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Preface

We wrote this book to introduce graduate students and research workers in
various scientific disciplines to the use of information-theoretic approaches in
the analysis of empirical data. These methods allow the data-based selection
of a “best” model and a ranking and weighting of the remaining models in
a pre-defined set. Traditional statistical inference can then be based on this
selected best model. However, we now emphasize that information-theoretic
approaches allow formal inference to be based on more than one model (mul-
timodel inference). Such procedures lead to more robust inferences in many
cases, and we advocate these approaches throughout the book.

The second edition was prepared with three goals in mind. First, we have
tried to improve the presentation of the material. Boxes now highlight essen-
tial expressions and points. Some reorganization has been done to improve the
flow of concepts, and a new chapter has been added. Chapters 2 and 4 have
been streamlined in view of the detailed theory provided in Chapter 7. Sec-
ond, concepts related to making formal inferences from more than one model
(multimodel inference) have been emphasized throughout the book, but par-
ticularly in Chapters 4, 5, and 6. Third, new technical material has been added
to Chapters 5 and 6. Well over 100 new references to the technical literature
are given. These changes result primarily from our experiences while giving
several seminars, workshops, and graduate courses on material in the first edi-
tion. In addition, we have done substantially more thinking about the issue and
reading the literature since writing the first edition, and these activities have
led to further insights.

Information theory includes the celebrated Kullback–Leibler “distance” be-
tween two models (actually, probability distributions), and this represents a
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fundamental quantity in science. In 1973, Hirotugu Akaike derived an estima-
tor of the (relative) expectation of Kullback–Leibler distance based on Fisher’s
maximized log-likelihood. His measure, now called Akaike’s information cri-
terion (AIC), provided a new paradigm for model selection in the analysis of
empirical data. His approach, with a fundamental link to information theory,
is relatively simple and easy to use in practice, but little taught in statistics
classes and far less understood in the applied sciences than should be the case.

We do not accept the notion that there is a simple “true model” in the biolog-
ical sciences. Instead, we view modeling as an exercise in the approximation
of the explainable information in the empirical data, in the context of the data
being a sample from some well-defined population or process. Rexstad (2001)
views modeling as a fabric in the tapestry of science. Selection of a best ap-
proximating model represents the inference from the data and tells us what
“effects” (represented by parameters) can be supported by the data. We focus
on Akaike’s information criterion (and various extensions) for selection of a
parsimonious model as a basis for statistical inference. Model selection based
on information theory represents a quite different approach in the statistical
sciences, and the resulting selected model may differ substantially from model
selection based on some form of statistical null hypothesis testing.

We recommend the information-theoretic approach for the analysis of data
from observational studies. In this broad class of studies, we find that all the var-
ious hypothesis-testing approaches have no theoretical justification and may
often perform poorly. For classic experiments (control–treatment, with ran-
domization and replication) we generally support the traditional approaches
(e.g., analysis of variance); there is a very large literature on this classic subject.
However, for complex experiments we suggest consideration of fitting explana-
tory models, hence on estimation of the size and precision of the treatment
effects and on parsimony, with far less emphasis on “tests” of null hypothe-
ses, leading to the arbitrary classification “significant” versus “not significant.”
Instead, a strength of evidence approach is advocated.

We do not claim that the information-theoretic methods are always the very
best for a particular situation. They do represent a unified and rigorous theory,
an extension of likelihood theory, an important application of information
theory, and they are objective and practical to employ across a very wide class of
empirical problems. Inference from multiple models, or the selection of a single
“best” model, by methods based on the Kullback–Leibler distance are almost
certainly better than other methods commonly in use now (e.g., null hypothesis
testing of various sorts, the use of R2, or merely the use of just one available
model). In particular, subjective data dredging leads to overfitted models and
the attendant problems in inference, and is to be strongly discouraged, at least
in more confirmatory studies.

Parameter estimation has been viewed as an optimization problem for at
least eight decades (e.g., maximize the log-likelihood or minimize the residual
sum of squared deviations). Akaike viewed his AIC and model selection as
“. . . a natural extension of the classical maximum likelihood principle.” This
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extension brings model selection and parameter estimation under a common
framework—optimization. However, the paradigm described in this book goes
beyond merely the computation and interpretation of AIC to select a parsimo-
nious model for inference from empirical data; it refocuses increased attention
on a variety of considerations and modeling prior to the actual analysis of data.
Model selection, under the information-theoretic approach presented here, at-
tempts to identify the (likely) best model, orders the models from best to
worst, and produces a weight of evidence that each model is really the best as
an inference.

Several methods are given that allow model selection uncertainty to be incor-
porated into estimates of precision (i.e., multimodel inference). Our intention
is to present and illustrate a consistent methodology that treats model formu-
lation, model selection, estimation of model parameters and their uncertainty
in a unified manner, under a compelling common framework. We review and
explain other information criteria (e.g., AICc, QAICc, and TIC) and present
several examples to illustrate various technical issues, including some com-
parisons with BIC, a type of dimension consistent criterion. In addition, we
provide many references to the technical literature for those wishing to read
further on these topics.

This is an applied book written primarily for biologists and statisticians
using models for making inferences from empirical data. This is primarily a
science book; we say relatively little about decision making in management or
management science. Research biologists working either in the field or in the
laboratory will find simple methods that are likely to be useful in their investi-
gations. Researchers in other life sciences, econometrics, the social sciences,
and medicine might also find the material useful but will have to deal with
examples that have been taken largely from ecological studies of free-ranging
vertebrates, as these are our interests. Applied statisticians might consider the
information-theoretic methods presented here quite useful and a superior alter-
native to the null hypothesis testing approach that has become so tortuous and
uninformative. We hope material such as this will find its way into classrooms
where applied data analysis and associated science philosophy are taught. This
book might be useful as a text for a course for students with substantial expe-
rience and education in statistics and applied data analysis. A second primary
audience includes honors or graduate students in the biological, medical, or
statistical sciences. Those interested in the empirical sciences will find this ma-
terial useful because it offers an effective alternative to (1) the widely taught,
yet often both complex and uninformative, null hypothesis testing approaches
and (2) the far less taught, but potentially very useful, Bayesian approaches.

Readers should ideally have some maturity in the quantitative sciences and
experience in data analysis. Several courses in contemporary statistical theory
and methods as well as some philosophy of science would be particularly use-
ful in understanding the material. Some exposure to likelihood theory is nearly
essential, but those with experience only in least squares regression modeling
will gain some useful insights. Biologists working in a team situation with
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someone in the quantitative sciences might also find the material to be use-
ful. The book is meant to be relatively easy to read and understand, but the
conceptual issues may preclude beginners. Chapters 1–4 are recommended for
all readers because they provide the essential material, including concepts of
multimodel inference. Chapters 5 and 6 present more difficult material and
some new research results. Few readers will be able to absorb the concepts
presented here after just one reading of the material; some rereading and ad-
ditional consideration will often be necessary to understand the deeper points.
Underlying theory is presented in Chapter 7, and this material is much deeper
and more mathematical. A high-level summary of the main points of the book
is provided in Chapter 8.

