
3. Circuit Upper Bounds

The originality of mathematics consists in the fact that in
mathematical science connections between things are exhibited
which, apart from the agency of human reason, are extremely
unobvious. A. N. Whitehead [Whi25]

3.1 Introduction

In Chapter 2, we investigated techniques for proving size lower bounds for
restricted classes of circuits (monotonic or constant depth). Returning to
the circuit synthesis problem of Chapter 1, recall that in Section 1.8.4, we
showed an O(n) upper bound for circuit size for symmetric boolean functions
f ∈ Bn. In this chapter, using methods from finite permutation group theory,
we extend this result to “almost symmetric” boolean functions, and more
generally study the notion of invariance or automorphism group of a boolean
function. In [CK91], Clote and Kranakis defined the invariance group aut(f)
of a function f ∈ Bn to be the set of permutations in Sn which leave f
invariant under all inputs. Is there a relation between the algebraic structure
and/or size of aut(f) and the circuit size C(f)? For how many boolean
functions f ∈ Bn is aut(f) equal to a given subgroup G of the full symmetric
group Sn? These and other questions are treated in the following pages.

The results of this chapter have a very distinct group-theoretic flavor in
the methods used. After building intuition by presenting several examples
which suggest relations between algebraic properties of groups and compu-
tational complexity of languages, we give sufficient conditions via the Pólya
cycle index (i.e., the number of orbits of the group G ≤ Sn acting on 2n)
for an arbitrary finite permutation group to be of the form aut(f), for some
f ∈ Bn. We show that asymptotically “almost all” boolean functions have
trivial invariance groups. For cyclic groups G ≤ Sn, we give a logspace al-
gorithm for determining whether the given group is of the form aut(f), for
some f ∈ Bn. Throughout this chapter we use standard terminology and no-
tation from permutation group theory as found in Wielandt’s classic treatise
[Wie64].

Invariance groups demonstrate (for the first time) the applicability of
group theoretic techniques in the study of upper bounds concerning the cir-

156 3. Circuit Upper Bounds

cuit size of languages. For any language L, let Ln be the characteristic func-
tion of the set of all strings in L of length exactly n, and let autn(L) be the
invariance group of Ln. We consider the index |Sn : autn(L)| = n!/|autn(L)|
as a function of n and study the class of languages whose index is polynomial
in n. We use well-known lower bound results on the index of primitive per-
mutation groups together with the O’Nan-Scott theorem, a deep result in the
classification of finite simple groups, to show that any language with poly-
nomial index is in (non-uniform) tc

0 and hence in (non-uniform) nc
1. Next,

we present the beautiful result of Babai, Beals, and Takácsi-Nagy [BBTN92],
which states that if a language L ⊆ {0, 1}∗ has transitive invariance groups
aut(Ln) and only a polynomial number of orbits, then L ∈ tc

0 (this estab-
lishes a conjecture of [CK91]).

In Section 3.9, we explore several applications of the theory of invariance
groups to the problem of computing boolean functions on anonymous, unla-
beled networks. This leads to interesting efficient algorithms for computing
boolean functions on rings [ASW88], tori [BB89], hypercubes [KK97] and
Cayley networks [KK92].

3.2 Definitions and Elementary Properties

Given a function f : {0, . . . ,m − 1}n → {0, . . . , k − 1}, the invariance or
automorphism group of f , denoted by aut(f), is the set of permutations
on {1, . . . , n} which “respect” f , i.e., the set of σ ∈ Sn such that for all
x1, . . . , xn ∈ {0, . . . ,m− 1},

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). (3.1)

Definition 3.2.1. For any permutation σ ∈ Sn, any n-tuple x = (x1, . . . , xn)
of elements from the set {0, . . . ,m−1}, and any function f : {0, . . . ,m−1} →
{0, . . . , k − 1}, define

xσ = (xσ(1), . . . , xσ(n))

and define fσ : {0, . . . ,m− 1} → {0, . . . , k − 1} by

fσ(x) = f(xσ), for all x ∈ {0, 1}n.

The invariance group of f indicates how symmetric f is, in the sense that
the larger the group aut(f), the more symmetric the function f is. If for an
input x = (x1, . . . , xn) ∈ {0, 1}n and a permutation σ, Equation (3.1) holds,
then we also say that σ fixes f on input x. In what follows, it will be seen
that there is a rich class of permutation groups which are representable as the
invariance groups of boolean functions. For any language L ⊆ {0, 1}∗ let Ln
be the characteristic function of the set L ∩ {0, 1}n and let autn(L) denote
the invariance group of Ln.

A language L is said to realize a sequence G = 〈Gn : n ≥ 1〉 of permu-
tation groups Gn ≤ Sn, if it is true that autn(L) = Gn, for all n. To build
intuition, as an example, we consider the following groups.

3.2 Definitions and Elementary Properties 157

• Identity. In is generated by the identity permutation.
• Reflection. Rn = 〈ρ〉, where ρ(i) = n+ 1− i is the reflection permutation

(
1 2 · · · n
n n− 1 · · · 1

)

.

• Cyclic. Cn = 〈(1, 2, . . . , n)〉.
• Dihedral. Dn = Cn ×Rn.
• Hyperoctahedral. On = 〈(i, i+ 1) : i is even ≤ n〉.
For the groups above we determine regular, as well as non-regular languages
which realize them. We summarize the corresponding representability results
in the following theorem. The details of the proof are left as Exercise 3.11.1.

Theorem 3.2.1 ([CK91]). Each of the identity, reflection, cyclic (in the
cyclic case only if n �= 3, 4, 5), and hyperoctahedral groups can be realized by
regular languages.

Not every permutation group is representable as the invariance group of
a boolean function.

Theorem 3.2.2 ([CK91]). The alternating group An is not the invariance
group of any boolean function f ∈ Bn, provided that n ≥ 3.

Proof. Although this follows directly from our representability results given
later, it is instructive to give a direct proof. Suppose that the invariance group
of f ∈ Bn contains the alternating group An. Given x ∈ 2n, for 3 ≤ n there
exist 1 ≤ i < j ≤ n, such that xi = xj . It follows that the alternating group
An, as well as the transposition (i, j) fix f on the input x. Consequently,
every permutation in Sn must also fix f on x. As this holds for every x ∈ 2n,
it follows that aut(f) = Sn.

Before we proceed with the general representability results, we will prove
several simple observations that will be used frequently in the sequel. We
begin with a few useful definitions.

Definition 3.2.2.

1. For any f ∈ Bn, define aut
−(f) to be the set

{σ ∈ Sn : (∀x ∈ 2n)(f(x) = 0 ⇒ f(xσ) = 0)}.

2. For any f ∈ Bn, define aut
+(f) to be the set

{σ ∈ Sn : (∀x ∈ 2n)(f(x) = 1 ⇒ f(xσ) = 1)}.

3. For any permutation group G ≤ Sn and any ∆ ⊆ {1, 2, . . . , n}, let G∆ be
the set of permutations σ ∈ G such that (∀i ∈ ∆)(σ(i) = i). The group
G∆ is called the pointwise stabilizer1 of G on ∆ (see [Wie64]).

1 We will not in general consider the setwise stabilizer of G with respect to ∆,
defined as the set of permutations σ ∈ G such that (∀i ∈ ∆)(σ(i) ∈ ∆).

158 3. Circuit Upper Bounds

4. For any permutation σ and permutation group G, let Gσ = σ−1Gσ, also
called the conjugate of G by σ.

5. For any f ∈ Bn, let 1⊕ f ∈ Bn be defined by (1⊕ f)(x) = 1⊕ f(x), for
x ∈ 2n.

6. If f1, . . . , fk ∈ Bn and f ∈ Bk, then g = f(f1, . . . , fk) ∈ Bn is defined by
g(x) = f(f1(x), . . . , fk(x)).

Define the natural isomorphism φ : Sn → (Sn+m)n+1,...,n+m by

φ(σ)(i) =

{
σ(i) if 1 ≤ i ≤ n
i if n+ 1 ≤ i ≤ n+m.

For X ⊆ Sn, let φ(X) denote the image of φ on X ⊆ Sn. Now if G ≤ Sn+m,
and H = Gn+1,...,n+m is the pointwise stabilizer of G on {n + 1, . . . , n +
m}, then we may at times identify H ≤ Sn+m with its isomorphic image
φ−1(H) ≤ Sn, and indeed write statements like Gn+1,...,n+m ≤ Sn. From the
context, the meaning should be clear, and so cause no confusion.

Theorem 3.2.3 ([CK91]).

1. If f ∈ Bn is symmetric, then aut(f) = Sn.
2. Let 0 ≤ m ≤ n. Given f ∈ Bn, define flip(f,m) to be that g ∈ Bn

satisfying

g(x1, . . . , xn) =

{
f(x1, . . . , xn) if the weight |x1 · · ·xn|1 �= m

1− f(x1, . . . , xn) otherwise.

Then aut(g) = aut(f). This observation can be iterated, and so clearly
aut(f) = aut(1⊕ f), for all f ∈ Bn.

3. For any permutation σ, aut(fσ) = aut(f)σ.
4. For each f ∈ Bn, aut(f) = aut

−(f) = aut
+(f).

5. If f1, . . . , fk ∈ Bn and f ∈ Bk and g = f(f1, . . . , fk) ∈ Bn then aut(f1)∩
· · · ∩ aut(fk) ⊆ aut(g).

6. (∀k ≤ n)(∃f ∈ Bn)(aut(f) = Sk).

Proof. The proofs of (1) - (3), (5) are easy and are left as an exercise to the
reader. We only prove the assertion of (4) for aut

+(f), since the proof for
aut

−(f) is similar. Note that aut
+(f) is finite and closed under the group

operation of composition, hence is a group. Trivially aut(f) ⊆ aut
+(f). If

σ ∈ aut
+(f), and f(x) = 1, then by hypothesis f(xσ) = 1. If f(xσ) = 0,

then since σ−1 ∈ aut
+(f), we have that f(x) = f((xσ)σ

−1
) = 0. It follows

that aut
+(f) ⊆ aut(f), as desired. To prove (6) we consider two cases. If

k + 2 ≤ n, then define f by

f(x) =

{
1 if xk+1 ≤ xk+2 ≤ · · · ≤ xn
0 otherwise.

3.2 Definitions and Elementary Properties 159

Let σ ∈ aut(f). First notice that (∀i > k)(σ(i) > k). Next, it is easy to show
that if σ is a nontrivial permutation, then there can be no k ≤ i < j ≤ n such
that σ(j) < σ(i). This proves the desired result. If k = n− 1, then define the
function f as follows.

f(x) =

{
1 if x1, . . . , xn−1 ≤ xn
0 otherwise.

A similar proof will show that aut(f) = Sn−1. This completes the proof of
the theorem.

Representability will play an important role throughout the chapter.

Definition 3.2.3. For k ≥ 2, let Bn,k be the set of functions f : {0, 1}n →
{0, . . . , k− 1}. A permutation group G ≤ Sn is called k-representable if there
exists a function f ∈ Bn,k such that G = aut(f). A 2-representable group
is also called strongly representable. G ≤ Sn is called representable if it is
k-representable for some k.

We will also consider a variant of the previous definition, by considering
functions f : {0, . . . ,m− 1}n → {0, . . . , k − 1}, in place of functions in Bn,k.

Definition 3.2.4. A permutation group G ≤ Sn is called weakly repre-
sentable if there exists an integer k ≥ 2, an integer 2 ≤ m < n and a function
f : mn → k, such that G = aut(f).

In our definition of representable and weakly representable, we required
that an n-variable boolean function represent a subgroup G ≤ Sn, where
m = n. This is an important definitional point, as illustrated by the next
result.

Theorem 3.2.4 (Isomorphism Theorem, [CK91]). Every permutation
group G ≤ Sn is isomorphic to the invariance group of a boolean function
f ∈ Bn(�logn+1�).

Proof. First, some notation. Let w = w1 · · ·wn be a word in {0, 1}∗. Recall
that the weight |w|1 of w is the number of occurrences of 1 in w, and that |w|
denotes the length n of w. The word w is monotone if for all 1 ≤ i < j ≤ |w|,
wi = 1⇒ wj = 1. The complement of w, denoted by w is the word which is
obtained from w by “flipping” each bit wi, i.e., |w| = |w| and wi = 1⊕wi, for
all 1 ≤ i ≤ |w|. Fix n and let s = �log n + 1�. View each word w ∈ {0, 1}ns
(of length ns) as consisting of n blocks, each of length s, and let w(i) =
w(i−1)s+1 · · ·wis denote the i-th such block. For a given permutation group
G ≤ Sn, let LG be the set of all words w ∈ {0, 1}ns such that one of the
following holds: either

1. |w|1 = s and if w is divided into n blocks

w(1), w(2), . . . , w(n)

160 3. Circuit Upper Bounds

each of length s, then exactly one of these blocks consists entirely of 1s,
while the other blocks consist entirely of 0s, or

2. |w|1 ≤ s−1 and for each 1 ≤ i ≤ n, the complement w of the i-th block of
w is monotone (thus each w(i) consists of a sequence of 1s concatenated
with a sequence of 0s), or

3. a) |w|1 ≥ n
b) for each 1 ≤ i ≤ n, the first bit of w(i) is 0,
c) the integers bin(w, i), whose binary representations are given by the

words w(i) for 1 ≤ i ≤ n, are mutually distinct
d) σw ∈ G, where σw : {1, . . . , n} → {1, . . . , n} is the permutation

defined by σw(i) = bin(w, i).

The intuition for items (3a) and (3b) above is the following. The words with
exactly s many 1s have all these 1s in exactly one block. This guarantees that
any permutation respecting the language LG must map blocks to blocks. By
considering words with a single 1 (which by monotonicity must be located
at the first position of a block), we guarantee that each permutation which
respects LG must map the first bit of a block to the first bit of some other
block. Inductively, by considering the word with exactly (r− 1) many 1s, all
located at the beginning of a single block, while all other bits of the word
are 0s, we guarantee that each permutation which respects LG must map the
(r−1)-th bit of each block to the (r−1)-st bit of some other block. It follows
that any permutation which respects LG must respect blocks as well as the
order of elements in the blocks; i.e., for every permutation τ ∈ autns(LG),

(∀k ∈ {0, . . . , n−1})(∃m ∈ {0, . . . , n−1})(∀i ∈ {1, . . . , n})(τ(ks+i) = ms+i).

Call such a permutation s-block invariant. Given a permutation τ in the
invariance group autns(LG), let τ ∈ Sn be the induced permutation defined
by

τ(k) = m⇔ (∀1 ≤ i ≤ n) [τ(ks+ i) = ms+ i] .

Claim. G = {τ : τ ∈ aut
+
ns(LG)}.

Proof of Claim. (⊆) Notice that every element τ of G ≤ Sn gives rise to a
unique s-block invariant permutation τ ∈ Sns. If w ∈ LG ⊆ {0, 1}ns, then
considering separately the cases |w|1 ≤ s and |w|1 ≥ n, by s-block invariance
of τ , wτ ∈ LG.

(⊇) First, notice that if w ∈ LG ⊆ {0, 1}ns and the associated permu-
tation σw ∈ G ≤ Sn, then σ(wτ) = τ ◦ σw ∈ G. Now, let w ∈ LG be such
that the associated σw is the identity on Sn. Then for any τ ∈ autns(LG),
wτ ∈ LG, so σ(wτ) = τ ◦ σw = τ ∈ G. This establishes the claim, which
completes the proof of the theorem.

We conclude this section by comparing the different definitions of repre-
sentability given above.

3.2 Definitions and Elementary Properties 161

Theorem 3.2.5 ([CK91]). For any permutation group G ≤ Sn the follow-
ing statements are equivalent:

1. G is representable.
2. G is the intersection of a finite family of strongly representable permuta-

tion groups.
3. For some m, G is the pointwise stabilizer of a strongly representable group

over Sn+m, i.e., G = (autn+m(f)){n+1,...,n+m}, for some f ∈ Bn+m and
m ≤ n.

