
1 Languages

This book expresses and studies computation by using various languages, ranging
from binary languages through programming languages to natural languages. The
present chapter, consisting of three sections, formalizes languages so as to encom-
pass all this range.

Section 1.1 defines languages and some fundamental operations. Section 1.2 intro-
duces basic language generators, including expressions and grammars, and illustrates
their use by defining a new programming language. Finally, Section 1.3 discusses
translations of languages.

1.1 Formalization of Languages
This section formalizes languages and then introduces several language operations.

Alphabets and words

To define languages, alphabets and words are first formalized.

Definition — alphabet and symbol
An alphabet is a finite, nonempty set of elements, which are called symbols.

�

A sequence of symbols forms a word. The empty word, denoted by ε, is the
word that contains no symbols. The next definition formally introduces words
over an alphabet by using the recursive definitional method (see Section 0.2).

Definition — word
Let ∑ be an alphabet.

1. ε is a word over ∑.
2. If x is a word over ∑ and a ∈ ∑, then xa is a word over ∑.

�

meduna/part I 4/12/02 09:00 Page 25

Convention
In the theory of languages, word is synonymous with string. This book uses the for-
mer throughout.

�

The length of x is the number of all symbols in x.

Definition — length of word
Let x be a word over an alphabet, ∑. The length of x, |x|, is defined as follows:

1. if x = ε, then |x| = 0
2. if x = a1 ... an, for some n ≥ 1, where ai ∈ ∑ for all i = 1, …, n, then |x| = n.

�

Let a ∈ ∑. Then, #ax denotes the number of occurrences of a in x.

Operations on words

The following definitions introduce some basic operations over words.

Definition — concatenation of words
Let x and y be two words over an alphabet, ∑. Then, xy is the concatenation of x and y.

�

For every word x,

xε = εx = x

Definition — power of word
Let x be a word over an alphabet, ∑. For i ≥ 0, the ith power of x, xi, is recursively
defined as

1. x0 = ε
2. xi = xxi-1, for i ≥ 1.

�

Observe that for any word x

xixj = xjxi =xi+j

where i, j ≥ 0.
The reversal of a word is x written in the reverse order.

26 Automata and Languages

meduna/part I 4/12/02 09:00 Page 26

Definition — reversal of word
Let x be a word over an alphabet, ∑. The reversal of x, reversal(x), is defined as

1. if x = ε, then reversal(x) = ε
2. if x = a1 ...an, for some n ≥ 1,and ai ∈ ∑,for i = 1,…,n, then reversal(a1...an) = an...a1.

�

Definition — prefix of word
Let x and y be two words over an alphabet, ∑. Then, x is a prefix of y if there exists
a word, z, over ∑ so xz = y; moreover, if x ∉ {ε, y}, then x is a proper prefix of y.

�

For a word y, prefix(y) denotes the set of all prefixes of y; that is,

prefix(y) = { x: x is a prefix of y}

Definition — suffix of word
Let x and y be two words over an alphabet, ∑. Then, x is a suffix of y if there exists a
word, z, over ∑ so zx = y; moreover, if x ∉ {ε, y}, then x is a proper suffix of y.

�

For a word y, suffix(y) denotes the set of all suffixes of y; that is,

suffix(y) = { x: x is a suffix of y}

Definition — subword
Let x and y be two words over an alphabet, ∑. Then, x is a subword of y if there exist
two word, z and z′, over ∑ so zxz′ = y; moreover, if x ∉ {ε, y}, then x is a proper sub-
word of y.

�

For a word y, subword(y) denotes the set of all subwords of y; that is,

subword(y) = { x: x is a subword of y}

Observe that, for every word y, these three properties hold:

1. prefix(y) ⊆ subword(y)
2. suffix(y) ⊆ subword(y)
3. {ε, y} ⊆ prefix(y) ∩ suffix(y) ∩ subword(y).

Languages 27

meduna/part I 4/12/02 09:00 Page 27

Example 1.1.1 Operations over words
This example illustrates some of the notions that the present section has introduced
so far. Consider the binary alphabet – that is,

{0, 1}

Notice that

ε

1

010

are words over {0, 1}. Observe that

|ε| = 0

|1| = 1

|010| = 3

Furthermore, note that

#0ε = 0

#01 = 0

#0010 = 2

The concatenation of 1 and 010 equals

1010

The fourth power of 1010 equals

1010101010101010

Notice that

reversal(1010) = 0101

The words 10 and 1010 are prefixes of 1010. 10 is a proper prefix of 1010, whereas
1010 is not. Observe that

prefix(1010) = {ε, 1, 10, 101, 1010}

28 Automata and Languages

meduna/part I 4/12/02 09:00 Page 28

The words 010 and ε are suffixes of 1010. 010 is a proper prefix of 1010, whereas ε is
not. Notice that

suffix(1010) = {ε, 0, 10, 010, 1010}

The words 01 and 1010 are subwords of 1010. 01 is a proper subword of 1010, but
1010 is not. Note that 01 is neither a prefix of 1010 nor a suffix of 1010. Finally, observe
that

subword(1010) = { ε, 0, 1, 01, 10, 010,101, 1010}
�

Languages

Consider an alphabet, ∑. Let ∑* denote the set of all words over ∑. Set

∑+ = ∑* − {ε};

in other words, ∑+ denotes the set of all nonempty words over ∑. The following
definition formalizes a language over ∑ as a set of words over ∑. Notice that this
definition encompasses both artificial languages, such as Pascal, and natural
languages, such as English.

Definition — language
Let ∑ be an alphabet, and let L ⊆ ∑*. Then, L is a language over ∑.

�

By this definition, ∅ and {ε} are languages over any alphabet. Notice, however, that

∅ ≠ {ε}

because ∅ contains no element, while {ε} has one element, namely ε. Observe that
for every alphabet, ∑, ∑* represents a language over ∑; as ∑* consists of all words
over ∑, this language is referred to as the universal language over ∑.

Because languages are defined as sets, the notions concerning sets apply to them
(see Section 0.1). Consequently, a language, L, is finite if it has n members, for some
n ≥ 0.

Definition — finite and infinite language
Let L be a language. L is finite if card(L) = n, for some n ≥ 0; otherwise, L is
infinite.