We intend to remain active in this subject area after this second edition has
been published, and we invite comments from colleagues as an ideal way to
learn more and understand differing points of view. We hope that the text does
not appear too dogmatic or idealized. We have tried to synthesize concepts that
we believe are important and incorporate these as recommendations or advice
in several of the chapters. This book is an effort to explore the K-L–based
multimodel inference in some depth. We realize that there are other approaches,
and that some people may still wish to test null hypotheses as the basis for
building models of empirical data, and that others may have a more lenient
attitude toward data dredging than we advocate here. We do not want to deny
other model selection methods, such as cross-validation, nor deny the value
of Bayesian methods. Indeed, we just learned (March, 2002) that AIC can be
derived as a Bayesian result and have added a note on this issue while reviewing
the final page proofs (see Section 6.4.5). However, in the context of objective
science, we are compelled by the a priori approach of building candidate models
to represent research hypotheses, the use of information-theoretic criteria as
a basis for selecting a best approximating model; model averaging, or other
multimodel inference methods, when truth is surely very complex; the use of
likelihood theory for deriving parameter estimators; and incorporating model
selection uncertainty into statistical inferences. In particular, we recommend
moving beyond mere selection of a single best model by using concepts and
methods of multimodel inference.

Several people have helped us as we prepared the two editions of this book.
In particular, we acknowledge C. Chatfield, C. Hurvich, B. Morgan, D. Otis,
J. Rotella, R. Shibata, and K. Wilson for comments on earlier drafts of the
original manuscript. We are grateful to three anonymous reviewers for com-
ments that allowed us to improve the first edition. D. Otis and W. Thompson
served as the reviewers for the second edition and offered many suggestions
that were helpful; we greatly appreciate their excellent suggestions. Early dis-
cussions with S. Buckland, R. Davis, R. Shibata, and G. White were very
useful. S. Beck, K. Bestgen, D. Beyers, L. Ellison, A. Franklin, W. Gasaway,
B. Lubow, C. McCarty, M. Miller, and T. Shenk provided comments and in-
sights as part of a graduate course on model selection methods that they took
from the authors. C. Flather allowed us to use his data on species accumu-
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lation curves as our first example, and we thank C. Braun and the Colorado
Division of Wildlife for the data on sage grouse; these data were analyzed
by M. Zablan under the supervision of G. White. C. Southwell allowed us to
use his kangaroo data from Wallaby Creek. P. Lukacs conducted the bootstrap
analysis and some of the Monte Carlo studies of the body fat data in Chapter 5.
J. Kullback allowed us to use a photo of his father, and H. Akaike, R. Leibler,
R. Shibata, and K. Takeuchi kindly sent us photos and biographical material
that appear in the book. Chelsea Publishing Company allowed our use of the
photo of L. Boltzmann from the book Wissenschaftliche Abhandlungen von
Ludwig Boltzmann, and the International Biometric Society authorized our
use of a photo of R. Fisher (from Biometrics 1964, taken in 1946 by A. Nor-
ton). J. Barandun provided the toad photos for the cover, K. Allred provided
the cover design, and B. Schmidt helped in coordination. C. Dion, R. Fulton,
S. Kane, B. Klein, A. Lyman, and T. Sundlov helped obtain library materials.
J. Kimmel and L. Farkas helped in countless ways as we prepared both editions
of this book.

We are happy to acknowledge the long-term cooperators of the Colorado Co-
operative Fish and Wildlife Research Unit: the Colorado Division of Wildlife,
Colorado State University, the Biological Resources Division of the U.S. Geo-
logical Survey, and the Wildlife Management Institute. Graduate students and
faculty within the Department of Fisheries and Wildlife Biology at Colorado
State University provided a forum for our interests in the analysis of empir-
ical data. We extend our appreciation to several federal agencies within the
Department of the Interior, particularly the U.S. Geological Survey, for their
support of our long-term research interests.

Fort Collins, Colorado Kenneth P. Burnham
David R. Anderson

January 2002
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6.5.3 Model Goodness-of-Fit After Selection . . . . . . . 309

6.6 AIC and Random Coefficient Models . . . . . . . . . . . . 310
6.6.1 Basic Concepts and Marginal

Likelihood Approach . . . . . . . . . . . . . . . . 310
6.6.2 A Shrinkage Approach to AIC and

Random Effects . . . . . . . . . . . . . . . . . . . 313
6.6.3 On Extensions . . . . . . . . . . . . . . . . . . . . 316

6.7 Selection When Probability Distributions Differ
by Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
6.7.1 Keep All the Parts . . . . . . . . . . . . . . . . . . 317
6.7.2 A Normal Versus Log-Normal Example . . . . . . 318
6.7.3 Comparing Across Several Distributions:

An Example . . . . . . . . . . . . . . . . . . . . . 320
6.8 Lessons from the Literature and Other Matters . . . . . . . 323

6.8.1 Use AICc, Not AIC, with Small Sample Sizes . . . 323
6.8.2 Use AICc, Not AIC, When K Is Large . . . . . . . 325
6.8.3 When Is AICc Suitable: A Gamma

Distribution Example . . . . . . . . . . . . . . . . 326
6.8.4 Inference from a Less Than Best Model . . . . . . 328
6.8.5 Are Parameters Real? . . . . . . . . . . . . . . . . 330
6.8.6 Sample Size Is Often Not a Simple Issue . . . . . . 332
6.8.7 Judgment Has a Role . . . . . . . . . . . . . . . . 333

6.9 Tidbits About AIC . . . . . . . . . . . . . . . . . . . . . . 334
6.9.1 Irrelevance of Between-Sample Variation

of AIC . . . . . . . . . . . . . . . . . . . . . . . . 334
6.9.2 The G-Statistic and K-L Information . . . . . . . . 336
6.9.3 AIC Versus Hypothesis Testing: Results Can Be

Very Different . . . . . . . . . . . . . . . . . . . . 337
6.9.4 A Subtle Model Selection Bias Issue . . . . . . . . 339
6.9.5 The Dimensional Unit of AIC . . . . . . . . . . . . 340
6.9.6 AIC and Finite Mixture Models . . . . . . . . . . . 342
6.9.7 Unconditional Variance . . . . . . . . . . . . . . . 344
6.9.8 A Baseline for w+(i) . . . . . . . . . . . . . . . . 345

6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 347



Contents xix

7 Statistical Theory and Numerical Results 352
7.1 Useful Preliminaries . . . . . . . . . . . . . . . . . . . . . 352
7.2 A General Derivation of AIC . . . . . . . . . . . . . . . . 362
7.3 General K-L–Based Model Selection: TIC . . . . . . . . . 371