Proof. First we prove that 1⇒ 2. Indeed, let f ∈ Bn,k such that G = aut(f).
For each b < k define as follows a 2-valued function fb : 2n → {b, k}:

fb(x) =

{
b if f(x) = b

k if f(x) �= b

It is straightforward to show that aut(f) = aut(f0) ∩ · · · ∩ aut(fk−1). But
also conversely we can prove that 2⇒ 1. Indeed, assume that fb ∈ Bn, b < k,
is a given family of boolean valued functions such that G is the intersection
of the strongly representable groups aut(fb). Define f ∈ Bn,2k as follows

f(x) = 〈f0(x), . . . , fk−1(x)〉,

where for any integers n0, . . . , nk−1, the symbol 〈n0, . . . , nk−1〉 represents a
standard encoding of the k-tuple (n0, . . . , nk−1) as an integer. It is then clear
that aut(f) = aut(f0) ∩ · · · ∩ aut(fk−1), as desired.

We now prove that 2⇒ 3. Suppose that G = aut(f0)∩· · ·∩aut(fk) ≤ Sn,
where f0, . . . , fk ∈ Bn, and let m = |k|. Define f ∈ Bn+m by

f(x1, . . . , xn, b1, . . . , bm) =

{
fr(x1, . . . , xn) if r =

∑m
i=1 bi · 2m−i ≤ k

0 otherwise.

Define the isomorphism φ : Sn → (Sn+m)n+1,...,n+m by

φ(σ)(i) =

{
σ(i) if 1 ≤ i ≤ n
i if n+ 1 ≤ i ≤ n+m

and let ψ : (Sn+m)n+1,...,n+m → Sn denote the inverse φ−1 of φ.
Claim. aut(f0) ∩ · · · ∩ aut(fk) = ψ(aut(f)n+1,...,n+m).
Proof of Claim. (⊆) Let σ ∈ aut(f0) ∩ · · · ∩ aut(fk) ⊆ Sn, and let σ̃ =
φ(σ) ∈ Sn+m. Given x ∈ {0, 1}n and b ∈ {0, 1}m, if r =

∑m
i=1 bi · 2m−i ≤ k,

then fr(x) = fr(xσ) and so f(x, b) = f((x, b)σ̃. As well, if r =
∑m
i=1 bi ·

2m−i > k, then f(x, b) = 0 = f((x, b)σ̃. It follows that σ̃ ∈ aut(f), so
σ ∈ ψ(aut(f)n+1,...,n+m).

(⊆) Let σ̃ ∈ aut(f)n+1,...,n+m. Given x ∈ {0, 1}n and b ∈ {0, 1}m, we
have f(x, b) = f((x, b)σ̃. If r =

∑m
i=1 bi · 2m−i ≤ k, then

162 3. Circuit Upper Bounds

fr(x) = f(x, b) = f((x, b)σ̃) = f(xσ, b) = fr(xσ)

and so σ ∈ aut(fr). Since this holds for all r ≤ k, σ ∈ aut(f0)∩· · ·∩aut(fk).
Finally, we prove that 3 ⇒ 2. Let G ≤ Sn denote ψ(aut(f)n+1,...,n+m),

and let σ ∈ G, and σ̃ = φ(σ) ∈ aut(f)n+1,...,n+m. Then for any x ∈ {0, 1}n
and b ∈ {0, 1}m, if r =

∑m
i=1 bi · 2m−i ≤ k, then f(x, b) = fr(x) =

fr(xσ) = f(xσ, b) = f((x, b)σ̃), while if r =
∑m
i=1 bi · 2m−i > k, then

f(x, b) = 0 = f(xσ, b) = f((x, b)σ̃). Thus σ̃ ∈ aut(f0) ∩ · · · ∩ aut(fk),
so σ ∈ ψ(aut(f)n+1,...,n+m). This concludes the proof of the theorem.

3.3 Pólya’s Enumeration Theory

In the section, we present the rudiments of Pólya’s enumeration theory. Our
goal here is to emphasize the relevant elements of the theory without provid-
ing any complete proofs. The interested reader is advised to consult [Ber71]
and [PR87] or better yet complete details of the proofs on her own.

Let G be a permutation group on n elements. Define an equivalence re-
lation on integers as follows: i ∼ j mod G if and only if for some σ ∈ G,
σ(i) = j. The equivalence classes under this equivalence relation are called
orbits. Let Gi = {σ ∈ G : σ(i) = i} be the stabilizer of i, and let iG be
the orbit of i. An elementary theorem [Wie64] asserts that |G : Gi| = |iG|.
Using this, we can obtain the well-known theorem of Burnside and Frobenius
[Com70].

Theorem 3.3.1. For any permutation group G on n elements, the number
of orbits of G is equal to the average number of fixed points of a permutation
σ ∈ G; i.e.,

ωn(G) =
1
|G|

∑

σ∈G
|{i : σ(i) = i}|, (3.2)

where ωn(G) is the number of orbits of G.

A group G acts on a set X, if there is a map φ : G×X → X, such that

1. φ(σ, x) = x,
2. φ(σ ◦ τ, x) = φ(σ, φ(τ, x))

where e is the identity element of G, and ◦ is the group multiplication. The
group G acts transitively on X if additionally

(∀x, y ∈ X)(∃σ ∈ G)(φ(σ, x) = y).

Note that any group G ≤ Sn acts on {0, 1}n by the group action

φ(σ, x) = φ(σ, x1 · · ·xn) = (xσ(1) · · ·xσ(n)) = xσ.

3.3 Pólya’s Enumeration Theory 163

Moreover, any permutation σ ∈ Sn can be identified with a permutation on
2n defined as follows:

x = (x1, . . . , xn)→ xσ = (xσ(1), . . . , xσ(n)).

Hence, any permutation group G on n elements can also be thought of as a
permutation group on the set 2n. It follows from (3.2) that

|{xG : x ∈ 2n}| = 1
|G|

∑

σ∈G
|{x ∈ 2n : xσ = x}|,

where xG = {xσ : σ ∈ G} is the orbit of x. We would like to find a more
explicit formula for the right-hand side of the above equation. To do this
notice that xσ = x if and only if x is invariant on the orbits of σ. It follows that
|{x ∈ 2n : xσ = x}| = 2o(σ), where o(σ) is the number of orbits of (the group
generated by) σ acting on 2n. Using the fact that o(σ) = c1(σ) + · · ·+ cn(σ),
where ci(σ) is the number of i-cycles in σ (i.e., in the cycle decomposition
of σ), we obtain Pólya’s formula:

|{xG : x ∈ 2n}| = 1
|G|

∑

σ∈G
2o(σ) =

1
|G|

∑

σ∈G
2c1(σ)+···+cn(σ). (3.3)

The number |{xG : x ∈ 2n}| is called the cycle index of the permutation
group G and will be denoted by Θ(G). If we want to stress the fact that G is
a permutation group on n letters then we write Θn(G), instead of Θ(G). For
more information on Pólya’s enumeration theory, the reader should consult
[Ber71] and [PR87].

Since the invariance group aut(f) of a function f ∈ Bn contains G if and
only if it is invariant on each of the different orbits xG, x ∈ 2n, we obtain
that

|{f ∈ Bn : aut(f) ≥ G}| = 2Θ(G).

It is also not difficult to compare the size of Θ(G) and |Sn : G|. Indeed, let
H ≤ G ≤ Sn. If

Hg1, Hg2, . . . , Hgk

are the distinct right cosets of G modulo H then for any x ∈ 2n we have that

xG = xHg1 ∪ xHg2 ∪ · · · ∪ xHgk .

It follows that Θn(H) ≤ Θn(G) · |G : H|. Using the fact that Θn(Sn) = n+ 1
we obtain as a special case that Θn(G) ≤ (n+1)|Sn : G|. In addition, using a
simple argument concerning the size of the orbits of a permutation group we
obtain that if ∆1, . . . , ∆ω are different orbits of the group G ≤ Sn acting
on {1, 2, . . . , n} then (|∆1|+ 1) · · · (|∆ω|+ 1) ≤ Θn(G). We summarize these
results in the following theorem.

Theorem 3.3.2. For any permutation groups H ≤ G ≤ Sn, we have

164 3. Circuit Upper Bounds

1. Θn(G) ≤ Θn(H) ≤ Θn(G) · |G : H|.
2. Θn(G) ≤ (n+ 1) · |Sn : G|.
3. n+ 1 ≤ Θn(G) ≤ 2n.
4. If ∆1, . . . , ∆ω are different orbits of G acting on {1, . . . , n} then (|∆1|+

1) · · · (|∆ω|+ 1) ≤ Θn(G).

3.4 Representability of Permutation Groups

Next we study the representability problem for permutation groups and give
sufficient conditions via Pólya’s cycle index for a permutation group to be
representable. In addition we consider the effect on representability of several
well-known group operations, like product, wreath product, etc.

A simple observation due to Kisielewicz [Kis99] relates representable
groups with the automorphism groups of undirected graphs.

Theorem 3.4.1 ([Kis99]). The automorphism group of an undirected graph
is 2-representable.

Proof. For each two-element set e = {i, j}, consider the n-tuple xe =
(xe1, . . . , x

e
n) ∈ {0, 1}n such that xei = xej = 1 and xek = 0, for all k �= i, j.

Let the graph G = (V,E) with vertex set V = {1, 2, . . . , n} and edge set E.
Define the boolean function

f(x) =

{
1 if x = xe, for some e ∈ E
0 otherwise.

It is a simple exercise to show that aut(f) is precisely the automorphism
group of the given graph.

In order to state the first general representation theorem we define for any
n + 1 ≤ θ ≤ 2n and any permutation group G ≤ Sn the set G(n)

θ = {M ≤
G : Θn(M) = θ}. Also, for any H ⊆ Sn, and any g ∈ Sn, the notation 〈H, g〉
denotes the smallest subgroup of Sn containing the set H ∪ {g}.

Theorem 3.4.2 (Representation Theorem, [CK91]). For any permu-
tation groups H < G ≤ Sn if H = G∩K, for some representable permutation
group K ≤ Sn, then (∀g ∈ G−H)(Θn(〈H, g〉) < Θn(H)). Moreover, this last
statement is equivalent to H being maximal in G(n)

θ , where Θn(H) = θ.

Proof. By Theorem 3.2.5, K is the intersection of a family strongly repre-
sentable groups. Hence let f1, . . . , fk ∈ Bn be such that K = ∩ki=1aut(fi).
Then

H =
k⋂

i=1

aut(fi) ∩G.

3.4 Representability of Permutation Groups 165

Assume, to the contrary, that there exists a subgroup K ≤ G such that
H < K and Θ(K) = Θ(H). This implies

∀x ∈ 2n(xK = xH).

We claim, however, that

K ⊆
k⋂

i=1

aut(fi) ∩G = H

which then contradicts the assumption that H < K. Indeed, let σ ∈ K and
x ∈ {0, 1}n. Then

xK = (xσ)K = (xσ)H

so it follows that x = (xσ)τ , for some τ ∈ H. Consequently, fi(x) =
fi((xσ)τ) = fi(xσ), for all 1 ≤ i ≤ k, and so K ⊆

⋂k
i=1 aut(fi) ∩ G, which

establishes our claim.
It remains to prove the equivalence of the last statement in the theorem.

Assume that H is a maximal element of G(n)
θ , but that for some g ∈ G−H, we

have that Θn(〈H, g〉) = Θn(H). But then H < 〈H, g〉 ≤ G, contradicting the
maximality of H. To prove the other direction we argue as follows. Assume,
to the contrary, that the hypothesis is true but that H is not maximal in
G(n)
θ . This means there exists H < K ≤ G such that Θn(K) = Θn(H). Take

any g ∈ K −H and notice that

Θn(〈H, g〉) ≥ Θn(K) = θ = Θn(H) ≥ Θn(〈H, g〉).

Hence, Θn(H) = Θn(〈H, g〉), contradicting our assumption.

Let O(G) denote the set {xG : x ∈ {0, 1}n} of orbits of G acting on
{0, 1}n. If the group G is of the form aut(f) for some function f ∈ Bn,k,
then (1) all n-tuples in every orbit of O(G) must have the same value under f ,
and (2) for every permutation τ �∈ G, there must be an element x of {0, 1}n,
such that x and xτ belong to different orbits of O(G), and these orbits have
different values under f . Hence, in order to find a k-valued boolean function
f whose invariance group is G, it is necessary and sufficient to find a function
F : O(G) → {0, . . . , k − 1}, such that for every permutation τ �∈ G, there
exists x ∈ {0, 1}n, such that x and xτ belong to different orbits of O(G) and
these orbits have different values under F .

Using deliberations issuing from the previous observation, we prove
the following result concerning the representation of maximal permutation
groups.

Theorem 3.4.3 (Maximality Theorem, [CK91, Kis99]).

1. A permutation group G ≤ Sn is representable if and only if it is a maximal
subgroup of Sn among those having the same number Θ(G) of orbits in
{0, 1}n. In such a case G is representable by a function f ∈ Bn,k with
k ≤

(
n

�(n)/2�
)
.

166 3. Circuit Upper Bounds

2. All maximal subgroups of Sn are strongly representable, the only excep-
tions being: (a) the alternating group An, for all n ≥ 3, and the con-
jugates of the following three types of groups: (b) the 1-dimensional,
linear, affine group AGL1(5) over the field of 5 elements, for n = 5; (c)
the group of linear transformations PGL2(5) of the projective line over
the field of 5 elements, for n = 6; (d) the group of semi-linear transfor-
mations PΓL2(8) of the projective line over the field of 8 elements, for
n = 9.

Proof. To prove 1, we argue as follows. If G is representable, then it must
be maximal among the subgroups of Sn with the same set O(G) of orbits
of {0, 1}n. Indeed, if there were a permutation τ �∈ G such that for every
x ∈ {0, 1}n, x and xτ always belong to the same orbit of O(G), then the group
G′ = 〈G, τ〉 has precisely the same orbits in {0, 1}n as G itself. Therefore
every function f on {0, 1}n invariant under G is invariant under G′. Hence,
G cannot be representable at all.

Conversely, suppose that G ≤ Sn is maximal among those having the
same number k = Θn(G) of orbits in {0, 1}n. Define f ∈ Bn,k by f(x) = i iff
x is in the i-th orbit in some canonical listing of orbits.2 Clearly G = aut(f).
To achieve the upper bound k ≤

(
n

�(n)/2�
)
, note that the orbits of O(G) can

be partitioned into n+ 1 natural levels, according to the weight (number of
1s) |x|1 of an element x ∈ {0, 1}n belonging to an orbit. It thus suffices to
assign different values to those orbits of elements having median weight, and
clearly there are at most

(
n

�(n)/2�
)

of these.
To prove 2, let M be a maximal subgroup of Sn. We distinguish two cases.

Case 1. Θn(M) > n+ 1.
In this case, there is a level Oi(M) consisting of more than one orbit. If
T ∈ Oi(M) then the boolean function f assigning 1 to all n-tuples in T , and
0 otherwise, strongly represents M .
Case 2. Θn(M) = n+ 1.
In this case, M is not representable at all. Moreover, for any two subsets S, S′

of {1, 2, . . . , n} of the same cardinality there is a permutation π ∈ M such
that π(S) = S′. We know from the main theorem of [BP55] that M is of one
of the forms in the statement of the theorem.

Our previous study focused on representability results for maximal per-
mutation groups. The following refinement appears to be very natural.

Definition 3.4.1. Let Rnk denote the class of k-representable permutation
groups on n letters.
2 For x, y ∈ {0, 1}n, a possible canonical ordering is given by xG < yG iff the

lexicographic least element in the orbit of x is less the lexicographic least element
in the orbit of y).

3.4 Representability of Permutation Groups 167

Clearly Rnk ⊆ Rnk+1. It is interesting to note that it is not known whether or
not Rnk forms a proper hierarchy. However, the following can be proved.

Theorem 3.4.4 ([Kis99]). Rn2 �= Rn3 , i.e., there exist 3-representable
groups which are not 2-representable.

Proof. The desired group D consists of the identity permutation, as well as
the permutations

(1, 2)(3, 4), (1, 3)(3, 4), and (1, 4)(2, 3).

It is easily checked that Θ(D) = 7. Indeed, the orbits are the following:
weight 0: {0000},
weight 1: {1000, 0100, 0010, 0001},
weight 2: {1100, 0011}, {1010, 0101}, {1001, 0110},
weight 3: {0111, 1011, 1101, 1110},
weight 4: {1111}.