�

Languages 29

meduna/part I 4/12/02 09:00 Page 29

Operations on languages

Consider the set operations of union, intersection, and difference (see Section 0.1).
Naturally, these operations apply to languages. That is, for two languages, L1 and L2,

L1 ∪ L2 = { x: x ∈ L1 or x ∈ L2}

L1 ∩ L2 = { x: x ∈ L1 and x ∈ L2}

L1 − L2 = { x: x ∈ L1 and x ∉ L2}

Furthermore, consider a language L over an alphabet, ∑. The complement of L, L,
is defined as

L = ∑* − L

The present section has already introduced several operations on words. The following
definitions extend these word operations to languages.

Definition — concatenation of languages
Let L1 and L2 be two languages. The concatenation of L1 and L2, L1L2, is defined as

L1L2 = { xy: x ∈ L1 and y ∈ L2}
�

By this definition, every language L satisfies these two properties

1. L{ε} = {ε}L = L
2. L∅ = ∅L = ∅.

Definition — reversal of language
Let L be a language. The reversal of L, reversal(L), is defined as

reversal(L) = { reversal(x): x ∈ L}
�

Definition — power of language
Let L be a language. For i ≥ 0, the ith power of L, Li, is defined as

1. L0 = ε
2. for all i ≥ 1, Li = LLi−1.

�

30 Automata and Languages

meduna/part I 4/12/02 09:00 Page 30

Definition — closure of language
Let L be a language. The closure of L, L*, is defined as

L* = ∪∞
i =0

Li

�

Definition — positive closure of language
Let L be a language. The positive closure of L, L+, is defined as

L+ = ∪∞
i =1

Li

�

By the previous two definitions, for every language L, these two properties hold:

1. L+ = LL* = L*L
2. L* = L+ ∪ {ε}.

The next example illustrates the set operations that this section has introduced so
far. Besides the notations given in the previous definitions, this example also use these
two notations

prefix(L) = { y: y ∈prefix(x) for some x ∈ L}

suffix(L) = { y: y ∈suffix(x) for some x ∈ L}

Example 1.1.2 Operations over languages
Let ∑ = {0, 1}. Consider these two languages over ∑:

L1= { 0, 01} and L2 = {1, 01}

Observe that

L1 ∪ L2 = { 0, 1, 01}

L1 ∩ L2 = { 01}

L1 − L2 = { 0}

L1L2 = { 01, 001, 011, 0101}

Furthermore, consider

L = {10, 11}

Languages 31

meduna/part I 4/12/02 09:00 Page 31

over ∑. Notice that

L = ∑* − {10, 11}

reversal(L) = {01, 11}

prefix(L) = {ε, 1, 10, 11}

suffix(L) = {ε, 0, 1, 10, 11}
For i = 2,

L2 = {1010, 1011, 1110, 1111}

Observe that

L* = {ε, 10, 11, 1010, 1011, 1110, 1111, …}

and

L+ = {10, 11, 1010, 1011, 1110, 1111, …}
�

Models for languages and their investigation

Various kinds of computation can be described and studied by using languages. This
book concentrates on the examination of models for languages because these mod-
els actually represent models of computation described by these languages.
Naturally, the same language can be described by many different models; models of
this kind are known as equivalent models.

To examine language models systematically, these models are classified according
to their expressive power; then, the resulting classes of models are investigated. Most
importantly, this investigation determines the families of languages characterized by
these classes. If several different classes characterize the same language family, then
these classes of models have the same power. Frequently, there is a need to demon-
strate that some equally powerful classes contain no model that can perform a given
computational task, specified by a language L. In terms of languages, this demon-
stration consists in proving that the language family characterized by these classes
does not contain L.As a rule, such a proof is based on pumping lemmas. Closure prop-
erties are also discussed in detail. To explain closure properties, consider a language
family L and a language operation o. If L contains every language resulting from the
application of o to any languages in L, then L is closed under o; otherwise, L is not
closed under o.

Example 1.1.3 Closure properties
Let L be the family of languages over {a, b} such that

32 Automata and Languages

meduna/part I 4/12/02 09:00 Page 32

L ∈ L if and only if each word in L begins with a

That is,

L = { L: L ⊆ {a}{a, b}*}

Notice that L is closed under ∪ because for any L, L′ ∈ L, each word in L ∪ L′ begins
with a, so L contains L ∪ L′.

On the other hand, L is not closed under reversal. Indeed, consider {ab} ∈ L and
observe that reversal({ab}) = {ba}. As {ba} ∉ L, L is not closed under reversal.

�

1.2 Expressions and Grammars
As pointed out in the conclusion of the previous section, the specification of languages
represents an important topic. Finite languages can be specified by listing its
components; for instance, the language consisting of all English articles is defined
as

{a, an, the}

However, infinite languages cannot be described in this way. Therefore, special finite
metalanguages – that is, languages that specify other languages – are used to gener-
ate infinite languages. This section introduces two language generators of this kind,
expressions and grammars. First, Section 1.2.1 describes expressions, then Section
1.2.2 discusses grammar,finally Section 1.2.3 uses these language generators to design
a new programming language, called COLA.

1.2.1 Expressions

A typical programming language contains logically cohesive lexical entities, such
as identifiers or integers, over an alphabet, ∑. These entities, called lexemes, are
customarily specified by expressions, recursively defined as follows:

1. ∅ is a regular expression denoting the empty set.
2. ε is a regular expression denoting {ε}.
3. a, where a ∈ ∑, is a regular expression denoting {a}.
4. If r and s are regular expressions denoting the languages R and S, respectively,

then

(a) (r . s) is a regular expression denoting RS
(b) (r + s) is a regular expression denoting R ∪ S
(c) (r*) is a regular expression denoting R*.

Languages 33

meduna/part I 4/12/02 09:00 Page 33

Whenever no ambiguity arises, parentheses are omitted in expressions. In this way,
the next example describes Pascal identifiers.

Example 1.2.1.1 Identifiers
Consider Pascal identifiers, defined as arbitrarily long alphanumeric words that begin
with a letter. Equivalently and concisely, Pascal identifiers can be specified by using
the expression

〈letter〉〈letter or digit〉*

where

〈letter〉 = A + … + Z
〈letter or digit〉 = A + … + Z + 0 + … + 9

�

Expressions, which are precisely called regular expressions, are studied in Section
3.1.