7.3.1 Analytical Computation of TIC . . . . . . . . . . . 371
7.3.2 Bootstrap Estimation of TIC . . . . . . . . . . . . 372

7.4 AICc: A Second-Order Improvement . . . . . . . . . . . . 374
7.4.1 Derivation of AICc . . . . . . . . . . . . . . . . . 374
7.4.2 Lack of Uniqueness of AICc . . . . . . . . . . . . 379

7.5 Derivation of AIC for the Exponential Family
of Distributions . . . . . . . . . . . . . . . . . . . . . . . 380

7.6 Evaluation of tr(J (θo)[I (θo)]−1) and Its Estimator . . . . . 384
7.6.1 Comparison of AIC Versus TIC in a

Very Simple Setting . . . . . . . . . . . . . . . . . 385
7.6.2 Evaluation Under Logistic Regression . . . . . . . 390
7.6.3 Evaluation Under Multinomially Distributed

Count Data . . . . . . . . . . . . . . . . . . . . . 397
7.6.4 Evaluation Under Poisson-Distributed Data . . . . 405
7.6.5 Evaluation for Fixed-Effects Normality-Based

Linear Models . . . . . . . . . . . . . . . . . . . . 406
7.7 Additional Results and Considerations . . . . . . . . . . . 412

7.7.1 Selection Simulation for Nested Models . . . . . . 412
7.7.2 Simulation of the Distribution of 	p . . . . . . . . 415
7.7.3 Does AIC Overfit? . . . . . . . . . . . . . . . . . 417
7.7.4 Can Selection Be Improved Based on

All the 	i? . . . . . . . . . . . . . . . . . . . . . 419
7.7.5 Linear Regression, AIC, and Mean Square Error . . 421
7.7.6 AICc and Models for Multivariate Data . . . . . . . 424
7.7.7 There Is No True TICc . . . . . . . . . . . . . . . 426
7.7.8 Kullback–Leibler Information Relationship to the

Fisher Information Matrix . . . . . . . . . . . . . . 426
7.7.9 Entropy and Jaynes Maxent Principle . . . . . . . . 427
7.7.10 Akaike Weights wi Versus Selection

Probabilities πi . . . . . . . . . . . . . . . . . . . 428
7.8 Kullback–Leibler Information Is Always ≥ 0 . . . . . . . . 429
7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

8 Summary 437
8.1 The Scientific Question and the Collection of Data . . . . . 439
8.2 Actual Thinking and A Priori Modeling . . . . . . . . . . . 440
8.3 The Basis for Objective Model Selection . . . . . . . . . . 442
8.4 The Principle of Parsimony . . . . . . . . . . . . . . . . . 443
8.5 Information Criteria as Estimates of Expected Relative

Kullback–Leibler Information . . . . . . . . . . . . . . . . 444
8.6 Ranking Alternative Models . . . . . . . . . . . . . . . . . 446



xx Contents

8.7 Scaling Alternative Models . . . . . . . . . . . . . . . . . 447
8.8 MMI: Inference Based on Model Averaging . . . . . . . . 448
8.9 MMI: Model Selection Uncertainty . . . . . . . . . . . . . 449
8.10 MMI: Relative Importance of Predictor Variables . . . . . 451
8.11 More on Inferences . . . . . . . . . . . . . . . . . . . . . 451
8.12 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . 454

References 455

Index 485



This is page 437
Printer: Opaque this

8
Summary

This book covers some philosophy about data analysis, some theory at the
interface between mathematical statistics and information theory, and some
practical statistical methodology useful in the applied sciences. In particular,
we present a general strategy for modeling and data analysis. We provide some
challenging examples from our fields of interest, provide our ideas as to what
not to do, and suggest some areas needing further theoretical development.
We side with the fast-growing ranks that see limited utility in statistical null
hypothesis testing. Finally, we provide references from the diverse literature
on these subjects for those wishing to study further.

Conceptually, there is information in the observed data, and we want to
express this information in a compact form via a “model.” Such a model rep-
resents a scientific hypothesis and is then a basis for making inferences about
the process or system that generated the data. One can view modeling of infor-
mation in data as a change in “coding” like a change in language. A concept
or emotion expressed in one language (e.g., French) loses some exactness
when expressed in another language (e.g., Russian). A given set of data has
only a finite, fixed amount of information. The (unachievable) goal of model
selection is to attain a perfect 1-to-1 translation such that no information is
lost in going from the data to a model of the information in the data. Models
are only approximations, and we cannot hope to perfectly achieve this ideal-
ized goal. However, we can attempt to find a model of the data that is best in
the sense that the model loses as little information as possible. This thinking
leads directly to Kullback–Leibler information I (f, g): the information lost
when model g is used to approximate full reality f . We wish then to select a
model that minimizes K-L information loss. Because we must estimate model
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parameters from the data, the best we can do is to minimize (estimated) ex-
pected K-L information loss. However, this can easily be done using one of the
information-theoretic criteria (e.g., AIC, AICc, QAIC, or TIC). Then a good
model allows the efficient and objective separation or filtration of information
from noise. In an important sense, we are not really trying to model the data;
instead, we are trying to model the information in the data.

While we use the notation f to represent truth or full reality, we deny
the existence of a “true model” in the life sciences. Conceptually, let f
be the process (truth) that generates the sample data we collect. We want
to make inferences about truth, while realizing that full reality will always
be beyond us when we have only sample data. Data analysis should not be
thought of as an attempt to identify f ; instead, we must seek models that are
good approximations to truth and from which therefore we can make valid
inferences concerning truth. We do not want merely to describe the data using
a model that has a very large number of parameters; instead, we want to use the
data to aid in the selection of a parsimonious model that allows valid inferences
to be made about the system or process under study. A parsimonious model,
representing a well-defended scientific hypothesis, aids in our understanding
of the system of interest.

Relatively few statistics books provide a summary of the key points made and
yet fewer provide an effective, unified strategy for data analysis and inference
where there is substantial complexity. The breadth of the technical subjects
covered here makes a summary difficult to write. Undergraduate students oc-
casionally ask the professor, “What is important for me to know for the final
examination?” The professor is typically irritated by such a question. Surely,
the student should realize that it is all important! Indeed, our interpretation of
Akaike’s pioneering work is that it is all important. The information-theoretic
paradigm is a package; each of the package’s contents is important in itself,
but it is the integration of the contents that makes for an effective philosophy, a
consistent strategy, and a practical and powerful methodology. The part of this
package that has been so frequently left out is the critical thinking, hypothesis
generation, and modeling before examination of the data; ideally, much of this
thinking should occur prior even to data collection. This is the point where
the science of the issue formally enters the overall “analysis” (Anderson and
Burnham 1999a).