To show that D is 3-representable, we define a function f : {0, 1}4 →
{0, 1, 2}, which assigns different values to the weight 2 orbits. Inspection of
these orbits shows that aut(f) cannot contain a transposition and it follows
easily that D = aut(f).

However, D is not 2-representable. Assume, on the contrary, that there is
a boolean function g ∈ B2, which represents (i.e., 2-represents) D. Two of the
weight 2 orbits must be assigned the same value, say the first and the second
one. It follows easily that the transposition (2, 3) ∈ aut(g) = D. However,
this is a contradiction.

As noted above, all maximal permutation groups with the exception of An
are of the form aut(f), provided that n ≥ 10. Such maximal permutation
groups include: the cartesian products Sk × Sn−k (k ≤ n/2), the wreath
products Sk ' Sl (n = kl, k, l > 1),3 the affine groups AGLd(p), for n =
pd, etc. The interested reader will find a complete survey of classification
results for maximal permutation groups in [KL88]. As well, it should be
pointed out that there are many (nonmaximal) permutation groups which
are not representable – for example wreath products G ' An. For additional
representation results, we refer the reader to Exercise 3.11.11.

Theorem 3.4.5. ([Kis99]) If G ≤ Sn, H ≤ Sm are k-representable for
some k ≥ 2 then G × H ≤ Sn+m is r-representable for every r satisfying
r(r − 1) ≥ k. In particular, G×H is k-representable.

Proof. We follow the proof of Kisielewicz [Kis99]. Without loss of generality,
assume m ≤ n. Let g, h ∈ Bn,k be such that G = aut(g), H = aut(h).

3 The wreath product G � H of G ≤ Sn with H ≤ Sm is a subgroup of Sn·m,
defined as {(σ1, . . . , σn; τ) : σ1, . . . , σn ∈ G, τ ∈ H}. Here, for σ1, . . . , σm ∈ G ≤
Sn, τ ∈ H ≤ Sm, define (σ1, . . . , σn; τ) to be that permutation ρ ∈ Sn·m such
that for 1 ≤ i ≤ n, 1 ≤ j ≤ m, ρ(i, j) = (σj(i), τ(j)).

168 3. Circuit Upper Bounds

Since r(r − 1) ≥ k, we may assume that g, h take values from the cartesian
product P = {0, . . . , r−1}×{0, . . . , r−2}. Let π1, π2 be the first and second
projection operations on the set P . We define an r-valued boolean function
f : {0, 1}m+n → {0, . . . , r − 1} as follows:

f(z) =

π1(g(x)) if z = x0m, for some x ∈ 2n, x �= 0n, 1n

π2(g(x)) if z = x1m, for some x ∈ 2n, x �= 0n, 1n

π1(h(y)) if z = 0ny, for some y ∈ 2m, y �= 0m, 1m

π2(h(y)) if z = 1ny, for some y ∈ 2m, y �= 0m, 1m

r − 1 if z = 1n0m

0 otherwise.

Claim. G×H = aut(f).
Proof of Claim. (⊆) Let σ ∈ G, τ ∈ H and let z ∈ 2m+n such that z = xy,
with x ∈ {0, 1}n, y ∈ {0, 1}m. Then by the above definition,

f(xσy) = f(xy) = f(xyτ)

since g(xσ) = g(x) and h(yτ) = h(y).
(⊇) It is easily checked that by definition of f , for all z ∈ {0, 1}n+m, |z|1 = n,
and z �= 1n0m, we have f(1n0m) = r − 1 > f(z). Thus it easily follows that
G × H ⊆ Sn × Sm. Now let ρ = (σ, τ) ∈ (Sn × Sm − G × H), and for
specificity, assume that σ �∈ G (a similar argument works when τ �∈ H).
There is an x ∈ {0, 1}n such that g(x) �= g(xσ) and x �∈ {0n, 1n}. It follows
that πi(g(xσ)) �= πi(g(x)) for i = 1 or i = 2. Consequently, f(z) �= f(zσ) for
either z = x0m or z = x1m. This proves the desired assertion.

3.5 Algorithm for Representing Cyclic Groups

In this section we prove the following represention theorem for cyclic groups.

Theorem 3.5.1 ([CK91]). There is a logspace algorithm, which, when given
as input a cyclic group G ≤ Sn, decides whether the group is 2-representable,
in which case it outputs a function f ∈ Bn such that G = aut(f).

Proof. We establish the correctness of the following algorithm:

Input
G = 〈σ〉 cyclic group.
Step 1
Decompose σ = σ1σ2 · · ·σk, where σ1, σ2, . . . , σk are disjoint cycles
of lengths l1, l2, . . . , lk ≥ 2, respectively.
Step 2
if for all 1 ≤ i ≤ k,

li = 3⇒ (∃j �= i)(3|lj) and

3.5 Algorithm for Representing Cyclic Groups 169

li = 4⇒ (∃j �= i)(gcd(4, lj) �= 1) and
li = 5⇒ (∃j �= i)(5|lj)
then output G is 2-representable.

else output G is not 2-representable.
end

Before proceeding with the main proof we introduce some definitions.

Definition 3.5.1.

1. A boolean function f ∈ Bn is called special if for all words w of length n,
|w|1 = 1⇒ f(w) = 1.

2. The support of a permutation σ, denoted by Supp(σ), is the set of i such
that σ(i) �= i. The support of a permutation group G, denoted Supp(G),
is the union of the supports of the elements of G.

3. Let σ1, . . . , σk be a collection of cycles. We say that the group G =
〈σ1, . . . , σk〉 generated by the permutations σ1, . . . , σk is specially repre-
sentable if there exists a special boolean function f : {0, 1}Ω → {0, 1}
(where Ω is the union of the supports of the permutations σ1, . . . , σk),
such that G = aut(f). Note that by definition every specially repre-
sentable group is strongly representable.

We now turn our attention to the proof of correctness of the above algo-
rithm. The proof is in a series of lemmas.

Lemma 3.5.1. Suppose that σ1, . . . , σn+1 is a collection of cycles such that
both 〈σ1, . . . , σn〉 and 〈σn+1〉 are specially representable and have disjoint
supports. Then 〈σ1, . . . , σn+1〉 is specially representable.

Proof. Put Ω0 = ∪ni=1Supp(σi), Ω1 = Supp(σn+1) and let |Ω0| = m,
|Ω1| = k. Suppose that f0 : 2Ω0 → 2 and f1 : 2Ω1 → 2 are special
boolean functions representing the groups 〈σ1, . . . , σn〉 and 〈σn+1〉, respec-
tively. By Theorem 3.2.3, without loss of generality we may assume that
1 = f0(0m) �= f1(0k) = 0, and for u ∈ {0, 1}m, v ∈ {0, 1}k, |u|1 = 1 = |v|1 we
have f0(u) = 1 = f1(v). Let Ω = Ω0 ∪Ω1 and define f : {0, 1}Ω → {0, 1} by
f(w) = f0(w |̀ Ω0) · f1(w |̀ Ω1).
Claim. 〈σ1, . . . , σn+1〉 = autΩ(f).
Proof of Claim. The containment from left to right is clear, so it remains to
prove that autΩ(f) ⊆ 〈σ1, . . . , σn+1〉. Assume, on the contrary, that there is
a permutation τ ∈ autΩ(f)− 〈σ1, . . . , σn+1〉. We distinguish two cases.
Case 1. (∃i ∈ Ω0)(∃j ∈ Ω1)(τ(i) = j).
Let w ∈ {0, 1}Ω be defined by w |̀ Ω1 = 0k, and

(w |̀ Ω0)(�) =

{
0 if � �= i

1 if � = i

170 3. Circuit Upper Bounds

for � ∈ Ω0. Since f is a special boolean function, by using the fact that
1 = f0(0m) �= f1(0k) = 0, we obtain that f(w) = 0 �= f(wτ) = 1, which is a
contradiction.
Case 2. (∀i ∈ Ω0)(τ(i) ∈ Ω0).
Put τ0 = (τ |̀ Ω0) ∈ autΩ0 and τ1 = (τ |̀ Ω1) ∈ autΩ1 . By hypothesis, for
all w ∈ 2Ω , we have that

f(w) = f0(w |̀ Ω0) · f1(w |̀ Ω1) = f(wτ) = f0((w |̀ Ω0)τ0) · f1((w |̀ Ω1)τ1),

which implies τ0 ∈ autΩ0(f0) and τ1 ∈ autΩ1(f1).

This completes the proof of the lemma.

An immediate consequence of the previous lemma is the following.

Lemma 3.5.2. If G, H have disjoint support and are specially representable,
then G×H is specially representable.

In view of Theorem 3.2.1, we know that the cyclic group 〈(1, 2, . . . , n)〉 is
2-representable exactly when n �= 3, 4, 5. In particular, the groups 〈(1, 2, 3)〉,
〈(1, 2, 3, 4)〉, 〈(1, 2, 3, 4, 5)〉 are not representable. The following lemma may be
somewhat surprising, since it implies that the group 〈(1, 2, 3)(4, 5, 6)〉, though
isomorphic to 〈(1, 2, 3)〉, is strongly representable.

Lemma 3.5.3. Let the cyclic group G be generated by a permutation σ,
which is the product of two disjoint cycles of lengths �1, �2, respectively.
Then G is specially representable exactly when the following conditions are
satisfied:
(�1 = 3⇒ 3|�2) and (�2 = 3⇒ 3|�1),(�1 = 4⇒ gcd(4, �2) �= 1) and
(�2 = 4⇒ gcd(4, �1) �= 1), (�1 = 5⇒ 5|�2) and (�2 = 5 ⇒ 5|�1).

Proof. It is clear that the assertion of the lemma will follow if we can prove
that the three assertions below are true.

1. The groups 〈(1, 2, . . . , n)(n+1, n+2, . . . , kn)〉 are specially representable
when n = 3, 4, 5.

2. The groups 〈(1, 2, 3, 4)(5, . . . ,m + 4)〉 are specially representable when
gcd (4,m) �= 1.

3. Let m,n be given integers, such that either m = n = 2, or m = 2 and n ≥
6, or n = 2 and m ≥ 6, or m,n ≥ 6. Then 〈(1, 2, . . . ,m)(m + 1,m +
2, . . . ,m+ n)〉 is specially representable.

Proof of (1). We give the proof only for the case n = 5 and k = 2. The
other cases n = 3, n = 4 and k ≥ 3 are treated similarly. Let σ = σ0σ1, where
σ0 = (1, 2, 3, 4, 5) and σ1 = (6, 7, 8, 9, 10). From the proof of Theorem 3.2.3,
we know that

D5 = aut5(L′) = aut5(L′′),

where L′ = 0∗1∗0∗ ∪ 1∗0∗1∗ and L′′ = {w ∈ L′ : |w|0 ≥ 1}. Let L consist of
all words w of length 10 such that

3.5 Algorithm for Representing Cyclic Groups 171

• either |w|1 = 1,
• or |w|1 = 2 and (∃1 ≤ i ≤ 5)(wi = w5+i and (∀j �= i, 5 + i)(wj = 0)),
• or |w|1 = 3 and (∃0 ≤ i ≤ 4)(w = (1000011000)σ

i

or w = (1100010000)σ
i

),
• or |w|1 = 3 and w1 · · ·w5 ∈ L′ and w6...w10 ∈ L′′.

Claim. 〈(1, 2, 3, 4, 5)(6, 7, 8, 9, 10)〉 = aut10(L).
Proof of Claim. The containment from left to right is clear. For the contain-
ment from right to left, i.e., aut10(L) ⊆ 〈(1, 2, 3, 4, 5)(6, 7, 8, 9, 10)〉, suppose
that τ ∈ aut10(L), but that, on the contrary, there exists an 1 ≤ i ≤ 5 and a
6 ≤ j ≤ 10 such that τ(i) = j. Let the word w be defined such that w� = 0,
if � = j, and = 1 otherwise. From the fact that 05 �∈ L′′, and the last clause
in the definition of L, it follows that w �∈ L and wτ ∈ L, contradicting the
assumption τ ∈ aut10(L). Thus τ is the product of two disjoint permutations
τ0 and τ1 acting on 1, 2, . . . , 5 and 6, 7, . . . , 10, respectively. Hence from the
last clause in the definition of L we have that τ0 ∈ D5 and τ1 ∈ π−1D5π,
where π(i) = 5 + i, for i = 1, . . . , 5. Let ρ0 = (1, 5)(2, 4) and ρ1 = (6, 10)(7, 9)
be the reflection permutations on 1, 2, . . . , 5 and 6, 7, . . . , 10, respectively. To
complete the proof of (1), it is enough to show that none of the permutations
ρ0, ρ1, ρ0ρ1, ρ0σ

i
1, σ

i
0ρ1, σ

i
0σ
j
1, for i �= j, belongs to aut10(L). To see this let

x = 1000011000 ∈ L. Then if τ = ρ0, ρ1, ρ0ρ1, ρ0σ
i
1, for any i = 1, 2, 3, 5

or τ = σi0ρ1 for i = 1, 2, 4, 5, then it is easily seen that xτ �∈ L. Now, let
x = 110001000. Then for τ = ρ0σ

4
1 and τ = σ3

0ρ1 it is easy to check that
xτ �∈ L. Finally, for x = 1000010000 ∈ L and σi0σ

j
1, where i �= j, we have

that xτ �∈ L. This completes the proof of part (1) of the lemma.
Proof of (2). Put σ0 = (1, 2, 3, 4), σ1 = (5, 6, . . . ,m+ 4), σ = σ0σ1. Let L be
the set of words of length m+ 4 such that

• either |w|1 = 1,
• or |w|1 = 2 and (∃0 ≤ i ≤ lcm(4,m)− 1)(w = (100010m−1)σ

i

),
• or |w|1 = 3 and (∃0 ≤ i ≤ lcm(4,m)− 1)(w = (110010m−1)σ

i

),
• or |w|1 > 3 and w1 · · ·w4 ∈ L′ and w5 · · ·wm+5 ∈ L′′,

where L′ = 0∗1∗0∗ ∪ 1∗0∗1∗ and L′′, as given by Theorem 3.2.1, satis-
fies autm(L′′) = Cm, and moreover, for all i ≥ 1, 0i �∈ L′′. Clearly,
〈(1, 2, 3, 4)(5, 6, . . . ,m+ 4)〉 ⊆ autm+4(L). It remains to prove that

autm+4(L) ⊆ 〈(1, 2, 3, 4)(5, 6, . . . ,m+ 4)〉.

Let τ ∈ 〈(1, 2, 3, 4)(5, 6, . . . ,m + 4)〉. As before, τ can be decomposed into
τ = τ0τ1, where τ0 ∈ D4, τ1 ∈ π−1Dmπ, and π(i) = 4 + i for i = 1, 2, . . . ,m.
Let ρ = (1, 4)(2, 3) be the reflection on 1, 2, 3, 4. It suffices to show that none
of the permutations ρσi1, σ

i
0σ
j
1, for i �≡ mod4 are in autm+4(L). Indeed, if

τ = σi0σ
j
1, then let x = 100010m−1. It is clear that x ∈ L, but xτ �∈ L. Next

assume that τ = ρσi1. We distinguish the following two cases.
Case 1. m = 4k, i.e., a multiple of 4.

172 3. Circuit Upper Bounds

Let x = 100010m−1. Then x ∈ L, but xτ �∈ L unless xτ = xσ
j

for
some j. In this case j ≡ 3 mod 4 and j ≡ i mod 4k. So it follows that
i = 3, 7, 11, . . . , 4k − 1. Now let y = 110010m−1. Then y ∈ L, but yτ �∈ L

for the above values of i, unless yτ = yσ
�

for some �. In that case we have
that � ≡ 2 mod 4 and � ≡ i mod 4k. So it follows that i = 2, 6, 10, . . . , 4k− 2.
Consequently, τ �∈ autm+4(L).
Case 2. gcd(4,m) = 2.
Let x = 100010m−1. Then x ∈ L, but xτ �∈ L unless xτ = xσ

j

for some j. In
this case j ≡ 3 mod 4 and j ≡ i mod 4k. So it follows that for even values
of i, τ �∈ autm+4(L). Let y = 110010m−1. Then y ∈ L, but yτ �∈ L unless
yτ = yσ

�

for some �. In that case we have that � ≡ 2 mod 4 and � ≡ i mod m.
So it follows that for odd values of i, τ �∈ autm+4(L). This completes the
proof of (2).
Proof of (3). A similar technique can be used to generalize the representability
result to more general types of cycles.