1.2.2 Grammars

The syntax of programming languages is usually described by specification tools
based on grammars. This section presents the following three grammatically based
specification tools for programming languages:

1. Backus-Naur form
2. extended Backus-Naur form
3. syntax graphs.

Backus-Naur form

The Backus-Naur form contains two kinds of symbols, terminals and nonterminals.
Terminals denote lexemes, whereas nonterminals represent syntactic constructs, such
as expressions. The heart of the Backus-Naur form is a finite set of productions. Each
production has the form

A → x1|…|xn

In A → x1|…|xn, A is a nonterminal. This nonterminal, the left-hand side of
A → x1|…|xn, represents the syntactic construct that this production defines.
The right-hand side is x1|…|xn, where xi is a word consisting of terminals and non-
terminals. The words x1 through xn represent n alternative definitions of A.

34 Automata and Languages

meduna/part I 4/12/02 09:00 Page 34

Example 1.2.2.1 Part 1 Backus-Naur form
Consider the Backus-Naur form defined by its three productions:

1. 〈expression〉 → 〈term〉|〈term〉+〈expression〉|〈term〉−〈expression〉
2. 〈term〉 → 〈factor〉|〈 factor〉*〈 term〉|〈factor〉/〈term〉
3. 〈factor〉 → i|(〈expression〉)

This form has terminals +, −, *, /, (,), and i, where i denotes an identifier or an
integer. Furthermore, this form has three nonterminals, i.e. 〈expression〉, 〈term〉, and
〈factor〉.

�

The Backus-Naur form uses its productions to derive syntactically well-formed
constructs. This derivation begins from a special nonterminal, called the start
symbol, and consists of several derivation steps. The Backus-Naur form makes
a derivation step, symbolically denoted by ⇒, according to a production, A →
x1|…|xn, so that in the derived word, an occurrence of A is replaced with xi, for
some i = 1, …, n. The derivation ends when only terminals appear in the derived
word.

Example 1.2.2.1 Part 2 Derivations
Return to the Backus-Naur form defined in part 1 of this example. The present part
describes how this form derives

i+i*i

The derivation starts from 〈expression〉, which represents the start symbol. In
the brackets, every step of this derivation specifies the applied definition, selected
from all alternative definitions appearing on the right-hand side of the used
production.

〈expression〉 ⇒ 〈term〉+〈expression〉 [〈expression〉 → 〈term〉+〈expression〉]
⇒〈factor〉+〈expression〉 [〈term〉 → 〈factor〉]
⇒ i+〈expression〉 [〈factor〉 → i]
⇒ i+〈term〉 [〈expression〉 → 〈term〉]
⇒ i+〈factor〉*〈term〉 [〈term〉 → 〈factor〉*〈term〉]
⇒ i+i*〈term〉 [〈factor〉 → i]
⇒ i+i*〈factor〉 [〈term〉 → 〈factor〉]
⇒ i+i*i [〈factor〉 → i]

Observe that the Backus-Naur form discussed in here generates arithmetic
expressions.

�

Languages 35

meduna/part I 4/12/02 09:00 Page 35

Extended Backus-Naur form

The extended Backus-Naur form extends the Backus-Naur form's productions by
adding the following three options.

1. The right-hand side of a production may contain some optional parts, which are
delimited by brackets, [and].

2. The right-hand side of a production may contain braces, { and }, to indicate a
syntactic part that can be repeated any number times, including zero
times.

3. The right-hand side of a production may contain and to indicate several options,
which are separated by |.

Note that some versions of the extended Backus-Naur form use parentheses (and),
instead of and . However, because many programming languages contain paren-
theses as lexemes, the use of parentheses sometimes causes ambiguity; therefore, this
book uses and .

Example 1.2.2.1 Part 3 Extended Backus-Naur form
Recall that part 1 presented the following Backus-Naur form:

1. 〈expression〉 → 〈term〉|〈term〉+〈expression〉|〈term〉−〈expression〉
2. 〈term〉 → 〈factor〉|〈 factor〉*〈 term〉|〈factor〉/〈term〉
3. 〈factor〉 → i|(〈expression〉)

In terms of the extended Backus-Naur form, production 1 can equivalently be rede-
fined as

1. 〈expression〉 → 〈term〉{+|−〈term〉}

Analogously, shorten the other productions. The resulting extended Backus-Naur
form becomes

1. 〈expression〉 → 〈term〉{+|−〈term〉}
2. 〈term〉 → 〈factor〉{*|/〈term〉}
3. 〈factor〉 → i|(〈expression〉)

Notice that this form is more succinct than the original Backus-Naur form.
�

Syntax graph

As already pointed out, a production of the extended Backus-Naur form defines the
structure of the syntactic unit denoted by the nonterminal that forms the left-hand
side of the production. Such a production is represented by a syntax graph, which

36 Automata and Languages

meduna/part I 4/12/02 09:00 Page 36

contains oval nodes and rectangular nodes. Oval nodes contain terminals, whereas
rectangular nodes contain nonterminals.A syntax graph has an entering edge on the
left and an exiting edge on the right. Each path that goes from the entering edge to
the exiting edge gives rise to a valid structure of the syntactic unit defined by the
graph.

Example 1.2.2.1 Part 4 Syntax graph
Part 3 gives the extended Backus-Naur form

1. 〈expression〉 → 〈term〉{+|−〈term〉}
2. 〈term〉 → 〈factor〉{*|/〈term〉}
3. 〈factor〉 → i|(〈expression〉)

Figures 1.2.2.1 to 1.2.2.3 depict the syntax graphs corresponding to these three
productions.

Figure 1.2.2.1 Syntax graph corresponding to 〈expression〉 → 〈term〉{+|−〈term〉}.

Figure 1.2.2.2 The syntax graph corresponding to 〈term〉 → 〈factor〉{*|/〈term〉}.

Term
Factor

Factor

* /

Expression
Term

Term

+ –

Languages 37

meduna/part I 4/12/02 09:00 Page 37

Figure 1.2.2.3 The syntax graph corresponding to 〈factor〉 → i|(〈expression〉).

�

Polish nation

Parenthesized infix expressions, such as (3+1)*2, are often represented by Polish nota-
tion, which uses no parenthesis and, therefore, simplifies the evaluation of these
expressions. Next, two fundamental kinds of this notation, the prefix Polish expres-
sions and the postfix Polish expressions are recursively defined.