The information-theoretic methods we present can be used to select a single
best model that can be used in making inferences from empirical data. AIC is
often portrayed in the literature in this simple manner. The general approach
is much richer than this simplistic portrayal of model selection might suggest.
In fact, an emphasis of this second edition is multimodel inference (MMI).
MMI has several advantages; all relate to the broad subject of model
selection uncertainty. One can easily rank alternative models (hypotheses)
from best to worst using the convenient differences 	i . The likelihood for
each model, given the data [i.e., L(gi | data)], can be easily computed, and these
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can be normalized to obtain Akaike weights (wi) which can be interpreted as
probabilities. Confidence sets of models can be defined to aid in identifying
a subset of good models. Evidence ratios are useful for comparing relative
support of one model versus another, given the data; such ratios are useful,
irrespective of other models in the set.

Model selection uncertainty can be easily quantified using Akaike weights
(the bootstrap is an alternative). Estimates of this component of uncertainty can
be incorporated into unconditional estimates of precision using several meth-
ods. For many problems (e.g., prediction) model-averaging has advantages,
and we treat this important issue in Chapters 4–5. Thus, we often recommend
formal inference from all models in the set.

For those who have scanned through the pages of this book there might be
surprise at the general lack of mathematics and formulas (Chapters 6 and
7 being the exceptions). That has been our intent. The application of the
information-theoretic methods is relatively simple. They are easy to under-
stand and use (“low tech”), while the underlying theory is quite deep (e.g.,
Chapter 7). As we wrote the book and tried to understand Akaike’s various
papers (see Parzen et al. 1998) we found the need to delve into various issues
that are generally philosophical. The science of the problem has to be brought
into modeling before one begins to rummage through the data (data dredging).
In some critical respects, applied statistics courses are failing to teach statis-
tics as an integral part of scientific discovery, with little about modeling and
model selection methods or their importance, while succeeding (perhaps) in
teaching null hypothesis testing methods and data analysis methods based on
the assumption that the model is both true and given. Sellke et al. (2001:71)
note, “The standard approach in teaching—stressing the formal definition of
a p value while warning against its misinterpretation—has simply been an
abysmal failure.” It seems necessary to greatly reduce the reporting ofP -values
(Anderson et al. 2001b and d).

8.1 The Scientific Question and the Collection of Data

The formulation of the research question is crucial in investigations into com-
plex systems and processes in the life sciences. A good answer to a poor
question is a mistake all too often seen in the published literature and is little
better than a poor answer to a poor question. Investigators need to continually
readdress the importance and quality of the question to be investigated. Good
scientific hypotheses, represented by models, must have a place at the head of
the table.

A careful program of data collection must follow from the hypotheses posed.
Particular attention should be placed on the variables to be measured and
interesting covariates. Observational studies, done well, can show patterns,
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associations, and relationships and are confirmatory in the sense that certain
issues stem from a priori considerations. More causal inference must usually
come from more formal experimentation (i.e., important confounding fac-
tors are controlled or balanced, experimental units are randomly assigned to
treatment and control groups with adequate replication), but see Anderson et
al. (1980), Gail (1996), Beyers (1998), and Glymour (1998) for alternative
philosophies. Valid inference must assume that these basic important issues
have been carefully planned and conducted. Before one should proceed, two
general questions must be answered in the affirmative:

Are the study objectives sound, relevant, and achievable?
Has there been proper attention to study design and laboratory or field protocol?

8.2 Actual Thinking and A Priori Modeling

Fitting models, each representing a scientific hypothesis, to data has been
important in many biological, ecological, and medical investigations. Then
statistical inferences about the system of interest are made from an interpretable
parsimonious model of the observational or experimental data. We expect to
see this activity increase as more complicated scientific and management issues
are addressed. In particular, a priori modeling becomes increasingly important
as several data sets are collected on the same issue by different laboratories or
at widely differing field sites over several years.

We recommend much more emphasis on thinking! Leave the computer idle
for a while, giving time to think hard about the overall problem. What useful
information is contained in the published literature, even on issues only some-
what related to the issue at hand? What nonlinearities and threshold effects
might be predicted? What interactions are hypothesized to be important? Can
two or more variables be combined to give a more meaningful variable for
analysis? Should some variables be dropped from consideration? Discussions
should be encouraged with the people in the field or laboratory that were close
to the data collection. What parameters might be similar across groups (i.e.,
data sets)? Model building should be driven by the underlying science of the is-
sue combined with a good understanding of mathematical models. Ideally, this
important conceptual phase might take several days or even weeks of effort;
this seems far more time than is often spent under current practice.

Biologists generally subscribe to the philosophy of “multiple working
hypotheses” (Chamberlain 1890, Platt 1964, Mayr 1997), and these should
form the basis for the set of candidate models to be considered formally.
Model building can begin during the time that the a priori considerations are
being sorted out. Modeling must carefully quantify the science hypotheses of
interest. Often it is effective to begin with the global model and work toward
some lower-dimensional models. Others may favor a bottom-up approach.
The critical matter here is that one arrives, eventually, at a small set of good
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candidate models, prior to examination of the empirical data. We advise the
inclusion of all models that are reasonably justified prior to data analysis;
however, every attempt should be made to keep the number of candidate models
small.

Critical Thinking
Our science culture does not do enough to regularly expect and enforce
critical thinking. This failure has slowed the scientific discovery process.

We fail to fault the trivial content of the typical ecological hypothesis.
There is a need for more careful thinking (than is usually evident) and a

better balance between scientific hypotheses, data, and analysis theory.
Chamberlin’s concept of multiple working hypotheses, suggested well over

100 years ago, has a deep level of support among science philosophers. He
thought the method led to “certain distinctive habits of mind and had prime
value in education.” Why has this principle not become the standard, rather
than the rare exception, in so many fields of applied science?

Platt (1964) noted that years and decades can be wasted on experiments,
unless one thinks carefully in advance about what the most important and
conclusive experiments would be.

With the information-theoretic approach, there is no concept of a “null”
hypothesis, or a statistical hypothesis test, or an arbitrary α-level, or question-
able power, or the multiple testing problem, or the fact that the so-called null
hypothesis is nearly always obviously false in the first place. Much of the ap-
plication of statistical hypothesis testing arbitrarily classifies differences into
meaningless categories of “significant” and “nonsignificant,” and this practice
has little to contribute to the advancement of science (Anderson et al. 2000).
We recommend that researchers stop using the term “significant,” since it is so
overused, uninformative, and misleading. The results of model selection based
on estimates of expected (relative) Kullback–Leibler information can be very
different from the results of some form of statistical hypothesis testing (e.g.,
the simulated starling data, Section 3.4, or the sage grouse data, Section 3.5).

So, investigators may proceed with inferential or confirmatory data analysis
if they feel satisfied that they can objectively address two questions:

Was the set of candidate models derived a priori?
What justifies this set?