A straightforward generalization of Lemma 3.5.3 is given without proof
in the next lemma.

Lemma 3.5.4. Let G be a permutation group generated by a permutation σ
which can be decomposed into k-many disjoint cycles of lengths �1, �2, . . . , �k,
respectively. The group G is specially representable exactly when the following
conditions are satisfied for all 1 ≤ i ≤ k,

�i = 3 ⇒ (∃j �= i)(3|�j) and
�i = 4 ⇒ (∃j �= i)(gcd(4, �j) �= 1) and
�i = 5⇒ (∃j �= i)(5|�j).

The correctness of the algorithm is an immediate consequence of the previous
lemmas. This completes the proof of Theorem 3.5.1.

A slightly modified proof of Theorem 3.5.1 can also be found in [Kis99].

3.6 Asymptotics for Invariance Groups

Shannon’s theorem from Section 2.2 states that almost all boolean functions
require exponential size boolean circuits, and so are as difficult to compute
as the hardest boolean function. Since any symmetric language L ⊆ {0, 1}∗
(i.e., for which aut(Ln) = Sn) can be computed with logdepth fan-in-2
boolean circuits, one might conjecture an inverse relationship between the
size (or possibly algebraic structure) of the invariance group aut(f) of an
n-ary boolean function f , and its boolean complexity. Indeed, we show below
that almost all boolean functions have trivial invariance group (i.e., aut(f) =
{idn}, where idn is the identity permutation in Sn). This yields a type of 0-1
law , where for any sequence 〈Gn ≤ Snn ≥ 1〉 of permutation groups, we
prove that the limit limn→∞ |{f ∈ Bn : aut(f) = Gn}|2−2n

is either 0 or 1.

3.6 Asymptotics for Invariance Groups 173

Theorem 3.6.1. For any family 〈Gn : n ≥ 1〉 of permutations groups such
that each Gn ≤ Sn

lim
n→∞

|{f ∈ Bn : aut(f) = {idn}}|
22n = lim

n→∞
|{f ∈ Bn : aut(f) ≤ Gn}|

22n = 1.

Moreover, if lim inf |Gn| > 1 then

lim
n→∞

|{f ∈ Bn : aut(f) ≥ Gn}|
22n = lim

n→∞
|{f ∈ Bn : aut(f) = Gn}|

22n = 0.

Proof. During the course of this proof we use the abbreviation Θ(m) :=
Θm(〈(1, 2, . . . ,m)〉). First, we prove the second part of the theorem. By as-
sumption, there exists an n0, such that for all n ≥ n0, |Gn| > 1. Hence, for
each n ≥ n0, Gn contains a permutation of order k(n) ≥ 2, say σn. Without
loss of generality we can assume that each k(n) is a prime number. Since k(n)
is prime, σn is a product of k(n)-cycles. If (i1, . . . , ik(n)) is the first k(n)-cycle
in this product, then it is easy to see that

Θn(〈σn〉) ≤ Θn(〈(i1, . . . , ik(n))〉).

It follows that

|{f ∈ Bn : aut(f) ≥ Gn}| ≤ |{f ∈ Bn : σn ∈ aut(f)}|
= 2Θn(σn)

≤ 2Θ(k(n))·2n−k(n)
.

Pólya’s cycle index formulas have been worked out for particular permutation
groups, including the cyclic groups. In particular from [Ber71], we have the
formula

Θ(m) =
1
m
·
∑

k|m
φ(k) · 2m/k

which gives the Pólya cycle index of the group 〈(1, 2, . . . ,m)〉 acting on the
set {1, 2, . . . ,m}, where φ(k) is Euler’s totient function.

However, it is easy to see that for k prime

Θ(k)
2k

=
1
k

+
2
2k
− 2
k2k

.

In fact, the function on the right-hand side of the above equation is decreasing
in k. Hence, for k prime,

Θ(k)
2k
≤ Θ(2)

22 =
3
4
.

It follows that

|{f ∈ Bn : aut(f) ≥ Gn}|
22n ≤ 22n·[Θ(k(n))·2−k(n)−1] ≤ 2−2n−2

.

174 3. Circuit Upper Bounds

Since the right-hand side of the above inequality converges to 0, the proof of
the second part of the theorem is complete. To prove the first part notice,
that

{f ∈ Bn : aut(f) �= idn} ⊆
⋃

σ �=idn

{f ∈ Bn : σ ∈ aut(f)},

where σ ranges over cyclic permutations of order a prime number ≤ n.
Since there are at most n! permutations on n letters we obtain from the last
inequality that

|{f ∈ Bn : aut(f) �= {idn}}|
22n ≤ n! · 2−2n−2

= 2O(n log n) · 2−2n−2 → 0,

as desired.

As a consequence of the above theorem we obtain that asymptotically
almost all boolean functions have trivial invariance group.

An interesting generalization of Theorem 3.6.1 has been given by M.
Clausen [Cla91]. Consider the group GL(n, 2) of invertible n × n matrices
with entries 0, 1. Let Kn ≤ GL(n, 2) and for any boolean function f ∈ Bn
define Kn(f) = {A ∈ Kn : (∀x ∈ {0, 1}n)

[
f(A−1x) = f(x)}

]
. We mention

without proof (see Exercise 3.11.20) the following result.

Theorem 3.6.2 ([Cla91]). Let Hn ≤ Kn ≤ Gn(n, 2) be such that Hn > 1
for all but a finite number of n. Then

lim
n→∞

|{f ∈ Bn : Kn(f) = {idn}}|
22n = lim

n→∞
|{f ∈ Bn : Kn(f) ≤ Hn}|

22n = 1,

and

lim
n→∞

|{f ∈ Bn : Kn(f) ≥ Hn}|
22n = lim

n→∞
|{f ∈ Bn : Kn(f) = Hn}|

22n = 0.

Note that 0-1 laws of the type described in Theorem 3.6.1 have been studied
extensively in many branches of mathematical logic. For example, in Exercise
3.11.21, we state Fagin’s 0-1 law for graphs.

3.7 Almost Symmetric Languages

In this section, we study the complexity of languages L ∈ L(P). These are lan-
guages whose invariance groups have polynomial index; i.e., |Sn : autn(L)| =
nO(1). Using the classification results on finite simple groups, we will prove
that languages in L(P) are precisely the almost symmetric languages. The
following result is proved by applying the intricate nc algorithm of [BLS87]
for permutation group membership. By delving into a deep result in classifi-
cation theory of finite simple groups, we later improve the conclusion to that
of Theorem 3.7.3. For clarity however, we present the following theorem.

3.7 Almost Symmetric Languages 175

Theorem 3.7.1 ([CK91]). For any language L ⊆ {0, 1}∗, if L ∈ L(P) then
L is in non-uniform nc.

Proof. As a first step in the proof we will need the following claim.
Claim. There is an nc

1 algorithm which, when given x ∈ {0, 1}n, outputs
σ ∈ Sn such that xσ = 1m0n−m, for some m.
Proof of Claim. We first illustrate the idea of proof by an example. Suppose
that x = 101100111. By simultaneously going from left to right and from
right to left, we swap an “out-of-place” 0 with an “out-of-place” 1, keeping
track of the respective positions. (This is a well-known trick for improving
the efficiency of the “partition” or “split” algorithm used in quick-sort.) This
gives rise to the desired permutation σ. In the case at hand we find σ =
(2, 9)(5, 8)(6, 7) and xσ = 1603.

Now we proceed with the proof of the claim. For b ∈ {0, 1}, define the
predicate Ek,b(u), to hold when there are exactly k occurrences of b in the
word u. The predicates Ek,b are obviously computable in constant depth,
polynomial size threshold circuits, i.e., in tc

0. By work of Ajtai, Komlós,
and Szemerédi [AKS83], we have tc

0 ⊆ nc
1. For k = 1, . . . , �n/2� and 1 ≤

i < j ≤ n, let αi,j,k be a log depth circuit which outputs 1 exactly when
the k-th “out-of-place” 0 is in position i and the k-th “out-of-place” 1 is in
position j. It follows that αi,j,k(x) = 1 if and only if “there exist k − 1 zeros
to the left of position i, the i-th bit of x is zero and there exist k ones to the
right of position i” and “there exist k− 1 ones to the right of position j, the
j-th bit of x is one and there exist k zeros to the left of position j”. This in
turn is equivalent to

Ek−1,0(x1, . . . , xi−1) and xi = 0 and Ek,1(xi+1, . . . , xn) and

Ek−1,1(xj+1, . . . , xn) and xj = 1 and Ek,0(x1 . . . xj−1).

This implies that the required permutation can be defined by

σ =
∏

(i, j) : i < j and

�n/2�∨

k=1

αi,j.k

.

Converting the ∨-gate of fan-in �n/2� into a log(�n/2�) depth tree of ∨-gates
of fan-in 2, we obtain an nc

1 circuit to compute σ. This completes the proof
of the claim.

Next we continue with the proof of the main theorem. Put Gn = Sn(L)
and let Rn = {h1, . . . , hq} be a complete set of representatives for the left
cosets of Gn, where q ≤ p(n) and p(n) is a polynomial such that |Sn : Gn| ≤
p(n). Fix x ∈ {0, 1}n. By the previous claim there is a permutation σ which
is the product of disjoint transpositions and an integer 0 ≤ k ≤ n such
that xσ = 1k0n−k. Since σ is its own inverse, x = (1k0n−k)σ. In parallel for
i = 1, . . . , q test whether h−1

i σ ∈ Gn by using the principal result of [BLS87],
thus determining i such that σ = hig, for some g ∈ Gn. Then we obtain that

176 3. Circuit Upper Bounds

Ln(x) = Ln((1k0n−k)σ) = Ln((1k0n−k)hig) = Ln((1k0n−k)hi).

By hardwiring the polynomially many values Ln(1k0n−k)hi), for 0 ≤ k ≤ n
and 1 ≤ i ≤ q, we produce a family of polynomial size, polylogarithmic depth
boolean circuits for L.

Theorem 3.7.1 involves a straightforward application of the beautiful nc

algorithm of Babai, Luks and Seress [BLS87] for testing membership in a
finite permutation group. By using the deep structure consequences of the
O’Nan-Scott theorem below, together with Bochert’s result on the size of the
index of primitive permutation groups we can improve the nc algorithm of
Theorem 3.7.1 to an optimal tc

0 (and hence nc
1) algorithm. First, we take

the following discussion and statement of the O’Nan-Scott theorem from
[KL88], page 376.

Let I = {1, 2, . . . , n} and let Sn act naturally on I. Consider all subgroups
of the following five classes of subgroups of Sn.

α1: Sk × Sn−k, where 1 ≤ k ≤ n/2,
α2: Sa ' Sb, where either (n = ab and a, b ≥ 1) or (n = ab and a ≥ 5, b ≥ 2),
α3: the affine groups AGLd(p), where n = pd,
α4: T k · (Out(T) × Sk), where T is a non-abelian simple group, k ≥ 2 and

n = |T |k−1, as well as all groups in the class
α5: almost simple groups acting primitively on I.4

Theorem 3.7.2 (O’Nan-Scott). Every subgroup of Sn not containing An
is a member of α1 ∪ · · · ∪ α5.

Now we can improve the result of Theorem 3.7.1 in the following way.

Theorem 3.7.3 ([CK91]). For any language L ⊆ {0, 1}∗, if L ∈ L(P) then
L ∈ tc

0, hence L ∈ nc
1.

Proof. The proof requires the following consequence of the O’Nan-Scott the-
orem.

Lemma 3.7.1 ([CK91]). Suppose that 〈Gn ≤ Sn : n ≥ 1〉 is a family of
permutation groups, such that for all n, |Sn : Gn| ≤ nk, for some k. Then
for sufficiently large N , there exists an in ≤ k for which Gn = Un × Vn with
the supports of Un, Vn disjoint and Un ≤ Sin , Vn = Sn−in .

Before proving the lemma, we complete the details of the proof of Theorem
3.7.3. Apply the lemma to Gn = autn(L) and notice that given x ∈ {0, 1}n,
the question of whether x belongs to L is decided completely by the number
4 Consider a permutation group G acting on a nonempty set X. A subset B of X

is called a block if for all g ∈ G the sets B and Bg are either equal or disjoint.
The empty set, X itself, and all singletons of X are blocks (also called trivial
blocks). A transitive permutation group G with no non-trivial blocks is called
primitive.

3.7 Almost Symmetric Languages 177

of 1s in the support of Kn = Sn−in together with information about the
action of a finite group Hn ≤ Sin , for in ≤ k. Using the counting predicates
as in the proof of Theorem 3.7.1, it is clear that appropriate tc

0 circuits can
be built. This completes the proof of Theorem 3.7.3, assuming Lemma 3.7.1.

Proof. We have already observed that Gn �= An. By the O’Nan-Scott the-
orem, Gn is a member of α1 ∪ · · · ∪ α5. Using Bochert’s theorem on the
size of the index of primitive permutation groups (if a primitive permu-
tation group H ≤ Sn does not contain the alternating group An, then
|Sn : H| ≥ �(n + 1)/2�! [Wie64]), the observations of [LPS88] concerning
the primitivity of the maximal groups in α3 ∪ α4 ∪ α5 and the fact that Gn
has polynomial index with respect to Sn, we conclude that the subgroup Gn
cannot be a member of the class α3∪α4∪α5. It follows that Gn ∈ α1∪α2. We
show that in fact Gn �∈ α2. Assume on the contrary that Gn ≤ Hn = Sa ' Sb.
It follows that |Hn| = a!(b!)a. We distinguish the following two cases.
Case 1. n = ab, for a, b > 1.
In this case it is easy to verify using Stirling’s formula

(n/e)n
√
n < n! < (n/e)n3

√
n

that

|Sn : Hn| =
n!

a!(b!)a
∼ an−a

3ba/2(3/a)a
√
a
.

Moreover, it is clear that the right-hand side of this last inequality cannot be
asymptotically polynomial in n, since a ≤ n is a proper divisor of n, which
is a contradiction.
Case 2. n = ab, for a ≥ 5, b ≥ 2.
A similar calculation shows that asymptotically

|Sn : Hn| =
n!

a!(b!)a
=

n!
a!(b′!)a

,

where b′ = ab−1. It follows from the argument of case 1 that this last quantity
cannot be asymptotically polynomial in n, which is a contradiction. It follows
that Gn ∈ α1. Let Gn ≤ Sin × Sn−in , for some 1 ≤ in ≤ n/2.

We claim that there exists a constant k, for which in ≤ k, for all but a
finite number of ns. Indeed, notice that

|Sn : Si × Sn−i| =
n!

i!(n− i)! = Ω(ni) ≤ |Sn : Gn| ≤ nk,

which proves that in ≤ k. It follows that Gn = Un × Vn, where Un ≤ Sin
and Vn ≤ Sn−in . Since in ≤ k and |Sn : Gn| ≤ nk, we have that for n
large enough, Vn = Sn−in . This completes the proof of the claim. Now let
L ⊆ {0, 1}∗ have polynomial index. Given a word x ∈ {0, 1}n, in tc

0, one
can test whether the number of 1s occurring in the n − in positions (where

178 3. Circuit Upper Bounds

Vn = Sn−in) is equal to a fixed value, hardwired into the n-th circuit. This,
together with a finite look-up table corresponding to the Un part, furnishes
a tc

0 algorithm for testing membership in L.

3.8 Symmetry and Complexity

In [CK91], by adapting the counting argument of [Lup61a], it was shown
that for any superpolynomial function f , there exist languages L ⊆ {0, 1}∗
whose invariance groups Gn have at most f(n) orbits when acting on {0, 1}n
and yet L is not computable in polynomial size circuits. Against this nega-
tive result it was there conjectured that if L ⊆ {0, 1}∗ is a language whose
invariance groups have polynomially many orbits (Θn(Ln) ≤ nO(1)) then L
is computable in non-uniform nc. Babai, Beals and Takácsi-Nagy [BBTN92]
proved this conjecture by developing some very elegant structure theory for
groups having polynomially many orbits. As an additional corollary, they
obtained an nc solution of a specific case of the bounded valency graph iso-
morphism problem.