Definition — prefix Polish expression
Let ∑ be an alphabet, whose symbols denote operands. The prefix Polish expressions
are defined recursively as follows:

1. If a is an infix expression, a ∈ ∑, then a is also the prefix Polish expression of a.
2. If U and V are infix expressions denoted by prefix Polish expressions X and Y,

respectively, and o is an operator such that o ∈ {+, −, *, /}, then oXY is the prefix
Polish expression denoting UoV.

3. If (U) is an infix expression, where U is denoted by the prefix Polish expression
X, then X is the prefix Polish expression denoting (U).

�

Definition — postfix Polish expression
Let ∑ be an alphabet, whose symbols denote operands. The postfix Polish expressions
are defined recursively as follows:

1. If a is an infix expression, a ∈ ∑, then a is also the postfix Polish expression of a.
2. If U and V are infix expressions denoted by prefix Polish expressions X and Y,

respectively, and o is an operator such that o ∈ {+, −, *, /}, then XYo is the post-
fix Polish expression denoting UoV.

3. If (U) is an infix expression, where U is denoted by the postfix Polish expression
X, then X is the postfix Polish expression denoting (U).

�

Factor

Expression(

Identifier

Integer

)

38 Automata and Languages

meduna/part I 4/12/02 09:00 Page 38

The evaluation of the prefix Polish expressions is left to the Exercises.
Next, is described the method of evaluating postfix Polish expressions. This con-

sists of the following two steps, which are iterated until no operator appears in the
given postfix expression.

1. Let E be the current postfix Polish expression; find the leftmost operator, o, appear-
ing in E and the two operands, a and b, preceding o.

2. Perform the operation aob and replace abo in E with the obtained result.

Example 1.2.2.1 Part 5 Postfix Polish notation
Consider the parenthesized infix expression

(3 + 1) * 2

Its postfix Polish equivalent is

31+2*

The evaluation of 31+2* follows next.

Iteration 1:
1. The leftmost operator appearing in 31+2* is + and the two operands preceding

this operator are 3 and 1.
2. Perform 3 + 1 to obtain 4, and replace 31+ with 4 in 31+2*; the resulting expres-

sion has the form 42*.

Iteration 2:
1. The leftmost operator appearing in 42* is * and the two operands preceding this

operator are 4 and 2.
2. Perform 4 * 2 to obtain 8, and replace 42* with 8.

Notice that this method correctly determines 8 as the resulting value of (3+1)*2.
�

This section has introduced three pragmatically oriented specification tools for
programming language syntax, the Backus-Naur form, the extended Backus-Naur
form, and syntax graphs. To investigate these tools in a rigorous way, Chapter 5
formalizes them using context-free grammars, which are systematically investigated
in Part III.

1.2.3 Specification of a programming language

This section demonstrates the use of the language generators introduced in Sections

Languages 39

meduna/part I 4/12/02 09:00 Page 39

1.2.1 and 1.2.2 by designing a new computer language – COLA. This is a simple
programming language, suitable for the evaluation of integer functions and sequen-
ces. To give an insight into COLA, consider the following COLA program:

begin

read(n);
write("resulting factorial", n, '! = ');
factorial := 1;
@iteration;

if n = 0 goto @stop;
factorial := factorial*n;
n := n - 1;

goto @iteration;
@stop;
write(factorial)

end

Although COLA has not been defined yet, it is intuitively clear that this program deter-
mines the factorial of n, where n is a nonnegative integer.

First, COLA lexemes are described by using expressions, discussed in Section 1.2.1.
Then, COLA syntax is specified by using the extended Backus-Naur form and syn-
tax graphs, introduced in Section 1.2.2.

COLA lexemes

Next are specified the following five COLA lexemes by using expressions. Notice that
each of these lexemes has an unbounded length.

1. identifiers
2. integers
3. labels
4. text literals
5. new-line text literals.

Identifiers
COLA identifiers are nonempty alphanumeric words, which begin with a letter.
Consequently, the COLA identifiers are specified by the expression

〈letter〉〈letter or digit〉*

where <letter> and <letter or digit> are expressions defined as

〈letter〉 = a + … + z
〈letter or digit〉 = a + … + z + 0 + … + 9

40 Automata and Languages

meduna/part I 4/12/02 09:00 Page 40

Integers
COLA integers are nonempty numeric words. They are defined as

〈digit〉〈digit〉*

where

〈digit〉 = 0 + … + 9

Labels
COLA labels have the form

@w

where w is a nonempty alphanumeric word; for instance, @stop is a well-formed COLA
label. The COLA labels are defined by the expression

@〈letter or digit〉〈letter or digit〉*

where

〈letter or digit〉 = a + … + z + 0 + … + 9

Text literals
COLA text literals have the form

'w'

where w is a word consisting of any symbols except ' or "; for instance, '! =' is a well-
formed COLA text literal. The COLA text literals are defined by

'〈non-quotation symbol〉*'

where 〈non-quotation symbol〉 denotes the set of all symbols except ' or ".

New-line text literals
COLA new-line text literals have the form

"w"

where w is a word consisting of any symbols except ' or "; for instance, "resulting fac-
torial" is a validly formed COLA new-line text literal. COLA new-line text literals are
defined by

"〈non-quotation symbol〉*"

where 〈non-quotation symbol〉 denotes the set of all symbols except ' or ".

Languages 41

meduna/part I 4/12/02 09:00 Page 41

As identifiers, integers, labels, text literals, and new-line text literals have an
unbounded length, they are specified here by using expressions. Observe that all
remaining COLA lexemes have a bounded length:

arithmetic operators: +, −, *, /
relational operators: =, >, <
parentheses: (,)
separators: , and ;
assignment operator: :=
reserved words: begin, end, goto, if, read, write

COLA syntax

COLA syntax is specified here by the extended Backus-Naur form and by syntax graphs.
The COLA lexemes represent terminals in the extended Backus-Naur form for

COLA. Furthermore, this form has these nine nonterminals:

〈expression〉
〈factor〉
〈program〉
〈read list〉
〈statement list〉
〈statement〉
〈term〉
〈write list〉
〈write member〉

where 〈program〉 is the start symbol. The extended Backus-Naur form for COLA pos-
sesses the following nine productions:

1. 〈program〉 → begin〈statement list〉end

2. 〈statement list〉 → 〈statement〉{;〈statement〉}
3. 〈statement〉 → identifier := 〈expression〉|

read(〈read list〉)|
write(〈write list〉)|
[[if〈expression〉 >|<|= 〈expression〉] goto]label

4. 〈read list〉 → identifier{, identifier}
5. 〈write list〉 → 〈write member〉{,〈write member〉}
6. 〈write member〉 → identifier|text literal|new-line text literal
7. 〈expression〉 → 〈term〉{ +|− <term〉}
8. 〈term〉 → 〈factor〉{*|/ 〈factor〉}
9. 〈factor〉 → identifier |(〈expression〉)

Consider the first production

〈program〉 → begin〈statement list〉end

42 Automata and Languages

meduna/part I 4/12/02 09:00 Page 42

According to this production, a syntactically well-formed COLA program begins with
begin and ends with end. Figure 1.2.3.1 presents the syntax graph visualizing this
production.