The justification should include a rationale for models both included and ex-
cluded from the set. A carefully defined set of models is crucial whether
information-theoretic methods are used to select the single best model, or
the entire set of models is used to reach defensible inferences. If so little is
known about the system under study that a large number of models must be
included in the candidate set, then the analysis should probably be considered
only exploratory (if models are developed as data analysis progresses, it is both
exploratory and risky). One should check the fit or adequacy of the global
model using standard methods. If the global model is inadequate (after,
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perhaps, adjusting for overdispersed count data), then more thought
should be put into model building and thinking harder about the sys-
tem under study and the data collected. There is no substitute for good,
hard thinking at this point (Platt 1964).

8.3 The Basis for Objective Model Selection

Statistical inference from a data set, given a model, is well advanced and
supported by a very large amount of theory. Theorists and practitioners are rou-
tinely employing this theory, either likelihood or least squares, in the solution
of problems in the applied sciences. The most compelling question is, “what
model to use?” Valid inference must usually be based on a good approximating
model, but which one?

Akaike chose the celebrated Kullback–Leibler discrimination information
as a basis for model selection. This is a fundamental quantity in the sciences and
has earlier roots in Boltzmann’s concept of entropy, a crowning achievement
of nineteenth-century science. The K-L distance between conceptual truth f

and model g is defined for continuous functions as the integral

I (f, g) �
∫
f (x) log

(
f (x)

g(x | θ )

)
dx,

where log denotes the natural logarithm and f and g are n-dimensional proba-
bility distributions. Kullback and Leibler (1951) developed this quantity from
“information theory,” thus the notation I (f, g) as it relates to the “informa-
tion” lost when model g is used to approximate truth f . Of course, we seek
an approximating model that loses as little information as possible; this is
equivalent to minimizing I (f, g) over the models in the set. Full reality is
considered to be fixed. An interpretation equivalent to minimizing I (f, g) is
that we seek an approximating model that is the “shortest distance” from truth.
Both interpretations seem useful and compelling.

The K-L distance can be written equivalently as

I (f, g) �
∫
f (x) log(f (x)) dx −

∫
f (x) log(g(x | θ )) dx.

The two terms on the right in the above expression are statistical expectations
with respect to f (truth). Thus, the K-L distance (above) can be expressed as
a difference between two expectations,

I (f, g) � Ef [log(f (x))]− Ef [log(g(x | θ ))],

each with respect to the true distributionf . The first expectation, Ef [log(f (x))],
is a constant that depends only on the unknown true distribution. Therefore,
treating this unknown term as a constant, only a measure of relative distance
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is possible. Then

I (f, g) � constant − Ef [log(g(x | θ ))],

or

I (f, g)− constant � −Ef [log(g(x | θ ))].

Thus, the term
(
I (f, g)− constant

)
is a relative distance between truth f and

model g. This provides a deep theoretical basis for model selection if one can
compute or estimate Ef [log(g(x | θ ))].

Akaike (1973, 1974, 1985, 1994) showed that the critical quantity for
estimating relative K-L information was

EyEx[log(g(x|θ̂(y)))],

where y and x are independent random samples from the same distribution
and both statistical expectations are taken with respect to truth (f ). This dou-
ble expectation, both with respect to truth f , is the target of model selection
approaches based on K-L information.

8.4 The Principle of Parsimony

Parsimony is the concept that a model should be as simple as possible with
respect to the included variables, model structure, and number of parameters.
Parsimony is a desired characteristic of a model used for inference, and it is
usually visualized as a suitable tradeoff between squared bias and variance
of parameter estimators (Figure 1.3). Parsimony lies between the evils of un-
derfitting and overfitting (Forster and Sober 1994, Forster 1999). Expected
K-L information is a fundamental basis for achieving proper parsimony in
modeling.

The concept of parsimony has a long history in the sciences. Often this is
expressed as “Occam’s razor”: shave away all that is unnecessary. The quest
is to make things “as simple or small as possible.” Parsimony in statistics
represents a tradeoff between bias and variance as a function of the dimension
of the model (K). A good model is a proper balance between underfitting and
overfitting, given a particular sample size (n). Most model selection methods
are based on the concept of a squared bias versus variance tradeoff. Selection
of a model from a set of approximating models must employ the concept of
parsimony. These philosophical issues are stressed in this book, but it takes
some experience and reconsideration to reach a full understanding of their
importance.



444 8. Summary

8.5 Information Criteria as Estimates of Expected
Relative Kullback–Leibler Information

Roots of Theory
As deLeeuw (1992) noted, Akaike found a formal relationship be-

tween Boltzmann’s entropy and Kullback–Leibler information (dominant
paradigms in information and coding theory) and maximum likelihood (the
dominant paradigm in statistics).

This finding makes it possible to combine estimation (point and inter-
val estimation) and model selection under a single theoretical framework:
optimization.

Akaike’s (1973) breakthrough was the finding of an estimator of the expected
relative K-L information, based on a bias-corrected maximized log-likelihood
value. His estimator was an approximation and, under certain conditions,
asymptotically unbiased. He found that

estimated expected (relative) K-L information ≈ log(L(θ̂)) − K,

where log(L(θ̂ )) is the maximized log-likelihood value and K is the number of
estimable parameters in the approximating model (this is the bias-correction
term). Akaike multiplied through by −2 and provided Akaike’s information
criterion (AIC)

AIC � −2 log(L(θ̂)) + 2K.

Akaike considered his information-theoretic criterion an extension of Fisher’s
likelihood theory. Conceptually, the principle of parsimony is enforced by the
added “penalty” (i.e., 2K) while minimizing AIC.

Assuming that a set of a priori candidate models has been carefully defined,
then AIC is computed for each of the approximating models in the set, and the
model where AIC is minimized is selected as best for the empirical data at hand.
This is a simple, compelling concept, based on deep theoretical foundations
(i.e., K-L information). Given a focus on a priori issues, modeling the relevant
scientific hypotheses, and model selection, the inference is the selected model.
In a sense, parameter estimates are almost byproducts of the selected model.
This inference relates to the estimated best approximation to truth and what
information seems to be contained in the data.

Important refinements followed shortly after the pioneering work by Akaike.
Most relevant was Takeuchi’s (1976) information criterion (termed TIC), which
provided an asymptotically unbiased estimate of relative expected K-L infor-
mation. TIC is little used, since it requires the estimation of K×K matrices of
first and second partial derivatives of the log-likelihood function, and its prac-
tical use hinges on the availability of a relatively large sample size. In a sense,
AIC can be viewed as a parsimonious version of TIC. A second refinement
was motivated by Sugiura’s (1978) work, and resulted in a series of papers by
Hurvich and Tsai (1989, 1990b, 1991, 1994, 1995a and 1995b, 1996). They



8.5 Information Criteria as Estimates of Expected Relative K-L Information 445

provided a second order approximation, termed AICc, to estimated, expected
relative K-L information,

AICc � −2 log(L(θ̂)) + 2K + 2K(K + 1)

(n − K − 1)
,

where n is sample size The final bias-correction term vanishes as n gets large
with respect to K (and AICc becomes AIC), but the additional term is impor-
tant if n is not large relative to K (we suggest using AICc if n/K < 40 or,
alternatively, always using AICc).