For group G ≤ Sn and words x, y ∈ {0, 1}n, recall the group action If
G ≤ Sn is a permutation group, then recall the action of G on the collection of
n-length words; namely, for x, y ∈ {0, 1}n, we write x ∼ y mod G to assert the
existence of σ in G for which xσ = y. The orbit of x is {y ∈ {0, 1}n : x ∼ y}.
We define the orbit problem for group G ≤ Sn as follows.
Input: x, y ∈ {0, 1}n
Output: Whether x ∼ y mod G.
For families G = 〈Gn : Gn ≤ Sn〉 and H = 〈Hn : Hn ≤ Sn〉, we write H ≤ G
to indicate Hn ≤ Gn for all n ∈ N. Let Θ(Gn) be the number of orbits of
Gn acting on {0, 1}n. For simplicity, we write G instead of G and suppress
indices n in Gn. We also use the notation Sym(Ω) for the of permutations
on the set Ω.

Proposition 3.8.1. If H ≤ G and Θ(H) ≤ nO(1), then the orbit problem for
G is ac

0 reducible to the orbit problem for H.

Proof. Since Hn is a subgroup of Gn, every Hn orbit is contained in a Gn
orbit. There are at most p(n) many orbits of Hn acting on 2n, so

x ∼ y mod Gn ⇐⇒
p(n)∨

i=1

x ∼ yi mod Hn

where y1, . . . , yp(n) are fixed representatives for those Hn orbits contained in
the Gn orbit of y.

The following proposition lists some elementary facts about the number
of orbits of a group with permutation domain Ω, when acting on the power
set of Ω.

3.8 Symmetry and Complexity 179

Proposition 3.8.2. Let G,H be permutation groups.

1. If H ≤ G then Θ(H) ≥ Θ(G).
2. Assuming that G,H are have disjoint supports, Θ(G×H) = Θ(G)·Θ(H).
3. Θ(H ' Sk) =

(
Θ(H)+k−1

k

)
=
(
Θ(H)+k−1
Θ(H)−1

)

4. For k ≥ 3, Θ(Ak) = Θ(Sk) and Θ(H 'Ak) = Θ(H ' Sk).

Proof. of (1). Clear since every H orbit is contained in a G orbit.
Proof of (2). Straightforward.
Proof of (3). If the degree of H is m, then recall that the wreath product H 'Sk
is given by the collection of permutations π ∈ Sym(A×B), where |A| = m,
|B| = k and π = 〈σ1, . . . , σk; τ〉 for σ1, . . . , σk independent permutations in
H and τ in Sk. The action of π on the permutation domain A × B is given
by (i, j)π = (iσj , jτ).
Claim. There is a 1-1 correspondence between Θ(H ' Sk) and the collection
of all non-decreasing maps from {1, . . . , k} into {1, . . . , Θ(H)}.
Proof of Claim. Temporarily define a canonical ordering on {0, 1}m as follows.
For x, y ∈ {0, 1}m, let x ≺ y iff the weight |x|1 of x is less than the weight
|y|1 of y or x, y have equal weights and x precedes y in the lexicographic
ordering. Define x ∈ {0, 1}m to be a canonical representative of an orbit of
H if for all lexicographically smaller y ∈ {0, 1}m, y �∼ x mod H. Let φ :
{0, 1}m → {0, 1}m by setting φ(u) to be that canonical representative lying
in the same H-orbit as u. Let {x1, . . . , xΘ(H)}≺ be a listing of the canonical
representatives of the orbits of H acting on {0, 1}m. Now given u ∈ {0, 1}mk,
where u = u1 · · ·uk, and each ui ∈ {0, 1}m, determine a permutation σ ∈ Sk
for which

φ(uσ(1)) � φ(uσ(2)) � · · · � φ(uσ(k)).

The claim now readily follows.
It is well-known (see for instance [Ber71]), that the number of non-

decreasing maps from k into m is equal to the number of ways of choosing k
objects from a collection of m objects, allowing repetitions, given by

(m+ k − 1) · · · (m+ 1)(m)
k!

=
(
m+ k − 1

k

)

.

Since we have established a 1-1 correspondence between Θ(H ' Sk) and the
collection of all non-decreasing maps from {1, . . . , k} into {1, . . . , Θ(H)}, it
follows that Θ(H ' Sk) =

(
Θ(H)+k−1

k

)
. Using the symmetry of the binomial

coefficients, i.e., that
(
n
k

)
=
(
n

n−k
)
, the equality Θ(H ' Sk) =

(
Θ(H)+k−1
Θ(H)−1

)
is

immediate.
Proof of (4). Suppose that x, y ∈ {0, 1}k and xσ = y for some σ ∈ Sk. If
σ ∈ Ak, then let σ = σ, otherwise, since k ≥ 3, let τ be the transposition
interchanging i, j, where xi = xj and set σ = σ ◦ τ . Then σ ∈ Ak and xσ = y.
It follows that x, y ∈ {0, 1}k are in the same Sk orbit iff they are in the

180 3. Circuit Upper Bounds

same Ak orbit. The assertion for H 'Ak and H ' Sk is similarly proved. This
concludes the proof of the Proposition.

Lemma 3.8.1 ([BBTN92]). If G ≤ H ' Sk and Θ(G) ≤ nc, then

min(Θ(H)− 1, k) ≤ 2c.

Proof. Since G ≤ H ' Sk, Proposition 3.8.2 implies that Θ(G) ≥ Θ(H ' Sk).
Case 1. k ≤ Θ(H)− 1.
Noting that for a, b ≥ 1, and i ≥ 0

a+ b− i
a− i ≥ a+ b

a

so that
(
a+ b

a

)

≥
(
a+ b

a

)a

it follows that

Θ(H ' Sk) =
(
Θ(H) + k − 1

k

)

≥
(

2k
k

)

≥ 2k.

Thus k ≤ logΘ(G). For sufficiently large n, n/(c · log(n))2 ≥
√
n, so

nc ≥ Θ(G)

≥
(
Θ(H) + k − 1

k

)

≥
(
Θ(H)
k

)

≥
(
n/k

k

)

≥
(n

k2

)k

≥ nk/2

Hence k ≤ 2c.
Case 2. k > Θ(H)− 1.

Θ(H ' Sk) =
(
Θ(H) + k − 1
Θ(H)− 1

)

≥
(

2 · (Θ(H)− 1)
Θ(H)− 1

)

≥ 2Θ(H)−1

so Θ(H)− 1 ≤ logΘ(G). Thus

3.8 Symmetry and Complexity 181

nc ≥ Θ(G)

≥
(
Θ(H) + k − 1
Θ(H)− 1

)

≥
(

k

Θ(H)− 1

)

≥
(
n/(Θ(H)− 1)
Θ(H)− 1

)

≥
(

n

(Θ(H)− 1)2

)Θ(H)−1

≥ n(Θ(H)−1)/2

Hence Θ(H)− 1 ≤ 2c.

We require some definitions in order to establish structure results for
groups having polynomially many orbits.

Definition 3.8.1. A subset ∆ ⊆ Ω is a block of imprimitivity of group G ≤
Sym(Ω) if for every σ ∈ G, ∆σ = ∆ or ∆σ∩∆ = ∅. The group G is primitive
if the only blocks of imprimitivity of G are Ω and the singleton subsets of Ω.
The group G ≤ Sym(Ω) is transitive if for every x, y ∈ Ω, there is σ ∈ G
such that xσ = y.

It is clear that if G is transitive and ∆1, . . . , ∆m is a system of blocks
of imprimitivity, then all blocks have the same number of elements. Notice
that for G ≤ Sn, we distinguish between G acting on its permutation domain
{1, . . . , n}, G acting on the set 2n of all n-length binary words, and G acting
on the set 22n

of all boolean functions on n variables. A structure forest F
for permutation group G ≤ Sym(Ω) is a forest on which G acts as automor-
phisms such that the leaves form the permutation domain Ω and the roots
correspond to orbits. Each node v ∈ F is identified with a block B(v) of
imprimitivity of G acting on Ω, where B(v) consists of the leaves of F below
v. Let

B(v) = {B(u) : u is a child of v}

Let L(v) ≤ Sym(B(v) denote the action of Gv on B(v), and let H(v) ≤
Sym(B(v)) denote the action of Gv on B(v). A node v ∈ F is primitive if
H(v) is primitive, while v is a giant if H(v) is the alternating or symmetric
group. If G is transitive, then the structure forest is a tree and we write
ki = |B(v)| for v ∈ Li. In the general case where F is not a tree, we write
ki,j = B(v) where v ∈ Li on tree Tj . The group Ki is the pointwise stabilizer
of Li. Note that Ki is a normal subgroup of G, denoted by Ki � G, since Ki

is the kernel of the action of G on Li. If v ∈ Li then Ki ≤ L(v)|Li|.

Theorem 3.8.1 ([Bab81]). Suppose that G ≤ Sn is a primitive permuta-
tion group of degree n not containing An. Then

182 3. Circuit Upper Bounds

|G| < exp{4
√
n log2(n)}

The proof of this estimate will not be given, but we note that the proof does
not use classification theory.

Theorem 3.8.2 (Babai–Pyber). Suppose that G ≤ Sym(Ω), |Ω| = n, F
is a primitive structure forest for G. For any t > 1, if F has no giant node
of degree strictly greater than t, then

Θ(G) ≥ 2n/c1t

for some absolute constant c1.

Proof. Let {∆1, . . . , ∆m} be the orbits of G acting on Ω. Then G ≤ Πm
i=1G

∆i ,
so Θ(G) ≥ Πm

i=1Θ(G∆i). Thus it suffices to prove the theorem for transitive
groups G. We may suppose t is sufficiently large to satisfy

tx−1 ≥ exp{4
√
x log2(x)}

for all x ≥ 2. Set c2 ≥ 8 and c3 = 4c2. For t given, let Θt(n) be the minimum
value of Θ(G) as G ranges over all transitive permutation groups of degree
n having a primitive structure tree T with no giant node of degree strictly
greater than t. For 1 ≤ n ≤ c2t, it is clear that

Θt(n) ≥ n+ 1 ≥ 2 ≥ 2c2/c3 ≥ 2n/c3t.

By induction on n, we show that following claim which immediately implies
the statement of the theorem.
Claim. For n ≥ c2t, Θt(n) ≥ t2n/c3t.
Proof of Claim. Suppose that G is a transitive permutation group of degree
n ≥ c2t and T is a primitive structure tree for G with no giant nodes of
degree > t. Assume the claim holds for values less than n. Collapse all levels
below L1 to a single level. Let H = H(root), L = L(u) for some u ∈ L1.
Case 1. k1 ≥ c2t.
H is of degree k0, so |H0| ≤ k0! and for k0 > t, since H is primitive, by
Theorem 3.8.1, |H| ≤ exp{4

√
k0 log2(k0)}, so |H| ≤ tk0−1. By the induction

hypothesis, as L is of degree k1 < n, Θ(L) ≥ t · 2k1/c3t, so

Θ(G) ≥ Θ(K1)/|H| ≥ Θ(Lk0)/|H| = Θ(L)k0/|H|
≥ (t2k1/c3t)k0/tk0−1 = t2k1k0/c3t = t2n/c3t.

Case 2. k1 < c2t ≤ k0.
By Theorem 3.8.1,

|H| ≤ e4
√
k0 log2(k0) ≤ 24 log(e)

√
k0 log2(k0)

≤ 28
√
k0 log2(k0) ≤ 2k0/2.

Also,

2n/c3t = 2k0k1/c3t < 2k0c2t/c3t = 2k0/4.

3.8 Symmetry and Complexity 183

Thus

Θ(G) ≥ Θ(s)k0/|H| ≥ 2k0/|H| ≥ 2k2/2

≥ 2k0/4 · 2n/c3t ≥ t · 2n/c3t.

Case 3. k0, k1 < c2t.
Then G ≤ Sk1 ' Sk0 so

Θ(G) ≥ Θ(Sk1 ' Sk0) =
(
k1 + k0

k0

)

=
(
k0 + k1

k1

)

.

By symmetry, we can assume that k0 ≤ k1. As n = k0k1 ≥ c2t and k0, k1 <
c2t, it follows that 2 ≤ k0 ≤ k1. Hence

Θ(G) ≥
(
k0 + k1

k0

)

= (
k1 + k0

k0
)(
k1 + k0 − 1
k0 − 1

) · · · (k1 + 1
1

)

≥ 2k0−3 · (k1 + 3
3

)(
k1 + 2

2
)(
k1 + 1

1
)

≥ 2k0−3k2
1 ≥ 2k0−3k1k0 ≥ 2k0−3c2t ≥ 2k0t ≥ t2(c2

c3
)k0

= t2(c2t
c3t)k0 ≥ t2nk0/c3t ≥ t2n/c3t.

This completes the proof of the claim and hence of the theorem.

Corollary 3.8.1. For transitive group G ≤ Sym(Ω), there exists a depth 3
structure tree T , such that k0k2 ≤ c1 log(Θ(G)), and the nodes on level 1 of
T are giants.

Proof. Let T ′ be the primitive structure tree for G and let t be the largest
degree of giant nodes in T ′. The level of these nodes is called the explosion
level. Contract all levels above and below the explosion level to one level,
keeping the root separate. This produces a depth 3 structure tree T . By
Theorem 3.8.2, we have k1 ≥ n

c1 log(Θ(G)) . Now n = k0k1k2, so

k0k2 = n/k1 ≤
n

n/c1 log(Θ(G))
≤ c1 log(Θ(G)).

We introduce some definitions. For subgroups H,K of group G, H is said
to be a complement of K in G if H ∩K = 1 and HK = G. Let B1, . . . , Bk
be a system of blocks of imprimitivity for G. An element σ ∈ G is clean if
for all 1 ≤ i ≤ k either Bσi �= Bi or σ acts trivially on Bi (σ(x) = x for all
x ∈ Bi). A subgroup H is clean if it consists only of clean elements; H is a
clean complement of K if it is clean and is a complement to K.

Lemma 3.8.2. If G ≤ Sym(Ω) is a transitive permutation group having a
depth 2 structure tree T such that H(root) = Ak0 and k0 ≥ 4k1, then K1 has
a clean complement.

184 3. Circuit Upper Bounds

Proof. Let L1 = {v1, . . . , vk0} be the collection of nodes on the first level of
T . For τ ∈ G, let τ denote the action of τ on L1. By Bertrand’s postulate,
there is a prime p satisfying k1 < p < k0/2. Take π ∈ G such that π is a
p-cycle. Since k1 < p and the order of an element divides the order of the
group to which it belongs, there is an integer m not divisible by p for which
πm is the identity on L1, hence π is clean. Without loss of generality, sup-
pose that m = 1 and that π permutes v1, . . . , vp cyclically and fixes each of
vp+1, . . . , vk0 and their children. Similarly, there is an element π′ ∈ G such
that π′ permutes vp, . . . , v2p−1 cyclically and fixes each vi and its children
for i different from p, . . . , 2p − 1. By abuse of language, we temporarily call
a permutation σ ∈ G a clean 3-cycle if σ is a 3-cycle permuting cyclically
vi1 , vi2 , vi3 while fixing vi and all its children for i different from i1, i2, i3. It
follows that the commutator σ = [π, pi′] = ππ′π−1π′−1 is a clean 3- cycle
and σ = (vp+1, vp, v1). We leave it to the reader to verify that the conjugate
θσθ−1 of a clean 3-cycle is a clean 3- cycle and that a group generated by
clean elements is a clean group. For 1 ≤ i < k0, let σi ∈ G be a clean 3- cycle
with σi = (vi, vi+1, vk0).
Case 1. k0 is odd.
Then H is generated by σ1, σ3, σ5, . . . , σk0−2.
Case 2. k0 is even.
Let A = 〈σ1, σ3〉vk0

, consisting of those σ ∈ G generated by σ1, σ3 where
σ fixes vk0 and its children. Then A is clean. Let H be generated by
A, σ4, σ6, . . . , σk0−2. It follows that H is a clean complement to K1.

Theorem 3.8.3 ([BBTN92]). Every language L with transitive automor-
phism groups aut(Ln) and polynomially many cycles, i.e., Θ(aut(Ln)) ≤
nO(1), is in tc

0.