Figure 1.2.3.1 Syntax graph corresponding to production 1.

The nonterminal 〈statement list〉, appearing on the right-hand side of production 1,
forms the left-hand side of the second production:

〈statement list〉 → 〈statement〉{;〈statement〉}

This production indicates that a COLA statement list consists of a sequence of state-
ments, separated by semicolons. Figure 1.2.3.2 gives the syntax graph displaying this
production.

Figure 1.2.3.2 Syntax graph corresponding to production 2.

Consider the third production,

〈statement〉 → identifier := 〈expression〉|
read(〈read list〉)|
write(〈write list〉)|
[[if〈expression〉 >|<|= 〈expression〉] goto]label

The four alternative definitions appearing on the right-hand side of this production
specify the following COLA statements.

1. The definition

identifier := 〈expression〉

specifies the COLA assignment statement; for instance,

factorial := factorial*n

statement list
statement

statement

;

program
statement listbegin end

Languages 43

meduna/part I 4/12/02 09:00 Page 43

is a valid COLA assignment statement. This instruction evaluates the expression
appearing to the right of := and assigns the resulting value to the identifier appear-
ing to the left of :=.

2. The definition

read(〈read list〉)

specifies the COLA read statement; for instance,

read(n)

is a valid statement of this kind. This COLA read statement reads integers from
the standard input and assigns these integer values to the members of the read
list.

3. The definition

write(〈write list〉)

describes the COLA write statement; for instance,

write(factorial)

is a valid statement of this kind. This instruction writes the write list onto the stan-
dard output.

4. The definition

[[if〈expression〉 >|<|= 〈expression〉] goto]label

contains three options:
(a) label
(b) goto label
(c) if〈expression〉 >|<|= 〈expression〉 goto label
which are discussed below.

(a) The definition

label

specifies the COLA label statement; for instance,

@stop

is a valid statement of this kind. This instruction acts as a label used by the
following two branch instructions.

(b) The definition

goto label

specifies the COLA unconditional branch statement; for instance,

44 Automata and Languages

meduna/part I 4/12/02 09:00 Page 44

goto @stop

is a valid statement of this kind. This instruction causes the computation to
continue at the label statement indicated by the label following goto.

(c) The definition

if 〈expression〉 >|<|= 〈expression〉 goto label

specifies the COLA conditional branch statement; for instance,

if n = 0 goto @stop

is a valid statement of this kind. This instruction compares the values of the
two expressions by the relational operator appearing between these expres-
sions. If this comparison holds true, the computation continues at the label
statement indicated by the label following goto; otherwise, the instruction fol-
lowing this conditional branch statement is executed. Figure 1.2.3.3 presents
the syntax graph displaying production 3.

Figure 1.2.3.3 Syntax graph corresponding to production 3.

expression
statement

read list(

(

)

)

> < =

:=

write list

expression

expression

identifier

label

goto

if

read

write

Languages 45

meduna/part I 4/12/02 09:00 Page 45

Consider production 4:

〈read list〉 → identifier{, identifier}

This production indicates that a COLA read list consists of a sequence of identi-
fiers, separated by colons. Figure 1.2.3.4 presents the syntax graph depicting this
production.

Figure 1.2.3.4 Syntax graph corresponding to production 4.

The fifth production,

〈write list〉 → 〈write member〉{,〈write member〉}

implies that a COLA write list consists of a sequence of write member, separated by
colons. Figure 1.2.3.5 presents the syntax graph depicting this production.

Figure 1.2.3.5 Syntax graph corresponding to production 5.

The nonterminal 〈write member〉, appearing on the right-hand side of production
5, forms the left-hand side of the sixth production:

〈write member〉 → identifier|text literal|new-line text literal

This production indicates that a write member is an identifier or a text literal or a
new-line text literal. Figure 1.2.3.6 contains the corresponding syntax graph.

,

read list

write member

write member

read list

,

identifier

identifier

46 Automata and Languages

meduna/part I 4/12/02 09:00 Page 46

Finally, consider the remaining three productions 7–9:

〈expression〉 → 〈term〉{ +|− 〈term〉}

〈term〉 → 〈factor〉{*|/〈factor〉}

〈factor〉 → identifier |(〈expression〉)

Example 1.8, given in the previous section, has already discussed these productions
and presented their syntax graphs (see Figures 1.2.2.1 to 1.2.2.3).

Figure 1.2.3.6 Syntax graph corresponding to production 6.

The specification of COLA is complete. Reconsider the COLA program given in
the beginning of this section; that is,

begin

read(n);
write("resulting factorial", n, '! =');
factorial := 1;
@iteration;

if n = 0 goto @stop;
factorial := factorial*n;
n := n − 1;

goto @iteration;
@stop;
write(factorial)

end

By the specification of COLA, this represents a well-formed COLA program as
verified in the exercises.

write member
identifier

new-line text literal

text literal

Languages 47

meduna/part I 4/12/02 09:00 Page 47

1.3 Translations
Sections 1.1 and 1.2 formalized and discussed languages. This section studies
translations between languages.

Definition — translation
Let ∑ be an input alphabet, and let Ω be an output alphabet. A translation, τ, from
∑* to Ω* is a relation from ∑* to Ω*. Iτ is called the input language of τ and denotes
the domain of τ; that is,

Iτ = { x: (x, y) ∈ τ for some y ∈ Ω*}

Oτ is called the output language of τ and denotes the range of τ; that is,

Oτ = { y: (x, y) ∈ τ for some x ∈ ∑*}

For each x ∈ Iτ, τ(x) is defined as

τ(x) = { y: (x, y) ∈ τ}

For each L ⊆ Iτ, τ(L) is defined as

τ(L) = { y: (x, y) ∈ τ for some x ∈ L}
�

Notice that for every translation τ from ∑* to Ω*,

τ(Iτ) = Oτ

Furthermore, for every language L such that L ⊆ Iτ,

τ(L) ⊆ Oτ

Observe that translations are defined as relations, so all notations concerning relations
(reviewed in Section 0.2) apply to translations as well. For instance, a translation τ
is finite if τ represents a finite relation.