A third extension was a simple modification to AIC and AICc for overdis-
persed count data (Lebreton et al. 1992). A variance inflation factor ĉ is
computed from the goodness-of-fit statistic, divided by its degrees of free-
dom, ĉ � χ 2/ df. The value of the maximized log-likelihood function is
divided by the estimate of overdispersion to provide a proper estimate of the
log-likelihood. These criteria are denoted by QAIC and QAICc as they are
derived from quasi-likelihood theory (Wedderburn 1974),

QAIC � −[2 log(L(θ̂))/ĉ] + 2K,

and

QAICc � −[2 log(L(θ̂))/ĉ] + 2K + 2K(K + 1)

n − K − 1

� QAIC + 2K(K + 1)

n − K − 1
.

When no overdispersion exists, c � 1, and the formulas for QAIC and QAICc

reduce to AIC and AICc, respectively. There are other, more sophisticated, ways
to account for overdispersion in count data, but this simple method is often
quite satisfactory. Methods are given in Chapter 6 to allow different partitions
of the data to have partition-specific estimates of overdispersion. Note that the
number of estimable parameters (K) must include the number of estimates
of c. Thus, if males and females have different degrees of overdispersion and
these are to be estimated from the data, then K must include 2 parameters for
these estimates.

AIC is often presented in the scientific literature in an ad hoc manner, as if
the bias-correction term K (the so-called penalty term) was arbitrary. Worse
yet, perhaps, is that AIC is often given without reference to its fundamental link
with Kullback–Leibler information. Such shallow presentations miss the point,
have had very negative effects, and have misled many into thinking that there
is a whole class of selection criteria that are “information-theoretic” (Chapter
6). Criteria such as AIC, AICc, QAIC, and TIC are estimates of expected
(relative) Kullback–Leibler distance and are useful in the analysis of real data
in the “noisy” sciences.
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8.6 Ranking Alternative Models

Because only relative K-L information can be estimated using one of the
information criteria, it is convenient to rescale these values such that the model
with the minimum AIC (or AICc or TIC) has a value of 0. Thus, information-
criterion values can be rescaled as simple differences,

	i � AICi −AICmin

� Êθ̂ [Î (f, gi)]−min Êθ̂ [Î (f, gi)].

While the value of minimum Êθ̂ [Î (f, gi)] is not known (only the relative value),
we have an estimate of the size of the increments of information loss for
the various models compared to the estimated best model (the model with
the minimum Eθ̂ [Î (f, gi)]). The 	i values are easy to interpret and allow
a quick comparison and ranking of candidate models and are also useful
in computing Akaike weights. As a rough rule of thumb, models having
	i within 1–2 of the best model have substantial support and should re-
ceive consideration in making inferences. Models having 	i within about
4–7 of the best model have considerably less support, while models with
	i > 10 have either essentially no support and might be omitted from
further consideration or at least fail to explain some substantial structural
variation in the data. If the observations are not independent (but are treated
as such) or if the sample size is quite small, or it there is a very large
number of models, then the simple guidelines above cannot be expected to
hold.

There are cases where a model with 	i > 10 might still be useful, partic-
ularly if the sample size is very large (e.g., see Section 6.8.2). For example,
let model A, with year-specific structure on one of the parameters, be the best
model in the set (	A � 0) and model B, with less structure on the subset of
year-specific parameters, have 	B � 11.4. Assume that all models in the can-
didate set were derived prior to data analysis (i.e., no data dredging). Clearly,
modelA is able to identify important variation in a parameter across years; this
is important. However, in terms of understanding and generality of inference
based on the data, it might sometimes be justified to use the simpler model
B, because it may seem to “capture” the important fixed effects. Models A

and B should both be detailed in any resulting publication, but understand-
ing and interpretation might be enhanced using model B, even though some
information in the data would be (intentionally) lost. Such lost information
could be partially recovered by, for example, using a random effects approach
(see Section 3.5.5) to estimate the mean of the time-effects parameter and the
variance of its distribution.

The principle of parsimony provides a philosophical basis for model selec-
tion; Kullback–Leibler information provides an objective target based on deep,
fundamental theory; and the information criteria (particularly AIC and AICc)
provide a practical, general methodology for use in data analysis. Objective
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model selection and model weighting can be rigorously based on these prin-
ciples. In practice, one need not assume that any “true model” is contained
in the set of candidates (although this is sometimes stated, erroneously, in the
technical literature). [We note that several “dimension-consistent criteria” have
been published that attempt to provide asymptotically unbiased (i.e., “consis-
tent”) estimates of the dimension (K) of the “true model.” Such criteria are
only estimates of K-L information in a strained way, are based on unrealistic
assumption sets, and often perform poorly (even toward their stated objec-
tive) unless a very large sample size is available (or where σ 2 is negligibly
small, such as in many problems in the physical sciences). We do not recom-
mend these dimension-consistent criteria for the analysis of real data in the
life sciences.]

8.7 Scaling Alternative Models

The information-theoretic approach does more than merely estimate which
model is best for making inference, given the set of a priori candidate models
and the data. The 	i allow a ranking of the models from an estimated best to
the worst; the larger the 	i , the less plausible is model i. In many cases it is
not reasonable to expect to be able to make inferences from a single (best)
model; biology is not simple; why should we hope for a simple inference
from a single model? The information-theoretic paradigm provides a basis
for examination of alternative models and, where appropriate, making formal
inference from more than one model (MMI).

The simple transformation exp(− 1
2	i) results in the (discrete) likelihood of

model i, given the data L(gi |x). These are functions in the same sense that
L(θ |x, gi) is the likelihood of the parameters θ , given the data (x) and the
model (gi). These likelihoods are very useful; for example, the evidence ratio
for model i versus model j is merely

L(gi|x)/L(gj|x).

