chapter 2

24

Kurniawan_001_218 8/18/00 7:36 AM Page 24

The modified version produces the following HTML code, which is appar-
ently easier to read and understand.

<html>

<body>

<h1>WebClass1's Starting Page</h1>

<p>This response was created in the Start event of WebClass1.</p>

</body>

</html>

You’ll thank yourself when you have to debug this page.
For those of you who value efficiency, the code in Listing 2-2 can also be

rewritten to increase its speed, as given in Listing 2-3.

Listing 2-3

Option Explicit

Option Compare Text

Private Sub WebClass_Start()

'Write a reply to the user

With Response

.Write "<html>" & vbCr & _

"<body>" & vbCr & _

"<h1>WebClass1's Starting Page" & _

"</h1>" & vbCr & _

"<p>This response was created in the Start event of " & _

"WebClass1.</p>" & vbCr & _

"</body>" & vbCr & _

"</html>"

End With

End Sub

Note that the vbCr and not the vbCrLf is used because vbCr translates into
one character instead of two. Because bandwidth is still expensive, a savings of
one byte is definitely an increase in performance. Moreover, this savings comes at
no cost.

The use of the vbCr character only affects the appearance of the HTML tags
when viewed in the Source window. It does not affect the rendering of the HTML
page in the Web browser.

The WebClass and the WebItem

25

Kurniawan_001_218 8/18/00 7:36 AM Page 25

Because the HTML page is generated by sending a string or strings of HTML
code, you can also include other files, such as graphics or sound files. For exam-
ple, the following code is valid:

Response.Write ""

It will pass the string to the Web
browser. Upon receiving the image tags, the browser will then try to fetch the
logo.gif in the images subdirectory under the application virtual root.

Remember, all files included in the HTML code must be placed in the same
directory as the project directory or in a subdirectory under it. Directories outside
the virtual root are not visible to the Web browser. If you store a file, such as an
image file, in a subdirectory under the virtual directory, you must include the sub-
directory in your code, as shown in the previous example.

As your IIS application grows, it is imperative to structure your files so differ-
ent types of files are organized in their own subdirectory by type. One good
approach is to create an images subdirectory for all image files, a sounds sub-
directory for all sound files, and so forth.

Renaming Your WebClass

Even though the name WebClass1 provided by VB seems fine and you know ex-
actly what it does, to other people the name probably wouldn’t make any sense.
Therefore, you should always name your WebClasses and all their items in an
indicative way, so they can be easily identified.

Meaningful names make a programmer’s life more convenient. For example,
let’s say that two years after successfully deploying your application and making
yourself famous in your company (well, two years is a very long time in Internet
terms, let’s make it two months), you decide to make a comeback and enhance
your application. Wouldn’t it be nice if you could just refresh your memory about
the application simply by reciting its objects’ names?

Or, if you are currently working in a team environment, wouldn’t it be easier
on your teammates if you used meaningful names rather than the cryptic
WebClass1, WebItem23, Template24, and so forth?

Indeed, you can rename your WebClass by following these steps:

1. Right-click the WebClass icon that you want to rename in the Project
Explorer.

2. Click Properties.

Chapter 2

26

Kurniawan_001_218 8/18/00 7:36 AM Page 26

3. Change the name of the class and the NameInURL property. The NameInURL
property is how the WebClass will be referenced in an HTML or an .asp
page. The Properties window is shown in Figure 2-10. Note also that the
.asp file created for the WebClass will be the same as the value in the
NameInURL property.

To display the Properties window, the Project Explorer must have been previ-
ously displayed. If you try to display the Properties window when the Project
Explorer is hidden, the Properties window will appear blank.

The ASP File

An IIS application only has one .asp page for each WebClass, and in most cases,
an IIS application only has one WebClass. Unlike the ASP files in an ASP applica-
tion that you often edit extensively, an .asp file in IIS applications is born immac-
ulate and not meant to be edited. Its function is to create the WebClass it is associ-
ated with. However, you can view the contents of a typical .asp file in an IIS
application.

Remember that your playing field is the WebClass not the .asp page, so don’t
try to change anything on the .asp page. The code in Listing 2-4 shows the con-
tents of an .asp file.