Proof. By Corollary 3.8.1, let T be a depth 3 structure tree where H(u) is a
giant for each u ∈ L1. Applying the clean complement Lemma 3.8.2 to each
B(u) for u ∈ L1, there is a clean complement Hu = 〈1B(u)〉 'Ak1 of K2 with
respect to H(u). Thus HuK2 = H(u) and Πu∈L1Hu ≤ G, so

Θ(Πu∈L1Hu) =
(
k1 + 2k2 − 1

2k2 − 1

)k0
≥ Θ(G).

By Lemma 3.8.1 k0, k2 ≤ 2c for an absolute constant c, so
(
k1+2k2−1

2k2−1

)
is

polynomial in k1 and hence polynomial in n. The orbit problem for Πu∈L1Hu

is solved essentially by counting, and hence belongs to tc
0.

3.9 Applications to Anonymous Networks

The anonymous network was introduced in Section 1.11.8. In this section
we concentrate on the study of the bit complexity of computing boolean
functions on Rings and Hypercubes.

3.9 Applications to Anonymous Networks 185

3.9.1 Rings

Recall that CN is the cyclic group generated by the cycle (1, 2, . . . , N) andDN

is the dihedral group generated by the cycle (1, 2, . . . , N) and the reflection

ρN =

(
1 2 · · · N
N N − 1 · · · 1

)

.

Let RN denoted the ring of N processors.

Theorem 3.9.1 ([ASW88]). Let f be a boolean function in BN . Then

1. f is computable in the oriented ring RN if and only if aut(f) ≥ CN .
2. f is computable in the unoriented ring RN if and only if aut(f) ≥ DN .

Proof. The if part follows easily from the fact that if a boolean function
is computable in the network then it must be invariant under its group of
automorphisms. So we concentrate on the proof of the other direction.

For the case of oriented rings we have the following algorithm.

Algorithm for processor p:
send your bit left;
for N steps do

send the bit you receive from
the right to the left;
od

endfor

For the case of unoriented rings we have the following algorithm.

Algorithm for processor p:
send your bit both left and right;
for �N/2� steps do

send the bit you receive in the direction
opposite to the one you got it from;
od

endfor

It is easy to see that these algorithms are correct.

3.9.2 Hypercubes

A natural labeling of the hypercube is the following, L: the edge connecting
nodes x = (x1, . . . , xn) and y = (y1, . . . , yn) is labeled by i if and only if
xi �= yi, i.e., L(x, y) = L(y, x) = i. In this subsection we will refer to a
hypercube with this labeling as an canonically labeled hypercube and we will
reserve the symbol L to denote this canonical labeling.

186 3. Circuit Upper Bounds

Of particular interest in the case of the canonically labeled hypercube
are the bit-complement automorphisms that complement the bits of certain
components, i.e., for any set S ⊆ {1, . . . , n} let φS(x1, . . . , xn) = (y1, . . . , yn),
where yi = xi + 1, if i ∈ S, and yi = xi otherwise (here addition is modulo
2). Let Fn denote the group of bit-complement automorphisms of Qn.

Theorem 3.9.2. The group of automorphisms of the canonically labeled hy-
percube Qn[L] is exactly the group Fn of bit-complement automorphisms.

Proof. Let φ ∈ Aut(Qn[L]). We claim that for all x, y ∈ Qn,

φ(x) + φ(y) = x+ y. (3.4)

Indeed, given x, y there is a path x0 := x, x1, . . . , xk := y joining x to y.
By definition, φ must preserve labels, i.e., for all i < k, φ(xi) + φ(xi+1) =
xi + xi+1. Adding these congruences we obtain φ(x0) + φ(xk) = x0 + xk,
which proves (3.4). Using (3.4) it is now easy to show that φ is uniquely
determined from the value of φ(0n), say φ(0n) = (p1, . . . , pn). It follows easily
that φ = φS , where S = {1 ≤ i ≤ n : pi �= 0}.

The automorphism group of the unlabeled hypercube Qn is larger than
Fn. For any permutation σ ∈ Sn let φσ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)) and
let Pn denote the group of these automorphisms. We mention without proof
that it can be shown easily that Pn is a normal subgroup of Aut(Qn) and in
fact Aut(Qn) = Fn · Pn.

First we characterize the class of boolean functions which are computable
in the canonically labeled hypercube in terms of its group of automorphisms
and provide an algorithm with bit complexity O(N2) for computing all such
functions.

Theorem 3.9.3. On the canonically labeled hypercube Qn of degree n and
for any boolean function f ∈ BN , N = 2n, f is computable on the hypercube
Qn if and only if f is invariant under the bit-complement automorphisms of
Qn. Moreover, the bit complexity of any such computable function is O(N2).

Proof. The “if” part is straightforward so we need only prove the “only if”
part. Let f ∈ BN be invariant under all bit-complement automorphisms of
the hypercube. The algorithm proceeds by induction on the dimension n of
the hypercube. Intuitively, it splits the hypercube into two n−1 dimensional
hypercubes. The first hypercube consists of all nodes with xn = 0 and the
second of all nodes with xn = 1. By the induction hypothesis the nodes of
these hypercubes know the entire input configuration of their corresponding
hypercubes. Every node in the hypercube with xn = 0 is adjacent to unique
node in the hypercube with xn = 1. By exchanging their information all
processors will know the entire input configuration and hence they can all
compute the value of f on the given input.

More formally, the algorithm is as follows. For any sequences of bits I, J let
IJ denote the concatenation of I and J . Let Iip denote the input to processor

3.9 Applications to Anonymous Networks 187

p at the i-th step of the computation. Initially I0
p is the input bit to processor

p.

Algorithm for processor p:
initialize: I0

p is the input bit to processor p;
for i := 0, . . . , n− 1 do

send message Iip to ps neighbor q along the i-th link
let Iiq be the message received by p from p’s neighbor
q along the i-th link and put Ii+1

p := IipI
i
q;

od;
output f(Inp)

The algorithm is depicted in Figure 3.3 for a given input. To prove the
correctness of the algorithm it must be shown that all processors output the
same correct bit, i.e., for all processors p, q, f(Inp) = f(Inq). Let Ip = Inp be the
sequence obtained by processor p at the n-th stage of the above algorithm.
We call Ip the view of processor p on input I. Let p, q be any two processors
of the hypercube. Clearly, there is a unique bit-complement automorphism φ
satisfying φ(p) = q, namely φ = φS , where i ∈ S if and only if pi �= qi. Now
it can be shown that this automorphism will map processor p’s view, namely
Ip, to the view of processor q, namely Iq. For any sequence bxbx′ · · · of bits
indexed by elements x, x′, . . . ∈ Qn define φ(bxbx′ · · ·) = bφ(x)bφ(x′) · · · . The
proof of correctness is based on the identity

φ(Ip) = Iφ(p). (3.5)

To prove (3.5) it is sufficient to show that for all i ≤ n = logN , φ(Iip) = Iiφ(p).
The proof is by induction on i ≤ n. The result is clear for i = 0. Assume
the result true for i. Let p′, q′ be p’s and q’s neighbors along the i-th edge,
respectively. Then by definition we have

Ii+1
p = IipI

i
p′ and Ii+1

q = IiqI
i
q′ .

Since φ is a bit-complement automorphism and p, p′ are connected via the i-th
edge it follows that φ(p) = q and φ(p′) = q′. Using the induction hypothesis
φ(Iip) = Iiφ(p) we obtain

φ(Ii+1
p) = φ(Iip)φ(Iip′) = IiqI

i
φ(p′) = Ii+1

q = Ii+1
φ(p)

This completes the inductive proof. It follows now that φ(Ip) = Iq which
implies that f(Ip) = f(Iq), since f is invariant under the bit-complement
automorphisms of Qn.

To study the bit complexity of the above algorithm, let T (N) be the
number of bits transmitted in order that at the end of the computation all
the processors in the hypercube know the input of the entire hypercube. By
performing a computation on each of the two n− 1-dimensional hypercubes
we obtain that their nodes will know the entire input corresponding to their

188 3. Circuit Upper Bounds

nodes in T (N/2) bits. The total number of bits transmitted in this case
is 2 · T (N/2). The final exchange transmission consists of N/2 bits being
transmitted by N/2 nodes to their N/2 corresponding other nodes, for a total
of 2·N/2·N/2 = N2/2. Hence we have proved that T (N) ≤ 2·T (N/2)+N2/2.
It follows that T (N) ≤ N2, as desired.

Next we make several alterations to the previous algorithm and show
how to improve the complexity bound to O(N · log4N), for each boolean
function f ∈ BN which is computable in the hypercube. In all our subsequent
discussions we use the notation and terminology established in the previous
discussion. As before the new algorithm is also executed in n = logN steps,
one step per dimension. However, now we take advantage of the information
provided to p about the hypercube from its i-th view Iip. The main ingredients
of the new algorithm are the following.

• We introduce a leader election mechanism which for each i ≤ logN elects
leaders among the processors with lexicographically maximal view at the
i-th step of the algorithm.
• We use elementary results from the theory of finite permutation groups

[Wie64] in order to introduce a coding mechanism of the views; leaders at
the (i− 1)st step exchange the encoded versions of their views Ii−1

p ; upon
receipt of the encoded view they recover the original view sent and elect
new leaders for the i-th step.
• The leader election and coding mechanisms help keep low the number of

bits transmitted during the i-th step of the algorithm to O(N · i3) bits.

The technical details of the above description will appear in the sequel. We
begin with some preliminary lemmas that will be essential in the proof of the
main theorem.

Lemma 3.9.1. If Ip = Iq then the hypercube as viewed from p is identical
to the hypercube as viewed from q. More formally, for each p let Ip = 〈bx :
x ∈ N〉. If Ip = Iq and φ = φS, where S = {i ≤ n : pi �= qi}, then
∀x ∈ Qn(bx = bφ(x)).

Proof. Indeed, notice that since q = φ(p)

Ip = Iq = Iφ(p) = φ(Ip),

where the right-most equality follows from (3.5). This proves the lemma.

Lemma 3.9.2. Let I be a fixed sequence of bits of length 2n. Then the set
of processors p such that Ip = I can be identified in a natural way with a
group of bit-complement automorphisms. Moreover, the number of processors
p such that Ip = I is either 0 or a power of 2.

Proof. Let G be the following set of automorphisms

G = {φ ∈ Fn : ∀p ∈ Qn(Ip = I ⇒ Iφ(p) = I)}. (3.6)

3.9 Applications to Anonymous Networks 189

The identity element is in G. In addition the identity

Iφ(ψ(p)) = φ(ψ(Ip))

implies that G is also closed under multiplication. Since G is finite it is a
group.

Next consider the set J of processors q satisfying Iq = I and assume
that J �= ∅. Let p0 be an arbitrary but fixed element of J . Without loss of
generality we may assume that p0 = 0n. We claim that the sets J and G are
equipotent. First we prove |J | ≤ |G|. Indeed, for each p ∈ J there is a unique
bit-complement automorphism, say φp, such that φp(0n) = p. We show that
in fact φp ∈ G. To see this let q be an arbitrary element of J . By assumption
we have

I0n = Ip = Iq = I.

Thus using identity (3.5) we obtain

I = Iφp(0n) = φp(I0n) = φp(Iq) = Iφp(q).

In turn, this implies the desired inequality |J | ≤ |G|. To complete the proof
of the claim it remains to prove that |G| ≤ |J |. But this is obvious since the
mapping φ → φ(0n) is 1-1. The above considerations complete the proof of
the first part of the lemma.

To prove the second assertion we note that Fn can be identified with an
n-dimensional vector space over the finite field Z2 = {0, 1} of two elements.
The standard basis of this vector space consists of the bit-complement auto-
morphisms

φ{1}, φ{2}, . . . , φ{n}.

Any other bit-complement automorphism φS can be written as the sum
(which in this case is the regular composition of functions) of the automor-
phisms φ{i}, where i ∈ S. As a vector subspace G has a basis consisting of a
fixed number of bit-complement automorphisms. Moreover, |G| is a power of
2. It follows that if |J | is nonempty it must be a power of 2.

The group G defined in Lemma 3.9.2 is called the automorphism group of
the string I. Clearly, it depends on the string I. However we do not mention
it explicitly in G in order to avoid unnecessary notational complications.

Lemma 3.9.3. Let G be the automorphism group of the string I. If |G| =
2l then I can be coded with a string of length 2n−l and l bit-complement
automorphisms.

Proof. We continue using the notation of Lemma 3.9.2. The group G defined
above has a natural action on the hypercube Qn. For each x ∈ Qn let xG be
the orbit of x under G, i.e.,

xG = {φ(x) : φ ∈ G}.

190 3. Circuit Upper Bounds

For each x the stabilizer Gx of G under x is the identity group, where the
stabilizer group [Wie64] is defined by

Gx = {φ ∈ G : φ(x) = x}.

By the well-known stabilizer theorem [Wie64]

|Gx| · |xG | = |G|.

Since |Gx| = 1 we obtain that all the orbits of G have exactly the same size,
namely |G| = 2l, and since |Qn| = 2n, there are exactly

2n

|G| = 2n−l

pairwise disjoint orbits.
The above discussion gives rise to the following “coding” algorithm which

can be applied by the processors concerned in order to code the given config-
uration I with a new (generally shorter) string. Each processor that knows
I can execute the following “coding algorithm” (i.e., processor p applies this
algorithm to the string I = Inp).

Coding Algorithm:
Input: I = 〈bx : x ∈ Qn〉 is the given configuration, where bx is the bit
corresponding to processor x.

1. Compute the group G of bit-complement automorphisms φ such that

∀p ∈ Qn(Ip = I ⇒ Iφ(p) = I).

Assume that l is such that |G| = 2l.
2. Compute a set of l generators, i.e., a set φ1, . . . , φl of bit-complement

automorphisms which generate the group G.
3. Compute the set of orbits of G in its natural action on Qn. There are

2n−l such orbits. For each orbit the processors choose a representative
of the orbit in some canonical way, say lexicographically minimal; let
x(1), x(2), . . . , x(2n−l) be the representatives chosen. Next the processor
arranges them in increasing order according to the lexicographic order
≺, i.e., x(1) ≺ x(2) ≺ . . . ≺ x(2n−l).

4. The code of I is defined to be the sequence 〈I ′;φ1, φ2, . . . , φl〉, where I ′

is the sequence of bits of length 2l given by

I ′ := bx(1)bx(2) · · · bx(2n−l)

and
φ1, φ2, . . . , φl

is a sequence of bit-complement automorphisms generating the group G.

3.9 Applications to Anonymous Networks 191

Output: 〈I ′;φ1, φ2, . . . , φl〉.
It remains to prove that a processor can reconstruct I from its encoding.

To do this it executes the following decoding algorithm.

Decoding Algorithm:
Input: 〈I ′;φ1, φ2, . . . , φl〉, where I ′ is a string of length 2n−l and φ1, φ2, . . . , φl
are bit-complement automorphisms.

1. Let G be the group generated by these automorphisms. Compute the set
of orbits of G in its natural action on Qn. There are 2n−l such orbits. For
each orbit choose as representative of the orbit the lexicographically min-
imal string in the orbit. Let x(1), x(2), . . . , x(2n−l) be the representatives
chosen. Next the processor arranges them in increasing order according
to the lexicographic order ≺, i.e., x(1) ≺ x(2) ≺ . . . ≺ x(2n−l).

2. The coding algorithm guarantees that I ′ = bx(1)bx(2) · · · bx(2n−l). Hence
we can “fill-in” the remaining bits to form the string I since bx = by for
x, y in the same orbit.

Output: I.
Indeed, by definition of the group G we have that for all φ ∈ G, φ(I) = I.

Hence by Lemma 3.9.1

∀x ∈ Qn∀φ ∈ G(bx = bφ(x)),

where I = 〈bx : x ∈ Qn〉. This explains why the decoding algorithm works.

Now we can prove the following theorem which significantly improves the
upper bound of Theorem 3.9.3.

Theorem 3.9.4 ([KK97]). There is an algorithm computing every boolean
function f ∈ BN (which is invariant under all bit-complement automor-
phisms) on the canonically labeled hypercube Qn, N = 2n, with bit complexity
O(N · log4N).