Example 1.3.1 Finite translation
This example describes a finite translation τ that codes the decimal digits in binary.
Formally, let ∑ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, Ω = {0, 1}, and τ is the translation from
∑* to Ω*, defined as

τ = {(0, 0), (1, 1), (2, 10), (3, 11), (4, 100), (5, 101), (6, 110), (7, 111), (8, 1000), (9, 1001)}.

Observe that

48 Automata and Languages

meduna/part I 4/12/02 09:00 Page 48

Iτ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Oτ = {0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001}

Notice that 8 is coded by τ as
τ(8) = {1000}

Furthermore, consider L = {0, 2, 4, 6, 8} and observe that

τ(L) = {0, 01, 100, 110, 1000}
�

Specification of translations

The specification of translations represents a similar problem to the specification of
languages (see Section 1.2).As Example 1.3.1 illustrates, finite translations can be spec-
ified by listing their members. Naturally, this simple specification method is inap-
plicable to any infinite translations, τ. If, however, τ represents a special kind of infinite
translation from ∑* to Ω*, where ∑ and Ω are two alphabets, then the specification
of τ can be reduced to the specification of τ(a), for each a ∈ ∑. Substitution repre-
sents a translation of this kind.

Definition — substitution
Let ∑ and Ω be two alphabets, and let τ be a translation from ∑* to Ω* such that for
all x, y ∈ ∑*,

τ(xy) = τ(x)τ(y).

Then, τ is a substitution, and τ−1 is an inverse substitution.
�

Consider a substitution τ from ∑* to Ω*. By the previous definition, τ(ε) = ε. This
definition also implies that τ is completely specified by defining τ(a), for each a ∈
∑. Indeed, for all x, y ∈ ∑*, τ(xy) = τ(x)τ(y), so for all nonempty words w

τ(w) = τ(a1) … τ(an)

where |w| = n, w = a1 … an, and ai ∈ ∑ for i =1, …, n.

Example 1.3.2 Substitution
Consider the substitution τ from {0, 1}* to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}* defined by

τ(0) = {0, 2, 4, 6, 8} and τ(1) = {1, 3, 5, 7, 9}

Languages 49

meduna/part I 4/12/02 09:00 Page 49

Less formally, τ transforms 0 and 1 to an even digit and an odd digit, respectively.
As a result, τ can be seen as a denary cryptography of binary information. Indeed,
all denary numbers contained in τ(w), where w ∈ {0, 1}*, encode w. For
example, as {5087, 1443} ⊆ τ(1001), 5087 and 1443 belong to the denary numbers
cryptographing 1001. As τ−1(τ(w)) = w, τ−1 actually acts as a decoder of τ. For
example, τ−1 decodes both 5087 and 1443 to 1001 because τ−1(5087) = 1001 and
τ−1(1443) = 1001.

�

A special case of substitution is homomorphism.

Definition — homomorphism
Let ∑ and Ω be two alphabets, and let τ be a substitution from ∑* to Ω*. If τ repre-
sents a function from ∑* to Ω*, then τ is a homomorphism, and τ−1 is an inverse homo-
morphism.

�

Example 1.3.3 Homomorphism
Morse code, τ, represents an example of a homomorphism, mapping words consist-
ing of Roman letters into {., _}*:

τ(A) = . _

τ(B) = _ . . .

τ(C) = _ . _

τ(D) = _ . .

τ(E) = .

τ(F) = . . _ .

τ(G) = _ _ . .

τ(H) =

τ(I) = . .

τ(J) = . _ _ _

τ(K) = _ . _

τ(L) = . _ . .

τ(M) = _ _

τ(N) = _ .

τ(O) = _ _ _

τ(P) = . _ _ .

τ(Q) = _ _ . _

τ(R) = . _ .

τ(S) = . . .

τ(T) = _

τ(U) = . . _

τ(V) = . . . _

50 Automata and Languages

meduna/part I 4/12/02 09:00 Page 50

τ(W) = . _ _

τ(X) = _ . . _

τ(Y) = _ . _ _

τ(Z) = _ _ . .

�

However, some infinite translations cannot be specified as simply as homomor-
phisms or substitutions; at this point, the language theory usually uses translation
grammars to define them. Translation grammars resemble the Backus-Naur form (see
Section 1.2.2). By analogy with the Backus-Naur form, translation grammars con-
tain two kinds of symbols, terminals and nonterminals. Productions of translation
grammars have the form

A x|y

Example 1.3.4 Part 1 Translation grammar
Consider the translation grammar having the following eight productions:

〈expression〉 〈expression〉+〈term〉|〈expression〉〈term〉+

〈expression〉 〈expression〉−〈term〉|〈expression〉〈term〉−

〈expression〉 〈term〉|〈term〉

〈term〉 〈term〉∗〈factor〉|〈term〉〈factor〉∗

〈term〉 〈term〉/〈factor〉|〈term〉〈factor〉/

〈term〉 〈factor〉|〈factor〉

〈factor〉 (〈expression〉)|〈expression〉

〈factor〉 i|i

where i denotes an identifier or an integer. This grammar contains terminals i, +, −
, ∗, /, (, and). Furthermore, it has the nonterminals 〈expression〉, 〈factor〉, and 〈term〉,
where 〈expression〉 is the start symbol.

�

Starting from a pair consisting of two start symbols, a translation grammar uses
its productions to derive pairs of words over terminals; each step in this derivation
is symbolically denoted by ==〉〉. The set of all pairs derived in this way represents the
translation defined by the grammar.

Example 1.3.4 Part 2 Translation
The translation grammar given in the first part of this example translates infix
arithmetic expressions to the equivalent postfix Polish expressions. Next, the present

Languages 51

meduna/part I 4/12/02 09:00 Page 51

example describes the derivation steps that translate i+i*i to iii*+.