It is convenient to normalize these likelihoods such that they sum to 1, as

wi � exp(− 1
2�i)∑R

r�1 exp(− 1
2�r)

,

and interpret these as a weight of evidence. Akaike (e.g., Akaike 1978b, 1979,
1980, and 1981b; also see Kishino 1991 and Buckland et al. 1997) suggested
these values, and we have found them to be simple and very useful. The evi-
dence ratio of model i versus model j is then just wi/wj ; this is identical to
the ratio of the likelihood L(gi |x)/L(gj |x). Drawing on Bayesian ideas we can
interpret wi as the estimated probability that model i is the K-L best model for
the data at hand, given the set of models considered (see Section 6.4.5).
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An interesting and recent finding is that AIC can be derived under a formal
Bayesian framework, and this fact has led to some deeper insights. The break-
through here was to consider priors on models that are a function of both n

and K (we call this class of model priors “savvy,” i.e., shrewdly informative);
then AIC and AICc fall out as a strictly Bayesian result. Indeed, as AIC has a
Bayesian derivative, it is compelling to interpret the Akaike weights as post-
erior model probablilities. While many (objective) Bayesians are comfortable
with the use of a defuse or noninformative prior on model parameters (e.g.,
a uniform prior on a model parameter), use of such defuse priors on models
(such as 1/R) may have poor properties or unintended consequences. That is,
some priors on models may be uninformative, but not innocent. In the end,
the Bayesian derivation of AIC (or AICc) and BIC differ only in their priors
on models. However, these criteria are fundamentally different in a variety of
substantive ways. In this book we place an emphasis on the derivation of AIC
and AICc as bias-corrected estimates of Kullback–Leibler information because
this seems so much more objective and fundamental.

Thewi are useful as the “weight of evidence” in favor of model i as being the
actual K-L best model in the set. The bigger the 	i , the smaller the weight and
the less plausible is model i as being the best approximating model. Inference
is conditional on both the data and the set of a priori models considered.

Alternatively, one could drawB bootstrap samples (B should often be 10,000
rather than 1,000), use the appropriate information criterion to select a best
model for each of the B samples, and tally the proportion of samples whereby
the ith model was selected. Denote such bootstrap-selection frequencies by
π̂i . While wi and π̂i are not estimates of exactly the same entity, they are often
closely related and provide information concerning the uncertainty in the best
model for use. The Akaike weights are simple to compute, while the bootstrap
weights are computer-intensive and not practical to compute in some cases
(e.g., the simulated starling experiment, Section 3.4), because thousands of
bootstrap repetitions must be drawn and analyzed.

Under the hypothesis-testing approach, nothing can generally be said about
ranking or scaling models, particularly if the models were not nested. In linear
least squares problems one could turn to adjustedR2 values for a rough ranking
of models, but other kinds of models cannot be scaled using this (relatively
very poor) approach (see the analogy in Section 2.5).

8.8 MMI: Inference Based on Model Averaging

Rather than base inferences on a single selected best model from an a priori
set of models, we can base our inferences on the entire set by using model-
averaging. The key to this inference methodology is the Akaike weights. Thus,
if a parameter θ is in common over all models (as θi in model gi), or our goal
is prediction, by using the weighted average we are basing point inference on
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the entire set of models,

θ̂ �
R∑

i�1

wiθ̂i,

or

θ̂ �
R∑

i�1

π̂iθ̂i.

This approach has both practical and philosophical advantages. Where a model-
averaged estimator can be used, it appears to have better precision and reduced
bias compared to θ̂ from the selected best model.

If one has a large number of closely related models, such as in regression-
based variable selection (all-subsets selection), designation of a single best
model is unsatisfactory, because that estimated “best” model is highly variable
from data set to data set. In this situation model-averaging provides a relatively
much more stabilized inference. The concept of inference being tied to all
the models can be used to reduce model selection bias effects on regression-
coefficient estimates in all-subsets selection. For the regression coefficient

associated with predictor xj we use the estimate β̂j , which is the estimated
regression coefficient βj averaged over all models in which xj appears:

β̂j �
∑R

i�1 wiIj (gi)β̂j,i

w+(j )
,

w+(j ) �
R∑
i�1

wiIj (gi),

where i is for model i � 1, . . . , R, j is for predictor variable j , and

Ij (gi) �
{

1 if predictor xj is in model gi,

0 otherwise.

Conditional on model gi being selected, model selection has the effect of

biasing β̂j,i away from zero. Thus a new estimator, denoted by ˜̄βi , is suggested:

˜̄βi � w+(i)β̂i .

Investigation of this idea, and extensions of it, is an open research area. The

point here is that while β̂j can be computed ignoring models other than the

ones xj appears in, ˜̄βi does require fitting all R of the a priori models.

8.9 MMI: Model Selection Uncertainty

At first, one might think that one could use an information critrion to select an
approximating model that was “close” to truth (remembering the bias versus
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variance tradeoff and the principle of parsimony) or that “lost the least infor-
mation” and then proceed to use this selected model for inference as if it had
been specified a priori as the only model considered. Actually, this approach
would not be terrible, since at least one would have a reasonable model, se-
lected objectively, based on a valid theory and a priori considerations. This
approach would often be superior to much of current practice. Except in the
case where the best model has an Akaike weight > 0.9, the problem with
considering only this model, and the usual measures of precision conditional
on this selected model, is that this tends to overestimate precision. Breiman
(1992) calls the failure to acknowledge model selection uncertainty a “quiet
scandal.” [We might suggest that the widespread use of statistical hypothesis
testing and blatant data dredging in model selection represent “loud scandals.”]
In fact, there is a variance component due to model selection uncertainty that
should be incorporated into estimates of precision such that these are uncon-
ditional (on the selected model). While this is a research area needing further
development, several useful methods are suggested in this book, and others
will surely appear in the technical literature in the next few years, including
additional Bayesian approaches.

The Akaike (wi) or bootstrap (πi) weights that are used to rank and scale
models can also be used to estimate unconditional precision where interest is
in the parameter θ over R models (model gi , for i � 1, . . . , R),

v̂ar(θ̂i) �
[

R∑
i�1

wi

√
v̂ar(θ̂i | gi) + (θ̂i − θ̂)2

]2

,

v̂ar(θ̂i) �
[

R∑
i�1

πi

√
v̂ar(θ̂i | gi) + (θ̂i − θ̂)2

]2

.

These estimators, from Buckland et al. (1997), include a term for the condi-
tional sampling variance, given model gi (denoted by v̂ar(θ̂ i | gi) here) and

incorporate a variance component for model selection uncertainty (θ̂ i − θ̂ )2.
These estimators of unconditional variance are also appropriate in cases where
one wants a model-averaged estimate of the parameter when θ appears in all
models.

Chapter 4 gives some procedures for setting confidence intervals that include
model selection uncertainty, and it is noted that achieved confidence-interval
coverage is then a useful measure of the utility of methods that integrate model
selection uncertainty into inference. Only a limited aspect of model uncertainty
can be currently handled. Given a set of candidate models and an objective se-
lection method, we can assess selection uncertainty. The uncertainty in defining
the set of models cannot be addressed; we lack a theory for this issue. In fact, we
lack good, general guidelines for defining the a priori set of models. We expect
papers to appear on these scientific and philosophical issues in the future.
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8.10 MMI: Relative Importance of Predictor Variables

Inference on the importance of a variable is similarly improved by being based
on all the models. If one selects the best model and says that the variables in it
are the important ones and the other variables are not important, this is a very
naive, unreliable inference. We suggest that the relative importance of variable
xj be measured by the sum of the Akaike weights over all models in which
that variable appears:

w+ (j) �
R∑

i�1

wiIj(gi).