Proof. For each fixed string x = xi+1 · · ·xn of bits of length n− i let

Qi(x) = {u1 · · ·uix : u1, . . . , ui ∈ {0, 1}}.

For each processor p represented by the sequence p1 · · · pn of bits the i-th
hypercube of p is defined to be Qi(pi+1 · · · pn). Clearly we have that

Qi(x) = Qi−1(0x) ∪Qi−1(1x).

Initially, I0
p = “input bit to processor p” and each processor declares itself

leader of its 0-dimension hypercube Q0(p) = {p}. The leaders at the i-th step
of the algorithm are among those processors whose “view” Iip of their i-th
hypercube is lexicographically maximal among the set of strings Iiq. Assume
by induction that we have elected leaders for the (i − 1)-th stage of the
algorithm and that each processor has a path to such a leader along its

192 3. Circuit Upper Bounds

�

Qi−1(0x) Qi−1(1x)

�

�
≤ 2l0 leaders ≤ 2l0 processors

≤ 2l1 leaders≤ 2l1 processors

Fig. 3.1. Exchange of views among leaders in hypercube Qi(x)

hypercube with edges ≤ i− 1. We show how to extend these assumptions to
the i-th stage of the algorithm. The i-th stage of the new algorithm consists
of the following steps.

1. The leader processors (elected at the (i− 1)st stage) send their encoded
views of their hypercube to their neighbors along the i-th dimension.

2. The processors of the opposite hypercube receiving the views route them
to their leaders. (By induction hypothesis, all the processors know routes
to their leaders along their hypercube; hence they can transmit the view
received along such a route, for example the lexicographically minimal
one.) Leaders that receive such encoded views decode the messages re-
ceived as in Lemma 3.9.3, compute the corresponding views of their neigh-
bors along their i-th edge and append it to their own view thus forming
views at step i. To compute the view of their neighbors along their i-th
edge each leader � executes the following algorithm.
a) Let �’s neighbor along the i-th edge be p and let 1 ≤ k1, . . . , kr ≤ i−1

be a path along p’s subcube leading to a leader �′ in this subcube (by
the induction hypothesis we can assume that such a path is known
to p). By the previous argument the view Ii−1

�′ of �′ is known to �
(see Figure 3.2). Now � requests this path from its neighbor p.

b) Since φ{k1,...,kr}(�′) = p it is clear that � can compute p’s view via
the identity

φ{k1,...,kr}(Ii−1
�′) = Ii−1

p .

3. If I0 is the leader view in hypercube Qi−1(0x) and I1 is the leader view
in hypercube Qi−1(1x) then the leader view in hypercube Qi(x) will be

I0I if I0 (I1
I1I if I1 (I0
I0I1 if I0 = I1

for some string of length 2i−1 ((denotes the lexicographic ordering).
If L0 is the set of leaders in hypercube Qi−1(0x) and L1 is the set of

3.9 Applications to Anonymous Networks 193

� p

�′

�
�
���

Qi−1(0x) Qi−1(1x)

Fig. 3.2. In subcase 2(a), � sends its view to p which routes it to �′.

leaders in hypercube Qi−1(1x) then the set of leaders of the i-th stage
will be among either L0 or L1 or L0∪L1, depending on the lexicographic
comparison of I0 and I1. It follows that all the processors of Qi(x) will
know paths to these new leaders. (Indeed, if p ∈ Qi(x) then either p ∈
Qi−1(0x) or p ∈ Qi−1(1x). Say, p ∈ Qi−1(0x). By induction p knows a
path to a leader at the i− 1st stage. But by the previous argument this
leader knows a path to a leader at the i-th stage.)

4. Return to 1 and iterate, for i = 1, 2, . . . , logN .

The mechanism for exchanging views at the i-th iteration of the above algo-
rithm is depicted in Figure 3.1.

Now we estimate the bit complexity of the algorithm. The coding and
decoding algorithms are “internal” and do not contribute anything to the
total bit complexity. Suppose there are ≤ 2l leaders elected at the i-th step
of the algorithm. There exists a message w of length 2i−l and a sequence
of l ≤ i bit-complement automorphisms of the hypercube Qi which “code”
the view Iip. Since only the leaders transmit messages at the i-th step while
the rest of the processors are “routing” messages to the leaders (processors
are always at a distance ≤ i from a leader, since the diameter of the i-th
hypercube is i), the total bit complexity at the i-th step of the algorithm
is O(2i · i3) (since each encoded view consists of at most i bit-complement
automorphisms and each bit-complement automorphism can be coded with
i bits). Clearly, for each i ≤ logN this algorithm is applied to 2n−i subcubes
simultaneously. Since the algorithm is iterated logN times it follows that the
bit complexity of the new algorithm is

logN∑

i=1

2n−i ·O(2i · i3) = O(N · log4N).

194 3. Circuit Upper Bounds

3.10 Historical and Bibliographical Remarks

The most important application of invariance groups is in providing a precise
upper bound on the circuit complexity of boolean functions based on their
degree of symmetry (see Theorem 3.8.3). There are several interesting open
problems. Two such problems concern improving the 2O(log n) algorithm for
testing the representability of an arbitrary group, as well as extending the
logspace algorithm for testing the representability of cyclic groups to a larger
class of permutation groups (Theorem 3.5.1). The work of Furst, Hopcroft and
Luks [FHL80] should play a major role in such an endeavor. For additional
information and results on the representation problem for boolean functions
the reader should consult the papers [Kis99] and [Xia00].

The computability problems studied in Section 3.9 are a special case of the
problem of collecting input data in a deterministic, distributed environment.
There are several papers on trade-offs for input collection on anonymous
networks as well as studies for randomized evaluation of boolean functions on
anonymous rings [AAHK88]. For more details and references on anonymous
networks the reader is referred to the survey article [Kra97b].

3.11 Exercises

Exercise 3.11.1 ([CK91]). (�) Prove Theorem 3.2.1.
Hint: For the identity group take L = 0∗1∗, for the dihedral group L =
0∗1∗0∗ ∪ 1∗0∗1∗, for the reflection group L = 0∗1∗0∗. For the cyclic groups,
if n = 2 take L = (01 ∪ 10)0∗1∗, and if n ≥ 6 then take L = (L1

0 ∪ L1
1) ∩ L2,

where
L1

0 = 1∗0∗1∗ ∪ 0∗1∗0∗ ∪ 101000∗1 ∪ 0∗1101000∗

L1
1 = 0∗011010 ∪ 0∗001101 ∪ 10∗00110 ∪ 010∗0011

and L2 is the language 10∗00101. Notice that for 3 ≤ n ≤ 5, if Cn ⊆ aut(f) ⊆
Dn then aut(f) = Dn. For the hyperoctahedral group let L consist of the set
of all finite strings x = (x1, . . . , xn) such that for some i ≤ n/2, x2i−1 = x2i.

Exercise 3.11.2. Use the fact that for any permutation group G not con-
taining An, |Sn : G| ≥ n [Wie64] to conclude that An is not isomorphic to
the invariance group aut(f) of any f ∈ Bn. However, An is isomorphic to
the invariance group aut(f) for some boolean function f ∈ Bn(log n+1) (see
Theorem 3.2.4).

Exercise 3.11.3. One can generalize the notion of invariance group for any
language L ⊆ (k + 1)∗ by setting Ln = L ∩ {0, . . . , k}n and aut(Ln) to be
the set of permutations σ ∈ Sn such that

∀x1, . . . , xn ∈ {0, 1, . . . , k}(x1, . . . , xk ∈ Ln ⇐⇒ xσ(1), . . . , xσ(n) ∈ Ln).

3.11 Exercises 195

Show that for all n, there exist groups Gn ≤ Sn which are strongly repre-
sentable as Gn = aut(Ln) for some L ⊆ {0, 1, . . . , n− 1}n but which are not
so representable for any language L′ ⊆ {0, 1, . . . , n− 2}n.
Hint: The alternating group An = aut(Ln), where Ln = {w ∈ {0, . . . , n −
1}n : σw ∈ An}, where σw : i �→ w(i − 1) + 1. By a variant of the previous
argument, An is not so representable by any language L′ ⊆ {0, 1, . . . , n−2}n.

Exercise 3.11.4. Compared to the difficulties regarding the question of rep-
resenting permutation groups G ≤ Sn in the form G = aut(f), for some
f ∈ Bn, it is interesting to note that a similar representation theorem for
the groups S(x) = {σ ∈ Sn : xσ = x}, where x ∈ 2n, is relatively easy. It
turns out that these last groups are exactly the permutation groups which
are isomorphic to Sk × Sn−k for some k.
Hint: Given x ∈ 2n let

X = {i : 1 ≤ i ≤ n and xi = 0}, Y = {i : 1 ≤ i ≤ n and xi = 1}.

It is then easy to see that S(x) is isomorphic to SX × SY . In fact, σ ∈ S(x)
if and only if Xσ = X and Y σ = Y .

Exercise 3.11.5. Notice the importance of assuming m < n in the definition
of weak representability. If m = n were allowed then every permutation group
would be weakly representable.
Hint: Given any permutation group G ≤ Sn define the function f as follows:

f(x1, . . . , xn) =

{
0 if (x1, . . . , xn) ∈ G
1 otherwise

(here, we think of (x1, . . . , xn) as the function i→ xi in nn) and notice that
for all σ ∈ Sn, σ ∈ aut(f) if and only if ∀τ ∈ Sn(τ ∈ G⇔ τσ ∈ G). Hence
G = aut(f), as desired.

Exercise 3.11.6. Incidentally, it is not known if the n(1+log n) upper bound
of Theorem 3.2.4 can be improved. However the idea of the proof of Theo-
rem 3.2.4 can also be used to show that for any alphabet Σ, if L ⊆ Σn

then autn(L) (the set of permutations in Sn “respecting” the language L) is
isomorphic to autns(L′), for some L′ ⊆ {0, 1}ns, where s = 1 + log |Σ|.

Exercise 3.11.7. The well-known graph non-isomorphism problem (ngip)
is related to the above group representation problem. Indeed, let

G = ({v1, . . . , vn}, EG), H = ({u1, . . . , un}, EH)

be two graphs each on vertices and let ISO(G,H) ≤ Sn+3 have generators σ
satisfying:

∀1 ≤ i, j ≤ n(EG(vi, vj) ⇔ EH(uσ(i), uσ(j))),

196 3. Circuit Upper Bounds

and in addition the permutation n + i → σ(n + i), i = 1, 2, 3, belongs to
the group C3 = (n + 1, n + 2, n + 3). It is easy to show that if G, H are
isomorphic then there exists a group K ≤ Sn such that ISO(G,H) = K×C3.
On the other hand, if G, H are not isomorphic then ISO(G, H) = 〈idn+3〉.
As a consequence of the non-representability of C3, and the representability
theorem of direct products, it follows that G,H are not isomorphic if and
only if ISO(G,H) = 〈idn+3〉.

Exercise 3.11.8. An idea similar to that used in the proof of the representa-
tion theorem can also be used to show that for any representable permutation
groups G < H ≤ Sn,

2 · |{h ∈ Bn : H = aut(h)}| ≤ |{g ∈ Bn : G = aut(g)}|.

Hint: Assume that G,H are as above. Without loss of generality we may
assume that there is no representable group K such that G < K < H. As
in the proof of the representation theorem there exist x, y ∈ 2n such that
x = y mod H,x �= y mod G. Define two boolean functions hb ∈ Bn, b = 0, 1,
as follows for w ∈ 2n,

hb(w) =

h(w) if w �= x mod G,w �= y mod G

b if w = x mod G

b if w = y mod G

Since G ≤ aut(hb) < S(h), it follows from the above definition that each
h ∈ Bn with H = aut(h) gives rise to two distinct hb ∈ Bn, b = 0, 1, such
that G = aut(hb). Moreover it is not difficult to check that the mapping
h→ {h0, h1}, where H = aut(h), is 1-1. It is now easy to complete the proof
of the assertion.

Exercise 3.11.9. (�) Prove all the assertions made in Section 3.3.

Exercise 3.11.10. The automorphism group of a directed graph may not
be 2-representable.
Hint: Look at the cyclic groups C3, C4, C5 from Section 3.3.

Exercise 3.11.11. In this exercise we develop representability theorems for
wreath products of permutation groups. For details on proofs the reader may
consult [Kis99], [CK91]. Let G ≤ Sm, H ≤ Sn. Then

1. (�) G and H are k-representable ⇒ G 'H is k-representable.
2. G 'H is 2-representable ⇒ H is representable.
3. G 'H is 2-representable and 2n < m ⇒ G is weakly representable.
4. For p prime, a p-Sylow subgroup P of Sn is representable ⇔ p �= 3, 4, 5.

Exercise 3.11.12. It is easy to see that in general |Sn : G| and Θn(G)
can diverge widely. For example, let f(n) = n − log n and let G be the

3.11 Exercises 197

group {σ ∈ Sn : ∀i > f(n)(σ(i) = i)}. It is then clear that Θn(G) =
(f(n) + 1) · 2logn is of order n2, while |Sn : G| is of order nlogn. Another
simpler example is obtained when G is the identity subgroup of Sn.

Exercise 3.11.13. The converse of part (1) of the Theorem 3.11.11 is not
necessarily true. This is easy to see from the wreath product A3 'S2 which is
representable, but that A3 is not.
Hint: Consider the language

L = {001101, 010011, 110100, 001110, 100011, 111000} ⊆ 26.

We already proved that A3 is not representable. We claim that A3 ' S2 =
aut6(L). Consider the 3-cycle τ = ({1, 2}, {3, 4}, {5, 6}). It is easy to see
A3 'S2 consists of the 24 permutations σ in S6 which permute the two-element
sets {1, 2}, {3, 4}, {5, 6} like in the three-cycles τ, τ2, τ3. A straightforward
(but tedious) computation shows that aut6(L) also consists of exactly the
above 24 permutations.

Exercise 3.11.14. Another class of examples of nonrepresentable groups is
given by the direct products of the form Am × G, G × Am, where G is any
permutation group acting on a set which is disjoint from {1, 2, . . . ,m}, m ≥ 3.

Exercise 3.11.15 (Open Problem). At present, we do not know how to
efficiently test the representability of arbitrary abelian groups (or other nat-
ural classes of groups such as solvable, nilpotent, etc.)

Exercise 3.11.16. If a given abelian group K can be decomposed into dis-
joint cyclic factors, then we have the following nc algorithm for testing rep-
resentability: (1) use an nc algorithm [BLS87], [MC85], [Mul86] to “factor”
K into its cyclic factors and then (2) apply the “cyclic-group” algorithm to
each of the cyclic factors of K. In view of the result below the group K is
representable exactly when each of its disjoint, cyclic factors is.

1. Let G ≤ Sm, H ≤ Sn be permutation groups. ThenG×H is representable
⇔ both G, H are representable.

Exercise 3.11.17. (�) Show that

1. there is no regular language L such that for all but a finite number of n
we have that aut2n(L) = (S2n){1,2,...,n}.

2. there is a regular language L such that for all n we have that aut2n(L) =
(S2n){2i:i≤n/2}.

Exercise 3.11.18. The group Sn is generated by the cyclic permutation
cn = (1, 2, . . . , n) and the transposition τ = (1, 2) (in fact any transposition
will do) [Wie64].

198 3. Circuit Upper Bounds

Exercise 3.11.19 ([CK91]). (�) Consider a term t(x, y) built up from the
variables x, y by concatenation The number of occurrences of x and y in
the term t(x, y) is called the length of t and is denoted by |t|. For any per-
mutations σ, τ let the permutation t(σ, τ) be obtained from the term t(x, y)
by substituting each occurrence of x, y by σ, τ , respectively, and interpreting
concatenation as product of permutations. A sequence σ = 〈σn : n ≥ 1〉 of
permutations is term-generated by the permutations cn, τ if there is a term
t(x, y) such that for all n ≥ 2, σn = t(cn, τ). Show that

1. Let σ = 〈σn : n ≥ 1〉 be a sequence of permutations which is term-
generated by the permutations cn = (1, 2, . . . , n), τ = (1, 2). Then for
any regular language L, Lσ is also regular.