〈expression〉|〈expression〉
==〉〉 〈expression〉 + 〈term〉|〈 expression 〉〈term〉 +
==〉〉 〈term〉 + 〈term〉|〈term〉〈term〉 +
==〉〉 〈factor〉 + 〈term〉|〈factor〉〈term〉 +
==〉〉 i + 〈term〉|i〈term〉 +
==〉〉 i + 〈term〉*〈factor〉|i〈term〉〈factor〉* +
==〉〉 i + 〈factor〉*〈factor〉|i〈factor〉〈factor〉* +
==〉〉 i + i*〈factor〉|ii〈factor〉* +
==〉〉 i + i*i|iii* +

�

Section 9.2.1 discusses translation grammars in greater detail. In addition, Section
9.3 demonstrates their use in practice. Specifically, based on these grammars, Section
9.3 constructs a complete compiler for the programming language COLA, described
in Section 1.2.3.

Exercises
Note: Making use of many formal notions introduced later on, Chapters 3 through
10 reconsider some of the following exercises in greater detail.

1 Formalization of Languages

1.1 Consider the definition
Let ∑ be an alphabet:
(a) ε is a word over ∑
(b) if x is a word over ∑ and a ∈ ∑, then ax is a word over ∑.
Section 1.1 has defined the words over ∑ in a slightly different way. Are both
definitions equivalent?

1.2 Prove that for all words x

xε = εx = x

1.3 Prove or disprove that for all i ≥ 0,

εi = ε

1.4 Prove or disprove that there exists a nonnegative integer i such that for all words
x

52 Automata and Languages

meduna/part I 4/12/02 09:00 Page 52

xi = ε

1.5 Prove or disprove that for any two words, x and y,

xy = yx

1.6 Prove that concatenation is associative.
1.7 Give a nonempty word x such that

x = reversal(x)

1.8 Give a nonempty word x such that

xi = reversal(x)i

for all i ≥ 0.
1.9 Give a word x such that

xi = reversal(x)

for all i ≥ 0.
1.10 Prove that for every word x

xixj = xjxi = xi+j

where i, j ≥ 0.
1.11 Prove or disprove that for all words, x and y,

reversal(xy) = reversal(y)reversal(x)

1.12 Let x = aaabababbb. Determine prefix(x), suffix(y), and subword(x).
1.13 Prove that every word y satisfies these three properties

(a) prefix(y) ⊆ subword(y)
(b) suffix(y) ⊆ subword(y)
(c) {ε, y} ⊆ prefix(y) ∩ suffix(y) ∩ subword(y)

1.14 Let ∑ = {0, 1}. Consider the language

L = { 011, 111, 110}

over ∑. Determine L, reversal(L), prefix(L), suffix(L), L2, L*, and L+.
1.15 Prove that the following four properties hold for every language, L:

(a) L{ε} = {ε}L = L
(b) L∅ = ∅L = ∅
(c) L+ = LL* = L*L
(d) L* = L+ U {ε}.

1.16 Let L be a language. Characterize when L* = L.

Languages 53

meduna/part I 4/12/02 09:00 Page 53

1.17 Define an enumerable language by analogy with the definition of an enumer-
able set.

1.18 Let ∑ be an alphabet. Consider the family of all finite languages over ∑. Prove
that this family is enumerable.

1.19* Let ∑ be an alphabet. Prove that 2∑*
is not enumerable.

1.20 State the fundamental reason why some languages cannot be defined by any
finite-size specification tools. (Section 8.1.5 discusses this crucial statement and
its consequences in greater depth.)

1.21 Let ∑ = {0, 1}. Consider the following two languages over ∑:

L1= { 00, 11} and L2 = {0, 00}.

Determine L1 ∪ L2, L1 ∩ L2, L1 − L2, and L1L2.
1.22 Prove that the following two equations hold for any two languages, L1 and L2:

(a) (L1 ∪ L2)* = (L1
* L2

)

(b) (L1L2 ∪ L2)* = L1(L2L1 ∪ L1)*.
1.23 Prove that the following three equations hold for any three languages L1, L2,

and L3:
(a) (L1L2)L3 = L1(L2L3)
(b) (L1 ∪ L2)L3 = L1L3 ∪ L2L1
(c) L3(L1 ∪ L2) = L3L1 ∪ L3L2.

1.24 Prove or disprove that the following three equations hold for any three lan-
guages L1, L2, and L3:
(a) (L1 ∩ L2)L3 = L1L3 ∩ L2L1
(b) L3(L1 ∩ L2) = L3L1 ∩ L3L2
(c) L3(L1 − L2) = L3L1 − L3L2

1.25 Determine all languages L1 and L2 satisfying

L1 ∪ L2 = L1 ∩ L2 = L1 − L2

1.26* By DeMorgan's law,

L1 ∪ L2 = L1 ∩ L2

for any two languages, L1 and L2. Prove this law.
1.27 Example 1.1.3 discussed this family of languages

L = { L: L ⊆ {a}{a, b}*}

Consider each language operation defined in Section 1.1. Prove or disprove that
L is closed under the operation.

1.28 Consider this family of languages

L = { L: L ⊆ {a, b}*{b}{a, b}*}

54 Automata and Languages

meduna/part I 4/12/02 09:00 Page 54

Consider each language operation defined in Section 1.1. Prove or disprove that
L is closed under the operation.

1.29 Consider the family of languages

L = { L: L ⊆ {a, b}*, and |x| is even for each x ∈ L}

Consider each language operation defined in Section 1.1. Prove or disprove that
L is closed under the operation.

1.30 Consider the family of finite languages. In addition, consider each language
operation defined in Section 1.1. Prove or disprove that this family is closed
under the operation.

1.31* Consider the family of enumerable languages. In addition, consider each lan-
guage operation defined in Section 1.1. Prove or disprove that this family is
closed under the operation.

1.32* Consider the family of infinite languages, which properly contains the
family of enumerable languages. In addition, consider each language opera-
tion defined in Section 1.1. Prove or disprove that this family is closed under
the operation.

2. Expressions and Grammars

2.1 Consider the finite language consisting of all English determiners, such as any
and some. Specify this language by listing all its members.

2.2 Consider the expression

〈letter〉〈letter or digit〉*〈letter〉

where 〈letter〉 = A + … + Z, and 〈letter or digit〉 = A + … + Z + 0 + … + 9.
Give an informal description of lexemes defined by this expression.