The WebClass and the WebItem

27

Figure 2-10. The Properties window

Kurniawan_001_218 8/18/00 7:36 AM Page 27

Listing 2-4

<%

Server.ScriptTimeout=600

Response.Buffer=True

Response.Expires=0

If (VarType(Application("~WC~WebClassManager")) = 0) Then

Application.Lock

If (VarType(Application("~WC~WebClassManager")) = 0) Then

Set Application("~WC~WebClassManager") = _

Server.CreateObject("WebClassRuntime.WebClassManager")

End If

Application.UnLock

End If

Application("~WC~WebClassManager").ProcessNoStateWebClass _

"Project1.wcCH2", _

Server, _

Application, _

Session, _

Request, _

Response

%>

If you are or once were an ASP developer, and have not been hypnotized into
forgetting the past, the code in Listing 2-4 should look familiar to you. If you have
not done any ASP development, the following explanation will probably not make
sense to you. You should return to this section after you finish reading Chapter 3.

To begin, the <% . . . %> pair is used to enclose your code.
The code first sets the ScriptTimeout property of the Server object:

Server.ScriptTimeout=600

The ScriptTimeout property specifies the maximum amount of time in seconds a
script (an .asp page) can run before it is terminated. By setting this property to
600, the Web server is forced to wait up to 10 minutes for the .asp file to be
processed.

It then sets the Buffer property of the Response object:

Response.Buffer=True

Chapter 2

28

Kurniawan_001_218 8/18/00 7:36 AM Page 28

By setting the Buffer property to True, response to the Web browser will be
buffered and sent at once when the whole page has been processed or when the
Response is explicitly flushed from a location inside the WebClass.

It then tells the Web browser not to cache the page:

Response.Expires=0

The following line uses the VarType function to check if the Application
object’s variable ~WC~WebClassManager has been initialized:

If (VarType(Application("~WC~WebClassManager")) = 0) Then

The VarType function returns a value indicating the subtype of a variable. The
Application object is one of ASP’s built-in objects. The VarType function returns
zero if the variable is empty or uninitialized.

If the variable has not been initialized, the code then locks the Application
object so other users can’t change its internals:

Application.Lock

It then sets the Application("~WC~WebClassManager") variable to
WebClassRuntime.WebClassManager (MSWCRUN.DLL) if the variable is still unini-
tialized:

If (VarType(Application("~WC~WebClassManager")) = 0) Then

Set Application("~WC~WebClassManager") = _

Server.CreateObject(“WebClassRuntime.WebClassManager”)

End If

Remember that because the WebClass runtime is an ISAPI application, it will
load into memory at the first call and stay there as long as the IIS is running.
Therefore, the CreateObject method of the Server object will only be called once
and subsequent requests to your WebClass will be much faster.

After unlocking the Application object, the code concludes by calling the
ProcessNoStateWebClass method, passing six arguments.

Application("~WC~WebClassManager").ProcessNoStateWebClass _

"Project1.wcCH2", _

Server, _

Application, _

Session, _

Request, _

Response

The WebClass and the WebItem

29

Kurniawan_001_218 8/18/00 7:36 AM Page 29

The first argument is your project DLL, and the last five arguments are the
five IIS objects.

If you don’t understand the description of each line, it’s okay; there is no need
to suspect your IQ. This briefing is meaningful only to those who understand ASP.
Don’t worry, everything will start to make sense once you finish Chapter 3. Now,
let’s get back to the easy stuff.

The WebClass Designer

When developing an IIS Application, you’ll continually switch from the Code win-
dow to the WebClass Designer and vice versa. The WebClass Designer, also called
the Designer window, graphically lists all items in your WebClass. There are two
types of items in a WebClass: the HTML Template WebItem and the Custom
WebItem. Both are optional and will be explained shortly.

The WebClass Designer is a very useful window that comes equipped with a
series of tools in its toolbar. The two rightmost tools are for stopping and restart-
ing the Web server. When you are developing your application, you sometimes
need to stop and restart when updating the global.asa file or when the server goes
awry. You can display the WebClass Designer by pressing Shift+F7 or by clicking
Objects from the View menu. Figure 2-11 shows the WebClass Designer.

The WebClass Designer displays all the elements that are in your WebClass.
Before we leave the WebClass and discuss WebClass elements in more detail,
let’s discuss another important topic that you need to know: the lifecycle of a
WebClass.

Chapter 2

30

Figure 2-11. The WebClass Designer

Kurniawan_001_218 8/18/00 7:36 AM Page 30