2. For any term t of length |t| the problem of testing whether for a regular
language L, L = Lσ, where σ = 〈σn : n ≥ 1〉 is a sequence of permuta-
tions generated by the term t via the permutations cn = (1, 2, . . . , n), τ =
(1, 2), is decidable; in fact it has complexity O(2|t|).

Exercise 3.11.20 ([Cla91]). Prove Theorem 3.6.2.
Hint: Show that if A is not the identity matrix then the number of orbits of
A in GL(n, 2) is at most 2n−1 + 2n−2 = 3 · 2n−2 .

Exercise 3.11.21 ([FKPS85]). (�) Besides equality, the language of graph
theory has a single binary relation I. The axioms of the theory of loopless,
undirected graphs LUG are: ∀x¬I(x, x) and ∀x, y(I(x, y) ↔ I(y, x)). For
arbitrary but fixed 0 < p < 1, let Gn = (V,E) run over random graphs of
n nodes such that Pr[(i, j) ∈ E] = p. Let φr,s denote the sentence: for any
distinct x1, . . . , xr, y1, . . . , ys there is an x adjacent to all the xis and none of
the yis. Show that

1. any two models of LUG satisfying all sentences φr,s are isomorphic,
2. the set {φr,s} is complete,
3. limn→∞ Pr[Gn |= φr,s] = 1,
4. for any sentence φ of LUG, limn→∞ Pr[Gn |= φ = 0 or 1.

Exercise 3.11.22. For any language L and any sequence σ = 〈σn : n ≥ 1〉
of permutations such that each σn ∈ Sn we define the language Lσn = {x ∈
2n : xσn ∈ Ln}. For each n let Gn ≤ Sn and put G = 〈Gn : n ≥ 1〉.
Define LG =

⋃
σn∈Gn

Lσn
n . For each 1 ≤ k ≤ ∞ let Fk be the class of

functions nc log(k) n, c > 0, where log(1) n = log n, log(k+1) n = log log(k) n,
and log(∞) n = 1. Clearly, F∞ is the class P of polynomial functions. We
also define F0 as the class of functions 2cn, c > 0. Let L(Fk) be the set
languages L ⊆ {0, 1}∗ such that there exists a function f ∈ Fk satisfying
∀n(|Sn : autn(L)| ≤ f(n)). We will also use the notation L(EXP) and L(P)
for the classes L(F0) and L(F∞), respectively. Show that

1. for any 0 ≤ k ≤ ∞ and any language L ∈ L(Fk),
2. L(Fk) is closed under boolean operations and homomorphisms,

3.11 Exercises 199

3. (L ·Σ) ∈ L(Fk),
4. Lσ ∈ L(Fk), where σ = 〈σn : n ≥ 1〉, with each σn ∈ Sn,
5. if |Sn : NSn

(Gn)| ≤ f(n) and f ∈ Fk then LG ∈ L(Fk), where G =
〈Gn : n ≥ 1〉.

6. L ∈ L(P) and p ∈ P⇒ |Sp(n) : Sp(n)(L)| = nO(1).
7. L1, L2 ∈ L(EXP)⇒ L = {xy : x ∈ L1, y ∈ L2, l(x) = l(y)} ∈ L(EXP).
8. L(F∞) = L(P) ⊂ . . . ⊂ L(Fk+1) ⊂ L(Fk) ⊂ · · · ⊂ L(EXP) = L(F0),
9. REG ∩ L(P) �= ∅, REG− L(EXP) �= ∅, L(P)−REG �= ∅.

Exercise 3.11.23. A family 〈pn : n ≥ 1〉 of multivariate polynomials in the
ring Z2[x1, . . . , xn] is of polynomial index if |Sn : aut(pn)| = nO(1). Show that
for such a family of multivariate polynomials there is a family 〈qn : n ≥ 1〉 of
multivariate polynomials (in Z2[x1, . . . , xn]) of polynomial length such that
pn = qn.

Exercise 3.11.24. Because of the limitations of families of groups of poly-
nomial index proved in the claim above, we obtain a generalization of the
principal results of [FKPS85]. Namely, for L ⊆ {0, 1}∗ let µL(n) be the
least number of input bits which must be set to a constant in order for
the resulting language Ln = L ∩ {0, 1}n to be constant (see [FKPS85] for
more details). Then we can prove the following result. If L ∈ L(P) then
µL(n) ≤ (log n)O(1) ⇐⇒ L ∈ ac

0.

Exercise 3.11.25. Our characterization of permutation groups of polyno-
mial index given during the proof of Theorem 3.7.3 can also be used to de-
termine the parallel complexity of the following problem concerning “weight-
swapping”. Let G = 〈Gn : n ∈ N〉 denote a sequence of permutation groups
such that Gn ≤ Sn, for all n. By SWAP(G) we understand the following
problem:

Input. n ∈ N, a1, . . . , an positive rationals, each of whose (binary) repre-
sentations is of length at most n.
Output. A permutation σ ∈ Gn such that for all 1 ≤ i ≤ n, aσ(i) +
aσ(i+1) ≤ 2, if such a permutation exists, and the response “NO” otherwise.

Show that for any sequence G of permutation groups of polynomial index,
the problem SWAP(G) is in non-uniform nc

1.

Exercise 3.11.26. Deduce from the proof of Theorem 2.2.1 that the number
of boolean functions f ∈ Bn which can be computed by a circuit of size s
with n input gates is O(s2s).

Exercise 3.11.27. For any sequence G = 〈Gn : n ≥ 1〉 of permutation
groups Gn ≤ Sn it is possible to find a language L such that

L �∈ SIZE(
√
Θ(Gn)), and ∀n(aut(Ln) ⊇ Gn).

Hint: By Exercise 3.11.26 |{f ∈ Bn : c(f) ≤ q}| = O(q2q) = 2O(q log q),
where c(f) is the size of a circuit with minimal number of gates computing

200 3. Circuit Upper Bounds

f . Hence, if qn →∞ then |{f ∈ Bn : c(f) ≤ qn}| < 2q
2
n . In particular, setting

qn =
√
Θ(Gn) we obtain

|{f ∈ Bn : c(f) ≤
√
Θ(Gn)}| < 2Θ(Gn) = |{f ∈ Bn : aut(f) ⊇ Gn}|.

It follows that for n big enough there exists an fn ∈ Bn such that aut(fn) ⊇
Gn and c(fn) >

√
Θ(Gn).

Exercise 3.11.28. In this exercise we develop the notion of structure forest
used extensively in Section 3.7

1. A structure tree for a transitive permutation group G acting on Ω can
be constructed as follows. Take a strictly decreasing sequence

B0 := Ω ⊃ B1 ⊃ · · · ⊃ Br−1 ⊃ Br = {x},

of blocks of G with B0 := Ω and Br a singleton. Then the blocks {Bσi :
i = 0, . . . , r, σ ∈ G} form a tree with respect to inclusion whose root
is Ω and leaves are the singletons {x}, where x ∈ Ω. Each element of
the i-th level, denoted by Li, of this tree, can be written as the disjoint
union of elements of the i + 1st level. The number of elements of this
union is a constant ki which is independent of the level i. Moreover,
|{Li}| = k0k1 · · · ki−1. In particular, n = |{Lr+1}| = k0k1 · · · kr.

2. For each block B let G{B} = {σ ∈ G : Bσ = B} be the stabilizer of B. Let
L(B) denote the action of G{B} on B. Let B be the set of blocks which
are sons of B in the above structure tree. Denote by H(B) the action of
G{B} on B. Then we have that L(B) ≤ Sym(B), H(B) ≤ Sym(B). Show
that the groups G{B} of each level are conjugate of each other.

3. For each i let Ki stand for the pointwise stabilizer of level i, i.e.,

Ki = {σ ∈ G : ∀B ∈ Li(Bσ = B)}

Show that Ki is a normal subgroup of G and G
Ki
≤ Sym(Li).

Hint: For any groups N ≤M consider the set C of left cosets of N with
respect to M . Show that the kernel of the homomorphism m → mN is⋂
m∈M m−1Nm which is also the largest normal subgroup ofM contained

in N .
4. Show that for B ∈ Li, Ki ≤ L(B)|Li|, G ≤ L(B) ' (G/Ki).
5. If the group is not transitive break-up Ω into disjoint orbits. The action

of the group on each of these orbits gives rise to a structure tree. The
totality of these trees is called a structure forest.

Exercise 3.11.29 (Open Problem). For every permutation group G ≤
Sn let kn(G) denote the smallest integer k such that G is isomorphic to the
invariance group of f . By Theorem 3.2.4, k(G)n(1+log n). Determine tighter
bounds.

3.11 Exercises 201

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

1

2

3

000
1
11
1101
11010100

100
1
11
1110
11101000

010
0
01
0111
01110001

110
1
10
1011
10110010

001
0
01
0100
01001101

101
1
10
1000
10001110

011
0
00
0001
00010111

111
0
00
0010
00101011

Fig. 3.3. Executing the O(N2) algorithm on a three-dimensional hypercube

Exercise 3.11.30 (Open Problem). Rnk is the class of k-representable
permutation groups on n letters. It is clear that Rnk ⊆ Rnk+1. Is Rnk a proper
hierarchy?

Exercise 3.11.31.
(1) Consider the three-dimensional hypercube depicted in Figure 3.3 with the
input indicated. Let us trace the behavior of the algorithm on the given input
for the bottom-left processor, say p = 000. Let p1 = 100, p2 = 010, p3 = 001
be the neighbors of p along dimensions 1, 2, 3, respectively. Following the
algorithm the successive views of processor p are

I0
p = 1
I1
p = I0

pI
0
p1 = 11

I2
p = I1

pI
1
p2 = 1101

I3
p = I2

pI
2
p3 = 11010100.

(2) Let bp denote the input bit to processor p. A similar reasoning shows
that I3

111 = 00101011. We can show that I3
000, I

3
111 are identical up to auto-

morphism. Indeed, take the unique automorphism which maps 000 into 111,

202 3. Circuit Upper Bounds

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

1

2

3

000
0
00
0011
00111100

100
0
00
0011
00111100

010
1
11
1100
11000011

110
1
10
1011
11000011

001
1
11
1100
11000011

101
1
11
1100
11000011

011
0
00
0011
00111100

111
0
00
0011
00111100

Fig. 3.4. Example illustrating the coding of views

namely φ = φ{1,2,3}. Then we have

I3
000 = b000b100b010b110b001b101b011b111

= 11010100
and
I3
111 = bφ(000)bφ(100)bφ(010)bφ(110)bφ(001)bφ(101)bφ(011)bφ(111)

= b111b011b101b001b110b010b100b000

= 00101011.

Exercise 3.11.32. (1) Consider a three-dimensional hypercube with input
as depicted in Figure 3.3. After the third iteration of the algorithm the view
of processor 000 is I3

000 = 11010100. From its view I3
000 the processor 000

can reconstruct the views of all other processors. 000 is the only processor
with this view. The group G = {φ : I3

000 = I3
φ(000)} defined by Equation

(3.6) is easily seen to be the trivial identity group generated by the identity
automorphism e. The group has a natural action on the set of processors and
gives rise to eight orbits:

3.11 Exercises 203

{000}, {100}, {011}, {111}, {010}, {110}, {101}, {100}

Now the code for processor 000 is 〈11010100, e〉.
(2) Consider a three-dimensional hypercube with input as depicted in Figure
3.4. After the third iteration of the algorithm the view of processor 000 is
I3
000 = 00111100. From its view I3

000 the processor 000 can reconstruct the
views of all other processors. There are four processors with this view, namely
000, 100, 011, 111. The group G = {φ : I3

000 = I3
φ(000)} defined by Equation

(3.6) is easily seen to be generated by the automorphisms φ{1}, φ{2,3} and has
size exactly 4 = 22. The group has a natural action on the set of processors
and gives rise to two orbits: {000, 100, 011, 111}, {001, 101, 010, 110}. Now the
code for processor 000 is 〈01, φ{1}, φ{2,3}〉, where 0 is the input bit of processor
000 and 1 is the input bit of processor 010.
(3) Here is how the decoding algorithm works. Suppose that a proces-
sor receives the code 〈01, φ{1}, φ{2,3}〉. The processor constructs the orbit
of the lexicographically minimal processor, namely 000. This is the orbit
{000, 100, 011, 111}. Since b000 = 0 we know that

b000 = b100 = b011 = b111 = 0.

The remaining processors also form an orbit and the lexicographically mini-
mal processor among them is 001. Since b001 = 1 we know that

b001 = b101 = b010 = b110 = 1.

Hence the decoded view of the processor is 00111100, as desired.

Exercise 3.11.33. The input configuration depicted in Figure 3.3 has a sin-
gle leader, namely processor 100 with view 11101000. The input configuration
depicted in Figure 3.4 has four leaders, namely 100, 110, 011, 101 with view
11000011. Notice that all processors can check from their view who and where
the leaders are with respect to themselves. Now assume that the configura-
tion depicted in Figure 3.3 is in the left-most hypercube in Figure 3.1 and the
configuration depicted in Figure 3.4 is in the right-most hypercube in Figure
3.1. It is now clear that if the leaders of the corresponding three-dimensional
hypercubes transmit their encoded views along dimension 4 all the processors
of the four dimensional hypercube will be able to form views of the entire
four dimensional hypercube.

Exercise 3.11.34 ([KK97]). On the canonically labeled hypercube Qn, ev-
ery symmetric function can be computed in O(N · log2N) bits. Moreover the
threshold function Thk can be computed in O(N · logN · log k) bits, where
k ≤ N .

Exercise 3.11.35 ([KK92]). (�) Theorem 3.9.4 generalizes to arbitrary
anonymous Cayley networks.

204 3. Circuit Upper Bounds

1. Show that if G is a set of generators for a group G then a boolean function
f is computable on the naturally labeled Cayley network NG[LG] if and
only if f is invariant under all automorphisms of the network.

2. The bit complexity of computing all boolean functions which are com-
putable on NG[LG] is O(|G| · log2 |G| · δ2 ·

∑
g∈G |g|2), where δ is the

diameter of the network, and |g| the order of g in G.
3. For any group G there is a set G of generators of G such that the above

bit-complexity is O(|G|3 · log4 |G|).
4. Contrast the classes of boolean functions computable on labeled and

unlabeled Cayley networks.

Exercise 3.11.36. In this exercise we refer to the anonymous ring on N
processors.

1. Show that orN requires Ω(N2) bits on the anonymous ring.
2. (�) ([MW86]) Non-constant boolean functions on N variables which

are computable on an anonymous ring (oriented or not) of size N require
Ω(N logN) bits.
Hint: First consider the case of oriented rings. Consider an arbitrary
algorithm A computing a given non-constant boolean function f on N
variables. Let S be the set of inputs w accepted by A, i.e., such that
f(w) = 1. We prove the lower bound for the synchronous ring (in which
case it will be valid for the asynchronous case as well). Show that
(a) if algorithm A rejects 0N but accepts 0nw, for some word w, then A

requires at least N�n/2� messages in order to reject 0N , and
(b) the average length of k pairwise distinct words w1, . . . , wk on an

alphabet of size r is > logr(k/2)
2 .

Without loss of generality assume that 0N is rejected. Assume that all
processors terminate before time t when the input to A is ω, where ω is
a word in S. Let hi(s) denote the history of processor pi, i.e., hi(s) =
mi(1)$ · · · $mi(k), where $ is a special symbol and mi(1), . . . ,mi(k) are
the messages received by pi before time s in this order. Then Hi = hi(t) is
the total history of pi (on this computation). Since the length of Hi is less
than twice the number of bits received by pi a lower bound on the sum of
the lengths of the histories of the processors implies a lower bound on the
bit complexity of algorithm A. Now to obtain the desired lower bound
Ω(N logN) we construct either an input with logN consecutive 0s (in
which case part (a) applies) or else an input under whose execution the
algorithm gives rise to at least N logN processors with distinct histories
(in which case part (b) applies).

3. (�) [[ASW88]] Assume N is odd and N = 2n + 1. Define fN (x) = 1 if
x is either 0(01)n or a cyclical shift of it, and 0 otherwise. Show that fN
can be computed in O(N) messages.

4. (�) [[MW86]] There is a family {fN} of boolean functions computable
with message complexity O(N log∗N). Use this to construct a family

3.11 Exercises 205

of boolean functions computable with bit complexity O(N logN). This
shows that the lower bound of part (2) is optimal.