2.3 Construct expressions for all Pascal lexemes.
2.4 Let L be a language defined by an expression. Prove or disprove that any sub-

set of L can be defined by an expression, too.
2.5 Select an infinite subset of English and define it by Backus-Naur form.
2.6 Construct the Backus-Naur form for the language consisting of the

numbers in FORTRAN. By using this form, derive each of the following
numbers:
(a) 16
(b) −61
(c) −6.12
(d) −32.61E+04
(e) −21.32E−02.

2.7 Construct the Backus-Naur form for the language consisting of all PL/I dec-
laration statements. By using this form, derive each of the following statements:
(a) DECLARE A FIXED BINARY, B FLOAT

Languages 55

meduna/part I 4/12/02 09:00 Page 55

(b) DECLARE (A, B) FIXED
(c) DECLARE (A(10), B(-1:2), C) FLOAT.

2.8 Construct the Backus-Naur form for the language of parenthesized logical
expressions consisting of the logical variable p and the logical operators and,
or, and not. By using this form, derive each of the following statements:
(a) not p or p
(b) not (p and p) or p
(c) (p or p) or (p and not p).

2.9 Construct the extended Backus-Naur form that specifies the Pascal syntax.
2.10 Construct syntax graphs that specify the Pascal syntax.
2.11 Prove that the following three specification tools define the same family of

language.
(a) the Backus-Naur form
(b) the extended Backus-Naur form
(c) syntax graphs

2.12 Modify the Backus-Naur form so
(a) the right-hand side of any production contains only one definition
(b) a nonterminal may form the left-hand side of several productions.
Formalize this modification and demonstrate its equivalence to the original
Backus-Naur form.

2.13 Example 1.2.2.1 Part 1 discussed this three-production Backus-Naur form:

〈expression〉 → 〈term〉|〈term〉+〈expression〉|〈term〉−〈expression〉
〈term〉 → 〈factor〉|〈factor〉*〈term〉|〈factor〉/〈term〉
〈factor〉 → i|(〈expression〉)

Apply the modification discussed in Exercise 2.12 to this form.
2.14 Incorporate the Pascal relational and logical operators in the Backus-Naur form

discussed in Part 1 of Example 1.2.2.1.
2.15 Make the extended Backus-Naur form more succinct by introducing some new

notational options.
2.16 As noted in Section 1.2.2, some versions of the extended Backus-Naur form use

(and) instead of and , respectively. Demonstrate a practical disadvantage
of the use of (and).

2.17 Section 1.2.2 has described syntax graphs informally. Define them rigorously.
2.18 Consider the infix expression (1+4)*((4+2)*3)+6. Determine and evaluate its

postfix Polish equivalent.
2.19 Describe a method that evaluates the prefix Polish expressions.
2.20 Consider the infix expression 7*((3+1)*8)+2. Determine and evaluate its pre-

fix Polish equivalent.
2.21 Consider the COLA program given in the beginning of Section 1.2.3. By the

specification of COLA given in Section 1.2.3, demonstrate that this program
represents a well-formed COLA program.

56 Automata and Languages

meduna/part I 4/12/02 09:00 Page 56

3. Translations
3.1 Specify the finite translation τ that translates the digits 0 through 9 to their octal

representations.
3.2 Let ∑ and Ω be two alphabets, and let τ be a substitution from ∑* to Ω*. Does

there exist a word, x ∈ Ω*, such that τ−1(x) is infinite? Does there exist a
word, x ∈ Ω*, such that τ−1(x) = ∅? Does there exist a word, x ∈ Ω*, such that
τ−1(x) = {ε}?

3.3* Let ∑ and Ω be two alphabets, and let τ and τ′ be two homomorphisms from
∑* to Ω*. If for all x ∈ ∑*,

τ(x) = τ′ (x)

then τ and τ′ are equal. Design a method that decides whether two homo-
morphisms are equal.

3.4 Section 1.3 has stated that every homomorphism is a substitution? Explain this
statement in detail.

3.5 Section 1.3 has stated that for every substitution τ, τ(ε) = ε. Explain this state-
ment in detail.

3.6 Section 1.3 has stated that for all x, y ∈ ∑*,

τ(xy) = τ(x)τ(y),

so, for all nonempty words w

τ(w) = τ(a1 … an) = τ(a1) … τ(an).

where n ≥ 1, w = a1 … an, and ai ∈ ∑ for i =1, …, n. Explain this statement in
detail.

3.7 Design a translation grammar that translates infix expressions to the equiva-
lent prefix Polish expressions.

3.8 Recall that syntax graphs graphically represent the Backus-Naur form. Design
an analogical graphical representation for translation grammars – translation
graphs.

Programming projects

1 Formalization of Languages

1.1 Consider each of the unary language operations introduced in Section 1.1.Write
a program that reads a finite language L, applies this operation to L, and pro-
duces the languages resulting from this application.

1.2 Consider each of the binary language operations introduced in Section 1.1.Write
a program that reads two finite language L and L′, applies this operation to L

Languages 57

meduna/part I 4/12/02 09:00 Page 57

and L′, and produces the language resulting from this application.
1.3 Introduce a finite language L representing a dictionary. Write a program that

provides insertion and deletion of words in L.

2 Expressions and Grammars

2.1 Design a data structure for representing expressions.
2.2 Design a data structure that represents the Backus-Naur form.
2.2 Consider the Backus-Naur form given in Part 1 of Example 1.2.2.1.Write a pro-

gram that reads a natural number n and then generates all m-step derivations
in this form, for m = 1, …, n.

2.3 Consider the Backus-Naur form given in Part 1 of Example 1.2.2.1.Write a pro-
gram that reads a word x and decides whether x is an arithmetic expression
generated by this form.

2.4 Write a program that evaluates prefix Polish expressions.
2.5 Write a program that evaluates postfix Polish expressions.

3 Translations

3.1 Design a data structure for representing a substitution.
3.2 Design a data structure for representing a translation grammar.
3.3 Consider the translation grammar given in Part 1 of Example 1.3.3.Write a pro-

gram that reads a natural number n and then generates all m-step derivations
in this form, for m = 1, …, n.

3.4 Write a program that reads a word x and decides whether x is a valid infix
expression. If x is valid, the program translates x into its postfix equivalent by
using the translation grammar given in Example 1.3.3.

3.5 Write a program that reads a word x and decides whether x is a valid infix
expression. If x is valid, the program translates x into its prefix equivalent.

58 Automata and Languages

meduna/part I 4/12/02 09:00 Page 58