Thus again, proper inference requires fitting all the models and then using a
type of model-averaging. A certain balance in the number of models each with
model j , must be achieved. When possible, one should use inference based
on all the models, via model-averaging and selection bias adjustments, rather
than risk making inference based only on the model estimated to be the best
and, often, ignoring other models that are also quite good.

8.11 More on Inferences

Information-theoretic methods do not offer a mechanical, unthinking approach
to science. While these methods can certainly be misused, they elicit careful
thinking as models are developed to represent the multiple scientific hypotheses
that must be the focus of the entire study. A central theme of this book is to call
attention to the need to ask better scientific questions in the applied sciences
(Platt 1964). Rather than test trivial null hypotheses, it is better to ask deeper
questions relating to well-defined alternative hypotheses. For this goal to be
achieved, a great deal more hard thinking will be required.

There needs to be increased attention to separating those inferences that rest
on a priori considerations from those resulting from some degree of data dredg-
ing. White (2000:1097) comments, “Data snooping is a dangerous practice to
be avoided, but in fact is endemic.”

Essentially no justifiable theory exists to estimate precision (or test hypothe-
ses, for those still so inclined) when data dredging has taken place (the theory
(mis)used is for a priori analyses, assuming that the model was the only one fit
to the data). A major concern here is the finding of effects and relationships that
are actually spurious where inferences are made post hoc (see Lindsey 1999b,
Anderson et al. 2001b). This glaring fact is either not understood by practi-
tioners and journal editors or is simply ignored. Two types of data dredging
include (1) an iterative approach, in which patterns and differences observed
after initial analysis are “chased” by repeatedly building new models with these
effects included and (2) analysis of “all possible models.” Data dredging is a
poor approach to making inferences about the sampled population, and both
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types of data dredging are best reserved for more exploratory investigations
and are not the subject of this book.

The information-theoretic paradigm avoids statistical null hypothesis test-
ing concepts and focuses on relationships of variables (via selection) and on
the estimation of effect size and measures of its precision. This paradigm is
primarily in the context of making inferences from a single selected model
or making robust inference from many models (e.g., using model-averaging
based on Akaike weights). Data analysis is a process of learning what effects
are supported by the data and the degree of complexity of the best models in
the set. Often, models other than just the estimated best model contain valuable
information. Evidence ratios and confidence sets on models help in making
inferences on all, or several of the best, models in the set. Information-theoretic
approaches should not be used unthinkingly; a good set of candidate models
is essential, and this involves professional judgment and representation of the
scientific hypotheses into the model set.

When the analysis of data has been completed under an information-
theoretic approach, one should gather and report on the totality of the evidence
at hand. The primary evidence might be the selected model and its parameter
estimates and appropriate measures of precision (including a variance com-
ponent for model selection uncertainty.) The ranks of each of the R models
and the Akaike weights should be reported and interpreted. Model-averaged
parameter estimates are often important, particularly for prediction. Evidence
ratios, confidence sets on the K-L best model, and a ranking of the relative im-
portance of predictor variables are often useful evidence. When appropriate,
quantities such as adjusted R2 and θ̂ 2 should be reported for, at least, the best
model. The results from an analysis of residuals for the selected model might
also be important to report and interpret. Every effort should be made to fully
and objectively report on all the evidence available. If some evidence arose dur-
ing post hoc activities, this should be clearly stated in published results. Figure
8.1 provides a simplistic graphical representation of the information-theoretic
approach. The point of Figure 8.1 is to reinforce some foundational issues
(bottom building blocks) and the practical tools and methods (middle row of
blocks) that rest on these foundations. If these are used carefully and objec-
tively, one can hope to provide compelling evidence allowing valid inferences.
The weakest link seems often to be the left block on the bottom—thinking
deeply about the science problem and the alternative hypotheses!

It seems worth noting that K-L information and MMI can be used in certain
types of conflict resolution where data exist that are central to the possible
resolution of the conflict (Anderson et al. 1999, 2001c). Details here would
take us too far afield; however, as Hoeting et al. (1999) noted (in a Bayesian
context), “Model averaging also allows users to incorporate several competing
models in the estimation process; thus model averaging may offer a committee
of scientists a better estimation method than the traditional approach of trying
to get the committee to agree on a best model.”
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FIGURE 8.1. Schematic diagram of the information-theoretic approach. The evidence for the alternative hypotheses, each represented by mathematical
models, and the analysis results are provided by the methods and quantities indicated in the top box. This information results from the use of the general
methods in three linked, general tool boxes, which rest on the concepts and deep theory in four basic foundation blocks.
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8.12 Final Thoughts

At a conceptual level, reasonable data and a good model allow a separation
of “information” from “noise.” Here, information relates to the structure of
relationships, estimates of model parameters, and components of variance.
Noise then refers to the residuals; variation left unexplained. We can use the
information extracted from the data to make proper inferences.

Summary
We want an approximating model that minimizes information loss I (f, g)

and properly separates noise (noninformation, or entropy) from structural
information. The philosophy for this separation is the principle of parsimony;
the conceptual target for such partitioning is Kullback–Leibler information;
and the tactic for selection of a best model is an information criterion (e.g.,
AIC, AICc, QAICc, or TIC). The notion of data-based model selection and
resulting inference is a very difficult subject, but we do know that substantial
uncertainty about the selected model can often be expected and should be
incorporated into estimates of precision.

Still, model selection (in the sense of parsimony) is the critical issue in data
analysis. In using the more advanced methods presented here, model selection
can be thought of as a way to compute Akaike weights. Then one uses one or
more models in the set as a way to make robust inferences from the data (MMI).
More research is needed on the quantification of model uncertainty, measures
of the plausibility of alternative models, ways to reduce model selection bias,
and ways to provide effective measures of precision (without being conditional
on a given model). Confidence intervals with good achieved levels should be
a goal of inference following data-based model selection.

Information-theoretic methods are relatively simple to understand and prac-
tical to employ across a very wide class of empirical situations and scientific
disciplines. The information-theoretic approach unifies parameter estimation
and model selection under an optimization framework, based on Kullback–
Leibler information and likelihood theory. With the exception of the bootstrap,
the methods are easy to compute by hand if necessary (assuming that one has
the MLEs, maximized log-likelihood values, and v̂ar(θ̂ i | gi) for each of the R
models). Researchers can easily understand the information-theoretic methods
presented here; we believe that it is very important that researchers understand
the methods they employ.


